Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects
OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. AP...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 2; pp. 404 - 411 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1079-5642 1524-4636 1524-4636 |
DOI | 10.1161/ATVBAHA.115.306268 |
Cover
Loading…
Abstract | OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.
APPROACH—In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)–specific cholesterol efflux capacity.
RESULTS—Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.
CONCLUSIONS—Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL. |
---|---|
AbstractList | OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.
APPROACH—In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)–specific cholesterol efflux capacity.
RESULTS—Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.
CONCLUSIONS—Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL. We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.OBJECTIVEWe investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity.APPROACHIn the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity.Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.RESULTSAtorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.CONCLUSIONSStatin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL. We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL. |
Author | Isquith, Daniel Hutchins, Patrick M. Ronsein, Graziella E. Heinecke, Jay W. Vaisar, Tomas Zhao, Xue-Qiao |
AuthorAffiliation | From the Department of Medicine, University of Washington, Seattle |
AuthorAffiliation_xml | – name: From the Department of Medicine, University of Washington, Seattle |
Author_xml | – sequence: 1 givenname: Graziella surname: Ronsein middlename: E. fullname: Ronsein, Graziella E. organization: From the Department of Medicine, University of Washington, Seattle – sequence: 2 givenname: Patrick surname: Hutchins middlename: M. fullname: Hutchins, Patrick M. – sequence: 3 givenname: Daniel surname: Isquith fullname: Isquith, Daniel – sequence: 4 givenname: Tomas surname: Vaisar fullname: Vaisar, Tomas – sequence: 5 givenname: Xue-Qiao surname: Zhao fullname: Zhao, Xue-Qiao – sequence: 6 givenname: Jay surname: Heinecke middlename: W. fullname: Heinecke, Jay W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26681752$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URH_gBVggL9mk2I7tZJaZtDCVRgVpAtvIcW6IiycOtqMyL8RzYjQDC4S6sq_1naPrcy7R2eQmQOg1JdeUSvquar6sq02VBnGdE8lk-QxdUMF4xmUuz9KdFKtMSM7O0WUID4QQzhh5gc6ZlCUtBLtAP--N0mbCzQhezQd8N2kPKkDAG_N1zG5gCiYe8NbMbvYuQkI_KR-NtglRU48bF5XF9ejSQwTvLL4dBrv8wLWak3PSrpeI713E1bquaLabQZvB6P9JkvkuqmimrElLROjxbukeQMfwEj0flA3w6nReoc_vb5t6k20_frirq22mueRlxqlcdVBILjvOFPRSAO1prmjJeS8pF3neFWoQgmvKFIGB9hwSAIKzVU66_Aq9Pfqmz35f0nrt3gQN1qoJ3BJaWiQXySnJE_rmhC7dHvp29mav_KH9k20C2BHQ3oXgYfiLUNL-LrA9FZgG0R4LTKLyH1HKMEXipuiVsU9L5VH66GyKNXyzyyP4dgRl4_iU8BeLYbJk |
CitedBy_id | crossref_primary_10_1016_j_jacc_2016_10_029 crossref_primary_10_1097_MOL_0000000000000446 crossref_primary_10_1152_ajpendo_00127_2018 crossref_primary_10_1161_ATVBAHA_117_310307 crossref_primary_10_1016_j_molmet_2018_02_005 crossref_primary_10_1016_j_jlr_2022_100196 crossref_primary_10_1128_msystems_00628_24 crossref_primary_10_1161_CIRCRESAHA_120_317458 crossref_primary_10_1097_FJC_0000000000000573 crossref_primary_10_1161_ATVBAHA_116_307993 crossref_primary_10_1016_j_artere_2019_11_005 crossref_primary_10_1007_s11356_022_19733_7 crossref_primary_10_1097_MOL_0000000000000426 crossref_primary_10_1016_j_arteri_2019_04_001 crossref_primary_10_1016_j_jacl_2022_09_004 crossref_primary_10_1016_j_ccl_2017_12_012 crossref_primary_10_1161_ATVBAHA_116_308262 crossref_primary_10_1161_ATVBAHA_118_311581 crossref_primary_10_1161_CIRCRESAHA_116_309506 crossref_primary_10_1016_j_ahj_2019_12_003 crossref_primary_10_1016_j_metabol_2020_154351 crossref_primary_10_1161_ATVBAHA_116_307808 crossref_primary_10_1097_MOL_0000000000000294 crossref_primary_10_1016_j_amjmed_2016_07_038 crossref_primary_10_1371_journal_pone_0296052 crossref_primary_10_1097_MOL_0000000000000612 crossref_primary_10_1016_j_cjca_2019_05_033 crossref_primary_10_1186_s12944_020_01350_3 crossref_primary_10_1007_s13311_023_01376_2 crossref_primary_10_3233_JAD_191246 crossref_primary_10_1080_14789450_2018_1402680 crossref_primary_10_2337_dc18_0049 crossref_primary_10_1038_s41598_021_95140_1 crossref_primary_10_1016_j_coph_2017_04_005 crossref_primary_10_1097_MOL_0000000000000317 crossref_primary_10_1161_STROKEAHA_119_026280 crossref_primary_10_1016_j_jacl_2018_01_014 crossref_primary_10_12997_jla_2019_8_1_58 crossref_primary_10_1016_j_bbalip_2018_08_002 crossref_primary_10_1097_MOL_0000000000000382 crossref_primary_10_1016_j_plipres_2017_12_001 crossref_primary_10_1161_ATVBAHA_118_311117 crossref_primary_10_1161_ATVBAHA_117_310222 crossref_primary_10_1177_2047487319848214 |
Cites_doi | 10.1056/NEJMoa1107579 10.1172/JCI33372 10.1056/NEJMoa1001689 10.7326/0003-4819-150-2-200901200-00006 10.1016/j.jacc.2012.03.060 10.1373/clinchem.2014.228114 10.1373/clinchem.2008.118356 10.1056/NEJM198911093211907 10.1161/CIRCRESAHA.116.305485 10.5551/jat.17210 10.1194/jlr.R036095 10.1152/physrev.00005.2005 10.1373/clinchem.2010.155333 10.1161/ATVBAHA.114.303715 10.1016/j.ahj.2009.01.001 10.1373/clinchem.2014.232769 10.1373/clinchem.2007.100586 10.1016/j.jacl.2008.12.003 10.1194/jlr.D018051 10.1074/jbc.R114.583658 10.1016/S1471-4914(02)02289-X 10.1161/CIRCULATIONAHA.108.816181 10.1194/jlr.M300078-JLR200 10.1161/CIRCULATIONAHA.105.565135 10.1016/j.jacc.2013.07.025 10.1016/S0140-6736(05)67394-1 10.1016/j.jacl.2011.06.012 10.1056/NEJMoa1409065 10.1172/JCI26206 10.1016/j.jacc.2015.09.013 10.1016/S2213-8587(15)00126-6 10.1161/JAHA.113.000037 10.1016/0021-9150(91)90050-D 10.1161/CIRCULATIONAHA.111.073684 10.1161/CIRCRESAHA.115.306052 10.1161/ATVBAHA.109.199158 10.1161/CIRCULATIONAHA.113.002671 10.1056/NEJMoa1206797 10.1161/ATVBAHA.110.207142 |
ContentType | Journal Article |
Copyright | 2016 American Heart Association, Inc. 2015 American Heart Association, Inc. |
Copyright_xml | – notice: 2016 American Heart Association, Inc. – notice: 2015 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/ATVBAHA.115.306268 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 411 |
ExternalDocumentID | 26681752 10_1161_ATVBAHA_115_306268 10.1161/ATVBAHA.115.306268 |
Genre | Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK017047 – fundername: NHLBI NIH HHS grantid: P01 HL092969 – fundername: NHLBI NIH HHS grantid: R01HL108897 – fundername: NIDDK NIH HHS grantid: DP3 DK108209 – fundername: NHLBI NIH HHS grantid: R01HL112625 – fundername: NHLBI NIH HHS grantid: R01 HL112625 – fundername: NHLBI NIH HHS grantid: P01HL092969 – fundername: NIDDK NIH HHS grantid: P30DK017047 – fundername: NHLBI NIH HHS grantid: R01 HL108897 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION ACIJW CGR CUY CVF ECM EIF NPM 7X8 ADSXY |
ID | FETCH-LOGICAL-c4648-4169be7646b42aed65e1d13a1844d614533b7af554c12a0ef1d4ed13e542930b3 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Tue Aug 05 09:49:29 EDT 2025 Thu Apr 03 07:04:40 EDT 2025 Tue Jul 01 02:21:55 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri May 16 04:12:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | atherosclerosis niacin macrophages cardiovascular diseases triglycerides |
Language | English |
License | 2015 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4648-4169be7646b42aed65e1d13a1844d614533b7af554c12a0ef1d4ed13e542930b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.115.306268 |
PMID | 26681752 |
PQID | 1761464103 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1761464103 pubmed_primary_26681752 crossref_primary_10_1161_ATVBAHA_115_306268 crossref_citationtrail_10_1161_ATVBAHA_115_306268 wolterskluwer_health_10_1161_ATVBAHA_115_306268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-February |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-February |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2016 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 22796256 - J Am Coll Cardiol. 2012 Aug 7;60(6):508-16 12700343 - J Lipid Res. 2003 Jul;44(7):1373-80 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 18515257 - Clin Chem. 2008 Aug;54(8):1307-16 23739642 - J Atheroscler Thromb. 2013;20(9):708-16 22085343 - N Engl J Med. 2011 Dec 15;365(24):2255-67 25281702 - Clin Chem. 2014 Nov;60(11):e1-3 23126252 - N Engl J Med. 2012 Nov 29;367(22):2089-99 17643572 - Am Heart J. 2007 Aug;154(2):239-46 1793438 - Atherosclerosis. 1991 Aug;89(2-3):109-16 19168552 - Clin Chem. 2009 Mar;55(3):407-19 21957199 - J Lipid Res. 2011 Dec;52(12):2332-40 24002795 - Circulation. 2013 Sep 10;128(11):1189-97 19332196 - Am Heart J. 2009 Apr;157(4):687.e1-8 20075420 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):796-801 17332893 - J Clin Invest. 2007 Mar;117(3):746-56 17992262 - J Clin Invest. 2007 Dec;117(12):3900-8 21291788 - J Clin Lipidol. 2009 Feb;3(1):45-50 23926117 - J Am Heart Assoc. 2013 Aug;2(4):e000037 2677733 - N Engl J Med. 1989 Nov 9;321(19):1311-6 23933538 - J Am Coll Cardiol. 2013 Nov 12;62(20):1909-10 16183915 - Physiol Rev. 2005 Oct;85(4):1343-72 25225166 - Clin Chem. 2014 Nov;60(11):1393-401 26025389 - Lancet Diabetes Endocrinol. 2015 Jul;3(7):507-13 25589556 - Circ Res. 2015 Mar 27;116(7):1133-42 19153411 - Ann Intern Med. 2009 Jan 20;150(2):84-93 23543772 - J Lipid Res. 2013 Nov;54(11):2950-63 20448206 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1430-8 25404125 - N Engl J Med. 2014 Dec 18;371(25):2383-93 22539783 - Circulation. 2012 May 22;125(20):2469-78 21226578 - N Engl J Med. 2011 Jan 13;364(2):127-35 21981836 - J Clin Lipidol. 2011 Sep-Oct;5(5):368-70 19204302 - Circulation. 2009 Feb 24;119(7):931-9 16534013 - Circulation. 2006 Mar 28;113(12):1556-63 21266551 - Clin Chem. 2011 Mar;57(3):392-410 25074931 - J Biol Chem. 2014 Aug 29;289(35):24020-9 22961164 - Nat Med. 2012 Sep;18(9):1344-6 26564598 - J Am Coll Cardiol. 2015 Nov 17;66(20):2201-10 11927274 - Trends Mol Med. 2002 Apr;8(4):168-73 25814677 - Circ Res. 2015 Mar 27;116(7):1101-3 25104799 - Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2246-53 |
References_xml | – ident: e_1_3_4_5_2 doi: 10.1056/NEJMoa1107579 – ident: e_1_3_4_42_2 doi: 10.1172/JCI33372 – ident: e_1_3_4_8_2 doi: 10.1056/NEJMoa1001689 – ident: e_1_3_4_34_2 doi: 10.7326/0003-4819-150-2-200901200-00006 – ident: e_1_3_4_35_2 doi: 10.1016/j.jacc.2012.03.060 – ident: e_1_3_4_18_2 doi: 10.1373/clinchem.2014.228114 – ident: e_1_3_4_25_2 doi: 10.1373/clinchem.2008.118356 – ident: e_1_3_4_2_2 doi: 10.1056/NEJM198911093211907 – ident: e_1_3_4_13_2 doi: 10.1161/CIRCRESAHA.116.305485 – ident: e_1_3_4_31_2 doi: 10.5551/jat.17210 – ident: e_1_3_4_15_2 doi: 10.1194/jlr.R036095 – ident: e_1_3_4_29_2 doi: 10.1152/physrev.00005.2005 – ident: e_1_3_4_11_2 doi: 10.1373/clinchem.2010.155333 – ident: e_1_3_4_30_2 doi: 10.1161/ATVBAHA.114.303715 – ident: e_1_3_4_20_2 doi: 10.1016/j.ahj.2009.01.001 – ident: e_1_3_4_16_2 doi: 10.1373/clinchem.2014.232769 – ident: e_1_3_4_17_2 doi: 10.1373/clinchem.2007.100586 – ident: e_1_3_4_21_2 doi: 10.1016/j.jacl.2008.12.003 – ident: e_1_3_4_7_2 doi: 10.1194/jlr.D018051 – ident: e_1_3_4_14_2 doi: 10.1074/jbc.R114.583658 – ident: e_1_3_4_28_2 doi: 10.1016/S1471-4914(02)02289-X – ident: e_1_3_4_38_2 doi: 10.1161/CIRCULATIONAHA.108.816181 – ident: e_1_3_4_27_2 doi: 10.1194/jlr.M300078-JLR200 – ident: e_1_3_4_36_2 doi: 10.1161/CIRCULATIONAHA.105.565135 – ident: e_1_3_4_22_2 doi: 10.1016/j.jacc.2013.07.025 – ident: e_1_3_4_40_2 doi: 10.1016/S0140-6736(05)67394-1 – ident: e_1_3_4_33_2 doi: 10.1016/j.jacl.2011.06.012 – ident: e_1_3_4_10_2 doi: 10.1056/NEJMoa1409065 – ident: e_1_3_4_12_2 doi: 10.1172/JCI26206 – ident: e_1_3_4_41_2 doi: 10.1016/j.jacc.2015.09.013 – ident: e_1_3_4_9_2 doi: 10.1016/S2213-8587(15)00126-6 – ident: e_1_3_4_19_2 doi: 10.1161/JAHA.113.000037 – ident: e_1_3_4_24_2 doi: 10.1016/0021-9150(91)90050-D – ident: e_1_3_4_37_2 doi: 10.1161/CIRCULATIONAHA.111.073684 – ident: e_1_3_4_39_2 doi: 10.1161/CIRCRESAHA.115.306052 – ident: e_1_3_4_6_2 doi: 10.1161/ATVBAHA.109.199158 – ident: e_1_3_4_32_2 doi: 10.1161/CIRCULATIONAHA.113.002671 – ident: e_1_3_4_4_2 doi: 10.1056/NEJMoa1206797 – ident: e_1_3_4_26_2 doi: 10.1161/ATVBAHA.110.207142 – reference: 26564598 - J Am Coll Cardiol. 2015 Nov 17;66(20):2201-10 – reference: 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78 – reference: 25074931 - J Biol Chem. 2014 Aug 29;289(35):24020-9 – reference: 12700343 - J Lipid Res. 2003 Jul;44(7):1373-80 – reference: 19332196 - Am Heart J. 2009 Apr;157(4):687.e1-8 – reference: 23933538 - J Am Coll Cardiol. 2013 Nov 12;62(20):1909-10 – reference: 22796256 - J Am Coll Cardiol. 2012 Aug 7;60(6):508-16 – reference: 25404125 - N Engl J Med. 2014 Dec 18;371(25):2383-93 – reference: 22961164 - Nat Med. 2012 Sep;18(9):1344-6 – reference: 22085343 - N Engl J Med. 2011 Dec 15;365(24):2255-67 – reference: 23926117 - J Am Heart Assoc. 2013 Aug;2(4):e000037 – reference: 23543772 - J Lipid Res. 2013 Nov;54(11):2950-63 – reference: 20075420 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):796-801 – reference: 26025389 - Lancet Diabetes Endocrinol. 2015 Jul;3(7):507-13 – reference: 21981836 - J Clin Lipidol. 2011 Sep-Oct;5(5):368-70 – reference: 19204302 - Circulation. 2009 Feb 24;119(7):931-9 – reference: 2677733 - N Engl J Med. 1989 Nov 9;321(19):1311-6 – reference: 17992262 - J Clin Invest. 2007 Dec;117(12):3900-8 – reference: 17643572 - Am Heart J. 2007 Aug;154(2):239-46 – reference: 19168552 - Clin Chem. 2009 Mar;55(3):407-19 – reference: 21266551 - Clin Chem. 2011 Mar;57(3):392-410 – reference: 16183915 - Physiol Rev. 2005 Oct;85(4):1343-72 – reference: 18515257 - Clin Chem. 2008 Aug;54(8):1307-16 – reference: 23126252 - N Engl J Med. 2012 Nov 29;367(22):2089-99 – reference: 25104799 - Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2246-53 – reference: 25281702 - Clin Chem. 2014 Nov;60(11):e1-3 – reference: 22539783 - Circulation. 2012 May 22;125(20):2469-78 – reference: 25589556 - Circ Res. 2015 Mar 27;116(7):1133-42 – reference: 24002795 - Circulation. 2013 Sep 10;128(11):1189-97 – reference: 20448206 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1430-8 – reference: 11927274 - Trends Mol Med. 2002 Apr;8(4):168-73 – reference: 23739642 - J Atheroscler Thromb. 2013;20(9):708-16 – reference: 21957199 - J Lipid Res. 2011 Dec;52(12):2332-40 – reference: 17332893 - J Clin Invest. 2007 Mar;117(3):746-56 – reference: 21291788 - J Clin Lipidol. 2009 Feb;3(1):45-50 – reference: 19153411 - Ann Intern Med. 2009 Jan 20;150(2):84-93 – reference: 21226578 - N Engl J Med. 2011 Jan 13;364(2):127-35 – reference: 1793438 - Atherosclerosis. 1991 Aug;89(2-3):109-16 – reference: 25814677 - Circ Res. 2015 Mar 27;116(7):1101-3 – reference: 16534013 - Circulation. 2006 Mar 28;113(12):1556-63 – reference: 25225166 - Clin Chem. 2014 Nov;60(11):1393-401 |
SSID | ssj0004220 |
Score | 2.4091144 |
Snippet | OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles... We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 404 |
SubjectTerms | Animals Atorvastatin Calcium - therapeutic use ATP Binding Cassette Transporter 1 - genetics ATP Binding Cassette Transporter 1 - metabolism Biological Transport Carotid Artery Diseases - blood Carotid Artery Diseases - diagnosis Carotid Artery Diseases - drug therapy Cell Line Cholesterol - blood Cholesterol, HDL - blood Cricetinae Drug Combinations Dyslipidemias - blood Dyslipidemias - diagnosis Dyslipidemias - drug therapy Female Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use Macrophages - drug effects Macrophages - metabolism Male Mice Middle Aged Niacin - therapeutic use Time Factors Transfection Treatment Outcome |
Title | Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26681752 https://www.proquest.com/docview/1761464103 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjpswELXSrVS1qqrem97kSn2L2MXEOOSRpJf0sqtWYlf7hjAYCW0W0gXUaj-o39TP6Qw2hCjpqu0LigEbojl4ZuwzM4S8FmOZcC9KLNB9rsUTW1oRT1MrnjIZwbeVygkGOB8eicUx_3jqng4Gv3qspbqS-_HlzriS_5EqnAO5YpTsP0i2GxROwG-QLxxBwnD8KxkfZVGc5ciawMwA-K0jxVyVDXvDeoPcdLCxP2eroknHALd-aYlwzaZBUGAo5BxL5GK-hGKJhZaX9Y_RHFRojH1ndTU6KqqRP5v7zGqK1adZvKtL1pQCrrLcCtAORTu2lrjIU_btXx8ZpFlRwiuAetb5DbBSw7lsW_heHT3WpIha7wrlpSnO-f4iusyQubUOpVjUFRJDe5UHztZrvR_Kb7VZQ9JR9e2FkygrNck86KhSZhWEdcRpVGJm5na4hdnP-lO7aWU9D1vP01zXPN7WHwL1hx-czPyFD013H1wqRxf-6QFqdd4gCowbD8wvZ61LO4Zje-kaue6AA4O1NT597eWxdxy7DeES7GD7gZik2gyxaTFtuUG3yO3vBTIryrMmsKJnHgV3yR3j11Bfw-seGaj8PrlxaJgbD8hPjVVqsEo7rNI-VmkPq7TDKgVM0AartAc8qoFHW6xSwCoFrNJNrO7qAoNvYpW2WH1Ijt-9DeYLy9QIsWIucC2cialUE8GF5E6kEuEqlrBxxDzOEzA9wZuRkygFozlmTmSrlCVcwQ0K67SNbTl-RPbyIldPCE24PZmCuaswKyUY3t6UR5hsyks8ESfKHRLWyiGMTQJ9rOOyDBtHWrDQiBEabqjFOCSjrs9Kp4-58u5XrXhDmOVx6y7KVVGXIZvAfxGc2eMheazl3o3X4mRIDjaAEOpI6iue9_SPYz0jN9df2XOyV13U6gVY35V82QD5N3rt3HU |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niacin+Therapy+Increases+High-Density+Lipoprotein+Particles+and+Total+Cholesterol+Efflux+Capacity+But+Not+ABCA1-Specific+Cholesterol+Efflux+in+Statin-Treated+Subjects&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Ronsein%2C+Graziella+E&rft.au=Hutchins%2C+Patrick+M&rft.au=Isquith%2C+Daniel&rft.au=Vaisar%2C+Tomas&rft.date=2016-02-01&rft.eissn=1524-4636&rft.volume=36&rft.issue=2&rft.spage=404&rft_id=info:doi/10.1161%2FATVBAHA.115.306268&rft_id=info%3Apmid%2F26681752&rft.externalDocID=26681752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |