Crown plasticity enables trees to optimize canopy packing in mixed-species forests
Summary It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a gener...
Saved in:
Published in | Functional ecology Vol. 29; no. 8; pp. 1078 - 1086 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.08.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear.
Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology.
We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture.
The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.
Lay Summary |
---|---|
AbstractList | It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems. It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems. Summary It has been suggested that diverse forests utilize canopy space more efficiently than species-poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing-diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing-diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed-species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems. Summary It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems. Lay Summary |
Author | Coomes, David A. Jucker, Tommaso Bouriaud, Olivier |
Author_xml | – sequence: 1 givenname: Tommaso surname: Jucker fullname: Jucker, Tommaso – sequence: 2 givenname: Olivier surname: Bouriaud fullname: Bouriaud, Olivier – sequence: 3 givenname: David A. surname: Coomes fullname: Coomes, David A. |
BookMark | eNqFkUtrGzEURkVxoU7adVeFgW66GVtvaZbF5AWBQMheaOQ7Re5YmkpjXPfXVxM7WWThaCGBOOde6bsXaBZiAIS-ErwgZS0Jk6KmnIkFoZzqD2j-ejNDc0xlU2su2Sd0kfMGY9wISufocZXiPlRDb_PonR8PFQTb9pCrMcG0xyoOo9_6f1A5G-JwqAbrfvvwq_Kh2vq_sK7zAM4XtosJ8pg_o4-d7TN8OZ2X6On66ml1W98_3Nytft7Xjkuua6LYmrfYNR0BULQjnLWtphI3jWpbKZ1YS6etYgC6s9ZxJXmjC6-ZsFqxS_TjWHZI8c-uNDZbnx30vQ0Qd9kQVX7bYKFpQb-_QTdxl0J5nKFMiSkMgs9RROFSSDBGCiWOlEsx5wSdKanZ0ccwJut7Q7CZxmGm8M0UvnkeR_GWb7wh-a1NhzPGqdPe93B4DzfXV6sX79vR2-QxplePa6EUJoz9B-n6pOw |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1890_15_0625_1 crossref_primary_10_1002_ece3_4193 crossref_primary_10_1016_j_foreco_2024_122057 crossref_primary_10_1111_ele_12786 crossref_primary_10_3390_f10090751 crossref_primary_10_1111_1365_2664_12669 crossref_primary_10_1071_MF20158 crossref_primary_10_1111_nph_20199 crossref_primary_10_1007_s00442_018_4278_0 crossref_primary_10_1111_1365_2745_12811 crossref_primary_10_1016_j_foreco_2020_118471 crossref_primary_10_1016_j_foreco_2021_119046 crossref_primary_10_1111_1365_2745_13346 crossref_primary_10_1016_j_scitotenv_2022_160548 crossref_primary_10_1016_j_foreco_2021_118984 crossref_primary_10_1186_s13595_022_01165_5 crossref_primary_10_1038_s41598_020_70313_6 crossref_primary_10_1111_1365_2745_13464 crossref_primary_10_1139_cjfr_2017_0177 crossref_primary_10_1111_jvs_12505 crossref_primary_10_1111_1365_2435_13760 crossref_primary_10_1111_oik_07273 crossref_primary_10_1016_j_foreco_2025_122582 crossref_primary_10_1111_1365_2664_12783 crossref_primary_10_3832_ifor4305_016 crossref_primary_10_1111_1365_2435_13898 crossref_primary_10_1007_s10340_019_01148_y crossref_primary_10_1016_j_foreco_2020_117929 crossref_primary_10_1111_ele_13400 crossref_primary_10_1111_gcb_15606 crossref_primary_10_1038_s42003_023_04626_3 crossref_primary_10_1016_j_ppees_2018_12_002 crossref_primary_10_1126_sciadv_adf0938 crossref_primary_10_1016_j_agrformet_2021_108699 crossref_primary_10_2139_ssrn_3997519 crossref_primary_10_1038_srep39102 crossref_primary_10_1080_21513732_2016_1150883 crossref_primary_10_1016_j_foreco_2023_121008 crossref_primary_10_1007_s10342_022_01511_2 crossref_primary_10_1016_j_foreco_2017_09_043 crossref_primary_10_1016_j_landurbplan_2023_104933 crossref_primary_10_1007_s11104_018_3654_1 crossref_primary_10_1016_j_foreco_2019_01_001 crossref_primary_10_1186_s13717_024_00569_7 crossref_primary_10_1016_j_fecs_2022_100075 crossref_primary_10_1111_nph_15263 crossref_primary_10_1016_j_soilbio_2021_108314 crossref_primary_10_1002_adfm_202009574 crossref_primary_10_1016_j_oneear_2024_10_005 crossref_primary_10_1016_j_foreco_2021_119189 crossref_primary_10_1016_j_foreco_2021_119741 crossref_primary_10_1007_s00442_021_04931_w crossref_primary_10_3390_f14030480 crossref_primary_10_1111_1440_1703_12175 crossref_primary_10_1007_s11676_020_01180_0 crossref_primary_10_1016_j_foreco_2022_120522 crossref_primary_10_1016_j_foreco_2022_120643 crossref_primary_10_1016_j_scs_2024_106012 crossref_primary_10_1111_1365_2745_13242 crossref_primary_10_1016_j_foreco_2017_09_036 crossref_primary_10_1016_j_foreco_2020_118807 crossref_primary_10_1016_j_ufug_2024_128647 crossref_primary_10_3390_f10080609 crossref_primary_10_1002_rse2_398 crossref_primary_10_1139_cjfr_2023_0220 crossref_primary_10_1007_s10457_024_00957_0 crossref_primary_10_7717_peerj_17067 crossref_primary_10_1111_1365_2745_12704 crossref_primary_10_1016_j_ecolecon_2023_107903 crossref_primary_10_1016_j_ecolmodel_2021_109812 crossref_primary_10_1016_j_agrformet_2024_110253 crossref_primary_10_1016_j_foreco_2018_07_056 crossref_primary_10_1038_s41477_018_0346_z crossref_primary_10_1111_nph_15810 crossref_primary_10_1016_j_scitotenv_2018_11_342 crossref_primary_10_1371_journal_pone_0167771 crossref_primary_10_1080_17550874_2023_2277282 crossref_primary_10_1007_s13595_020_00954_0 crossref_primary_10_1016_j_scitotenv_2021_150422 crossref_primary_10_1007_s10457_023_00818_2 crossref_primary_10_1111_1365_2664_12745 crossref_primary_10_1007_s10342_023_01584_7 crossref_primary_10_1093_forestry_cpz069 crossref_primary_10_3389_fpubh_2022_1064586 crossref_primary_10_1111_1365_2745_12851 crossref_primary_10_1016_j_scitotenv_2020_143724 crossref_primary_10_1016_j_foreco_2024_121839 crossref_primary_10_1038_s41467_020_20767_z crossref_primary_10_1016_j_dendro_2024_126270 crossref_primary_10_1111_1365_2745_13142 crossref_primary_10_1002_ecy_70032 crossref_primary_10_1016_j_foreco_2023_121559 crossref_primary_10_1007_s11676_022_01460_x crossref_primary_10_3759_tropics_MS17_07 crossref_primary_10_1111_ele_13717 crossref_primary_10_1111_ele_13959 crossref_primary_10_1016_j_ecolind_2024_112219 crossref_primary_10_1088_1748_9326_ac583f crossref_primary_10_1093_aobpla_plw010 crossref_primary_10_1007_s12155_019_09997_2 crossref_primary_10_1016_j_foreco_2019_01_047 crossref_primary_10_1002_ppp3_10562 crossref_primary_10_1007_s00442_016_3717_z crossref_primary_10_1016_j_foreco_2020_117968 crossref_primary_10_3390_f14102022 crossref_primary_10_3390_rs11222656 crossref_primary_10_1111_1365_2745_12847 crossref_primary_10_1016_j_foreco_2025_122529 crossref_primary_10_3390_rs14061441 crossref_primary_10_1002_ecy_1479 crossref_primary_10_1186_s13595_025_01277_8 crossref_primary_10_1002_ecy_4500 crossref_primary_10_31413_nativa_v9i3_12042 crossref_primary_10_52547_ifej_9_18_74 crossref_primary_10_1038_s41559_019_1007_y crossref_primary_10_1111_nph_16722 crossref_primary_10_1007_s00442_016_3623_4 crossref_primary_10_1038_s41598_024_67512_w crossref_primary_10_1007_s40725_023_00208_y crossref_primary_10_3389_fevo_2024_1387879 crossref_primary_10_3390_f11010114 crossref_primary_10_1016_j_jenvman_2023_117772 crossref_primary_10_1016_j_baae_2020_09_007 crossref_primary_10_1016_j_baae_2021_01_010 crossref_primary_10_1016_j_foreco_2016_04_043 crossref_primary_10_1093_forestry_cpz046 crossref_primary_10_3390_f9050237 crossref_primary_10_1016_j_fecs_2022_100039 crossref_primary_10_1016_j_scitotenv_2024_177684 crossref_primary_10_2139_ssrn_4154872 crossref_primary_10_1002_ece3_3488 crossref_primary_10_1016_j_foreco_2016_04_047 crossref_primary_10_1111_1365_2745_13602 crossref_primary_10_1016_j_foreco_2020_118840 crossref_primary_10_1016_j_foreco_2021_119654 crossref_primary_10_3390_d14100795 crossref_primary_10_1016_j_foreco_2024_121979 crossref_primary_10_1016_j_foreco_2024_121736 crossref_primary_10_1016_j_actao_2025_104058 crossref_primary_10_3390_rs13234955 crossref_primary_10_1111_ppl_14462 crossref_primary_10_3390_f13030397 crossref_primary_10_1111_ele_12849 crossref_primary_10_1111_ele_13388 crossref_primary_10_3390_f10121113 crossref_primary_10_3390_land14040675 crossref_primary_10_1016_j_foreco_2018_08_050 crossref_primary_10_1016_j_ecolmodel_2018_03_001 crossref_primary_10_1007_s00468_018_1763_3 crossref_primary_10_1016_j_baae_2021_01_008 crossref_primary_10_1007_s11258_024_01442_5 crossref_primary_10_3390_f13101604 crossref_primary_10_1016_j_fecs_2023_100109 crossref_primary_10_34133_2022_9856739 crossref_primary_10_1007_s10342_018_1141_0 crossref_primary_10_1016_j_baae_2018_01_003 crossref_primary_10_1016_j_forpol_2020_102264 crossref_primary_10_1111_1365_2664_12733 crossref_primary_10_1093_aob_mcab077 crossref_primary_10_1016_j_catena_2025_108852 crossref_primary_10_1093_forestry_cpaf001 crossref_primary_10_1093_jpe_rtab004 crossref_primary_10_1016_j_foreco_2023_121081 crossref_primary_10_1016_j_scitotenv_2016_09_028 crossref_primary_10_1002_ece3_2175 crossref_primary_10_1016_j_foreco_2022_120709 crossref_primary_10_1007_s00468_017_1581_z crossref_primary_10_1016_j_baae_2020_12_003 crossref_primary_10_1016_j_baae_2021_02_003 crossref_primary_10_1111_oik_06348 crossref_primary_10_1016_j_scitotenv_2020_143497 crossref_primary_10_1007_s11056_017_9598_0 crossref_primary_10_1016_j_scitotenv_2020_138105 crossref_primary_10_3390_su141710771 crossref_primary_10_1002_aps3_11401 crossref_primary_10_1016_j_rse_2022_112895 crossref_primary_10_3390_f13030455 crossref_primary_10_1007_s10021_021_00728_3 crossref_primary_10_1111_btp_13258 crossref_primary_10_1038_s41559_016_0063 crossref_primary_10_1111_gcb_13388 crossref_primary_10_1016_j_agrformet_2017_04_012 crossref_primary_10_1007_s10342_020_01270_y crossref_primary_10_1016_j_ecolind_2022_108566 crossref_primary_10_1016_j_ufug_2019_06_006 crossref_primary_10_1111_ele_13481 crossref_primary_10_1126_science_aat6405 crossref_primary_10_1016_j_foreco_2015_11_018 crossref_primary_10_1186_s40663_020_0215_x crossref_primary_10_5194_gmd_13_905_2020 crossref_primary_10_1111_1365_2435_12847 crossref_primary_10_1016_j_catena_2024_108331 crossref_primary_10_1111_oik_05360 crossref_primary_10_1016_j_agee_2019_06_003 crossref_primary_10_3390_f14030639 crossref_primary_10_1126_sciadv_adl1947 crossref_primary_10_1111_1365_2435_13825 crossref_primary_10_1111_nph_14452 crossref_primary_10_3389_fpls_2022_807369 crossref_primary_10_3390_f10090810 crossref_primary_10_1093_treephys_tpad144 crossref_primary_10_1093_treephys_tpw132 crossref_primary_10_1111_rec_12930 crossref_primary_10_1007_s40725_016_0031_2 crossref_primary_10_1111_pce_14376 crossref_primary_10_1139_cjfr_2019_0368 crossref_primary_10_1016_j_foreco_2021_118929 crossref_primary_10_1111_nph_17729 crossref_primary_10_1016_j_fecs_2024_100165 crossref_primary_10_1111_1365_2435_14009 crossref_primary_10_1080_17550874_2016_1210262 crossref_primary_10_1111_nph_19216 crossref_primary_10_1111_geb_13800 crossref_primary_10_1007_s10666_022_09821_w crossref_primary_10_1016_j_agrformet_2017_12_251 crossref_primary_10_1016_j_foreco_2025_122508 crossref_primary_10_1038_nature16476 crossref_primary_10_3389_ffgc_2023_1226514 crossref_primary_10_3390_f15060924 crossref_primary_10_1016_j_ecolind_2025_113074 crossref_primary_10_1016_j_scitotenv_2022_158662 crossref_primary_10_1002_ldr_3787 crossref_primary_10_1371_journal_pone_0186394 crossref_primary_10_1139_cjfr_2022_0125 crossref_primary_10_1007_s00468_021_02146_3 crossref_primary_10_1111_1365_2435_12865 crossref_primary_10_1016_j_scitotenv_2018_03_080 crossref_primary_10_2139_ssrn_4200083 crossref_primary_10_3390_f10100846 crossref_primary_10_1186_s40663_018_0157_8 crossref_primary_10_1016_j_foreco_2021_119482 crossref_primary_10_1139_cjfr_2021_0019 crossref_primary_10_1002_ecy_1748 crossref_primary_10_1016_j_foreco_2020_118551 crossref_primary_10_3390_f15122134 crossref_primary_10_1111_1440_1703_12233 crossref_primary_10_3389_fevo_2022_891908 crossref_primary_10_1016_j_foreco_2020_118302 crossref_primary_10_1134_S1995425524700501 crossref_primary_10_1007_s10021_016_9958_1 crossref_primary_10_1111_1365_2435_13208 crossref_primary_10_1016_j_rse_2020_112056 crossref_primary_10_1007_s00468_017_1593_8 crossref_primary_10_3390_f10010073 crossref_primary_10_1093_jpe_rtw041 crossref_primary_10_1016_j_tree_2018_10_013 crossref_primary_10_1007_s11676_019_01084_8 crossref_primary_10_1111_oik_10872 crossref_primary_10_3390_rs12020309 crossref_primary_10_3390_f9110713 crossref_primary_10_1016_j_foreco_2021_119498 crossref_primary_10_1371_journal_pone_0233104 crossref_primary_10_1016_j_foreco_2019_02_038 crossref_primary_10_1111_geb_13180 crossref_primary_10_1186_s40663_017_0105_z crossref_primary_10_3390_f11050519 crossref_primary_10_1016_j_agrformet_2022_109055 crossref_primary_10_1038_s41467_018_03529_w crossref_primary_10_1111_gcb_14792 crossref_primary_10_1007_s40415_021_00752_6 crossref_primary_10_1093_treephys_tpw124 crossref_primary_10_1111_1365_2435_13218 crossref_primary_10_1111_brv_12499 crossref_primary_10_1016_j_foreco_2017_04_044 crossref_primary_10_1016_j_fecs_2024_100237 crossref_primary_10_1016_j_foreco_2021_119146 crossref_primary_10_1016_j_agrformet_2024_110188 crossref_primary_10_1093_forestry_cpaa017 crossref_primary_10_1002_ece3_3528 crossref_primary_10_1016_j_foreco_2023_121135 crossref_primary_10_3390_f10070570 crossref_primary_10_1016_j_scitotenv_2024_175438 crossref_primary_10_1016_j_ecolind_2024_112168 crossref_primary_10_1111_geb_12515 crossref_primary_10_1007_s11056_023_09991_9 crossref_primary_10_1080_02827581_2021_1992002 crossref_primary_10_1093_forestry_cpy006 crossref_primary_10_1016_j_agrformet_2019_107655 crossref_primary_10_1038_s41598_020_62878_z crossref_primary_10_1002_fes3_518 crossref_primary_10_1093_plphys_kiad565 crossref_primary_10_1016_j_scitotenv_2022_159717 |
Cites_doi | 10.1046/j.1365-2486.2001.00412.x 10.1111/2041-210X.12219 10.1111/j.1461-0248.2011.01691.x 10.1111/j.1600-0587.2012.07348.x 10.1017/S1464793106007007 10.1007/s13595-011-0040-z 10.1111/j.1365-2745.2011.01944.x 10.1007/s10342-013-0699-9 10.1890/13-1366.1 10.1111/1365-2745.12121 10.1139/x94-046 10.1016/j.ppees.2013.07.002 10.1111/j.2041-210x.2012.00261.x 10.1016/j.agrformet.2003.08.027 10.1111/1365-2745.12276 10.1007/s11284-009-0668-4 10.1016/j.foreco.2012.12.049 10.1890/10-2192.1 10.1371/journal.pone.0000870 10.1093/treephys/22.15-16.1193 10.1016/S0065-2504(08)60009-4 10.1016/j.foreco.2013.11.021 10.1055/s-2005-865965 10.1111/j.1744-7429.2011.00798.x 10.1007/s00442-011-2240-5 10.1016/j.foreco.2014.04.027 10.1016/j.foreco.2011.03.008 10.1016/j.foreco.2011.11.002 10.1111/j.1466-8238.2011.00746.x 10.1371/journal.pone.0053530 10.1007/s00442-010-1581-9 10.1111/gcb.12622 10.1098/rspb.2011.2270 10.1111/j.2007.0030-1299.16065.x 10.1111/ele.12382 10.1046/j.1461-0248.1999.22054.x 10.1007/s00468-013-0854-4 10.1016/j.foreco.2014.05.026 10.1073/pnas.1311190110 10.1890/11-1300.1 10.1016/j.foreco.2013.02.031 10.1017/CBO9781107323506.011 10.1016/j.foreco.2007.09.038 10.1046/j.0305-0270.2003.00994.x 10.1111/gcb.12676 10.1139/x72-009 10.1007/s11284-010-0712-4 10.1016/j.cosust.2010.02.003 10.1371/journal.pone.0028660 10.1139/x03-045 10.1016/j.foreco.2010.01.035 |
ContentType | Journal Article |
Copyright | 2015 The Authors. Functional Ecology © 2015 British Ecological Society Functional Ecology © 2015 British Ecological Society |
Copyright_xml | – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society – notice: Functional Ecology © 2015 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12428 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1086 |
ExternalDocumentID | 3766119531 10_1111_1365_2435_12428 FEC12428 48577013 |
Genre | article |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GrantInformation_xml | – fundername: European Union Seventh Framework Programme funderid: FP7/2007‐2013 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4648-173d4b0c9f1ee72f143bb8260997bb66c5d6c8a73ee8faac4764980c9835a873 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:30:54 EDT 2025 Mon Jul 28 01:48:32 EDT 2025 Sun Jul 13 03:36:03 EDT 2025 Tue Jul 01 01:15:43 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Wed Jan 22 16:48:25 EST 2025 Thu Jul 03 22:31:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4648-173d4b0c9f1ee72f143bb8260997bb66c5d6c8a73ee8faac4764980c9835a873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1700585331 |
PQPubID | 1066355 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1746390582 proquest_journals_2375000910 proquest_journals_1700585331 crossref_citationtrail_10_1111_1365_2435_12428 crossref_primary_10_1111_1365_2435_12428 wiley_primary_10_1111_1365_2435_12428_FEC12428 jstor_primary_48577013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2015 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2004; 121 2013; 4 2013; 27 2011a; 261 2013; 288 1994; 24 2011; 14 2012; 169 2013; 8 2014; 327 2014; 328 2004; 31 2013; 15 2014; 5 2010; 25 2014b; 17 2014a; 102 2013; 110 2007; 2 2010; 2 2014; 95 2014; 12 2012; 21 2009; 25 2012; 100 2011b; 68 2013; 101 2010; 163 1997; 27 1999; 2 2011; 6 2014; 313 1972; 2 2003; 33 2006; 81 2012; 93 2013; 36 2007; 116 2001; 7 2010; 259 2011; 92 2015; 21 2002; 22 2013; 298 2005; 7 2011; 43 2013; 295 2015 2013; 132 2014 2013 2012; 279 2008; 254 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 R Core Development Team (e_1_2_7_39_1) 2013 |
References_xml | – volume: 43 start-page: 649 year: 2011 end-page: 653 article-title: Minimizing bias in biomass allometry : model selection and log‐transformation of data publication-title: Biotropica – volume: 2 start-page: 75 year: 2010 end-page: 79 article-title: Is forest diversity driving ecosystem function and service? publication-title: Current Opinion in Environmental Sustainability – volume: 2 start-page: 49 year: 1972 end-page: 53 article-title: Use of logarithmic regression in the estimation of plant biomass publication-title: Canadian Journal of Forest Research – volume: 298 start-page: 111 year: 2013 end-page: 119 article-title: Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function publication-title: Forest Ecology and Management – volume: 121 start-page: 19 year: 2004 end-page: 35 article-title: Review of methods for in situ leaf area index determination publication-title: Agricultural and Forest Meteorology – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining R2 from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 68 start-page: 225 year: 2011b end-page: 244 article-title: Review of ground‐based methods to measure the distribution of biomass in forest canopies publication-title: Annals of Forest Science – volume: 8 start-page: e53530 year: 2013 article-title: Disentangling biodiversity and climatic determinants of wood production publication-title: PLoS ONE – volume: 259 start-page: 1586 year: 2010 end-page: 1596 article-title: Competition and tree crowns: a neighborhood analysis of three boreal tree species publication-title: Forest Ecology and Management – volume: 116 start-page: 2108 year: 2007 end-page: 2124 article-title: Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment publication-title: Oikos – volume: 5 start-page: 719 year: 2014 end-page: 729 article-title: Applications of airborne lidar for the assessment of animal species diversity publication-title: Methods in Ecology and Evolution – volume: 254 start-page: 1 year: 2008 end-page: 15 article-title: Influence of tree species on understory vegetation diversity and mechanisms involved – A critical review for temperate and boreal forests publication-title: Forest Ecology and Management – volume: 6 start-page: e28660 year: 2011 article-title: How stand productivity results from size‐ and competition‐dependent growth and mortality publication-title: PLoS ONE – start-page: 195 year: 2014 end-page: 238 – volume: 21 start-page: 1017 year: 2012 end-page: 1028 article-title: Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition publication-title: Global Ecology and Biogeography – volume: 169 start-page: 637 year: 2012 end-page: 649 article-title: Evidence of variant intra‐ and interspecific scaling of tree crown structure and relevance for allometric theory publication-title: Oecologia – volume: 31 start-page: 79 year: 2004 end-page: 92 article-title: Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures publication-title: Journal of Biogeography – volume: 21 start-page: 698 year: 2015 end-page: 707 article-title: Edge effects on moisture reduce wood decomposition rate in a temperate forest publication-title: Global Change Biology – volume: 25 start-page: 715 year: 2009 end-page: 722 article-title: The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests publication-title: Ecological Research – volume: 100 start-page: 742 year: 2012 end-page: 749 article-title: Forest productivity increases with evenness, species richness and trait variation: a global meta‐analysis publication-title: Journal of Ecology – volume: 163 start-page: 759 year: 2010 end-page: 773 article-title: Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach publication-title: Oecologia – volume: 36 start-page: 27 year: 2013 end-page: 46 article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 92 start-page: 1818 year: 2011 end-page: 1827 article-title: The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest publication-title: Ecology – volume: 102 start-page: 1202 year: 2014a end-page: 1213 article-title: Competition for light and water play contrasting roles in driving diversity‐productivity relationships in Iberian forests publication-title: Journal of Ecology – volume: 328 start-page: 94 year: 2014 end-page: 102 article-title: Light absorption and light‐use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient publication-title: Forest Ecology and Management – volume: 295 start-page: 97 year: 2013 end-page: 108 article-title: Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed‐species stands publication-title: Forest Ecology and Management – year: 2015 – volume: 17 start-page: 1560 year: 2014b end-page: 1569 article-title: Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes publication-title: Ecology Letters – volume: 313 start-page: 274 year: 2014 end-page: 282 article-title: More efficient aboveground nitrogen use in more diverse Central European forest canopies publication-title: Forest Ecology and Management – volume: 279 start-page: 2128 year: 2012 end-page: 2134 article-title: Key canopy traits drive forest productivity publication-title: Proceeding of the Royal Society Biological Sciences, USA – volume: 24 start-page: 337 year: 1994 end-page: 349 article-title: Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees publication-title: Canadian Journal of Forest Research – volume: 22 start-page: 1193 year: 2002 end-page: 1200 article-title: The influence of the forest canopy on nutrient cycling publication-title: Tree physiology – volume: 261 start-page: 2123 year: 2011a end-page: 2132 article-title: Crown plasticity in mixed forests – Quantifying asymmetry as a measure of competition using terrestrial laser scanning publication-title: Forest Ecology and Management – volume: 2 start-page: 89 year: 1999 end-page: 97 article-title: The interpretation of stem diameter‐height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? publication-title: Ecology Letters – volume: 288 start-page: 5 year: 2013 end-page: 13 article-title: Light absorption and use efficiency in forests: Why patterns differ for trees and stands publication-title: Forest Ecology and Management – volume: 2 start-page: e870 year: 2007 article-title: Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species publication-title: PLoS ONE – volume: 14 start-page: 1211 year: 2011 end-page: 1219 article-title: Tree species richness promotes productivity in temperate forests through strong complementarity between species publication-title: Ecology Letters – volume: 15 start-page: 281 year: 2013 end-page: 291 article-title: A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 7 start-page: 628 year: 2005 end-page: 639 article-title: Crown allometry and growing space efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands publication-title: Plant biology – volume: 27 start-page: 1035 year: 2013 end-page: 1047 article-title: Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning publication-title: Trees – volume: 132 start-page: 621 year: 2013 end-page: 634 article-title: Crown plasticity reduces inter‐tree competition in a mixed broadleaved forest publication-title: European Journal of Forest Research – volume: 110 start-page: 18561 year: 2013 end-page: 18565 article-title: Microclimate moderates plant responses to macroclimate warming publication-title: Proceedings of the National Academy of Sciences – volume: 33 start-page: 1323 year: 2003 end-page: 1330 article-title: Tree canopy displacement and neighborhood interactions publication-title: Canadian Journal of Forest Research – volume: 95 start-page: 2479 year: 2014 end-page: 2492 article-title: Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences publication-title: Ecology – volume: 93 start-page: 2115 year: 2012 end-page: 2124 article-title: Unraveling plant‐animal diversity relationships: a meta‐regression analysis publication-title: Ecology – volume: 25 start-page: 693 year: 2010 end-page: 714 article-title: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance publication-title: Ecological Research – volume: 27 start-page: 213 year: 1997 end-page: 262 article-title: Age‐related decline in forest productivity: pattern and process publication-title: Advances in Ecological Research – volume: 81 start-page: 259 year: 2006 end-page: 291 article-title: Bivariate line‐fitting methods for allometry publication-title: Biological Reviews – volume: 7 start-page: 269 year: 2001 end-page: 278 article-title: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests publication-title: Global Change Biology – volume: 101 start-page: 1201 year: 2013 end-page: 1213 article-title: Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate publication-title: Journal of Ecology – volume: 327 start-page: 251 year: 2014 end-page: 264 article-title: Canopy space filling and tree crown morphology in mixed‐species stands compared with monocultures publication-title: Forest Ecology and Management – volume: 12 start-page: 3632 year: 2014 end-page: 3645 article-title: Wood production response to climate change will depend critically on forest composition and structure publication-title: Global Change Biology – year: 2013 – ident: e_1_2_7_21_1 doi: 10.1046/j.1365-2486.2001.00412.x – ident: e_1_2_7_48_1 doi: 10.1111/2041-210X.12219 – ident: e_1_2_7_29_1 doi: 10.1111/j.1461-0248.2011.01691.x – ident: e_1_2_7_15_1 doi: 10.1111/j.1600-0587.2012.07348.x – ident: e_1_2_7_53_1 doi: 10.1017/S1464793106007007 – ident: e_1_2_7_47_1 doi: 10.1007/s13595-011-0040-z – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2745.2011.01944.x – ident: e_1_2_7_27_1 doi: 10.1007/s10342-013-0699-9 – ident: e_1_2_7_42_1 doi: 10.1890/13-1366.1 – ident: e_1_2_7_2_1 doi: 10.1111/1365-2745.12121 – ident: e_1_2_7_8_1 doi: 10.1139/x94-046 – ident: e_1_2_7_3_1 doi: 10.1016/j.ppees.2013.07.002 – ident: e_1_2_7_32_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_7_22_1 doi: 10.1016/j.agrformet.2003.08.027 – ident: e_1_2_7_24_1 doi: 10.1111/1365-2745.12276 – ident: e_1_2_7_20_1 doi: 10.1007/s11284-009-0668-4 – ident: e_1_2_7_14_1 doi: 10.1016/j.foreco.2012.12.049 – ident: e_1_2_7_17_1 doi: 10.1890/10-2192.1 – ident: e_1_2_7_38_1 doi: 10.1371/journal.pone.0000870 – ident: e_1_2_7_34_1 doi: 10.1093/treephys/22.15-16.1193 – ident: e_1_2_7_41_1 doi: 10.1016/S0065-2504(08)60009-4 – ident: e_1_2_7_45_1 doi: 10.1016/j.foreco.2013.11.021 – ident: e_1_2_7_37_1 doi: 10.1055/s-2005-865965 – ident: e_1_2_7_28_1 doi: 10.1111/j.1744-7429.2011.00798.x – ident: e_1_2_7_36_1 doi: 10.1007/s00442-011-2240-5 – ident: e_1_2_7_35_1 doi: 10.1016/j.foreco.2014.04.027 – ident: e_1_2_7_46_1 doi: 10.1016/j.foreco.2011.03.008 – ident: e_1_2_7_7_1 doi: 10.1016/j.foreco.2011.11.002 – ident: e_1_2_7_26_1 doi: 10.1111/j.1466-8238.2011.00746.x – ident: e_1_2_7_52_1 doi: 10.1371/journal.pone.0053530 – ident: e_1_2_7_51_1 doi: 10.1007/s00442-010-1581-9 – ident: e_1_2_7_11_1 doi: 10.1111/gcb.12622 – ident: e_1_2_7_40_1 doi: 10.1098/rspb.2011.2270 – ident: e_1_2_7_44_1 doi: 10.1111/j.2007.0030-1299.16065.x – ident: e_1_2_7_25_1 doi: 10.1111/ele.12382 – ident: e_1_2_7_19_1 doi: 10.1046/j.1461-0248.1999.22054.x – ident: e_1_2_7_6_1 doi: 10.1007/s00468-013-0854-4 – ident: e_1_2_7_16_1 doi: 10.1016/j.foreco.2014.05.026 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.1311190110 – ident: e_1_2_7_10_1 doi: 10.1890/11-1300.1 – ident: e_1_2_7_18_1 doi: 10.1016/j.foreco.2013.02.031 – ident: e_1_2_7_43_1 doi: 10.1017/CBO9781107323506.011 – ident: e_1_2_7_4_1 doi: 10.1016/j.foreco.2007.09.038 – ident: e_1_2_7_49_1 doi: 10.1046/j.0305-0270.2003.00994.x – ident: e_1_2_7_12_1 doi: 10.1111/gcb.12676 – ident: e_1_2_7_5_1 doi: 10.1139/x72-009 – ident: e_1_2_7_33_1 doi: 10.1007/s11284-010-0712-4 – ident: e_1_2_7_31_1 doi: 10.1016/j.cosust.2010.02.003 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pone.0028660 – ident: e_1_2_7_30_1 doi: 10.1139/x03-045 – ident: e_1_2_7_50_1 doi: 10.1016/j.foreco.2010.01.035 – ident: e_1_2_7_23_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_7_39_1 |
SSID | ssj0009522 |
Score | 2.5926812 |
Snippet | Summary
It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary... It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and... Summary It has been suggested that diverse forests utilize canopy space more efficiently than species-poor ones, as mixing species with complementary... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1078 |
SubjectTerms | allometry biodiversity and ecosystem function biogeochemical cycles Canopies canopy canopy space filling crown architecture crown volume Ecosystems ecology Europe Forest ecosystems forest types Forests FunDivEUROPE project intraspecific variation Mixed forests mixing Monoculture Morphology Nutrient cycles Packing Plastic properties Plasticity species diversity Species richness Terrestrial ecosystems Trees Vertical distribution vertical stratification |
Title | Crown plasticity enables trees to optimize canopy packing in mixed-species forests |
URI | https://www.jstor.org/stable/48577013 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12428 https://www.proquest.com/docview/1700585331 https://www.proquest.com/docview/2375000910 https://www.proquest.com/docview/1746390582 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8iCF78Hs4vInjw0tE1aZMeZWyIBw8ywVtpmhSG2g67gdvJP8G_0b_E95J2TlFEvJTQJiV9fS_v95L3QciZAKWieCg9ZWIsYaaEp1KjPa4NM9JXiBnQ2-I6urzlV3dh402IsTAuP8Riww0lw67XKOCpqpaE3PlngbbvgIoKMNwX7yAsugmW0u66c4Qgij3QtKxO7oO-PF_Gf9JLzjXxE-hchq5W9ww2iWpm7VxO7jvTiepk8y8JHf_1WVtko0am9MKx0jZZMcUOWXO1KmfQ6md1q9X_CI6DAfXqUO2SYQ9tejoGQI6-2pMZNTYyq6J49A3XkpawQj2O5obCHy3HMwoWO-7V01FBH0fPRr-9vGLsJ5jvFNA0kKTaI8NBf9i79OqqDV7GIw4mqWCaKz-L864xIsgBkCkFRgyG6CoVRVmoo0ymghkj8zTNuIh4LKE_YMFUCtYiq0VZmH1CNdM-z3Uucq54HknJMD0q97XOtW983Sad5pclWZ3RHAtrPCSNZYPETJCYiSVmm5wvBoxdMo-fu7YsDyz6cRkKAXi5TY4apkhqca8STHIIdhdj3W8fB0zYuhNdv01OF49BjvFwJi1MOcVXAHvG8JYAPssyyG9TTAb9nm0c_HXAIVkHEQ2dH-MRWZ08Tc0xYKuJOrHi8w5g0haU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVoheoDwiAqUYiQOXjTZr79p7RCFR-qAHFKTeVuvHShF0NyKJ1PTET-A38kuYsTchrYoQ4rKytLblx4znG3seAG8lChUtUhVpl1MKMy0jXTobCeu4U7EmzEDWFufZ-LM4uUgvtnxhQnyIzYUbcYY_r4nB6UJ6i8uDgRaK-x7KqETdgz3K603x8z98SrYC74aXhCTLI5S1vA3vQ9Y8tzq4IZmCceIN2LkNXr30GT0Csx53MDr50lsudM9c3wrp-H8TO4CHLThl7wM1PYYdVz-B-yFd5QpLQ9OWOsPf_nHYoD0g5k9hMiC1ns0Qk5O59mLFnHfOmjN6_cZvwxo8pC6n147hpjazFUOlna7r2bRml9MrZ39-_0Hun6jBMwTUuCbzZzAZDSeDcdQmboiMyARqpZJboWOTV33nZFIhJtMa9Rjy0tU6y0xqM6NKyZ1TVVkaITORK6yPcLBUkndgt25q9xyY5TYWla1kJbSoMqU4RUgVsbWVjV1su9Bb71lh2qDmlFvja7FWbmgxC1rMwi9mF95tGsxCPI8_V-14ItjUEyqVEiFzFw7XVFG0HD8vKM4hql6c9-_8nXDpU0_04y682fxGVqb3mbJ2zZK6QPrMsZcEp-Up5G9DLEbDgS-8-NcGr-HBePLxrDg7Pj99CfvIsWkwazyE3cW3pXuFUGuhjzwv_QLTIBqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFD7oiuKL92J11Qg--DJlOskkmUfptqwXFpEKvg2TSQJl3ZliW7D75E_wN_pLPCeZqd1FEfFlCEwScjkn5zvJuQC8UChUjMh1YlxBKcyMSkzlbCKs406nhjADWVucyOOP4s2nvLcmJF-YGB9id-FGnBHOa2LwpfV7TB7ts1Daj1BEZfoqXBMyLSh7w9GHbC_ubnxIyGSRoKjlXXQfMua51MEFwRRtEy-gzn3sGoTP7DaYftjR5uR0tFmbUX1-KaLjf83rDtzqoCl7FWnpLlxxzT24HpNVbrE0rbvSYPrLOw4bdMfD6j7MJ6TUsyUicjLWXm-ZC65ZK0Zv3_htWYtH1Nni3DHc0na5Zaiy02U9WzTsbPHV2R_fvpPzJ-rvDOE0LsnqAcxn0_nkOOnSNiS1kAJ1UsWtMGld-LFzKvOIyIxBLYZ8dI2Rss6trHWluHPaV1UtlBSFxvoIBiut-AAOmrZxD4FZblPhrVdeGOGl1pzio4rUWm9Tl9ohjPotK-supDll1vhc9qoNLWZJi1mGxRzCy12DZYzm8eeqg0ADu3pC50ohYB7CYU8UZcfvq5KiHKLixfn4t78zrkLiiXE6hOe738jI9DpTNa7dUBdIngX2kuG0AoH8bYjlbDoJhUf_2uAZ3Hh_NCvfvT55-xhuIrvm0abxEA7WXzbuCeKstXkaOOknXF8ZXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crown+plasticity+enables+trees+to+optimize+canopy+packing+in+mixed-species+forests&rft.jtitle=Functional+ecology&rft.au=Jucker%2C+Tommaso&rft.au=Bouriaud%2C+Olivier&rft.au=Coomes%2C+David+A&rft.date=2015-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=29&rft.issue=8&rft.spage=1078&rft_id=info:doi/10.1111%2F1365-2435.12428&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3766119531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |