A GIS-based high spatial resolution assessment of large-scale PV generation potential in China
•600 land conversion factors are used to estimate the large-scale PV potential.•The potential PV power generation in China is estimated to be 1.38874 × 1014 kWh.•China's eight developed coastal provinces account for 1% of generation potential.•Associated CO2 reduction could meet China’s emissio...
Saved in:
Published in | Applied energy Vol. 247; pp. 254 - 269 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •600 land conversion factors are used to estimate the large-scale PV potential.•The potential PV power generation in China is estimated to be 1.38874 × 1014 kWh.•China's eight developed coastal provinces account for 1% of generation potential.•Associated CO2 reduction could meet China’s emission reduction commitment.•Maximum PV scenario needs inter-regional transmission capacity reach 300 GW.
The achievement of temperature control target requires a low carbon transition of global energy structure. While China is actively promoting the implementation of large-scale PV generation technology, there is still a lack of scientific knowledge of the generation potential in China. To address this deficiency, this study builds a GIS-based model with 600 land conversion factors incorporated to accurately estimate the large-scale PV power generation potential in China. The results show a potential installed capacity of 1.41 × 105 GW, corresponding to an annual power generation of 1.38874 × 1014 kWh or 21.4 times national electricity consumption in China 2016. If this potential were fully realized as a replacement for current fossil fuel-based power generation in China 2030, a reduction in China’s carbon intensity of 63–68% compared to 2005 would result, which is sufficient to meet China’s CO2 emission reduction commitment. On a provincial level, while generation potential in Northwest and Inner Mongolia together account for 86% of the total, China's eight economically developed coastal provinces only account for 1%. To achieve a maximum large-scale PV scenario in China 2030, the capacity of inter-regional transmission grids from Northwest region and Inner Mongolia to the regions with insufficient potential should reach an approximate 300 GW. Our study could provide decision-makers with the precise information on large-scale PV power generation map of China, and optimizing low carbon strategies and inter-regional power transmission for achieving sustainable development. |
---|---|
AbstractList | •600 land conversion factors are used to estimate the large-scale PV potential.•The potential PV power generation in China is estimated to be 1.38874 × 1014 kWh.•China's eight developed coastal provinces account for 1% of generation potential.•Associated CO2 reduction could meet China’s emission reduction commitment.•Maximum PV scenario needs inter-regional transmission capacity reach 300 GW.
The achievement of temperature control target requires a low carbon transition of global energy structure. While China is actively promoting the implementation of large-scale PV generation technology, there is still a lack of scientific knowledge of the generation potential in China. To address this deficiency, this study builds a GIS-based model with 600 land conversion factors incorporated to accurately estimate the large-scale PV power generation potential in China. The results show a potential installed capacity of 1.41 × 105 GW, corresponding to an annual power generation of 1.38874 × 1014 kWh or 21.4 times national electricity consumption in China 2016. If this potential were fully realized as a replacement for current fossil fuel-based power generation in China 2030, a reduction in China’s carbon intensity of 63–68% compared to 2005 would result, which is sufficient to meet China’s CO2 emission reduction commitment. On a provincial level, while generation potential in Northwest and Inner Mongolia together account for 86% of the total, China's eight economically developed coastal provinces only account for 1%. To achieve a maximum large-scale PV scenario in China 2030, the capacity of inter-regional transmission grids from Northwest region and Inner Mongolia to the regions with insufficient potential should reach an approximate 300 GW. Our study could provide decision-makers with the precise information on large-scale PV power generation map of China, and optimizing low carbon strategies and inter-regional power transmission for achieving sustainable development. The achievement of temperature control target requires a low carbon transition of global energy structure. While China is actively promoting the implementation of large-scale PV generation technology, there is still a lack of scientific knowledge of the generation potential in China. To address this deficiency, this study builds a GIS-based model with 600 land conversion factors incorporated to accurately estimate the large-scale PV power generation potential in China. The results show a potential installed capacity of 1.41 × 105 GW, corresponding to an annual power generation of 1.38874 × 1014 kWh or 21.4 times national electricity consumption in China 2016. If this potential were fully realized as a replacement for current fossil fuel-based power generation in China 2030, a reduction in China’s carbon intensity of 63–68% compared to 2005 would result, which is sufficient to meet China’s CO2 emission reduction commitment. On a provincial level, while generation potential in Northwest and Inner Mongolia together account for 86% of the total, China's eight economically developed coastal provinces only account for 1%. To achieve a maximum large-scale PV scenario in China 2030, the capacity of inter-regional transmission grids from Northwest region and Inner Mongolia to the regions with insufficient potential should reach an approximate 300 GW. Our study could provide decision-makers with the precise information on large-scale PV power generation map of China, and optimizing low carbon strategies and inter-regional power transmission for achieving sustainable development. |
Author | Wright, Sebastian Li, Jiashuo Huang, Tianyue Wang, Saige Dai, Shaoqing Wang, Yuxuan Yang, Qing Peng, Huaiwu |
Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0002-2836-9139 surname: Yang fullname: Yang, Qing email: qyang@hust.edu.cn organization: China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 2 givenname: Tianyue surname: Huang fullname: Huang, Tianyue organization: China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 3 givenname: Saige orcidid: 0000-0002-1999-8304 surname: Wang fullname: Wang, Saige email: wsgbnu@163.com organization: State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, PR China – sequence: 4 givenname: Jiashuo orcidid: 0000-0002-9619-5257 surname: Li fullname: Li, Jiashuo email: lijiashuo@sdu.edu.cn organization: Institute of Blue and Green Development, Shandong University, Weihai 264209, PR China – sequence: 5 givenname: Shaoqing orcidid: 0000-0003-0858-4728 surname: Dai fullname: Dai, Shaoqing organization: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Avenue 1799, Xiamen 361021, PR China – sequence: 6 givenname: Sebastian surname: Wright fullname: Wright, Sebastian organization: Honour School of Physics and Philosophy, University of Oxford, OX1 4AJ, United Kingdom – sequence: 7 givenname: Yuxuan surname: Wang fullname: Wang, Yuxuan organization: Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 8 givenname: Huaiwu surname: Peng fullname: Peng, Huaiwu organization: Power China Northwest Engineering Corporation Limited, Xi'an 710065, PR China |
BookMark | eNqFkE1P3DAQQK0KpC7Qv1D52EvSseM4idRD0YoCEhJIfByxHHuy61XWDra3Ev--WbZcuHCay3szo3dCjnzwSMh3BiUDJn9uSj2hx7h6LTmwrgRRAtRfyIK1DS86xtojsoAKZMEl676Sk5Q2AMAZhwV5PqeX1_dFrxNaunarNU2Tzk6PNGIK4y674KlOCVPaos80DHTUcYVFMnpEevdEV_vb-o2bQp6Zvew8Xa6d12fkeNBjwm__5yl5_HPxsLwqbm4vr5fnN4URUuSCCdMCNlUloUEcZMuaph5k3_fVYJnthW3QaqZrUaGWNedmYLobZGWtbRlAdUp-HPZOMbzsMGW1dcngOGqPYZcU51VTCyaabkZ_HVATQ0oRB2Vcfvs_R-1GxUDts6qNes-q9lkVCDVnnXX5QZ-i2-r4-rn4-yDi3OGvw6iScegNWhfRZGWD-2zFPxssmZ4 |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132036 crossref_primary_10_1016_j_resconrec_2023_107179 crossref_primary_10_1016_j_egyr_2023_01_132 crossref_primary_10_1016_j_energy_2025_134614 crossref_primary_10_1093_ce_zkad017 crossref_primary_10_1016_j_energy_2020_119611 crossref_primary_10_1016_j_jclepro_2023_140403 crossref_primary_10_1007_s11356_024_35669_6 crossref_primary_10_1038_s43247_024_01754_4 crossref_primary_10_3390_su12156283 crossref_primary_10_1016_j_apenergy_2023_122421 crossref_primary_10_1016_j_esd_2023_01_019 crossref_primary_10_1016_j_ref_2022_09_001 crossref_primary_10_1016_j_rser_2020_110151 crossref_primary_10_1016_j_renene_2023_119572 crossref_primary_10_1016_j_apenergy_2019_114257 crossref_primary_10_1016_j_apenergy_2022_119045 crossref_primary_10_1016_j_ijhydene_2023_03_415 crossref_primary_10_1016_j_enconman_2024_118188 crossref_primary_10_3390_en16217380 crossref_primary_10_3390_su151612159 crossref_primary_10_1016_j_energy_2020_117167 crossref_primary_10_1016_j_jhydrol_2023_129522 crossref_primary_10_1016_j_resconrec_2024_107908 crossref_primary_10_1016_j_egyr_2022_03_035 crossref_primary_10_1016_j_solener_2024_112867 crossref_primary_10_1007_s10661_023_11439_8 crossref_primary_10_1016_j_rser_2021_110857 crossref_primary_10_1016_j_seta_2022_102827 crossref_primary_10_1016_j_renene_2021_03_128 crossref_primary_10_1016_j_ecmx_2022_100328 crossref_primary_10_1016_j_apenergy_2020_114680 crossref_primary_10_1038_s41598_024_60270_9 crossref_primary_10_1016_j_apenergy_2022_118881 crossref_primary_10_1088_1748_9326_acf86f crossref_primary_10_1016_j_jclepro_2024_143812 crossref_primary_10_1073_pnas_2306517121 crossref_primary_10_3390_su16135604 crossref_primary_10_1016_j_renene_2023_119590 crossref_primary_10_1016_j_rser_2022_112681 crossref_primary_10_1016_j_esr_2025_101686 crossref_primary_10_3390_en14010143 crossref_primary_10_1016_j_energy_2024_132936 crossref_primary_10_1016_j_jes_2022_07_038 crossref_primary_10_1016_j_esd_2020_04_003 crossref_primary_10_1186_s42269_024_01291_2 crossref_primary_10_1016_j_enconman_2022_115879 crossref_primary_10_3390_land13010040 crossref_primary_10_1155_2022_2214431 crossref_primary_10_3390_en15072430 crossref_primary_10_1016_j_energy_2022_125436 crossref_primary_10_1016_j_renene_2023_119876 crossref_primary_10_31497_zrzyxb_20230309 crossref_primary_10_1016_j_renene_2024_121546 crossref_primary_10_1016_j_solener_2023_111966 crossref_primary_10_1029_2023WR035067 crossref_primary_10_1016_j_jclepro_2023_137607 crossref_primary_10_3390_su16083281 crossref_primary_10_1016_j_apenergy_2023_122326 crossref_primary_10_1016_j_egyr_2024_09_066 crossref_primary_10_1016_j_energy_2022_125312 crossref_primary_10_1016_j_renene_2023_119912 crossref_primary_10_1016_j_renene_2023_119638 crossref_primary_10_1016_j_est_2020_101601 crossref_primary_10_1016_j_egyr_2020_11_198 crossref_primary_10_1016_j_est_2021_103469 crossref_primary_10_1016_j_apenergy_2021_117996 crossref_primary_10_1016_j_seta_2024_104037 crossref_primary_10_1016_j_apenergy_2021_116543 crossref_primary_10_1016_j_apenergy_2021_117158 crossref_primary_10_1016_j_egyr_2022_10_321 crossref_primary_10_1016_j_apenergy_2020_114588 crossref_primary_10_1016_j_resconrec_2024_107920 crossref_primary_10_1016_j_apenergy_2021_117239 crossref_primary_10_1016_j_enconman_2023_117013 crossref_primary_10_1016_j_resconrec_2021_106091 crossref_primary_10_1016_j_seta_2021_101540 crossref_primary_10_1016_j_ecmx_2023_100490 crossref_primary_10_1016_j_solener_2024_112367 crossref_primary_10_3390_su162411103 crossref_primary_10_1016_j_renene_2024_122178 crossref_primary_10_1016_j_energy_2025_135815 crossref_primary_10_1016_j_jclepro_2022_132920 crossref_primary_10_1016_j_resconrec_2020_105306 crossref_primary_10_1016_j_jclepro_2023_137837 crossref_primary_10_1016_j_apenergy_2023_122139 crossref_primary_10_1016_j_apenergy_2024_123567 crossref_primary_10_1016_j_apenergy_2021_118000 crossref_primary_10_1088_1742_6596_2563_1_012007 crossref_primary_10_1016_j_ese_2022_100147 crossref_primary_10_1016_j_resconrec_2022_106596 crossref_primary_10_1016_j_rse_2024_114100 crossref_primary_10_1016_j_resconrec_2022_106155 crossref_primary_10_1021_acs_est_3c09263 |
Cites_doi | 10.1016/j.energy.2013.11.082 10.1016/j.apenergy.2018.08.109 10.1016/j.renene.2017.10.044 10.1016/j.apenergy.2018.12.056 10.1016/j.rser.2016.06.061 10.1016/j.solener.2018.06.035 10.1016/j.apenergy.2015.11.023 10.1016/j.renene.2010.10.037 10.1016/j.apenergy.2017.06.087 10.1073/pnas.1711462114 10.1021/acs.estlett.7b00197 10.1016/j.renene.2017.05.077 10.1016/j.enpol.2010.05.036 10.1016/j.rser.2016.12.048 10.1038/522279a 10.1016/j.rser.2017.06.021 10.3390/su10041181 10.1088/1755-1315/93/1/012056 10.1016/j.enpol.2013.03.002 10.1016/B978-0-12-420159-0.00006-0 10.1016/j.rser.2017.05.235 10.1016/j.scitotenv.2017.12.258 10.1016/j.rser.2014.08.047 10.1016/j.jclepro.2017.02.012 10.1016/j.apenergy.2016.09.006 10.1016/j.renene.2015.06.027 10.1016/j.energy.2015.10.108 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2019.04.005 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 269 |
ExternalDocumentID | 10_1016_j_apenergy_2019_04_005 S0306261919306312 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-14c80e733607eef681775f6bbb3fd1db4d7eda1a543ea6522cf1a9f63ddd81003 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 07:58:59 EDT 2025 Tue Jul 01 02:53:38 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 23 02:50:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Resource assessment Large-scale PV Geographic information system Renewable energy development |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-14c80e733607eef681775f6bbb3fd1db4d7eda1a543ea6522cf1a9f63ddd81003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2836-9139 0000-0002-1999-8304 0000-0002-9619-5257 0000-0003-0858-4728 |
PQID | 2237541479 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2237541479 crossref_citationtrail_10_1016_j_apenergy_2019_04_005 crossref_primary_10_1016_j_apenergy_2019_04_005 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Aly, Jensen, Pedersen (b0065) 2017; 113 National Energy Administration. Photovoltaic construction and operation in the first three quarters 2018. [Chinese version] Sun, Hof, Wang, Liu, Lin, Yang (b0050) 2013; 58 Sean, Clinton, Paul, Robert, Garvin (b0230) 2013 Institute of Geographic Sciences and Natural Resources Research, CAS. Resource and Environment Data Cloud Platform. Hong, Koo, Park, Park (b0080) 2014; 65 Hou, Sun, Jiang, Pan, Wang, Zhang (b0035) 2016; 164 IPCC special report on global warming of 1.5 °C; 2018. Zeng, Duan, Wang, Zhang, Xue (b0270) 2015; 41 Electricity market annual report 2018. Beijing Electric Power Trading Center; 2018. Nuria (b0165) 2016; 94 Third National Land Survey Implementation Plan. Ministry of Natural Resources of the People’s Republic of China; 2017. Methodological tool: tool to calculate the emission factor for an electricity system. Version 07.0. United Nations Framework Convention on Climate Change; 2012. The People’s Republic of China First Biennial Update Report on Climate Change; 2017. Bergin, Ghoroi, Dixit, Schauer, Shindell (b0240) 2017; 4 Clifton, Boruff (b0055) 2010; 38 Gao, Zhao, Zhang, Mao, Yuan (b0245) 2018; 10 Zappa, Junginger, Broek (b0255) 2019; 233–234 Xu, Chen, Chen (b0205) 2017; 203 National Development and Reform Commission. Planning for renewable energy in 13th Five-Year 2016. [Chinese version] International Journal of Climatology. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas; 2017. . REN21. Renewables 2018 Global Status Report 2018. Liu, Sun, Liu, Wang, Wang, Wang (b0110) 2019; 236 Charabi, Gastli (b0100) 2011; 36 Hu ZG. Chapter 6 – Scenario analysis of China’s electricity demand in the year 2030. Exploration into China's economic development and electricity demand by the year 2050 by electricity supply and demand laboratory; 2014. p. 141–60. IRENA (b0095) 2013 Anwarzai, Nagasaka (b0105) 2017; 71 Okoye, Bahrami, Atikol (b0075) 2018; 81 Poggio, Simonetti, Gimona (b0150) 2018; 625 CMA Wind and Solar Energy Resources Center of China Meteorological Administration. Solar and wind energy resource inventory 2015. [Chinese version] Huang, Negro, Hekkert, Bi (b0010) 2016; 64 Sara, Karlsson (b0155) 2018; 170 The People's Republic of China Second National Communication on Climate Change; 2014. Wang, Tan, Ji, Wang (b0085) 2017; 93 The People’s Republic of China first biennial update report on climate change 2016. Liu, Xu, Lin (b0070) 2017; 148 Li, Wagner, Peng, Yang, Mauzerall (b0235) 2017; 114 Institute for Global Environmental Strategies. IGES list of grid emission factors (version 10.2); 2018. National Ministry of Land and Resources. Land use control index for PV station project 2016. [Chinese version] Li, Lukszo, Weijnen (b0265) 2016; 183 ESA. GlobCover land cover maps; 2010. Marnay, Fisher, Murtishaw, Phadke, Price, Sathaye (b0180) 2002 Biewald B. Using electric system operating margins and build margins in quantification of carbon emission reductions attributable to grid connected CDM projects. Report prepared for UNFCCC; 2005. National Bureau of Statistics of China. China statistical yearbook; 2017. [Chinese version] National Development and Reform Commission. Notice related to photovoltaic power generation 2018. [Chinese version] Yushchenko, Bono, Chatenoux, Patel, Ray (b0090) 2018; 81 He, Kammen (b0115) 2016; 85 Merrouni, Elalaoui, Mezrhab, Mezrhab, Ghennioui (b0060) 2018; 119 International Centre for Tropical Agriculture. Hole-filled seamless SRTM data V4; 2008. Liu, Guan, Moore, Lee, Su (b0215) 2015; 522 Gong, Liu, Wang (b0250) 2015; 5 China electric power industry annual development report 2017. China Electricity Council; 2017. Harvard School of Engineering and Applied Sciences. Large-scale wind power would require more land and cause more environmental impact than previously thought; 2018. UNFCCC conference of the parties: adoption of the Paris agreement, FCCC/CP/2015/10Add.1, Paris, France; 2015. p. 1–32. Shan YL, Guan DB, Zheng HR, Meng J, Mi, ZF, Liu Z. China national CO2 emission inventory (sectoral approach), 2000–2015. Dataset 2017. Li (10.1016/j.apenergy.2019.04.005_b0235) 2017; 114 Gao (10.1016/j.apenergy.2019.04.005_b0245) 2018; 10 10.1016/j.apenergy.2019.04.005_b0200 10.1016/j.apenergy.2019.04.005_b0045 Okoye (10.1016/j.apenergy.2019.04.005_b0075) 2018; 81 10.1016/j.apenergy.2019.04.005_b0125 Nuria (10.1016/j.apenergy.2019.04.005_b0165) 2016; 94 10.1016/j.apenergy.2019.04.005_b0005 10.1016/j.apenergy.2019.04.005_b0170 10.1016/j.apenergy.2019.04.005_b0130 10.1016/j.apenergy.2019.04.005_b0175 Sara (10.1016/j.apenergy.2019.04.005_b0155) 2018; 170 IRENA (10.1016/j.apenergy.2019.04.005_b0095) 2013 Sun (10.1016/j.apenergy.2019.04.005_b0050) 2013; 58 Charabi (10.1016/j.apenergy.2019.04.005_b0100) 2011; 36 Sean (10.1016/j.apenergy.2019.04.005_b0230) 2013 10.1016/j.apenergy.2019.04.005_b0040 Hong (10.1016/j.apenergy.2019.04.005_b0080) 2014; 65 10.1016/j.apenergy.2019.04.005_b0160 10.1016/j.apenergy.2019.04.005_b0120 Yushchenko (10.1016/j.apenergy.2019.04.005_b0090) 2018; 81 Zappa (10.1016/j.apenergy.2019.04.005_b0255) 2019; 233–234 10.1016/j.apenergy.2019.04.005_b0145 Liu (10.1016/j.apenergy.2019.04.005_b0110) 2019; 236 10.1016/j.apenergy.2019.04.005_b0025 10.1016/j.apenergy.2019.04.005_b0225 Bergin (10.1016/j.apenergy.2019.04.005_b0240) 2017; 4 Huang (10.1016/j.apenergy.2019.04.005_b0010) 2016; 64 Liu (10.1016/j.apenergy.2019.04.005_b0215) 2015; 522 10.1016/j.apenergy.2019.04.005_b0030 10.1016/j.apenergy.2019.04.005_b0195 Xu (10.1016/j.apenergy.2019.04.005_b0205) 2017; 203 10.1016/j.apenergy.2019.04.005_b0275 Hou (10.1016/j.apenergy.2019.04.005_b0035) 2016; 164 Merrouni (10.1016/j.apenergy.2019.04.005_b0060) 2018; 119 Wang (10.1016/j.apenergy.2019.04.005_b0085) 2017; 93 10.1016/j.apenergy.2019.04.005_b0190 He (10.1016/j.apenergy.2019.04.005_b0115) 2016; 85 Clifton (10.1016/j.apenergy.2019.04.005_b0055) 2010; 38 Poggio (10.1016/j.apenergy.2019.04.005_b0150) 2018; 625 Aly (10.1016/j.apenergy.2019.04.005_b0065) 2017; 113 Li (10.1016/j.apenergy.2019.04.005_b0265) 2016; 183 10.1016/j.apenergy.2019.04.005_b0210 10.1016/j.apenergy.2019.04.005_b0015 Marnay (10.1016/j.apenergy.2019.04.005_b0180) 2002 Anwarzai (10.1016/j.apenergy.2019.04.005_b0105) 2017; 71 10.1016/j.apenergy.2019.04.005_b0135 Gong (10.1016/j.apenergy.2019.04.005_b0250) 2015; 5 10.1016/j.apenergy.2019.04.005_b0260 10.1016/j.apenergy.2019.04.005_b0020 10.1016/j.apenergy.2019.04.005_b0185 Liu (10.1016/j.apenergy.2019.04.005_b0070) 2017; 148 10.1016/j.apenergy.2019.04.005_b0140 10.1016/j.apenergy.2019.04.005_b0220 Zeng (10.1016/j.apenergy.2019.04.005_b0270) 2015; 41 |
References_xml | – volume: 119 start-page: 863 year: 2018 end-page: 873 ident: b0060 article-title: Large scale PV sites selection by combining GIS and analytical hierarchy process. Case study: Eastern Morocco publication-title: Renew Energy – year: 2002 ident: b0180 article-title: Estimating carbon dioxide emissions factors for the California electric power sector – volume: 625 start-page: 1628 year: 2018 end-page: 1643 ident: b0150 article-title: Enhancing the WorldClim data set for national and regional applications publication-title: Sci Total Environ – volume: 81 start-page: 1569 year: 2018 end-page: 1581 ident: b0075 article-title: Evaluating the solar resource potential on different tracking surfaces in Nigeria publication-title: Renew Sustain Energy Rev – volume: 81 start-page: 2088 year: 2018 end-page: 2103 ident: b0090 article-title: GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa publication-title: Renew Sustain Energy Rev – reference: The People's Republic of China Second National Communication on Climate Change; 2014. < – reference: The People’s Republic of China First Biennial Update Report on Climate Change; 2017. < – volume: 4 start-page: 339 year: 2017 end-page: 344 ident: b0240 article-title: Large reductions in solar energy production due to dust and particulate air pollution publication-title: Environ Sci Technol Lett – volume: 203 start-page: 874 year: 2017 end-page: 882 ident: b0205 article-title: Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? publication-title: Appl Energy – volume: 58 start-page: 248 year: 2013 end-page: 259 ident: b0050 article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province publication-title: Energy Pol – year: 2013 ident: b0230 article-title: Land-use requirements for solar power plants in the United States – reference: National Ministry of Land and Resources. Land use control index for PV station project 2016. [Chinese version] < – reference: Harvard School of Engineering and Applied Sciences. Large-scale wind power would require more land and cause more environmental impact than previously thought; 2018. < – volume: 233–234 start-page: 1027 year: 2019 end-page: 1050 ident: b0255 article-title: Is a 100% renewable European power system feasible by 2050? publication-title: Appl Energy – volume: 183 start-page: 853 year: 2016 end-page: 873 ident: b0265 article-title: The impact of inter-regional transmission grid expansion on China’s power sector decarbonization publication-title: Appl Energy – reference: Electricity market annual report 2018. Beijing Electric Power Trading Center; 2018. – reference: Methodological tool: tool to calculate the emission factor for an electricity system. Version 07.0. United Nations Framework Convention on Climate Change; 2012. – volume: 170 start-page: 828 year: 2018 end-page: 839 ident: b0155 article-title: Simulation, validation and analysis of shading effects on a PV system publication-title: Sol Energy – volume: 85 start-page: 74 year: 2016 end-page: 82 ident: b0115 article-title: Where, when and how much solar is available? A provincial-scale solar resource assessment for China publication-title: Renew Energy – volume: 64 start-page: 777 year: 2016 end-page: 789 ident: b0010 article-title: How China became a leader in solar PV: an innovation system analysis publication-title: Renew Sustain Energy Rev – reference: China electric power industry annual development report 2017. China Electricity Council; 2017. – reference: Shan YL, Guan DB, Zheng HR, Meng J, Mi, ZF, Liu Z. China national CO2 emission inventory (sectoral approach), 2000–2015. Dataset 2017. < – reference: International Journal of Climatology. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas; 2017. < – reference: Institute of Geographic Sciences and Natural Resources Research, CAS. Resource and Environment Data Cloud Platform. < – reference: National Energy Administration. Photovoltaic construction and operation in the first three quarters 2018. [Chinese version] < – volume: 114 start-page: 201711462 year: 2017 ident: b0235 article-title: Reduction of solar photovoltaic resources due to air pollution in China publication-title: Proc Natl Acad Sci – reference: Institute for Global Environmental Strategies. IGES list of grid emission factors (version 10.2); 2018. < – reference: National Development and Reform Commission. Notice related to photovoltaic power generation 2018. [Chinese version] < – reference: National Development and Reform Commission. Planning for renewable energy in 13th Five-Year 2016. [Chinese version] < – reference: National Bureau of Statistics of China. China statistical yearbook; 2017. [Chinese version] < – volume: 36 start-page: 2554 year: 2011 end-page: 2561 ident: b0100 article-title: PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation publication-title: Renew Energy – volume: 522 start-page: 279 year: 2015 end-page: 281 ident: b0215 article-title: Climate policy: steps to China's carbon peak publication-title: Nature – reference: CMA Wind and Solar Energy Resources Center of China Meteorological Administration. Solar and wind energy resource inventory 2015. [Chinese version] < – volume: 10 start-page: 1181 year: 2018 ident: b0245 article-title: Operational water withdrawal and consumption factors for electricity generation technology in China—a literature review publication-title: Sustainability – reference: UNFCCC conference of the parties: adoption of the Paris agreement, FCCC/CP/2015/10Add.1, Paris, France; 2015. p. 1–32. – reference: Third National Land Survey Implementation Plan. Ministry of Natural Resources of the People’s Republic of China; 2017. < – volume: 38 start-page: 5272 year: 2010 end-page: 5280 ident: b0055 article-title: Assessing the potential for concentrated solar power development in rural Australia publication-title: Energy Pol – volume: 65 start-page: 190 year: 2014 end-page: 199 ident: b0080 article-title: A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system publication-title: Energy – reference: Biewald B. Using electric system operating margins and build margins in quantification of carbon emission reductions attributable to grid connected CDM projects. Report prepared for UNFCCC; 2005. – reference: REN21. Renewables 2018 Global Status Report 2018. < – volume: 164 start-page: 882 year: 2016 end-page: 890 ident: b0035 article-title: Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China publication-title: Appl Energy – volume: 94 start-page: 233 year: 2016 end-page: 242 ident: b0165 article-title: Photovoltaic potential and land-use estimation methodology publication-title: Energy – reference: >. – reference: ESA. GlobCover land cover maps; 2010. < – volume: 148 start-page: 386 year: 2017 end-page: 397 ident: b0070 article-title: Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: a case study in Northwest China publication-title: J Clean Prod – volume: 71 start-page: 150 year: 2017 end-page: 160 ident: b0105 article-title: Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis publication-title: Renew Sustain Energy Rev – reference: International Centre for Tropical Agriculture. Hole-filled seamless SRTM data V4; 2008. < – volume: 5 start-page: 71 year: 2015 end-page: 73 ident: b0250 article-title: Discussion on cleaning technology of the PV module in photovoltaic power stations publication-title: Hydro Power New Energy – volume: 41 start-page: 14 year: 2015 end-page: 28 ident: b0270 article-title: Orderly grid connection of renewable energy generation in China: management mode, existing problems and solutions publication-title: Renew Sustain Energy Rev – volume: 236 start-page: 867 year: 2019 end-page: 876 ident: b0110 article-title: On wind speed pattern and energy potential in China publication-title: Appl Energy – volume: 113 start-page: 159 year: 2017 end-page: 175 ident: b0065 article-title: Solar power potential of Tanzania: identifying CSP and PV hot spots through a GIS multicriteria decision making analysis publication-title: Renew Energy – volume: 93 start-page: 012056 year: 2017 ident: b0085 article-title: A method for evaluating photovoltaic potential in China based on GIS platform publication-title: IOP Conf series: earth and environmental science – reference: Hu ZG. Chapter 6 – Scenario analysis of China’s electricity demand in the year 2030. Exploration into China's economic development and electricity demand by the year 2050 by electricity supply and demand laboratory; 2014. p. 141–60. – reference: The People’s Republic of China first biennial update report on climate change 2016. < – year: 2013 ident: b0095 article-title: Unleashing the solar potential in ECOWAS: seeking areas of opportunity for grid-connected and decentralised PV applications. An opportunity-based approach publication-title: International Renewable Energy Agency – reference: IPCC special report on global warming of 1.5 °C; 2018. < – volume: 65 start-page: 190 year: 2014 ident: 10.1016/j.apenergy.2019.04.005_b0080 article-title: A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system publication-title: Energy doi: 10.1016/j.energy.2013.11.082 – volume: 233–234 start-page: 1027 year: 2019 ident: 10.1016/j.apenergy.2019.04.005_b0255 article-title: Is a 100% renewable European power system feasible by 2050? publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.109 – volume: 5 start-page: 71 year: 2015 ident: 10.1016/j.apenergy.2019.04.005_b0250 article-title: Discussion on cleaning technology of the PV module in photovoltaic power stations publication-title: Hydro Power New Energy – ident: 10.1016/j.apenergy.2019.04.005_b0125 – volume: 119 start-page: 863 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0060 article-title: Large scale PV sites selection by combining GIS and analytical hierarchy process. Case study: Eastern Morocco publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.044 – volume: 236 start-page: 867 year: 2019 ident: 10.1016/j.apenergy.2019.04.005_b0110 article-title: On wind speed pattern and energy potential in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.056 – year: 2002 ident: 10.1016/j.apenergy.2019.04.005_b0180 – volume: 64 start-page: 777 year: 2016 ident: 10.1016/j.apenergy.2019.04.005_b0010 article-title: How China became a leader in solar PV: an innovation system analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.06.061 – ident: 10.1016/j.apenergy.2019.04.005_b0220 – volume: 170 start-page: 828 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0155 article-title: Simulation, validation and analysis of shading effects on a PV system publication-title: Sol Energy doi: 10.1016/j.solener.2018.06.035 – volume: 164 start-page: 882 year: 2016 ident: 10.1016/j.apenergy.2019.04.005_b0035 article-title: Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.11.023 – ident: 10.1016/j.apenergy.2019.04.005_b0135 – volume: 36 start-page: 2554 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2019.04.005_b0100 article-title: PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation publication-title: Renew Energy doi: 10.1016/j.renene.2010.10.037 – ident: 10.1016/j.apenergy.2019.04.005_b0140 – volume: 203 start-page: 874 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0205 article-title: Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.087 – ident: 10.1016/j.apenergy.2019.04.005_b0045 – ident: 10.1016/j.apenergy.2019.04.005_b0195 – ident: 10.1016/j.apenergy.2019.04.005_b0040 – volume: 114 start-page: 201711462 issue: 45 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0235 article-title: Reduction of solar photovoltaic resources due to air pollution in China publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1711462114 – ident: 10.1016/j.apenergy.2019.04.005_b0200 – ident: 10.1016/j.apenergy.2019.04.005_b0225 – volume: 4 start-page: 339 issue: 8 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0240 article-title: Large reductions in solar energy production due to dust and particulate air pollution publication-title: Environ Sci Technol Lett doi: 10.1021/acs.estlett.7b00197 – ident: 10.1016/j.apenergy.2019.04.005_b0185 – ident: 10.1016/j.apenergy.2019.04.005_b0160 – year: 2013 ident: 10.1016/j.apenergy.2019.04.005_b0230 – ident: 10.1016/j.apenergy.2019.04.005_b0030 – volume: 113 start-page: 159 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0065 article-title: Solar power potential of Tanzania: identifying CSP and PV hot spots through a GIS multicriteria decision making analysis publication-title: Renew Energy doi: 10.1016/j.renene.2017.05.077 – volume: 38 start-page: 5272 issue: 9 year: 2010 ident: 10.1016/j.apenergy.2019.04.005_b0055 article-title: Assessing the potential for concentrated solar power development in rural Australia publication-title: Energy Pol doi: 10.1016/j.enpol.2010.05.036 – ident: 10.1016/j.apenergy.2019.04.005_b0210 – volume: 71 start-page: 150 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0105 article-title: Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.12.048 – volume: 522 start-page: 279 issue: 7556 year: 2015 ident: 10.1016/j.apenergy.2019.04.005_b0215 article-title: Climate policy: steps to China's carbon peak publication-title: Nature doi: 10.1038/522279a – ident: 10.1016/j.apenergy.2019.04.005_b0190 – volume: 81 start-page: 2088 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0090 article-title: GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.021 – ident: 10.1016/j.apenergy.2019.04.005_b0020 – volume: 10 start-page: 1181 issue: 4 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0245 article-title: Operational water withdrawal and consumption factors for electricity generation technology in China—a literature review publication-title: Sustainability doi: 10.3390/su10041181 – volume: 93 start-page: 012056 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0085 article-title: A method for evaluating photovoltaic potential in China based on GIS platform publication-title: IOP Conf series: earth and environmental science doi: 10.1088/1755-1315/93/1/012056 – volume: 58 start-page: 248 year: 2013 ident: 10.1016/j.apenergy.2019.04.005_b0050 article-title: GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province publication-title: Energy Pol doi: 10.1016/j.enpol.2013.03.002 – ident: 10.1016/j.apenergy.2019.04.005_b0170 doi: 10.1016/B978-0-12-420159-0.00006-0 – ident: 10.1016/j.apenergy.2019.04.005_b0005 – ident: 10.1016/j.apenergy.2019.04.005_b0175 – volume: 81 start-page: 1569 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0075 article-title: Evaluating the solar resource potential on different tracking surfaces in Nigeria publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.235 – volume: 625 start-page: 1628 year: 2018 ident: 10.1016/j.apenergy.2019.04.005_b0150 article-title: Enhancing the WorldClim data set for national and regional applications publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.258 – volume: 41 start-page: 14 year: 2015 ident: 10.1016/j.apenergy.2019.04.005_b0270 article-title: Orderly grid connection of renewable energy generation in China: management mode, existing problems and solutions publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.08.047 – ident: 10.1016/j.apenergy.2019.04.005_b0145 – ident: 10.1016/j.apenergy.2019.04.005_b0120 – ident: 10.1016/j.apenergy.2019.04.005_b0275 – ident: 10.1016/j.apenergy.2019.04.005_b0015 – ident: 10.1016/j.apenergy.2019.04.005_b0260 – ident: 10.1016/j.apenergy.2019.04.005_b0130 – year: 2013 ident: 10.1016/j.apenergy.2019.04.005_b0095 article-title: Unleashing the solar potential in ECOWAS: seeking areas of opportunity for grid-connected and decentralised PV applications. An opportunity-based approach publication-title: International Renewable Energy Agency – ident: 10.1016/j.apenergy.2019.04.005_b0025 – volume: 148 start-page: 386 year: 2017 ident: 10.1016/j.apenergy.2019.04.005_b0070 article-title: Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: a case study in Northwest China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.02.012 – volume: 183 start-page: 853 year: 2016 ident: 10.1016/j.apenergy.2019.04.005_b0265 article-title: The impact of inter-regional transmission grid expansion on China’s power sector decarbonization publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.006 – volume: 85 start-page: 74 year: 2016 ident: 10.1016/j.apenergy.2019.04.005_b0115 article-title: Where, when and how much solar is available? A provincial-scale solar resource assessment for China publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.027 – volume: 94 start-page: 233 year: 2016 ident: 10.1016/j.apenergy.2019.04.005_b0165 article-title: Photovoltaic potential and land-use estimation methodology publication-title: Energy doi: 10.1016/j.energy.2015.10.108 |
SSID | ssj0002120 |
Score | 2.5771205 |
Snippet | •600 land conversion factors are used to estimate the large-scale PV potential.•The potential PV power generation in China is estimated to be 1.38874 × 1014... The achievement of temperature control target requires a low carbon transition of global energy structure. While China is actively promoting the implementation... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 254 |
SubjectTerms | carbon carbon dioxide China decision making electric energy consumption energy fossil fuels Geographic information system geographic information systems greenhouse gas emissions land use change Large-scale PV power generation Renewable energy development Resource assessment solar energy sustainable development temperature |
Title | A GIS-based high spatial resolution assessment of large-scale PV generation potential in China |
URI | https://dx.doi.org/10.1016/j.apenergy.2019.04.005 https://www.proquest.com/docview/2237541479 |
Volume | 247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA4yX_RBdCr-JoKv2dYtTZvHIeqmIMKc-GRIm0Qmoytue_Vv9y5LnYqwB9_acAkld7m7ku--I-RCpNLFmcyYazvHuDSWQR6n4UlIyUUuReYBsveiN-S3z_HzGrmsamEQVhl8_8Kne28dRpphN5vlaNQcYLaL-T-kIBBnfadhzhO08sbHEubRDtSMIMNQ-luV8FtDl9ZX2CHES3rKU2xj93eA-uWqffy53iZbIXGk3cW37ZA1W9TJ5jc6wTrZv1pWrYFoOLbTXfLSpTf9AcOIZSgSFNMpAqlBBn62g-1R_cXRSSeOjhEhzqagQUsfnuirZ6f2cuVkhggjmDwqqG-_vUeG11ePlz0WGiuwnAs-YxHP05ZFIsRWYq0TaZQksRNZlnWciUzGTWKNjnTMO1YLyNByF2npRMcYk0bgB_ZJrZgU9oBQUDSs0DGJS3O8gtOpiZwz7dhpGE3FIYmr3VR5YB3H5hdjVcHL3lSlBYVaUC2uQAuHpPk1r1zwbqycIStlqR8WpCA4rJx7XmlXwfHCOxNd2Ml8qiB7SrBTeiKP_rH-MdnAtwVw8ITUZu9zewrJzCw789Z6Rta7_bve_Se1oPc6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAHxFOMZ5C4hq1bmjbHCQEbjwmJhzgRpU2ChlA3sfH_sbt0PITEgVuV2lEVJ7arfP4McCRT5eNMZdy3vOdCWccxjzP4JJUSMlcyKwGyfdm9FxeP8eMcnFS1MASrDL5_6tNLbx1GGmE1G6PBoHFL2S7l_5iCYJylTsPzxE4V12C-07vs9mcOuRXYGVGMk8KXQuGXYzNyZZEdobxUyXpKnex-j1E_vHUZgs5WYDnkjqwz_bxVmHPFGix9YRRcg83Tz8I1FA0nd7wOTx123rvlFLQsI45iNiYsNcrg_3bYfszMaDrZ0LNXAonzMRrRsZsH9lwSVJdyo-GEQEaoPChY2YF7A-7PTu9Oujz0VuC5kGLCI5GnTUdciM3EOS_TKEliL7Msa3sb2UzYxFkTmVi0nZGYpOU-MsrLtrU2jdAVbEKtGBZuCxjaGmdo28SnOd3CmdRG3ttW7A2OprIOcbWaOg_E49T_4lVXCLMXXVlBkxV0U2i0Qh0aM73RlHrjTw1VGUt_20Qa48OfuoeVdTWeMLo2MYUbvo81JlAJNUtP1PY_5j-Ahe7d9ZW-6vUvd2CR3kxxhLtQm7y9uz3MbSbZfti7HyU0-es |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+GIS-based+high+spatial+resolution+assessment+of+large-scale+PV+generation+potential+in+China&rft.jtitle=Applied+energy&rft.au=Yang%2C+Qing&rft.au=Huang%2C+Tianyue&rft.au=Wang%2C+Saige&rft.au=Li%2C+Jiashuo&rft.date=2019-08-01&rft.issn=0306-2619&rft.volume=247&rft.spage=254&rft.epage=269&rft_id=info:doi/10.1016%2Fj.apenergy.2019.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2019_04_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |