Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects

OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. AP...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 36; no. 2; pp. 404 - 411
Main Authors Ronsein, Graziella E., Hutchins, Patrick M., Isquith, Daniel, Vaisar, Tomas, Zhao, Xue-Qiao, Heinecke, Jay W.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.02.2016
Subjects
Online AccessGet full text
ISSN1079-5642
1524-4636
1524-4636
DOI10.1161/ATVBAHA.115.306268

Cover

Loading…
Abstract OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. APPROACH—In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)–specific cholesterol efflux capacity. RESULTS—Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. CONCLUSIONS—Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.
AbstractList OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. APPROACH—In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)–specific cholesterol efflux capacity. RESULTS—Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. CONCLUSIONS—Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.
We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.OBJECTIVEWe investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels.In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity.APPROACHIn the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity.Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.RESULTSAtorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy.Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.CONCLUSIONSStatin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.
We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.
Author Isquith, Daniel
Hutchins, Patrick M.
Ronsein, Graziella E.
Heinecke, Jay W.
Vaisar, Tomas
Zhao, Xue-Qiao
AuthorAffiliation From the Department of Medicine, University of Washington, Seattle
AuthorAffiliation_xml – name: From the Department of Medicine, University of Washington, Seattle
Author_xml – sequence: 1
  givenname: Graziella
  surname: Ronsein
  middlename: E.
  fullname: Ronsein, Graziella E.
  organization: From the Department of Medicine, University of Washington, Seattle
– sequence: 2
  givenname: Patrick
  surname: Hutchins
  middlename: M.
  fullname: Hutchins, Patrick M.
– sequence: 3
  givenname: Daniel
  surname: Isquith
  fullname: Isquith, Daniel
– sequence: 4
  givenname: Tomas
  surname: Vaisar
  fullname: Vaisar, Tomas
– sequence: 5
  givenname: Xue-Qiao
  surname: Zhao
  fullname: Zhao, Xue-Qiao
– sequence: 6
  givenname: Jay
  surname: Heinecke
  middlename: W.
  fullname: Heinecke, Jay W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26681752$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gBVggL9mk2I7tZJaZtDCVRgVpAtvIcW6IiycOtqMyL8RzYjQDC4S6sq_1naPrcy7R2eQmQOg1JdeUSvquar6sq02VBnGdE8lk-QxdUMF4xmUuz9KdFKtMSM7O0WUID4QQzhh5gc6ZlCUtBLtAP--N0mbCzQhezQd8N2kPKkDAG_N1zG5gCiYe8NbMbvYuQkI_KR-NtglRU48bF5XF9ejSQwTvLL4dBrv8wLWak3PSrpeI713E1bquaLabQZvB6P9JkvkuqmimrElLROjxbukeQMfwEj0flA3w6nReoc_vb5t6k20_frirq22mueRlxqlcdVBILjvOFPRSAO1prmjJeS8pF3neFWoQgmvKFIGB9hwSAIKzVU66_Aq9Pfqmz35f0nrt3gQN1qoJ3BJaWiQXySnJE_rmhC7dHvp29mav_KH9k20C2BHQ3oXgYfiLUNL-LrA9FZgG0R4LTKLyH1HKMEXipuiVsU9L5VH66GyKNXyzyyP4dgRl4_iU8BeLYbJk
CitedBy_id crossref_primary_10_1016_j_jacc_2016_10_029
crossref_primary_10_1097_MOL_0000000000000446
crossref_primary_10_1152_ajpendo_00127_2018
crossref_primary_10_1161_ATVBAHA_117_310307
crossref_primary_10_1016_j_molmet_2018_02_005
crossref_primary_10_1016_j_jlr_2022_100196
crossref_primary_10_1128_msystems_00628_24
crossref_primary_10_1161_CIRCRESAHA_120_317458
crossref_primary_10_1097_FJC_0000000000000573
crossref_primary_10_1161_ATVBAHA_116_307993
crossref_primary_10_1016_j_artere_2019_11_005
crossref_primary_10_1007_s11356_022_19733_7
crossref_primary_10_1097_MOL_0000000000000426
crossref_primary_10_1016_j_arteri_2019_04_001
crossref_primary_10_1016_j_jacl_2022_09_004
crossref_primary_10_1016_j_ccl_2017_12_012
crossref_primary_10_1161_ATVBAHA_116_308262
crossref_primary_10_1161_ATVBAHA_118_311581
crossref_primary_10_1161_CIRCRESAHA_116_309506
crossref_primary_10_1016_j_ahj_2019_12_003
crossref_primary_10_1016_j_metabol_2020_154351
crossref_primary_10_1161_ATVBAHA_116_307808
crossref_primary_10_1097_MOL_0000000000000294
crossref_primary_10_1016_j_amjmed_2016_07_038
crossref_primary_10_1371_journal_pone_0296052
crossref_primary_10_1097_MOL_0000000000000612
crossref_primary_10_1016_j_cjca_2019_05_033
crossref_primary_10_1186_s12944_020_01350_3
crossref_primary_10_1007_s13311_023_01376_2
crossref_primary_10_3233_JAD_191246
crossref_primary_10_1080_14789450_2018_1402680
crossref_primary_10_2337_dc18_0049
crossref_primary_10_1038_s41598_021_95140_1
crossref_primary_10_1016_j_coph_2017_04_005
crossref_primary_10_1097_MOL_0000000000000317
crossref_primary_10_1161_STROKEAHA_119_026280
crossref_primary_10_1016_j_jacl_2018_01_014
crossref_primary_10_12997_jla_2019_8_1_58
crossref_primary_10_1016_j_bbalip_2018_08_002
crossref_primary_10_1097_MOL_0000000000000382
crossref_primary_10_1016_j_plipres_2017_12_001
crossref_primary_10_1161_ATVBAHA_118_311117
crossref_primary_10_1161_ATVBAHA_117_310222
crossref_primary_10_1177_2047487319848214
Cites_doi 10.1056/NEJMoa1107579
10.1172/JCI33372
10.1056/NEJMoa1001689
10.7326/0003-4819-150-2-200901200-00006
10.1016/j.jacc.2012.03.060
10.1373/clinchem.2014.228114
10.1373/clinchem.2008.118356
10.1056/NEJM198911093211907
10.1161/CIRCRESAHA.116.305485
10.5551/jat.17210
10.1194/jlr.R036095
10.1152/physrev.00005.2005
10.1373/clinchem.2010.155333
10.1161/ATVBAHA.114.303715
10.1016/j.ahj.2009.01.001
10.1373/clinchem.2014.232769
10.1373/clinchem.2007.100586
10.1016/j.jacl.2008.12.003
10.1194/jlr.D018051
10.1074/jbc.R114.583658
10.1016/S1471-4914(02)02289-X
10.1161/CIRCULATIONAHA.108.816181
10.1194/jlr.M300078-JLR200
10.1161/CIRCULATIONAHA.105.565135
10.1016/j.jacc.2013.07.025
10.1016/S0140-6736(05)67394-1
10.1016/j.jacl.2011.06.012
10.1056/NEJMoa1409065
10.1172/JCI26206
10.1016/j.jacc.2015.09.013
10.1016/S2213-8587(15)00126-6
10.1161/JAHA.113.000037
10.1016/0021-9150(91)90050-D
10.1161/CIRCULATIONAHA.111.073684
10.1161/CIRCRESAHA.115.306052
10.1161/ATVBAHA.109.199158
10.1161/CIRCULATIONAHA.113.002671
10.1056/NEJMoa1206797
10.1161/ATVBAHA.110.207142
ContentType Journal Article
Copyright 2016 American Heart Association, Inc.
2015 American Heart Association, Inc.
Copyright_xml – notice: 2016 American Heart Association, Inc.
– notice: 2015 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/ATVBAHA.115.306268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 411
ExternalDocumentID 26681752
10_1161_ATVBAHA_115_306268
10.1161/ATVBAHA.115.306268
Genre Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK017047
– fundername: NHLBI NIH HHS
  grantid: P01 HL092969
– fundername: NHLBI NIH HHS
  grantid: R01HL108897
– fundername: NIDDK NIH HHS
  grantid: DP3 DK108209
– fundername: NHLBI NIH HHS
  grantid: R01HL112625
– fundername: NHLBI NIH HHS
  grantid: R01 HL112625
– fundername: NHLBI NIH HHS
  grantid: P01HL092969
– fundername: NIDDK NIH HHS
  grantid: P30DK017047
– fundername: NHLBI NIH HHS
  grantid: R01 HL108897
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADSXY
ID FETCH-LOGICAL-c4648-4169be7646b42aed65e1d13a1844d614533b7af554c12a0ef1d4ed13e542930b3
ISSN 1079-5642
1524-4636
IngestDate Tue Aug 05 09:49:29 EDT 2025
Thu Apr 03 07:04:40 EDT 2025
Tue Jul 01 02:21:55 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Fri May 16 04:12:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords atherosclerosis
niacin
macrophages
cardiovascular diseases
triglycerides
Language English
License 2015 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4648-4169be7646b42aed65e1d13a1844d614533b7af554c12a0ef1d4ed13e542930b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.115.306268
PMID 26681752
PQID 1761464103
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1761464103
pubmed_primary_26681752
crossref_primary_10_1161_ATVBAHA_115_306268
crossref_citationtrail_10_1161_ATVBAHA_115_306268
wolterskluwer_health_10_1161_ATVBAHA_115_306268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-February
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-February
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2016
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
22796256 - J Am Coll Cardiol. 2012 Aug 7;60(6):508-16
12700343 - J Lipid Res. 2003 Jul;44(7):1373-80
16214597 - Lancet. 2005 Oct 8;366(9493):1267-78
18515257 - Clin Chem. 2008 Aug;54(8):1307-16
23739642 - J Atheroscler Thromb. 2013;20(9):708-16
22085343 - N Engl J Med. 2011 Dec 15;365(24):2255-67
25281702 - Clin Chem. 2014 Nov;60(11):e1-3
23126252 - N Engl J Med. 2012 Nov 29;367(22):2089-99
17643572 - Am Heart J. 2007 Aug;154(2):239-46
1793438 - Atherosclerosis. 1991 Aug;89(2-3):109-16
19168552 - Clin Chem. 2009 Mar;55(3):407-19
21957199 - J Lipid Res. 2011 Dec;52(12):2332-40
24002795 - Circulation. 2013 Sep 10;128(11):1189-97
19332196 - Am Heart J. 2009 Apr;157(4):687.e1-8
20075420 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):796-801
17332893 - J Clin Invest. 2007 Mar;117(3):746-56
17992262 - J Clin Invest. 2007 Dec;117(12):3900-8
21291788 - J Clin Lipidol. 2009 Feb;3(1):45-50
23926117 - J Am Heart Assoc. 2013 Aug;2(4):e000037
2677733 - N Engl J Med. 1989 Nov 9;321(19):1311-6
23933538 - J Am Coll Cardiol. 2013 Nov 12;62(20):1909-10
16183915 - Physiol Rev. 2005 Oct;85(4):1343-72
25225166 - Clin Chem. 2014 Nov;60(11):1393-401
26025389 - Lancet Diabetes Endocrinol. 2015 Jul;3(7):507-13
25589556 - Circ Res. 2015 Mar 27;116(7):1133-42
19153411 - Ann Intern Med. 2009 Jan 20;150(2):84-93
23543772 - J Lipid Res. 2013 Nov;54(11):2950-63
20448206 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1430-8
25404125 - N Engl J Med. 2014 Dec 18;371(25):2383-93
22539783 - Circulation. 2012 May 22;125(20):2469-78
21226578 - N Engl J Med. 2011 Jan 13;364(2):127-35
21981836 - J Clin Lipidol. 2011 Sep-Oct;5(5):368-70
19204302 - Circulation. 2009 Feb 24;119(7):931-9
16534013 - Circulation. 2006 Mar 28;113(12):1556-63
21266551 - Clin Chem. 2011 Mar;57(3):392-410
25074931 - J Biol Chem. 2014 Aug 29;289(35):24020-9
22961164 - Nat Med. 2012 Sep;18(9):1344-6
26564598 - J Am Coll Cardiol. 2015 Nov 17;66(20):2201-10
11927274 - Trends Mol Med. 2002 Apr;8(4):168-73
25814677 - Circ Res. 2015 Mar 27;116(7):1101-3
25104799 - Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2246-53
References_xml – ident: e_1_3_4_5_2
  doi: 10.1056/NEJMoa1107579
– ident: e_1_3_4_42_2
  doi: 10.1172/JCI33372
– ident: e_1_3_4_8_2
  doi: 10.1056/NEJMoa1001689
– ident: e_1_3_4_34_2
  doi: 10.7326/0003-4819-150-2-200901200-00006
– ident: e_1_3_4_35_2
  doi: 10.1016/j.jacc.2012.03.060
– ident: e_1_3_4_18_2
  doi: 10.1373/clinchem.2014.228114
– ident: e_1_3_4_25_2
  doi: 10.1373/clinchem.2008.118356
– ident: e_1_3_4_2_2
  doi: 10.1056/NEJM198911093211907
– ident: e_1_3_4_13_2
  doi: 10.1161/CIRCRESAHA.116.305485
– ident: e_1_3_4_31_2
  doi: 10.5551/jat.17210
– ident: e_1_3_4_15_2
  doi: 10.1194/jlr.R036095
– ident: e_1_3_4_29_2
  doi: 10.1152/physrev.00005.2005
– ident: e_1_3_4_11_2
  doi: 10.1373/clinchem.2010.155333
– ident: e_1_3_4_30_2
  doi: 10.1161/ATVBAHA.114.303715
– ident: e_1_3_4_20_2
  doi: 10.1016/j.ahj.2009.01.001
– ident: e_1_3_4_16_2
  doi: 10.1373/clinchem.2014.232769
– ident: e_1_3_4_17_2
  doi: 10.1373/clinchem.2007.100586
– ident: e_1_3_4_21_2
  doi: 10.1016/j.jacl.2008.12.003
– ident: e_1_3_4_7_2
  doi: 10.1194/jlr.D018051
– ident: e_1_3_4_14_2
  doi: 10.1074/jbc.R114.583658
– ident: e_1_3_4_28_2
  doi: 10.1016/S1471-4914(02)02289-X
– ident: e_1_3_4_38_2
  doi: 10.1161/CIRCULATIONAHA.108.816181
– ident: e_1_3_4_27_2
  doi: 10.1194/jlr.M300078-JLR200
– ident: e_1_3_4_36_2
  doi: 10.1161/CIRCULATIONAHA.105.565135
– ident: e_1_3_4_22_2
  doi: 10.1016/j.jacc.2013.07.025
– ident: e_1_3_4_40_2
  doi: 10.1016/S0140-6736(05)67394-1
– ident: e_1_3_4_33_2
  doi: 10.1016/j.jacl.2011.06.012
– ident: e_1_3_4_10_2
  doi: 10.1056/NEJMoa1409065
– ident: e_1_3_4_12_2
  doi: 10.1172/JCI26206
– ident: e_1_3_4_41_2
  doi: 10.1016/j.jacc.2015.09.013
– ident: e_1_3_4_9_2
  doi: 10.1016/S2213-8587(15)00126-6
– ident: e_1_3_4_19_2
  doi: 10.1161/JAHA.113.000037
– ident: e_1_3_4_24_2
  doi: 10.1016/0021-9150(91)90050-D
– ident: e_1_3_4_37_2
  doi: 10.1161/CIRCULATIONAHA.111.073684
– ident: e_1_3_4_39_2
  doi: 10.1161/CIRCRESAHA.115.306052
– ident: e_1_3_4_6_2
  doi: 10.1161/ATVBAHA.109.199158
– ident: e_1_3_4_32_2
  doi: 10.1161/CIRCULATIONAHA.113.002671
– ident: e_1_3_4_4_2
  doi: 10.1056/NEJMoa1206797
– ident: e_1_3_4_26_2
  doi: 10.1161/ATVBAHA.110.207142
– reference: 26564598 - J Am Coll Cardiol. 2015 Nov 17;66(20):2201-10
– reference: 16214597 - Lancet. 2005 Oct 8;366(9493):1267-78
– reference: 25074931 - J Biol Chem. 2014 Aug 29;289(35):24020-9
– reference: 12700343 - J Lipid Res. 2003 Jul;44(7):1373-80
– reference: 19332196 - Am Heart J. 2009 Apr;157(4):687.e1-8
– reference: 23933538 - J Am Coll Cardiol. 2013 Nov 12;62(20):1909-10
– reference: 22796256 - J Am Coll Cardiol. 2012 Aug 7;60(6):508-16
– reference: 25404125 - N Engl J Med. 2014 Dec 18;371(25):2383-93
– reference: 22961164 - Nat Med. 2012 Sep;18(9):1344-6
– reference: 22085343 - N Engl J Med. 2011 Dec 15;365(24):2255-67
– reference: 23926117 - J Am Heart Assoc. 2013 Aug;2(4):e000037
– reference: 23543772 - J Lipid Res. 2013 Nov;54(11):2950-63
– reference: 20075420 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):796-801
– reference: 26025389 - Lancet Diabetes Endocrinol. 2015 Jul;3(7):507-13
– reference: 21981836 - J Clin Lipidol. 2011 Sep-Oct;5(5):368-70
– reference: 19204302 - Circulation. 2009 Feb 24;119(7):931-9
– reference: 2677733 - N Engl J Med. 1989 Nov 9;321(19):1311-6
– reference: 17992262 - J Clin Invest. 2007 Dec;117(12):3900-8
– reference: 17643572 - Am Heart J. 2007 Aug;154(2):239-46
– reference: 19168552 - Clin Chem. 2009 Mar;55(3):407-19
– reference: 21266551 - Clin Chem. 2011 Mar;57(3):392-410
– reference: 16183915 - Physiol Rev. 2005 Oct;85(4):1343-72
– reference: 18515257 - Clin Chem. 2008 Aug;54(8):1307-16
– reference: 23126252 - N Engl J Med. 2012 Nov 29;367(22):2089-99
– reference: 25104799 - Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2246-53
– reference: 25281702 - Clin Chem. 2014 Nov;60(11):e1-3
– reference: 22539783 - Circulation. 2012 May 22;125(20):2469-78
– reference: 25589556 - Circ Res. 2015 Mar 27;116(7):1133-42
– reference: 24002795 - Circulation. 2013 Sep 10;128(11):1189-97
– reference: 20448206 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1430-8
– reference: 11927274 - Trends Mol Med. 2002 Apr;8(4):168-73
– reference: 23739642 - J Atheroscler Thromb. 2013;20(9):708-16
– reference: 21957199 - J Lipid Res. 2011 Dec;52(12):2332-40
– reference: 17332893 - J Clin Invest. 2007 Mar;117(3):746-56
– reference: 21291788 - J Clin Lipidol. 2009 Feb;3(1):45-50
– reference: 19153411 - Ann Intern Med. 2009 Jan 20;150(2):84-93
– reference: 21226578 - N Engl J Med. 2011 Jan 13;364(2):127-35
– reference: 1793438 - Atherosclerosis. 1991 Aug;89(2-3):109-16
– reference: 25814677 - Circ Res. 2015 Mar 27;116(7):1101-3
– reference: 16534013 - Circulation. 2006 Mar 28;113(12):1556-63
– reference: 25225166 - Clin Chem. 2014 Nov;60(11):1393-401
SSID ssj0004220
Score 2.4091144
Snippet OBJECTIVE—We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles...
We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms Animals
Atorvastatin Calcium - therapeutic use
ATP Binding Cassette Transporter 1 - genetics
ATP Binding Cassette Transporter 1 - metabolism
Biological Transport
Carotid Artery Diseases - blood
Carotid Artery Diseases - diagnosis
Carotid Artery Diseases - drug therapy
Cell Line
Cholesterol - blood
Cholesterol, HDL - blood
Cricetinae
Drug Combinations
Dyslipidemias - blood
Dyslipidemias - diagnosis
Dyslipidemias - drug therapy
Female
Humans
Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use
Macrophages - drug effects
Macrophages - metabolism
Male
Mice
Middle Aged
Niacin - therapeutic use
Time Factors
Transfection
Treatment Outcome
Title Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/26681752
https://www.proquest.com/docview/1761464103
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjpswELXSrVS1qqrem97kSn2L2MXEOOSRpJf0sqtWYlf7hjAYCW0W0gXUaj-o39TP6Qw2hCjpqu0LigEbojl4ZuwzM4S8FmOZcC9KLNB9rsUTW1oRT1MrnjIZwbeVygkGOB8eicUx_3jqng4Gv3qspbqS-_HlzriS_5EqnAO5YpTsP0i2GxROwG-QLxxBwnD8KxkfZVGc5ciawMwA-K0jxVyVDXvDeoPcdLCxP2eroknHALd-aYlwzaZBUGAo5BxL5GK-hGKJhZaX9Y_RHFRojH1ndTU6KqqRP5v7zGqK1adZvKtL1pQCrrLcCtAORTu2lrjIU_btXx8ZpFlRwiuAetb5DbBSw7lsW_heHT3WpIha7wrlpSnO-f4iusyQubUOpVjUFRJDe5UHztZrvR_Kb7VZQ9JR9e2FkygrNck86KhSZhWEdcRpVGJm5na4hdnP-lO7aWU9D1vP01zXPN7WHwL1hx-czPyFD013H1wqRxf-6QFqdd4gCowbD8wvZ61LO4Zje-kaue6AA4O1NT597eWxdxy7DeES7GD7gZik2gyxaTFtuUG3yO3vBTIryrMmsKJnHgV3yR3j11Bfw-seGaj8PrlxaJgbD8hPjVVqsEo7rNI-VmkPq7TDKgVM0AartAc8qoFHW6xSwCoFrNJNrO7qAoNvYpW2WH1Ijt-9DeYLy9QIsWIucC2cialUE8GF5E6kEuEqlrBxxDzOEzA9wZuRkygFozlmTmSrlCVcwQ0K67SNbTl-RPbyIldPCE24PZmCuaswKyUY3t6UR5hsyks8ESfKHRLWyiGMTQJ9rOOyDBtHWrDQiBEabqjFOCSjrs9Kp4-58u5XrXhDmOVx6y7KVVGXIZvAfxGc2eMheazl3o3X4mRIDjaAEOpI6iue9_SPYz0jN9df2XOyV13U6gVY35V82QD5N3rt3HU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Niacin+Therapy+Increases+High-Density+Lipoprotein+Particles+and+Total+Cholesterol+Efflux+Capacity+But+Not+ABCA1-Specific+Cholesterol+Efflux+in+Statin-Treated+Subjects&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Ronsein%2C+Graziella+E&rft.au=Hutchins%2C+Patrick+M&rft.au=Isquith%2C+Daniel&rft.au=Vaisar%2C+Tomas&rft.date=2016-02-01&rft.eissn=1524-4636&rft.volume=36&rft.issue=2&rft.spage=404&rft_id=info:doi/10.1161%2FATVBAHA.115.306268&rft_id=info%3Apmid%2F26681752&rft.externalDocID=26681752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon