Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner's 2A media

Background. Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial contamination of dialysis fluids. To evaluate the microbiological quality of haemodialysis fluids, special nutrient-poor culture te...

Full description

Saved in:
Bibliographic Details
Published inNephrology, dialysis, transplantation Vol. 14; no. 10; pp. 2433 - 2437
Main Authors van der Linde, Klaas, Lim, Bing T., Rondeel, Jan M. M., Antonissen, Lea P. M. T., de Jong, Gijs M. Th
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford Oxford University Press 01.10.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background. Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial contamination of dialysis fluids. To evaluate the microbiological quality of haemodialysis fluids, special nutrient-poor culture techniques are necessary. Although the Association for the Advancement of Medical Instrumentation (AAMI) recommends Tryptic soy agar (TSA) as the standard agar, several studies have resulted in a general preference for Reasoner's 2A (R2A) agar, as it appeared to be more sensitive in demonstrating contamination of typical haemodialysis associated bacteria. In the Netherlands TSA is still used for culturing dialysate, while dialysis water is cultured on R2A. Therefore, the aims of our study were to evaluate bacterial yields of dialysis fluids on both media, and to qualify their use in routine microbiological monitoring within our haemodialysis centre. Methods. Between April 1995 and March 1996, 229 samples of pre-treated and final purified dialysis water, and samples of dialysates were collected. The specimens were aseptically taken from the tap, various points of the reverse osmosis (RO) water-treatment system, and the effluent tubes of 32 bicarbonate haemodialysis machines. Samples of 0.1 ml were inoculated in duplicate on spread plates with TSA and R2A agars. After 10 days of incubation at 25±2°C, the numbers of colonies were quantified. The ranges of spread were taken 0–100 and 0–200 colony-forming units per milliliter (c.f.u./ml). Results. The R2A agar had significantly higher colony counts than TSA agar for both dialysis water and dialysates. Considering 100 c.f.u./ml as the upper allowable bacterial limit for all dialysis fluids, microbiological non-compliance (bacterial growth) would be missed in 16% when using only TSA media (TSA ≤100 c.f.u./ml and R2A >100 c.f.u./ml), while this was 3% when using only R2A (TSA >100 c.f.u./ml and R2A ≤100 c.f.u./ml, P<0.0001). Considering 200 c.f.u./ml as the upper limit, non-compliance would have been missed in 10% when using only TSA (TSA ≤200 c.f.u./ml and R2A >200 c.f.u./ml), and 2% when using R2A (TSA >200 c.f.u./ml and R2A ≤200 c.f.u./ml, P=0.0011). Conclusions. Microbiological surveillance of haemodialysis fluids, including pre-treated dialysis water samples collected from RO treatment systems, can be performed more precisely with R2A media than TSA, when incubated at 25±2°C for 10 days.
AbstractList BACKGROUNDAccurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial contamination of dialysis fluids. To evaluate the microbiological quality of haemodialysis fluids, special nutrient-poor culture techniques are necessary. Although the Association for the Advancement of Medical Instrumentation (AAMI) recommends Tryptic soy agar (TSA) as the standard agar, several studies have resulted in a general preference for Reasoner's 2A (R2A) agar, as it appeared to be more sensitive in demonstrating contamination of typical haemodialysis associated bacteria. In the Netherlands TSA is still used for culturing dialysate, while dialysis water is cultured on R2A. Therefore, the aims of our study were to evaluate bacterial yields of dialysis fluids on both media, and to qualify their use in routine microbiological monitoring within our haemodialysis centre.METHODSBetween April 1995 and March 1996, 229 samples of pre-treated and final purified dialysis water, and samples of dialysates were collected. The specimens were aseptically taken from the tap, various points of the reverse osmosis (RO) water-treatment system, and the effluent tubes of 32 bicarbonate haemodialysis machines. Samples of 0.1 ml were inoculated in duplicate on spread plates with TSA and R2A agars. After 10 days of incubation at 25+/-2 degrees C, the numbers of colonies were quantified. The ranges of spread were taken 0-100 and 0-200 colony-forming units per milliliter (c.f.u./ml).RESULTSThe R2A agar had significantly higher colony counts than TSA agar for both dialysis water and dialysates. Considering 100 c.f.u./ml as the upper allowable bacterial limit for all dialysis fluids, microbiological non-compliance (bacterial growth) would be missed in 16% when using only TSA media (TSA < or =100 c.f.u./ml and R2A >100 c.f.u./ml), while this was 3% when using only R2A (TSA >100 c.f.u./ml and R2A < or =100 c.f.u./ml, P<0.0001). Considering 200 c.f.u./ml as the upper limit, non-compliance would have been missed in 10% when using only TSA (TSA < or =200 c.f.u./ml and R2A >200 c.f.u./ml), and 2% when using R2A (TSA > 200 c.f.u./ml and R2A < or =200 c.f.u./ml, P = 0.0011).CONCLUSIONSMicrobiological surveillance of haemodialysis fluids, including pre-treated dialysis water samples collected from RO treatment systems, can be performed more precisely with R2A media than TSA, when incubated at 25+/-2 degrees C for 10 days.
Background. Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial contamination of dialysis fluids. To evaluate the microbiological quality of haemodialysis fluids, special nutrient-poor culture techniques are necessary. Although the Association for the Advancement of Medical Instrumentation (AAMI) recommends Tryptic soy agar (TSA) as the standard agar, several studies have resulted in a general preference for Reasoner's 2A (R2A) agar, as it appeared to be more sensitive in demonstrating contamination of typical haemodialysis associated bacteria. In the Netherlands TSA is still used for culturing dialysate, while dialysis water is cultured on R2A. Therefore, the aims of our study were to evaluate bacterial yields of dialysis fluids on both media, and to qualify their use in routine microbiological monitoring within our haemodialysis centre. Methods. Between April 1995 and March 1996, 229 samples of pre-treated and final purified dialysis water, and samples of dialysates were collected. The specimens were aseptically taken from the tap, various points of the reverse osmosis (RO) water-treatment system, and the effluent tubes of 32 bicarbonate haemodialysis machines. Samples of 0.1 ml were inoculated in duplicate on spread plates with TSA and R2A agars. After 10 days of incubation at 25±2°C, the numbers of colonies were quantified. The ranges of spread were taken 0–100 and 0–200 colony-forming units per milliliter (c.f.u./ml). Results. The R2A agar had significantly higher colony counts than TSA agar for both dialysis water and dialysates. Considering 100 c.f.u./ml as the upper allowable bacterial limit for all dialysis fluids, microbiological non-compliance (bacterial growth) would be missed in 16% when using only TSA media (TSA ≤100 c.f.u./ml and R2A >100 c.f.u./ml), while this was 3% when using only R2A (TSA >100 c.f.u./ml and R2A ≤100 c.f.u./ml, P<0.0001). Considering 200 c.f.u./ml as the upper limit, non-compliance would have been missed in 10% when using only TSA (TSA ≤200 c.f.u./ml and R2A >200 c.f.u./ml), and 2% when using R2A (TSA >200 c.f.u./ml and R2A ≤200 c.f.u./ml, P=0.0011). Conclusions. Microbiological surveillance of haemodialysis fluids, including pre-treated dialysis water samples collected from RO treatment systems, can be performed more precisely with R2A media than TSA, when incubated at 25±2°C for 10 days.
Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial contamination of dialysis fluids. To evaluate the microbiological quality of haemodialysis fluids, special nutrient-poor culture techniques are necessary. Although the Association for the Advancement of Medical Instrumentation (AAMI) recommends Tryptic soy agar (TSA) as the standard agar, several studies have resulted in a general preference for Reasoner's 2A (R2A) agar, as it appeared to be more sensitive in demonstrating contamination of typical haemodialysis associated bacteria. In the Netherlands TSA is still used for culturing dialysate, while dialysis water is cultured on R2A. Therefore, the aims of our study were to evaluate bacterial yields of dialysis fluids on both media, and to qualify their use in routine microbiological monitoring within our haemodialysis centre. Between April 1995 and March 1996, 229 samples of pre-treated and final purified dialysis water, and samples of dialysates were collected. The specimens were aseptically taken from the tap, various points of the reverse osmosis (RO) water-treatment system, and the effluent tubes of 32 bicarbonate haemodialysis machines. Samples of 0.1 ml were inoculated in duplicate on spread plates with TSA and R2A agars. After 10 days of incubation at 25+/-2 degrees C, the numbers of colonies were quantified. The ranges of spread were taken 0-100 and 0-200 colony-forming units per milliliter (c.f.u./ml). The R2A agar had significantly higher colony counts than TSA agar for both dialysis water and dialysates. Considering 100 c.f.u./ml as the upper allowable bacterial limit for all dialysis fluids, microbiological non-compliance (bacterial growth) would be missed in 16% when using only TSA media (TSA < or =100 c.f.u./ml and R2A >100 c.f.u./ml), while this was 3% when using only R2A (TSA >100 c.f.u./ml and R2A < or =100 c.f.u./ml, P<0.0001). Considering 200 c.f.u./ml as the upper limit, non-compliance would have been missed in 10% when using only TSA (TSA < or =200 c.f.u./ml and R2A >200 c.f.u./ml), and 2% when using R2A (TSA > 200 c.f.u./ml and R2A < or =200 c.f.u./ml, P = 0.0011). Microbiological surveillance of haemodialysis fluids, including pre-treated dialysis water samples collected from RO treatment systems, can be performed more precisely with R2A media than TSA, when incubated at 25+/-2 degrees C for 10 days.
Author Rondeel, Jan M. M.
de Jong, Gijs M. Th
Lim, Bing T.
Antonissen, Lea P. M. T.
van der Linde, Klaas
Author_xml – sequence: 1
  givenname: Klaas
  surname: van der Linde
  fullname: van der Linde, Klaas
  organization: Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht
– sequence: 2
  givenname: Bing T.
  surname: Lim
  fullname: Lim, Bing T.
  organization: Regional Laboratory of Medical Microbiology (RLM), Dordrecht/Gorinchem, and
– sequence: 3
  givenname: Jan M. M.
  surname: Rondeel
  fullname: Rondeel, Jan M. M.
  organization: Department of Clinical Chemistry, Albert Schweitzer Hospital, Dordrecht, The Netherlands
– sequence: 4
  givenname: Lea P. M. T.
  surname: Antonissen
  fullname: Antonissen, Lea P. M. T.
  organization: Regional Laboratory of Medical Microbiology (RLM), Dordrecht/Gorinchem, and
– sequence: 5
  givenname: Gijs M. Th
  surname: de Jong
  fullname: de Jong, Gijs M. Th
  organization: Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1965316$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10528669$$D View this record in MEDLINE/PubMed
BookMark eNpNkM9r1EAUxwep2G316lHmIHrKdn4n8VaW1hYqwlJBvAwvk5c6mmTWmaTtgn98Z9mlepo3vM_7wvdzQo7GMCIhbzlbclbLs7GdzrjK81IoKV-QBVeGFUJW-ogsMsALpll9TE5S-sUYq0VZviLHnGlRGVMvyN_rYRPDPba0ATdh9KEPd95BT9Mc79H3PYwOaejoT8AhtB76bfKJdv3s2_SJAnVh2ED0KYy0wekBcaS3cbuZvKMpbCncQaQwtnSNkBmMHxMV53TAHPWavOygT_jm8J6Sb5cXt6ur4ubr5-vV-U3hlFFTIUSneVNpxVpe61o1sqyEErrlTmtnXFU2giuG2EIHnQaha94oZrirTMcaJ0_Jh31urvpnxjTZwSeHu24Y5mRLVmVhmmdwuQddDClF7Owm-gHi1nJmd75t9m252n13vvPBu0Py3ORK_-F7wRl4fwAgZatdzDp9-sfVRktuMlbsMZ8mfHxeQ_xtTSlLba--_7BytV6ty4rZL_IJXKearg
CODEN NDTREA
CitedBy_id crossref_primary_10_1007_s00284_012_0137_0
crossref_primary_10_1128_mSphere_00246_20
crossref_primary_10_1016_S0195_6701_02_00402_4
crossref_primary_10_1017_S1473550420000312
crossref_primary_10_1016_j_femsec_2004_10_015
crossref_primary_10_1099_ijs_0_054478_0
crossref_primary_10_14219_jada_archive_2006_0186
crossref_primary_10_1590_s2175_97902019000417835
crossref_primary_10_4167_jbv_2021_51_2_079
crossref_primary_10_1136_gutjnl_2017_315082
crossref_primary_10_3389_fmicb_2016_00851
crossref_primary_10_1128_MRA_00956_20
crossref_primary_10_1111_sdi_12113
crossref_primary_10_1128_AEM_01087_13
crossref_primary_10_53393_rial_2004_63_34862
crossref_primary_10_1016_j_ajic_2014_07_005
crossref_primary_10_1021_acs_est_5b05003
crossref_primary_10_1038_nrneph_2012_241
crossref_primary_10_2345_0899_8205_2008_42_150_TMWAFI_2_0_CO_2
crossref_primary_10_1099_ijs_0_020206_0
crossref_primary_10_1111_sdi_12007
crossref_primary_10_1099_ijsem_0_005232
crossref_primary_10_1111_j_1745_4581_2002_tb00010_x
crossref_primary_10_1007_s11240_021_02210_3
crossref_primary_10_1046_j_1525_139x_2000_00103_x
crossref_primary_10_1111_j_0894_0959_2004_17617_x
crossref_primary_10_1603_EN10137
crossref_primary_10_1007_s10453_006_9033_z
crossref_primary_10_1016_j_envint_2018_04_029
crossref_primary_10_1080_09583157_2012_755612
crossref_primary_10_1093_femsec_fiad119
crossref_primary_10_1007_s10529_017_2404_4
crossref_primary_10_1159_000328072
crossref_primary_10_3389_fmicb_2017_02580
crossref_primary_10_3390_microorganisms3030484
crossref_primary_10_4315_0362_028X_JFP_17_251
crossref_primary_10_1097_MAT_0000000000000353
crossref_primary_10_1111_sdi_12898
crossref_primary_10_1007_s10658_018_01608_8
crossref_primary_10_1016_j_watres_2017_06_070
crossref_primary_10_53393_rial_2009_v68_32722
crossref_primary_10_1016_j_chemosphere_2011_08_037
crossref_primary_10_1093_femsec_fiab060
crossref_primary_10_1111_hdi_12477
crossref_primary_10_1128_AEM_02440_20
crossref_primary_10_4167_jbv_2021_51_2_79
crossref_primary_10_3390_antibiotics10101212
crossref_primary_10_1007_s11627_015_9673_1
crossref_primary_10_1139_w11_087
crossref_primary_10_1128_CMR_00039_06
crossref_primary_10_1007_s12602_024_10244_0
crossref_primary_10_1111_jam_14686
crossref_primary_10_1099_ijs_0_027805_0
crossref_primary_10_1097_00002480_200207000_00010
crossref_primary_10_1093_ndt_gfr471
crossref_primary_10_1094_PBIOMES_06_23_0050_R
crossref_primary_10_1099_ijsem_0_003427
crossref_primary_10_3389_fmicb_2023_1285791
crossref_primary_10_1099_ijsem_0_001177
crossref_primary_10_1099_ijsem_0_002461
crossref_primary_10_3389_fpls_2021_704985
Cites_doi 10.1681/ASN.V291436
10.1002/j.1551-8833.1979.tb04382.x
10.1111/j.1525-139X.1989.tb00557.x
10.1111/j.1525-1594.1989.tb02851.x
10.1159/000168155
10.1159/000169985
10.1016/S0140-6736(75)90721-7
10.1111/j.1525-1594.1992.tb00322.x
10.1159/000170255
10.1093/ndt/13.4.949
10.1177/039139889001300107
10.1016/0195-6701(89)90016-9
10.1159/000168694
10.1001/jama.260.14.2077
10.1097/00002480-198907000-00112
10.1097/00002480-199410000-00019
10.1093/ndt/13.suppl_5.17
10.1093/ndt/11.6.946
10.1111/j.0954-6820.1976.tb06709.x
ContentType Journal Article
Conference Proceeding
Copyright 1999 INIST-CNRS
Copyright_xml – notice: 1999 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1093/ndt/14.10.2433
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2385
EndPage 2437
ExternalDocumentID 10_1093_ndt_14_10_2433
10528669
1965316
ark_67375_HXZ_3CRCR780_M
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Belgische Veriniguing vóór Nefrologie
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
123
18M
1TH
29M
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AABZA
AACZT
AAESY
AAHTB
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAWDT
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACIMA
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEIU
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AIAGR
AIJHB
AIKOY
AIMBJ
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
ASMCH
ASPBG
ATTQO
AVNTJ
AVWKF
AWCFO
AXUDD
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BGYMP
BHONS
BSCLL
BTRTY
BVRKM
BYORX
BZKNY
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SDH
TCURE
TEORI
TJX
TMA
TR2
W8F
WH7
WOQ
X7H
X7M
YAYTL
YKOAZ
YXANX
ZA5
ZGI
ZKX
ZXP
~91
AANRK
AAPBV
AAUGY
ABPTK
ALXQX
CASEJ
H13
IQODW
OBFPC
AAUAY
ACZBC
ADQBN
AEHUL
AFSHK
ATGXG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c464t-22f51b8540d19594b3782425d1c55c6c87b2140eedafaf5a2591b4061c86f0bc3
ISSN 0931-0509
IngestDate Sat Aug 17 01:23:59 EDT 2024
Thu Sep 12 17:11:22 EDT 2024
Sat Sep 28 08:38:43 EDT 2024
Sun Oct 22 16:05:24 EDT 2023
Wed Apr 24 01:09:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Kidney disease
Human
Urinary system disease
Hemodialysis
Exploration
Bacteriological investigation
Infection
Prevention
Extrarenal dialysis
Chronic
Treatment
Renal failure
Bacteriosis
Complication
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Annual Scientific Meeting of the Belgische Veriniguing vóór Nefrologie/Société Belge de Néphrologie
MergedId FETCHMERGED-LOGICAL-c464t-22f51b8540d19594b3782425d1c55c6c87b2140eedafaf5a2591b4061c86f0bc3
Notes PII:1460-2385
istex:6723525DF4DF2D1AA69D60B29B3B7B08F445E84C
local:0142433
Dr G. M. Th. de Jong MD PhD, Department of Internal Medicine, Albert Schweitzer Hospital, PO Box 444, 3300 AK Dordrecht, The Netherlands.
ark:/67375/HXZ-3CRCR780-M
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/ndt/article-pdf/14/10/2433/23770904/142433.pdf
PMID 10528669
PQID 70838551
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_70838551
crossref_primary_10_1093_ndt_14_10_2433
pubmed_primary_10528669
pascalfrancis_primary_1965316
istex_primary_ark_67375_HXZ_3CRCR780_M
PublicationCentury 1900
PublicationDate 1999-10-01
PublicationDateYYYYMMDD 1999-10-01
PublicationDate_xml – month: 10
  year: 1999
  text: 1999-10-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Nephrology, dialysis, transplantation
PublicationTitleAlternate Nephrol. Dial. Transplant
PublicationYear 1999
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References key 20180203000919_R20
key 20180203000919_R22
key 20180203000919_R21
key 20180203000919_R24
key 20180203000919_R23
key 20180203000919_R26
key 20180203000919_R25
key 20180203000919_R27
key 20180203000919_R11
key 20180203000919_R10
key 20180203000919_R2
key 20180203000919_R13
key 20180203000919_R1
key 20180203000919_R12
key 20180203000919_R15
key 20180203000919_R14
key 20180203000919_R6
key 20180203000919_R17
key 20180203000919_R5
key 20180203000919_R16
key 20180203000919_R4
key 20180203000919_R19
key 20180203000919_R3
key 20180203000919_R18
key 20180203000919_R9
key 20180203000919_R8
key 20180203000919_R7
References_xml – ident: key 20180203000919_R12
– ident: key 20180203000919_R16
  doi: 10.1681/ASN.V291436
– ident: key 20180203000919_R14
– ident: key 20180203000919_R13
  doi: 10.1002/j.1551-8833.1979.tb04382.x
– ident: key 20180203000919_R23
  doi: 10.1111/j.1525-139X.1989.tb00557.x
– ident: key 20180203000919_R2
  doi: 10.1111/j.1525-1594.1989.tb02851.x
– ident: key 20180203000919_R26
– ident: key 20180203000919_R5
  doi: 10.1159/000168155
– ident: key 20180203000919_R1
– ident: key 20180203000919_R25
  doi: 10.1159/000169985
– ident: key 20180203000919_R7
– ident: key 20180203000919_R15
– ident: key 20180203000919_R3
  doi: 10.1016/S0140-6736(75)90721-7
– ident: key 20180203000919_R10
  doi: 10.1111/j.1525-1594.1992.tb00322.x
– ident: key 20180203000919_R11
  doi: 10.1159/000170255
– ident: key 20180203000919_R27
  doi: 10.1093/ndt/13.4.949
– ident: key 20180203000919_R20
  doi: 10.1177/039139889001300107
– ident: key 20180203000919_R19
  doi: 10.1016/0195-6701(89)90016-9
– ident: key 20180203000919_R6
  doi: 10.1159/000168694
– ident: key 20180203000919_R4
  doi: 10.1001/jama.260.14.2077
– ident: key 20180203000919_R18
  doi: 10.1097/00002480-198907000-00112
– ident: key 20180203000919_R22
  doi: 10.1097/00002480-199410000-00019
– ident: key 20180203000919_R9
  doi: 10.1093/ndt/13.suppl_5.17
– ident: key 20180203000919_R21
– ident: key 20180203000919_R24
  doi: 10.1093/ndt/11.6.946
– ident: key 20180203000919_R8
– ident: key 20180203000919_R17
  doi: 10.1111/j.0954-6820.1976.tb06709.x
SSID ssj0009277
Score 1.9345512
Snippet Background. Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to...
Accurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to bacterial...
BACKGROUNDAccurate microbiological surveillance in haemodialysis centres is important as end-stage renal patients can suffer from pyrogenic reactions due to...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2433
SubjectTerms Agar
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
bacterial contamination
Bacteriological Techniques
Biological and medical sciences
Colony Count, Microbial
Culture Media
Dialysis Solutions
Drug Contamination
Emergency and intensive care: renal failure. Dialysis management
haemodialysis
Humans
Intensive care medicine
Medical sciences
pyrogen
Water Microbiology
water purification
Title Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner's 2A media
URI https://api.istex.fr/ark:/67375/HXZ-3CRCR780-M/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/10528669
https://search.proquest.com/docview/70838551
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiHeuAwoMPADYg9RslycG29VVyhozaquQxUvke0k08RopyRFDIk_zK_g2M6to4DgJUrTNG76fTkX95zPCL3k4EVDO-N6QJNAJ2FKdGYnmW6BPQ5SkvimFKueRN74jLxfuIte70enamldMoN_29pX8j-owjHAVXTJ_gOyzUXhAOwDvrAFhGH7K8ZbXU2UAhhNw4loAhEKI2K_lKrll3RZ1hAH0_xCqAyEXZqoSQURhirZ5sYWFuv8SyqWJBJPvogoafp5VQ-gZZfri6TQVF87b9cyrMu-5vn1lZCCLVbXGj2nedUHSYuVbLDxC80eqK6VGvEPg0g7Gs3AmkZHo435V7CvkoVGW9A9O4GTRseSgoY2Mdo53UE0P4nenZ6OZPnCsaFN5fvzdnZDKiLUdXLln7omu9OYjqULDRvlz5QRJ56pQyjiblh50mWz2bXZRElxVP5fKDRu9S1Kd2uZlFKjwBBF9M0nuzLeN9xrU_QotBsdy7uFdm0ndIUFfrtoy5FCW64S2txPIzDqHMKQh-2AGwHUrrAFX0VBLy2AG5lajOX32ZKMmuZ30V7bT4qnDX3voV66vI9uT6qyjgfoe81CfIOFuMtCvMrwBguxYiF-jQe45SCuOIgrDmLgIBYcxMBBXHPwoMD2AEsG7qGzN6P5cKxX64LonHik1G07cy0WQK6RCGkkwhwIc8H3JBZ3Xe7xwGe2RUy4J5rRzKWQ4VtMBK488DKTcech2lnCUI8RZhmzucd8myYhcVLOIH2DqC7MSMAyl_t9dFD_2PGVkn-JVdmGEwMskDiLlwKWPnolsWhOo_knUTTpu_F48TF2hrPhzA_MeNJH-xtgtddV_OijFzV4MZh68f8dXaardRH7kC4FkOH00SOFaecruXbgeeGTv1z7KbrTPmTP0E6Zr9N9CKpL9lyy8SfS18t0
link.rule.ids 310,311,315,786,790,795,796,23958,23959,25170,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Nephrology%2C+dialysis%2C+transplantation+%28Print%29&rft.atitle=Improved+bacteriological+surveillance+of+haemodialysis+fluids+%3A+A+comparison+between+Tryptic+soy+agar+and+Reasoner%27s+2A+media&rft.au=VAN+DER+LINDE%2C+K&rft.au=LIM%2C+B.+T&rft.au=RONDEEL%2C+J.+M.+M&rft.au=ANTONISSEN%2C+L.+P.+M.+T&rft.date=1999-10-01&rft.pub=Oxford+University+Press&rft.issn=0931-0509&rft.eissn=1460-2385&rft.volume=14&rft.issue=10&rft.spage=2433&rft.epage=2437&rft_id=info:doi/10.1093%2Fndt%2F14.10.2433&rft.externalDBID=n%2Fa&rft.externalDocID=1965316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-0509&client=summon