A cooperative system of silicon transport in plants

•There are two types of silicon transporter with different polarity and cellular localization.•Cooperation of influx and efflux Si transporters is required for efficient Si uptake and distribution. The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 20; no. 7; pp. 435 - 442
Main Authors Ma, Jian Feng, Yamaji, Naoki
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •There are two types of silicon transporter with different polarity and cellular localization.•Cooperation of influx and efflux Si transporters is required for efficient Si uptake and distribution. The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice. [Display omitted]
AbstractList The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.
The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.
The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.[Display omitted]
•There are two types of silicon transporter with different polarity and cellular localization.•Cooperation of influx and efflux Si transporters is required for efficient Si uptake and distribution. The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice. [Display omitted]
Author Ma, Jian Feng
Yamaji, Naoki
Author_xml – sequence: 1
  givenname: Jian Feng
  surname: Ma
  fullname: Ma, Jian Feng
  email: maj@rib.okayama-u.ac.jp
– sequence: 2
  givenname: Naoki
  surname: Yamaji
  fullname: Yamaji, Naoki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25983205$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUhi1URMvlEUAZWRJ8tysGVFXcJCQWmK3EOZFcpXGwXaS-Pa5aGFg6nTN8_7l852gy-AEQuia4IpjIu1WVxr4eUqwoJqLCvMJYnaAZ0UqXnCk6yT2TuCRMiyk6j3GFM0G0PENTKuaaUSxmiC0K6_0IoU7uG4q4jQnWhe-K6Hpn_VCkUA9x9CEVbij2Gy_RaVf3Ea4O9QJ9Pj1-LF_Kt_fn1-XirbRc8lQSImyjVUcV43ReNx3u5rplSkvGmOC01RZz3WKQLYWGqqaubSN1I7DCtmsFu0C3-7lj8F8biMmsXbTQ5yPAb6Kh-aH8rtDsKErkXBDFtSQZvTmgm2YNrRmDW9dha36dZEDsARt8jAG6P4Rgs3NvVubg3uzcG8xNNptz9_9y1qWs1Q_ZoeuPph_2achGvx0EE62DwULrAthkWu-OTPgBmx-h9g
CitedBy_id crossref_primary_10_1007_s11104_022_05463_9
crossref_primary_10_1016_j_earscirev_2019_102920
crossref_primary_10_1038_s41598_022_20805_4
crossref_primary_10_3389_fmars_2017_00397
crossref_primary_10_1007_s42729_020_00306_x
crossref_primary_10_1111_gcb_15619
crossref_primary_10_1038_s41467_023_42180_y
crossref_primary_10_3389_fpls_2018_01143
crossref_primary_10_1007_s40858_023_00593_6
crossref_primary_10_3390_plants10020295
crossref_primary_10_1007_s10725_023_00982_6
crossref_primary_10_1007_s11104_024_06586_x
crossref_primary_10_3390_plants13020313
crossref_primary_10_1080_03650340_2023_2175354
crossref_primary_10_1093_jxb_erv545
crossref_primary_10_1080_00103624_2018_1547394
crossref_primary_10_1007_s12633_024_03144_z
crossref_primary_10_1093_jxb_eraa300
crossref_primary_10_3390_agronomy14030464
crossref_primary_10_1016_j_scitotenv_2023_168545
crossref_primary_10_1021_acs_est_7b01740
crossref_primary_10_3389_fpls_2018_00281
crossref_primary_10_3389_fpls_2017_00642
crossref_primary_10_1007_s11104_021_05061_1
crossref_primary_10_1631_jzus_B1900516
crossref_primary_10_3389_fpls_2022_840941
crossref_primary_10_3389_fpls_2016_01072
crossref_primary_10_1111_ppl_12515
crossref_primary_10_3390_ijms21103677
crossref_primary_10_1007_s11756_021_00799_6
crossref_primary_10_1016_j_pld_2023_04_003
crossref_primary_10_1016_j_plaphy_2024_108368
crossref_primary_10_1111_nph_14867
crossref_primary_10_1007_s12649_020_01126_x
crossref_primary_10_1016_j_ecolind_2022_109384
crossref_primary_10_1111_nph_15140
crossref_primary_10_3389_fpls_2018_01281
crossref_primary_10_1016_j_jhazmat_2020_124751
crossref_primary_10_1111_1365_2435_12692
crossref_primary_10_1111_1365_2435_12570
crossref_primary_10_1152_ajpcell_00219_2015
crossref_primary_10_2174_18743315_v16_e2207260
crossref_primary_10_3390_plants8050136
crossref_primary_10_1007_s00203_021_02421_4
crossref_primary_10_1111_pce_13679
crossref_primary_10_1007_s11816_022_00788_4
crossref_primary_10_1007_s12633_024_03094_6
crossref_primary_10_1016_j_plaphy_2021_02_024
crossref_primary_10_1016_j_jhazmat_2024_134325
crossref_primary_10_3389_fpls_2018_00864
crossref_primary_10_3389_fpls_2020_00260
crossref_primary_10_3390_plants12122368
crossref_primary_10_1016_j_plaphy_2021_03_060
crossref_primary_10_1038_s41598_019_54678_x
crossref_primary_10_1016_j_pedsph_2023_07_015
crossref_primary_10_1088_1755_1315_782_4_042054
crossref_primary_10_1042_BST20200716
crossref_primary_10_1021_acs_jpca_9b00823
crossref_primary_10_1007_s11104_017_3357_z
crossref_primary_10_3389_fpls_2019_00713
crossref_primary_10_1007_s10725_022_00931_9
crossref_primary_10_1016_j_gene_2024_148626
crossref_primary_10_1111_nph_18762
crossref_primary_10_1002_ece3_10630
crossref_primary_10_1016_j_plaphy_2021_05_045
crossref_primary_10_1016_S2095_3119_18_62037_4
crossref_primary_10_1016_j_ecoenv_2019_110008
crossref_primary_10_1016_j_plaphy_2020_11_015
crossref_primary_10_1093_jxb_eraa203
crossref_primary_10_1016_j_pedsph_2024_08_003
crossref_primary_10_1007_s12633_024_03215_1
crossref_primary_10_3389_fpls_2022_1030620
crossref_primary_10_1016_j_scienta_2021_110750
crossref_primary_10_1021_acs_jafc_6b01201
crossref_primary_10_1016_j_plaphy_2021_09_027
crossref_primary_10_1111_ppl_13748
crossref_primary_10_3390_ijms19010050
crossref_primary_10_1186_s40659_021_00338_2
crossref_primary_10_3389_fpls_2020_01221
crossref_primary_10_1007_s11270_024_07220_3
crossref_primary_10_1093_jxb_eraa448
crossref_primary_10_1016_j_plaphy_2023_107674
crossref_primary_10_3390_ijms23073543
crossref_primary_10_1016_j_ecoenv_2020_111131
crossref_primary_10_1111_1365_2435_13794
crossref_primary_10_1111_ppl_13065
crossref_primary_10_1016_j_rhisph_2023_100749
crossref_primary_10_1017_qpb_2024_19
crossref_primary_10_1038_s41598_022_05927_z
crossref_primary_10_1093_jxb_erw060
crossref_primary_10_1007_s13205_024_04049_9
crossref_primary_10_1016_j_envexpbot_2020_104367
crossref_primary_10_1080_11263504_2023_2236105
crossref_primary_10_1016_j_chemosphere_2020_128645
crossref_primary_10_1016_j_scitotenv_2024_171245
crossref_primary_10_3390_plants8080249
crossref_primary_10_1016_j_jas_2015_09_002
crossref_primary_10_1007_s00344_021_10322_5
crossref_primary_10_1007_s11104_022_05692_y
crossref_primary_10_1016_j_envint_2019_04_012
crossref_primary_10_1007_s11104_017_3512_6
crossref_primary_10_3390_plants13101336
crossref_primary_10_3390_plants8070200
crossref_primary_10_3389_fpls_2017_00438
crossref_primary_10_32604_phyton_2023_045802
crossref_primary_10_1016_j_toxrep_2023_09_018
crossref_primary_10_3390_agronomy13020599
crossref_primary_10_1016_j_molp_2021_09_016
crossref_primary_10_3389_fpls_2018_01977
crossref_primary_10_1093_pcp_pcw052
crossref_primary_10_3389_fpls_2023_1157185
crossref_primary_10_1007_s00344_022_10794_z
crossref_primary_10_1007_s00344_017_9687_5
crossref_primary_10_1093_jxb_erz387
crossref_primary_10_1016_j_quascirev_2018_08_007
crossref_primary_10_1146_annurev_arplant_043015_112301
crossref_primary_10_1007_s12633_022_01849_7
crossref_primary_10_1016_j_jsb_2020_107665
crossref_primary_10_3390_agronomy9110678
crossref_primary_10_1016_j_jplph_2016_09_010
crossref_primary_10_1093_plcell_koad079
crossref_primary_10_3390_ijms232113526
crossref_primary_10_1111_1365_2435_13295
crossref_primary_10_1186_s12284_022_00555_7
crossref_primary_10_1016_j_ecoenv_2020_110735
crossref_primary_10_1016_S2095_3119_18_62036_2
crossref_primary_10_1093_jxb_erae261
crossref_primary_10_1007_s12633_021_01273_3
crossref_primary_10_1007_s12633_023_02825_5
crossref_primary_10_1093_plcell_koad073
crossref_primary_10_5194_bg_17_6475_2020
crossref_primary_10_1016_j_plantsci_2023_111747
crossref_primary_10_1007_s42976_025_00635_6
crossref_primary_10_1038_s41438_021_00681_1
crossref_primary_10_3389_fpls_2020_593198
crossref_primary_10_5965_223811712022021170
crossref_primary_10_1016_j_fcr_2024_109459
crossref_primary_10_3390_plants11010091
crossref_primary_10_1002_pld3_163
crossref_primary_10_3390_plants10040652
crossref_primary_10_1093_pcp_pcw163
crossref_primary_10_1080_01904167_2020_1849296
crossref_primary_10_3389_fpls_2019_00988
crossref_primary_10_1007_s42729_021_00615_9
crossref_primary_10_1016_j_envpol_2022_119038
crossref_primary_10_1093_plphys_kiab326
crossref_primary_10_1021_acs_jafc_4c04334
crossref_primary_10_1186_s40659_021_00344_4
crossref_primary_10_1007_s42729_021_00701_y
crossref_primary_10_1016_j_tplants_2016_12_005
crossref_primary_10_1007_s42729_022_00914_9
crossref_primary_10_1016_j_plaphy_2017_08_023
crossref_primary_10_3389_fpls_2024_1353706
crossref_primary_10_1016_j_jssas_2021_07_005
crossref_primary_10_1080_00103624_2023_2240373
crossref_primary_10_1007_s12633_021_01427_3
crossref_primary_10_1016_j_scitotenv_2022_157248
crossref_primary_10_1016_j_plaphy_2023_01_059
crossref_primary_10_3390_ijms24076036
crossref_primary_10_3390_f14071353
crossref_primary_10_1093_pcp_pcac032
crossref_primary_10_1093_jxb_erz366
crossref_primary_10_1093_jxb_eraa127
crossref_primary_10_3390_plants12050995
crossref_primary_10_1016_j_jenvman_2024_123488
crossref_primary_10_1038_s41467_021_26535_x
crossref_primary_10_1111_ggr_12243
crossref_primary_10_1016_j_eti_2023_103500
crossref_primary_10_1126_sciadv_aba9322
crossref_primary_10_1016_j_scitotenv_2023_166819
crossref_primary_10_12677_HJSS_2023_113015
crossref_primary_10_1016_j_plaphy_2016_07_030
crossref_primary_10_4025_actasciagron_v43i1_45075
crossref_primary_10_1007_s00299_024_03320_w
crossref_primary_10_1016_j_ecoenv_2020_110885
crossref_primary_10_1016_j_jhazmat_2023_131860
crossref_primary_10_1038_s41598_020_63095_4
crossref_primary_10_1111_tpj_14410
crossref_primary_10_3389_fpls_2020_01304
crossref_primary_10_1016_j_teengi_2025_100014
crossref_primary_10_12677_AEP_2022_121007
crossref_primary_10_1002_jsfa_13098
crossref_primary_10_1016_j_chemosphere_2024_142739
crossref_primary_10_1093_pcp_pcz213
crossref_primary_10_3390_plants12132407
crossref_primary_10_1007_s42242_023_00240_8
crossref_primary_10_1007_s11837_019_03630_5
crossref_primary_10_1111_1365_2664_12822
crossref_primary_10_1016_j_scitotenv_2024_172497
crossref_primary_10_1111_een_12922
crossref_primary_10_1371_journal_pone_0230954
crossref_primary_10_1002_agj2_20597
crossref_primary_10_1021_acs_jafc_4c01487
crossref_primary_10_1186_s12870_023_04443_0
crossref_primary_10_1007_s00344_022_10711_4
crossref_primary_10_1016_j_plantsci_2019_110167
crossref_primary_10_1111_1365_2435_12713
crossref_primary_10_3389_fpls_2016_01001
crossref_primary_10_1111_1365_2435_12711
crossref_primary_10_3390_plants6030037
crossref_primary_10_1271_kagakutoseibutsu_61_612
crossref_primary_10_1016_j_plaphy_2021_11_010
crossref_primary_10_17660_ActaHortic_2023_1372_19
crossref_primary_10_7717_peerj_10053
crossref_primary_10_1093_jxb_eraa024
crossref_primary_10_1007_s11104_022_05395_4
crossref_primary_10_1080_09064710_2021_1984564
crossref_primary_10_1007_s40502_018_0425_1
crossref_primary_10_1080_10643389_2023_2267939
crossref_primary_10_1007_s10705_020_10084_8
crossref_primary_10_3390_pharmaceutics11030117
crossref_primary_10_1016_j_geoderma_2018_06_011
crossref_primary_10_1111_ppl_13687
crossref_primary_10_1038_s41598_020_79250_w
crossref_primary_10_1016_j_pbi_2017_05_002
crossref_primary_10_1016_j_earscirev_2019_05_005
crossref_primary_10_1016_j_jhazmat_2023_131720
crossref_primary_10_1016_j_soilbio_2017_05_008
crossref_primary_10_1038_s44264_024_00035_z
crossref_primary_10_3390_plants10050885
crossref_primary_10_1111_1365_2435_14342
crossref_primary_10_1007_s12633_023_02732_9
crossref_primary_10_35550_vbio2019_02_023
crossref_primary_10_1016_j_geoderma_2020_114909
crossref_primary_10_1080_07388551_2021_1892582
crossref_primary_10_1111_1365_2435_14225
crossref_primary_10_1111_nph_15559
crossref_primary_10_1111_ppl_13202
crossref_primary_10_3389_fpls_2015_00994
crossref_primary_10_1016_j_plaphy_2020_10_040
crossref_primary_10_1021_acssuschemeng_0c09286
crossref_primary_10_1016_j_jclepro_2024_144506
crossref_primary_10_1080_15569543_2024_2317296
crossref_primary_10_1007_s11104_022_05400_w
crossref_primary_10_1186_s12870_022_03785_5
crossref_primary_10_3390_agronomy9070388
crossref_primary_10_1371_journal_pone_0241151
crossref_primary_10_3389_fpls_2024_1377964
crossref_primary_10_1007_s11104_022_05385_6
crossref_primary_10_1007_s00344_020_10172_7
crossref_primary_10_1007_s00468_019_01900_y
crossref_primary_10_1016_j_revpalbo_2022_104783
crossref_primary_10_1093_jxb_eraa294
crossref_primary_10_3390_plants12112190
crossref_primary_10_1002_agj2_20937
crossref_primary_10_1093_aob_mcy103
crossref_primary_10_1007_s00344_023_11079_9
crossref_primary_10_3390_agronomy10081136
crossref_primary_10_1021_acs_est_8b02202
crossref_primary_10_3390_horticulturae10080785
crossref_primary_10_1007_s11356_019_04717_x
crossref_primary_10_3390_ijms18112444
crossref_primary_10_3835_plantgenome2017_07_0066
crossref_primary_10_1016_j_scitotenv_2023_166870
crossref_primary_10_1021_acs_est_9b00592
crossref_primary_10_1016_j_pestbp_2020_104641
crossref_primary_10_1093_jxb_eraa288
crossref_primary_10_1111_gcb_13845
crossref_primary_10_1111_jipb_13827
crossref_primary_10_1016_j_jare_2024_05_027
crossref_primary_10_1016_j_pedsph_2022_11_004
crossref_primary_10_1016_j_ijbiomac_2022_10_099
crossref_primary_10_1007_s42729_022_00780_5
crossref_primary_10_1002_ecs2_1726
crossref_primary_10_1093_pcp_pcab145
crossref_primary_10_1007_s13593_018_0496_4
crossref_primary_10_1093_molbev_msw209
crossref_primary_10_1016_j_jhazmat_2024_134276
crossref_primary_10_1016_j_actbio_2018_10_018
crossref_primary_10_1111_1365_2745_13755
crossref_primary_10_3389_fpls_2024_1393458
crossref_primary_10_1021_acs_est_6b03558
crossref_primary_10_1038_s41477_018_0108_y
crossref_primary_10_3389_fpls_2020_01065
crossref_primary_10_1021_acs_est_3c10763
crossref_primary_10_1016_j_scitotenv_2023_167714
crossref_primary_10_1007_s11104_022_05298_4
crossref_primary_10_1111_tpj_14855
crossref_primary_10_3390_nano11092228
crossref_primary_10_1093_aob_mcad056
crossref_primary_10_1016_j_molp_2020_05_007
crossref_primary_10_1016_j_envexpbot_2021_104545
crossref_primary_10_1016_j_catena_2022_106136
crossref_primary_10_1016_j_jhazmat_2020_124495
crossref_primary_10_3390_plants10040814
crossref_primary_10_1093_jxb_erad224
crossref_primary_10_1007_s00344_024_11601_7
crossref_primary_10_1007_s11104_020_04667_1
crossref_primary_10_1007_s11104_019_04267_8
crossref_primary_10_1016_j_plaphy_2021_05_051
crossref_primary_10_1111_nph_16335
crossref_primary_10_1155_2018_8492898
crossref_primary_10_1007_s12633_022_02254_w
crossref_primary_10_1093_aob_mcy009
crossref_primary_10_1007_s00344_021_10341_2
crossref_primary_10_20961_stjssa_v20i1_65862
crossref_primary_10_1016_j_ecoenv_2021_112510
crossref_primary_10_1111_ppl_13196
crossref_primary_10_1111_1365_2435_12912
crossref_primary_10_1111_nph_16217
crossref_primary_10_5194_bg_16_4805_2019
crossref_primary_10_1016_j_plaphy_2021_03_044
crossref_primary_10_1111_1365_2435_13565
crossref_primary_10_1007_s12633_024_03122_5
crossref_primary_10_3390_plants9111612
crossref_primary_10_1002_ange_201807027
crossref_primary_10_1007_s13205_019_1613_z
crossref_primary_10_1093_jxb_erx364
crossref_primary_10_1002_jsfa_10634
crossref_primary_10_1007_s41742_022_00446_1
crossref_primary_10_1016_j_plaphy_2022_04_018
crossref_primary_10_1016_j_sjbs_2017_11_049
crossref_primary_10_3389_fpls_2017_01265
crossref_primary_10_3390_plants9010111
crossref_primary_10_1007_s12668_024_01734_0
crossref_primary_10_1080_03235408_2020_1808266
crossref_primary_10_3389_fpls_2021_631824
crossref_primary_10_1007_s00442_021_04978_9
crossref_primary_10_1017_S0007485319000798
crossref_primary_10_1038_s41598_020_61182_0
crossref_primary_10_3390_plants13040531
crossref_primary_10_1002_ecy_3250
crossref_primary_10_1007_s12892_020_00058_1
crossref_primary_10_1007_s10705_016_9782_1
crossref_primary_10_1007_s11738_018_2755_z
crossref_primary_10_1093_jxb_erx011
crossref_primary_10_1016_j_plaphy_2021_03_033
crossref_primary_10_1080_00380768_2020_1845972
crossref_primary_10_1016_j_jhazmat_2021_125570
crossref_primary_10_7717_peerj_7218
crossref_primary_10_1016_j_scitotenv_2022_154601
crossref_primary_10_3390_plants8110444
crossref_primary_10_1111_nph_15343
crossref_primary_10_1038_s41467_024_55322_7
crossref_primary_10_1007_s10534_016_9966_9
crossref_primary_10_1016_j_jplph_2021_153379
crossref_primary_10_3390_agriengineering6040249
crossref_primary_10_1016_j_envexpbot_2018_07_026
crossref_primary_10_1038_s41467_025_56438_0
crossref_primary_10_1093_mtomcs_mfad025
crossref_primary_10_3390_horticulturae10010069
crossref_primary_10_1080_01904167_2019_1589500
crossref_primary_10_1007_s42729_025_02348_5
crossref_primary_10_1016_j_stress_2025_100811
crossref_primary_10_1016_j_tree_2022_11_002
crossref_primary_10_3390_su15097426
crossref_primary_10_1111_ppl_13097
crossref_primary_10_1111_1365_2435_12935
crossref_primary_10_1080_15226514_2023_2199875
crossref_primary_10_3390_agronomy9110733
crossref_primary_10_3390_soilsystems3030058
crossref_primary_10_1016_j_jenvman_2021_113081
crossref_primary_10_3389_fpls_2022_982068
crossref_primary_10_3389_fpls_2017_00948
crossref_primary_10_1007_s10725_018_0379_3
crossref_primary_10_3389_fpls_2017_00949
crossref_primary_10_3390_plants10010051
crossref_primary_10_1007_s11104_021_05264_6
crossref_primary_10_1016_j_envint_2019_04_060
crossref_primary_10_1016_j_still_2019_104412
crossref_primary_10_1111_pce_15307
crossref_primary_10_3389_fpls_2017_01359
crossref_primary_10_1007_s42729_022_00787_y
crossref_primary_10_1007_s10681_019_2393_6
crossref_primary_10_1111_1440_1703_12025
crossref_primary_10_1002_anie_201807027
crossref_primary_10_1016_j_bcab_2023_102944
crossref_primary_10_1111_1365_2435_12706
crossref_primary_10_1111_ele_14519
crossref_primary_10_1093_aob_mcx060
crossref_primary_10_1017_pab_2018_44
crossref_primary_10_3389_fpls_2023_1134370
crossref_primary_10_47836_pjtas_44_3_09
Cites_doi 10.1093/jxb/err158
10.1073/pnas.0910744107
10.1104/pp.110.157867
10.1093/pcp/pcv017
10.1111/j.1365-313X.2008.03728.x
10.1094/PHYTO.2003.93.4.402
10.1007/s11103-013-0087-3
10.1094/PHYTO.1998.88.5.396
10.1105/tpc.106.041640
10.1007/s00424-007-0408-y
10.1093/aob/mci255
10.1093/jxb/eri121
10.1073/pnas.0802361105
10.1080/00380768.2011.565480
10.1093/jxb/erp191
10.1111/j.1365-313X.2011.04483.x
10.1093/jxb/ers329
10.1105/tpc.112.096925
10.1046/j.0016-8025.2003.01124.x
10.1038/nature01139
10.1080/00380768.2004.10408447
10.1104/pp.106.093005
10.4161/psb.6.7.15462
10.1021/bi0511888
10.1094/APSnetFeature-2005-0205
10.1105/tpc.109.069831
10.1038/385688b0
10.1094/PHYTO.2004.94.2.177
10.1093/molbev/mst197
10.1007/s11104-008-9571-y
10.1073/pnas.1305848110
10.1093/bioinformatics/btm404
10.1016/j.femsle.2005.06.034
10.1074/jbc.M700982200
10.1038/nature04590
10.1105/tpc.108.059311
10.1093/pcp/pcn110
10.1023/A:1022842421926
10.1016/j.tplants.2006.06.007
10.1016/j.tplants.2014.05.007
10.1093/pcp/pci018
10.1111/j.1365-313X.2012.05082.x
10.1104/pp.112.204578
10.1038/nature05964
10.1007/s11103-012-9892-3
10.1105/tpc.109.067884
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.tplants.2015.04.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 442
ExternalDocumentID 25983205
10_1016_j_tplants_2015_04_007
S1360138515000916
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-115cb87f273429abf0f98d3786333542d8c048d0e6d2eb27baacb68b5070cfd53
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Fri Jul 11 06:11:25 EDT 2025
Thu Jul 10 23:55:28 EDT 2025
Mon Jul 21 05:40:00 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Tue Jul 01 00:57:53 EDT 2025
Fri Feb 23 02:26:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords stress tolerance
silicon
influx
efflux
distribution
uptake
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-115cb87f273429abf0f98d3786333542d8c048d0e6d2eb27baacb68b5070cfd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 25983205
PQID 1695174861
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000187583
proquest_miscellaneous_1695174861
pubmed_primary_25983205
crossref_primary_10_1016_j_tplants_2015_04_007
crossref_citationtrail_10_1016_j_tplants_2015_04_007
elsevier_sciencedirect_doi_10_1016_j_tplants_2015_04_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
2015-07-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang (bib0340) 2014
Ma (bib0310) 2006; 440
Takano (bib0490) 2010; 107
Mitani (bib0335) 2009; 50
Sakurai (bib0425) 2015; 56
Yamaji (bib0325) 2012; 160
Takano (bib0475) 2002; 420
Ueno (bib0480) 2009; 60
Sasaki (bib0485) 2012; 24
Hodson (bib0390) 2005; 96
Deshmukh (bib0350) 2013; 83
Mitani (bib0370) 2008; 456
Ye (bib0305) 2013; 110
Yamaji, Ma (bib0415) 2007; 143
Yamaji, Ma (bib0420) 2011; 57
Yamaji, Ma (bib0445) 2009; 21
Takahashi (bib0450) 1990; 2
Fawe (bib0300) 1998; 88
Hildebrand (bib0460) 1997; 385
Choi, Roberts (bib0365) 2007; 282
Fauteux (bib0275) 2005; 249
Ma, Takahashi (bib0265) 2002
Zhao (bib0375) 2010; 153
Tamai, Ma (bib0290) 2008; 307
Chiba (bib0320) 2009; 57
Ma, Yamaji (bib0260) 2006; 11
Mitani (bib0345) 2011; 66
Mitani-Ueno (bib0380) 2011; 62
Ma (bib0410) 2008; 105
Datnoff, Rodrigues (bib0270) 2005
Ma (bib0465) 2003; 249
Mitani-Ueno (bib0405) 2011; 6
Wallace, Roberts (bib0355) 2005; 44
Larkin (bib0495) 2007; 23
Tamura (bib0500) 2013; 30
Grégoire (bib0385) 2012; 72
Montpetit (bib0330) 2012; 79
Yamaji, Ma (bib0440) 2014; 19
Mitani (bib0435) 2005; 46
Mitani (bib0400) 2009; 21
Belanger (bib0280) 2003; 93
Ma (bib0255) 2004; 50
Bockhaven (bib0285) 2013; 64
Rodrigues (bib0295) 2004; 94
Yamaji (bib0315) 2008; 20
Mitani, Ma (bib0455) 2005; 56
Yamaji, Ma (bib0470) 2011; 57
Ma (bib0395) 2007; 448
Casey (bib0430) 2003; 27
Takano (bib0360) 2006; 18
Ma (10.1016/j.tplants.2015.04.007_bib0395) 2007; 448
Choi (10.1016/j.tplants.2015.04.007_bib0365) 2007; 282
Casey (10.1016/j.tplants.2015.04.007_bib0430) 2003; 27
Mitani (10.1016/j.tplants.2015.04.007_bib0345) 2011; 66
Ma (10.1016/j.tplants.2015.04.007_bib0255) 2004; 50
Deshmukh (10.1016/j.tplants.2015.04.007_bib0350) 2013; 83
Tamura (10.1016/j.tplants.2015.04.007_bib0500) 2013; 30
Fauteux (10.1016/j.tplants.2015.04.007_bib0275) 2005; 249
Takano (10.1016/j.tplants.2015.04.007_bib0490) 2010; 107
Zhao (10.1016/j.tplants.2015.04.007_bib0375) 2010; 153
Rodrigues (10.1016/j.tplants.2015.04.007_bib0295) 2004; 94
Grégoire (10.1016/j.tplants.2015.04.007_bib0385) 2012; 72
Yamaji (10.1016/j.tplants.2015.04.007_bib0315) 2008; 20
Yamaji (10.1016/j.tplants.2015.04.007_bib0415) 2007; 143
Mitani (10.1016/j.tplants.2015.04.007_bib0455) 2005; 56
Yamaji (10.1016/j.tplants.2015.04.007_bib0420) 2011; 57
Sasaki (10.1016/j.tplants.2015.04.007_bib0485) 2012; 24
Mitani-Ueno (10.1016/j.tplants.2015.04.007_bib0405) 2011; 6
Fawe (10.1016/j.tplants.2015.04.007_bib0300) 1998; 88
Hildebrand (10.1016/j.tplants.2015.04.007_bib0460) 1997; 385
Ueno (10.1016/j.tplants.2015.04.007_bib0480) 2009; 60
Ye (10.1016/j.tplants.2015.04.007_bib0305) 2013; 110
Wang (10.1016/j.tplants.2015.04.007_bib0340) 2014
Ma (10.1016/j.tplants.2015.04.007_bib0260) 2006; 11
Ma (10.1016/j.tplants.2015.04.007_bib0310) 2006; 440
Mitani (10.1016/j.tplants.2015.04.007_bib0370) 2008; 456
Ma (10.1016/j.tplants.2015.04.007_bib0265) 2002
Montpetit (10.1016/j.tplants.2015.04.007_bib0330) 2012; 79
Yamaji (10.1016/j.tplants.2015.04.007_bib0470) 2011; 57
Takano (10.1016/j.tplants.2015.04.007_bib0475) 2002; 420
Mitani (10.1016/j.tplants.2015.04.007_bib0335) 2009; 50
Yamaji (10.1016/j.tplants.2015.04.007_bib0440) 2014; 19
Hodson (10.1016/j.tplants.2015.04.007_bib0390) 2005; 96
Ma (10.1016/j.tplants.2015.04.007_bib0465) 2003; 249
Bockhaven (10.1016/j.tplants.2015.04.007_bib0285) 2013; 64
Tamai (10.1016/j.tplants.2015.04.007_bib0290) 2008; 307
Chiba (10.1016/j.tplants.2015.04.007_bib0320) 2009; 57
Mitani (10.1016/j.tplants.2015.04.007_bib0400) 2009; 21
Belanger (10.1016/j.tplants.2015.04.007_bib0280) 2003; 93
Takano (10.1016/j.tplants.2015.04.007_bib0360) 2006; 18
Takahashi (10.1016/j.tplants.2015.04.007_bib0450) 1990; 2
Yamaji (10.1016/j.tplants.2015.04.007_bib0325) 2012; 160
Yamaji (10.1016/j.tplants.2015.04.007_bib0445) 2009; 21
Mitani (10.1016/j.tplants.2015.04.007_bib0435) 2005; 46
Mitani-Ueno (10.1016/j.tplants.2015.04.007_bib0380) 2011; 62
Wallace (10.1016/j.tplants.2015.04.007_bib0355) 2005; 44
Datnoff (10.1016/j.tplants.2015.04.007_bib0270) 2005
Sakurai (10.1016/j.tplants.2015.04.007_bib0425) 2015; 56
Larkin (10.1016/j.tplants.2015.04.007_bib0495) 2007; 23
Ma (10.1016/j.tplants.2015.04.007_bib0410) 2008; 105
References_xml – volume: 62
  start-page: 4391
  year: 2011
  end-page: 4398
  ident: bib0380
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: J. Exp. Bot.
– volume: 96
  start-page: 1027
  year: 2005
  end-page: 1046
  ident: bib0390
  article-title: Phylogenetic variation in the silicon composition of plants
  publication-title: Ann. Bot.
– volume: 56
  start-page: 631
  year: 2015
  end-page: 639
  ident: bib0425
  article-title: In silico simulation modelling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots
  publication-title: Plant Cell Physiol.
– volume: 66
  start-page: 231
  year: 2011
  end-page: 240
  ident: bib0345
  article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation
  publication-title: Plant J.
– volume: 27
  start-page: 51
  year: 2003
  end-page: 54
  ident: bib0430
  article-title: Aqueous silicate complexes in wheat,
  publication-title: Plant Cell Environ.
– volume: 56
  start-page: 1255
  year: 2005
  end-page: 1261
  ident: bib0455
  article-title: Uptake system of silicon in different plant species
  publication-title: J. Exp. Bot.
– volume: 50
  start-page: 11
  year: 2004
  end-page: 18
  ident: bib0255
  article-title: Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses
  publication-title: Soil Sci. Plant Nutr.
– volume: 88
  start-page: 396
  year: 1998
  end-page: 401
  ident: bib0300
  article-title: Silicon-mediated accumulation of flavonoid phytoalexins in cucumber
  publication-title: Phytopathology
– volume: 60
  start-page: 3513
  year: 2009
  end-page: 3520
  ident: bib0480
  article-title: Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley
  publication-title: J. Exp. Bot.
– volume: 448
  start-page: 209
  year: 2007
  end-page: 212
  ident: bib0395
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
– volume: 44
  start-page: 16826
  year: 2005
  end-page: 16834
  ident: bib0355
  article-title: Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels
  publication-title: Biochemistry
– volume: 385
  start-page: 688
  year: 1997
  end-page: 689
  ident: bib0460
  article-title: A gene family of silicon transporters
  publication-title: Nature
– volume: 94
  start-page: 177
  year: 2004
  end-page: 183
  ident: bib0295
  article-title: Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance
  publication-title: Phytopathology
– volume: 46
  start-page: 279
  year: 2005
  end-page: 283
  ident: bib0435
  article-title: Identification of the silicon form in xylem sap of rice (
  publication-title: Plant Cell Physiol.
– year: 2002
  ident: bib0265
  article-title: Soil, Fertilizer, and Plant Silicon Research in Japan
– volume: 57
  start-page: 259
  year: 2011
  end-page: 564
  ident: bib0420
  article-title: Further characterization of a rice Si efflux transporter, Lsi2
  publication-title: Soil Sci. Plant Nutr.
– volume: 2
  start-page: 99
  year: 1990
  end-page: 122
  ident: bib0450
  article-title: The possibility of silicon as an essential element for higher plants
  publication-title: Comments Agri. Food Chem.
– volume: 57
  start-page: 810
  year: 2009
  end-page: 818
  ident: bib0320
  article-title: HvLsi1 is a silicon influx transporter in barley
  publication-title: Plant J.
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  ident: bib0410
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 160
  start-page: 1491
  year: 2012
  end-page: 1497
  ident: bib0325
  article-title: Functional characterization of a silicon transporter gene implicated in silicon distribution in barley
  publication-title: Plant Physiol.
– year: 2005
  ident: bib0270
  article-title: The role of silicon in suppressing rice diseases
  publication-title: APSnet Features.
– volume: 21
  start-page: 2133
  year: 2009
  end-page: 2142
  ident: bib0400
  article-title: Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice
  publication-title: Plant Cell
– volume: 18
  start-page: 1498
  year: 2006
  end-page: 1509
  ident: bib0360
  article-title: The
  publication-title: Plant Cell
– year: 2014
  ident: bib0340
  article-title: Identification of two cucumber putative silicon transporter genes in
  publication-title: J. Plant Growth Regul.
– volume: 420
  start-page: 337
  year: 2002
  end-page: 340
  ident: bib0475
  article-title: boron transporter for xylem loading
  publication-title: Nature
– volume: 107
  start-page: 5220
  year: 2010
  end-page: 5225
  ident: bib0490
  article-title: Polar localization and degradation of
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: bib0495
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
– volume: 456
  start-page: 679
  year: 2008
  end-page: 686
  ident: bib0370
  article-title: Characterization of substrate specificity of a rice silicon transporter. Lsi1
  publication-title: Pflugers Arch. Eur. J. Physiol.
– volume: 6
  start-page: 991
  year: 2011
  end-page: 994
  ident: bib0405
  article-title: Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake
  publication-title: Plant Signal. Behav.
– volume: 21
  start-page: 2878
  year: 2009
  end-page: 2883
  ident: bib0445
  article-title: Silicon transporter Lsi6 at the node is responsible for inter-vascular transfer of silicon in rice
  publication-title: Plant Cell
– volume: 282
  start-page: 24209
  year: 2007
  end-page: 24218
  ident: bib0365
  article-title: NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 392
  year: 2006
  end-page: 397
  ident: bib0260
  article-title: Silicon uptake and accumulation in higher plants
  publication-title: Trends Plant Sci.
– volume: 249
  start-page: 1
  year: 2005
  end-page: 6
  ident: bib0275
  article-title: Silicon and plant disease resistance against pathogenic fungi
  publication-title: FEMS Microbiol. Lett.
– volume: 93
  start-page: 402
  year: 2003
  end-page: 412
  ident: bib0280
  article-title: Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (
  publication-title: Phytopathology
– volume: 83
  start-page: 303
  year: 2013
  end-page: 315
  ident: bib0350
  article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in
  publication-title: Plant Mol Biol.
– volume: 19
  start-page: 556
  year: 2014
  end-page: 563
  ident: bib0440
  article-title: The node, a hub for nutrient distribution in gramineous plants
  publication-title: Trends Plant Sci.
– volume: 249
  start-page: 383
  year: 2003
  end-page: 387
  ident: bib0465
  article-title: Genotypic variation in Si content of barley grain
  publication-title: Plant Soil
– volume: 20
  start-page: 1381
  year: 2008
  end-page: 1389
  ident: bib0315
  article-title: A transporter regulating silicon distribution in rice shoots
  publication-title: Plant Cell
– volume: 110
  start-page: E3631
  year: 2013
  end-page: E3639
  ident: bib0305
  article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 72
  start-page: 320
  year: 2012
  end-page: 330
  ident: bib0385
  article-title: Discovery of a multigene family of aquaporin silicon transporters in the primitive plants
  publication-title: Plant J.
– volume: 79
  start-page: 35
  year: 2012
  end-page: 46
  ident: bib0330
  article-title: Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene
  publication-title: Plant Mol. Biol.
– volume: 64
  start-page: 1281
  year: 2013
  end-page: 1293
  ident: bib0285
  article-title: Towards establishing broad-spectrum disease resistance in plants: silicon leads the way
  publication-title: J. Exp. Bot.
– volume: 50
  start-page: 5
  year: 2009
  end-page: 12
  ident: bib0335
  article-title: Identification of maize silicon influx transporters
  publication-title: Plant Cell Physiol.
– volume: 307
  start-page: 21
  year: 2008
  end-page: 27
  ident: bib0290
  article-title: Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant
  publication-title: Plant Soil
– volume: 440
  start-page: 688
  year: 2006
  end-page: 691
  ident: bib0310
  article-title: A silicon transporter in rice
  publication-title: Nature
– volume: 24
  start-page: 2155
  year: 2012
  end-page: 2167
  ident: bib0485
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  ident: bib0500
  article-title: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0
  publication-title: Mol. Biol. Evol.
– volume: 153
  start-page: 1871
  year: 2010
  end-page: 1877
  ident: bib0375
  article-title: Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice
  publication-title: Plant Physiol.
– volume: 143
  start-page: 1306
  year: 2007
  end-page: 1313
  ident: bib0415
  article-title: Spatial distribution and temporal variation of the rice silicon transporter Lsi1
  publication-title: Plant Physiol.
– volume: 57
  start-page: 259
  year: 2011
  end-page: 264
  ident: bib0470
  article-title: Further characterization of a rice silicon efflux transporter, Lsi2
  publication-title: Soil Sci. Plant Nutr.
– volume: 62
  start-page: 4391
  year: 2011
  ident: 10.1016/j.tplants.2015.04.007_bib0380
  article-title: The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err158
– volume: 107
  start-page: 5220
  year: 2010
  ident: 10.1016/j.tplants.2015.04.007_bib0490
  article-title: Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0910744107
– volume: 153
  start-page: 1871
  year: 2010
  ident: 10.1016/j.tplants.2015.04.007_bib0375
  article-title: Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.157867
– volume: 56
  start-page: 631
  year: 2015
  ident: 10.1016/j.tplants.2015.04.007_bib0425
  article-title: In silico simulation modelling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv017
– volume: 57
  start-page: 810
  year: 2009
  ident: 10.1016/j.tplants.2015.04.007_bib0320
  article-title: HvLsi1 is a silicon influx transporter in barley
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03728.x
– volume: 93
  start-page: 402
  year: 2003
  ident: 10.1016/j.tplants.2015.04.007_bib0280
  article-title: Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici)
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2003.93.4.402
– volume: 83
  start-page: 303
  year: 2013
  ident: 10.1016/j.tplants.2015.04.007_bib0350
  article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice
  publication-title: Plant Mol Biol.
  doi: 10.1007/s11103-013-0087-3
– volume: 88
  start-page: 396
  year: 1998
  ident: 10.1016/j.tplants.2015.04.007_bib0300
  article-title: Silicon-mediated accumulation of flavonoid phytoalexins in cucumber
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1998.88.5.396
– volume: 18
  start-page: 1498
  year: 2006
  ident: 10.1016/j.tplants.2015.04.007_bib0360
  article-title: The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041640
– volume: 456
  start-page: 679
  year: 2008
  ident: 10.1016/j.tplants.2015.04.007_bib0370
  article-title: Characterization of substrate specificity of a rice silicon transporter. Lsi1
  publication-title: Pflugers Arch. Eur. J. Physiol.
  doi: 10.1007/s00424-007-0408-y
– volume: 96
  start-page: 1027
  year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0390
  article-title: Phylogenetic variation in the silicon composition of plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mci255
– volume: 56
  start-page: 1255
  year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0455
  article-title: Uptake system of silicon in different plant species
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri121
– volume: 2
  start-page: 99
  year: 1990
  ident: 10.1016/j.tplants.2015.04.007_bib0450
  article-title: The possibility of silicon as an essential element for higher plants
  publication-title: Comments Agri. Food Chem.
– volume: 105
  start-page: 9931
  year: 2008
  ident: 10.1016/j.tplants.2015.04.007_bib0410
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802361105
– volume: 57
  start-page: 259
  year: 2011
  ident: 10.1016/j.tplants.2015.04.007_bib0470
  article-title: Further characterization of a rice silicon efflux transporter, Lsi2
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2011.565480
– volume: 60
  start-page: 3513
  year: 2009
  ident: 10.1016/j.tplants.2015.04.007_bib0480
  article-title: Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp191
– volume: 66
  start-page: 231
  year: 2011
  ident: 10.1016/j.tplants.2015.04.007_bib0345
  article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04483.x
– volume: 64
  start-page: 1281
  year: 2013
  ident: 10.1016/j.tplants.2015.04.007_bib0285
  article-title: Towards establishing broad-spectrum disease resistance in plants: silicon leads the way
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers329
– volume: 24
  start-page: 2155
  year: 2012
  ident: 10.1016/j.tplants.2015.04.007_bib0485
  article-title: Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096925
– volume: 27
  start-page: 51
  year: 2003
  ident: 10.1016/j.tplants.2015.04.007_bib0430
  article-title: Aqueous silicate complexes in wheat, Triticum aestivum L
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2003.01124.x
– volume: 420
  start-page: 337
  year: 2002
  ident: 10.1016/j.tplants.2015.04.007_bib0475
  article-title: Arabidopsis boron transporter for xylem loading
  publication-title: Nature
  doi: 10.1038/nature01139
– year: 2014
  ident: 10.1016/j.tplants.2015.04.007_bib0340
  article-title: Identification of two cucumber putative silicon transporter genes in Cucumis sativus
  publication-title: J. Plant Growth Regul.
– volume: 50
  start-page: 11
  year: 2004
  ident: 10.1016/j.tplants.2015.04.007_bib0255
  article-title: Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2004.10408447
– volume: 143
  start-page: 1306
  year: 2007
  ident: 10.1016/j.tplants.2015.04.007_bib0415
  article-title: Spatial distribution and temporal variation of the rice silicon transporter Lsi1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.093005
– volume: 6
  start-page: 991
  year: 2011
  ident: 10.1016/j.tplants.2015.04.007_bib0405
  article-title: Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.7.15462
– volume: 44
  start-page: 16826
  year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0355
  article-title: Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels
  publication-title: Biochemistry
  doi: 10.1021/bi0511888
– year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0270
  article-title: The role of silicon in suppressing rice diseases
  publication-title: APSnet Features.
  doi: 10.1094/APSnetFeature-2005-0205
– volume: 21
  start-page: 2878
  year: 2009
  ident: 10.1016/j.tplants.2015.04.007_bib0445
  article-title: Silicon transporter Lsi6 at the node is responsible for inter-vascular transfer of silicon in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.069831
– volume: 385
  start-page: 688
  year: 1997
  ident: 10.1016/j.tplants.2015.04.007_bib0460
  article-title: A gene family of silicon transporters
  publication-title: Nature
  doi: 10.1038/385688b0
– volume: 94
  start-page: 177
  year: 2004
  ident: 10.1016/j.tplants.2015.04.007_bib0295
  article-title: Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.2.177
– volume: 30
  start-page: 2725
  year: 2013
  ident: 10.1016/j.tplants.2015.04.007_bib0500
  article-title: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst197
– volume: 57
  start-page: 259
  year: 2011
  ident: 10.1016/j.tplants.2015.04.007_bib0420
  article-title: Further characterization of a rice Si efflux transporter, Lsi2
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2011.565480
– volume: 307
  start-page: 21
  year: 2008
  ident: 10.1016/j.tplants.2015.04.007_bib0290
  article-title: Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9571-y
– volume: 110
  start-page: E3631
  year: 2013
  ident: 10.1016/j.tplants.2015.04.007_bib0305
  article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1305848110
– volume: 23
  start-page: 2947
  year: 2007
  ident: 10.1016/j.tplants.2015.04.007_bib0495
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 249
  start-page: 1
  year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0275
  article-title: Silicon and plant disease resistance against pathogenic fungi
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2005.06.034
– volume: 282
  start-page: 24209
  year: 2007
  ident: 10.1016/j.tplants.2015.04.007_bib0365
  article-title: Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700982200
– volume: 440
  start-page: 688
  year: 2006
  ident: 10.1016/j.tplants.2015.04.007_bib0310
  article-title: A silicon transporter in rice
  publication-title: Nature
  doi: 10.1038/nature04590
– year: 2002
  ident: 10.1016/j.tplants.2015.04.007_bib0265
– volume: 20
  start-page: 1381
  year: 2008
  ident: 10.1016/j.tplants.2015.04.007_bib0315
  article-title: A transporter regulating silicon distribution in rice shoots
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059311
– volume: 50
  start-page: 5
  year: 2009
  ident: 10.1016/j.tplants.2015.04.007_bib0335
  article-title: Identification of maize silicon influx transporters
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn110
– volume: 249
  start-page: 383
  year: 2003
  ident: 10.1016/j.tplants.2015.04.007_bib0465
  article-title: Genotypic variation in Si content of barley grain
  publication-title: Plant Soil
  doi: 10.1023/A:1022842421926
– volume: 11
  start-page: 392
  year: 2006
  ident: 10.1016/j.tplants.2015.04.007_bib0260
  article-title: Silicon uptake and accumulation in higher plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.06.007
– volume: 19
  start-page: 556
  year: 2014
  ident: 10.1016/j.tplants.2015.04.007_bib0440
  article-title: The node, a hub for nutrient distribution in gramineous plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.05.007
– volume: 46
  start-page: 279
  year: 2005
  ident: 10.1016/j.tplants.2015.04.007_bib0435
  article-title: Identification of the silicon form in xylem sap of rice (Oryza sativa L.)
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci018
– volume: 72
  start-page: 320
  year: 2012
  ident: 10.1016/j.tplants.2015.04.007_bib0385
  article-title: Discovery of a multigene family of aquaporin silicon transporters in the primitive plants Equisetum arvense
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.05082.x
– volume: 160
  start-page: 1491
  year: 2012
  ident: 10.1016/j.tplants.2015.04.007_bib0325
  article-title: Functional characterization of a silicon transporter gene implicated in silicon distribution in barley
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.204578
– volume: 448
  start-page: 209
  year: 2007
  ident: 10.1016/j.tplants.2015.04.007_bib0395
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
  doi: 10.1038/nature05964
– volume: 79
  start-page: 35
  year: 2012
  ident: 10.1016/j.tplants.2015.04.007_bib0330
  article-title: Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-012-9892-3
– volume: 21
  start-page: 2133
  year: 2009
  ident: 10.1016/j.tplants.2015.04.007_bib0400
  article-title: Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.067884
SSID ssj0007186
Score 2.6171255
SecondaryResourceType review_article
Snippet •There are two types of silicon transporter with different polarity and cellular localization.•Cooperation of influx and efflux Si transporters is required for...
The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 435
SubjectTerms abiotic stress
aquaporins
Biological Transport
Carrier Proteins - metabolism
distribution
efflux
influx
mathematical models
Plant Proteins - metabolism
Plants - metabolism
plasma membrane
rice
silicon
Silicon - metabolism
Species Specificity
stress tolerance
transporters
uptake
Title A cooperative system of silicon transport in plants
URI https://dx.doi.org/10.1016/j.tplants.2015.04.007
https://www.ncbi.nlm.nih.gov/pubmed/25983205
https://www.proquest.com/docview/1695174861
https://www.proquest.com/docview/2000187583
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4h2MNyQMC-CgvySntNm8SPOMdSLSqs1MuCxM3yK1JRlVRLeuDCb2dcJwUOFRLHRJlo9Hk8_izPfAb4zaVwOqcscVVBE2TENtE-cwlOPmtd6rW262qLmZjesus7frcDk74XJpRVdrk_5vR1tu7ejDo0R8v5fPQvoyIcs-GCHIhCFmS3GStClA-fXso8MPeK2HuVBr09_tLFM7oftstFqDYJFV58GHW0t61P2_jneh26PISDjkCScfTxCHZ8fQyfLhokeY_HsP9KX_AL0DGxTbP0Ud2bRNVm0lTkYb7ACKhJ20ubk3lNopdf4fbyz81kmnS3JCSWCdYmSOmskUUVdGryUpsqrUrpaCEFpZSz3EmLsxRhFy7HbXRhEH4jpEEimNrKcfoNduum9j-AcMOkkK6qvLeszIz2kvoc_8N1SbVhA2A9Nsp2EuLhJouF6mvF7lUHqQqQqpQphHQAw43ZMmpovGcge-DVm2BQmOffM_3VD5TCiRJOP3Ttm9WDykQZVLmlyLZ_E_qWMtzBSTqA73GUNx7jPhGzX8pPPu7cKXwOT7Ha9yfstv9X_gw5TWvO10F7Dnvjq7_T2TNuqfYN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BdyXYw2p5d18YiWvaJH7UOXbRou4ucAEkbpZfkVpVSQXhwIXfzrhOgD1USFyTTDT67Bl_lmc-AxxzKZzOKUtcOaIJMmKbaJ-5BIPPWpd6re2y2uJCTK7Z3xt-swYnXS9MKKtsc3_M6cts3T4ZtmgOF9Pp8DKjIhyz4YIciEIm1uEDw_AN1xgMHl_qPDD5ith8lQbBPf7SxjOcDZrFPJSbhBIvPohC2qsWqFUEdLkQnX6Bzy2DJOPo5Bas-WobPv6qkeU9bMOnVwKDO0DHxNb1wkd5bxJlm0ldkrvpHKdARZpO25xMKxK93IXr099XJ5OkvSYhsUywJkFOZ40clUGoJi-0KdOykI6OpKCUcpY7aTFMEXfhctxHjwzib4Q0yARTWzpO96BX1ZU_AMINk0K6svTesiIz2kvqc_wP1wXVhvWBddgo22qIh6ss5qorFpupFlIVIFUpUwhpHwbPZosoovGWgeyAV__NBoWJ_i3To26gFEZKOP7Qla_v71QmiiDLLUW2-pvQuJThFk7SPuzHUX72GDeKmP5S_vX9zh3CxuTq_Eyd_bn49w02w5tY-vsdes3tvf-BBKcxP5cT-AkMBPeb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cooperative+system+of+silicon+transport+in+plants&rft.jtitle=Trends+in+plant+science&rft.au=Ma%2C+Jian+Feng&rft.au=Yamaji%2C+Naoki&rft.date=2015-07-01&rft.issn=1360-1385&rft.volume=20&rft.issue=7&rft.spage=435&rft.epage=442&rft_id=info:doi/10.1016%2Fj.tplants.2015.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tplants_2015_04_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon