Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency
ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap ener...
Saved in:
Published in | Progress in photovoltaics Vol. 22; no. 3; pp. 277 - 282 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
01.03.2014
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III‐V multi‐junction solar cells having four and in the future even more junctions. |
---|---|
AbstractList | ABSTRACT
Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III-V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III‐V multi‐junction solar cells having four and in the future even more junctions. Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III-V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions. Copyright copyright 2014 John Wiley & Sons, Ltd. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions. |
Author | Schachtner, Michael Schwarzburg, Klaus Hannappel, Thomas Bett, Andreas W. Blanc, Nicolas Guiot, Eric Grave, Matthias Beutel, Paul Siefer, Gerald Ghyselen, Bruno Drazek, Charlotte Oliva, Eduard Dobrich, Anja Krause, Rainer Signamarcheix, Thomas Tibbits, Thomas N. D. Wekkeli, Alexander Piccin, Matteo Dimroth, Frank Tauzin, Aurélie Karcher, Christian Salvetat, Thierry Fiedeler, Ulrich |
Author_xml | – sequence: 1 givenname: Frank surname: Dimroth fullname: Dimroth, Frank email: Correspondence: Frank Dimroth, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany., frank.dimroth@ise.fraunhofer.de organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 2 givenname: Matthias surname: Grave fullname: Grave, Matthias organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 3 givenname: Paul surname: Beutel fullname: Beutel, Paul organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 4 givenname: Ulrich surname: Fiedeler fullname: Fiedeler, Ulrich organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 5 givenname: Christian surname: Karcher fullname: Karcher, Christian organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 6 givenname: Thomas N. D. surname: Tibbits fullname: Tibbits, Thomas N. D. organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 7 givenname: Eduard surname: Oliva fullname: Oliva, Eduard organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 8 givenname: Gerald surname: Siefer fullname: Siefer, Gerald organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 9 givenname: Michael surname: Schachtner fullname: Schachtner, Michael organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 10 givenname: Alexander surname: Wekkeli fullname: Wekkeli, Alexander organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 11 givenname: Andreas W. surname: Bett fullname: Bett, Andreas W. organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany – sequence: 12 givenname: Rainer surname: Krause fullname: Krause, Rainer organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 13 givenname: Matteo surname: Piccin fullname: Piccin, Matteo organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 14 givenname: Nicolas surname: Blanc fullname: Blanc, Nicolas organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 15 givenname: Charlotte surname: Drazek fullname: Drazek, Charlotte organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 16 givenname: Eric surname: Guiot fullname: Guiot, Eric organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 17 givenname: Bruno surname: Ghyselen fullname: Ghyselen, Bruno organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France – sequence: 18 givenname: Thierry surname: Salvetat fullname: Salvetat, Thierry organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France – sequence: 19 givenname: Aurélie surname: Tauzin fullname: Tauzin, Aurélie organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France – sequence: 20 givenname: Thomas surname: Signamarcheix fullname: Signamarcheix, Thomas organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France – sequence: 21 givenname: Anja surname: Dobrich fullname: Dobrich, Anja organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany – sequence: 22 givenname: Thomas surname: Hannappel fullname: Hannappel, Thomas organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany – sequence: 23 givenname: Klaus surname: Schwarzburg fullname: Schwarzburg, Klaus organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28175101$$DView record in Pascal Francis |
BookMark | eNp1kMFqGzEURUVJoUkayCcISqCbsfVmpNFoaZLUMYTECwdnJzSyROVOJFca4_jvqyFDAoGu3l0cDvfdM3TigzcIXQKZACHldOd2k5Jy9gWdAhGiACaeT4ZclwUXgn1DZyltCQHeiPoUbdbKmojb4Ddmg23Yx2K797p3weO5WvjldK5maTod8iwtx4t18Nr4Pqo-RJxCpyLWpusSPrj-N6Z0wq-wsdZpZ7w-fkdfreqSuRjvOXr6dbu6vivuH-eL69l9oWlNWdFqMKwkzHLNBFON3lAroG5L3gzNBbesFJVtNKWatUBYLYQVtWGWtLqBsjpHP9-8uxj-7k3q5YtLQy_lTdgnCdkuKuBQZfTHJ3Sbf_e5nQQqGgBGOf0Q6hhSisbKXXQvKh4lEDnMLfPccpg7o1ejUCWtOhuV1y6982UDnAGBzBVv3MF15vhfn1wulqN35F3qzes7r-IfWfMqg-uHubypViuyrkgO_wDuj5ug |
CODEN | PPHOED |
CitedBy_id | crossref_primary_10_3389_fphy_2020_631925 crossref_primary_10_1002_adom_202202681 crossref_primary_10_1109_JPHOTOV_2018_2794387 crossref_primary_10_1002_aenm_201602358 crossref_primary_10_1002_pip_2777 crossref_primary_10_1002_pssa_201532811 crossref_primary_10_1016_j_jcrysgro_2022_126769 crossref_primary_10_1209_0295_5075_126_36002 crossref_primary_10_1016_j_solmat_2020_110501 crossref_primary_10_1109_JPHOTOV_2015_2416006 crossref_primary_10_1109_JPHOTOV_2021_3132897 crossref_primary_10_1063_1_5085405 crossref_primary_10_3389_fphy_2020_585707 crossref_primary_10_1016_j_spmi_2021_106927 crossref_primary_10_1016_j_solener_2017_10_003 crossref_primary_10_1063_1_4954003 crossref_primary_10_1109_JPHOTOV_2015_2458571 crossref_primary_10_1002_aenm_201700345 crossref_primary_10_1016_j_enconman_2017_05_059 crossref_primary_10_1109_JPHOTOV_2015_2501718 crossref_primary_10_1063_1_4963198 crossref_primary_10_1016_j_matpr_2018_02_014 crossref_primary_10_1109_JPHOTOV_2019_2933190 crossref_primary_10_1002_pip_2893 crossref_primary_10_1186_s11671_016_1743_8 crossref_primary_10_1039_D3TA01211E crossref_primary_10_1088_1674_4926_36_4_044011 crossref_primary_10_1002_er_3708 crossref_primary_10_1109_JPHOTOV_2016_2537543 crossref_primary_10_1117_1_JPE_8_045503 crossref_primary_10_1016_j_solmat_2015_05_042 crossref_primary_10_1088_1742_6596_690_1_012036 crossref_primary_10_1016_j_jcrysgro_2019_02_064 crossref_primary_10_1016_j_mssp_2021_106365 crossref_primary_10_1016_j_solmat_2015_01_020 crossref_primary_10_7567_APEX_9_016501 crossref_primary_10_7567_JJAP_56_025501 crossref_primary_10_1002_pssa_202300293 crossref_primary_10_1039_C5RA25013G crossref_primary_10_1109_JPHOTOV_2015_2501722 crossref_primary_10_1088_1361_6463_aaaf08 crossref_primary_10_1088_1361_6528_abbc23 crossref_primary_10_1016_j_solmat_2015_09_064 crossref_primary_10_1088_1742_6596_690_1_012032 crossref_primary_10_35848_1347_4065_ac993f crossref_primary_10_1088_0022_3727_49_46_465105 crossref_primary_10_1109_JPHOTOV_2015_2501729 crossref_primary_10_1021_acsaem_9b00011 crossref_primary_10_1016_j_solener_2017_03_028 crossref_primary_10_1016_j_nanoen_2020_104980 crossref_primary_10_1039_C6CS00066E crossref_primary_10_1109_JPHOTOV_2015_2478072 crossref_primary_10_3390_nano9111518 crossref_primary_10_1002_adfm_202206790 crossref_primary_10_1088_1674_1056_26_7_074202 crossref_primary_10_7567_JJAP_56_08MC01 crossref_primary_10_1007_s00339_016_0438_4 crossref_primary_10_1038_srep07836 crossref_primary_10_1063_5_0073274 crossref_primary_10_1088_1361_6528_ab3ef7 crossref_primary_10_1109_JPHOTOV_2018_2871573 crossref_primary_10_1134_S1027451023020301 crossref_primary_10_1002_adts_202200718 crossref_primary_10_1002_solr_202400273 crossref_primary_10_1039_D1MA00570G crossref_primary_10_3390_en14113143 crossref_primary_10_7567_APEX_7_112301 crossref_primary_10_1109_JPHOTOV_2016_2540247 crossref_primary_10_1021_acsaelm_9b00041 crossref_primary_10_1063_1_5094472 crossref_primary_10_1002_pip_2791 crossref_primary_10_7567_JJAP_57_075801 crossref_primary_10_1002_admi_202201648 crossref_primary_10_1016_j_tsf_2021_139064 crossref_primary_10_1016_j_solmat_2015_01_005 crossref_primary_10_1088_0256_307X_38_4_046201 crossref_primary_10_1002_pip_2568 crossref_primary_10_1364_OPTICA_2_000056 crossref_primary_10_1109_JPHOTOV_2014_2345437 crossref_primary_10_1002_ente_202000667 crossref_primary_10_1038_npjcompumats_2015_3 crossref_primary_10_1116_1_4906511 crossref_primary_10_1016_j_apenergy_2016_01_077 crossref_primary_10_1364_OME_457345 crossref_primary_10_1016_j_solener_2016_09_031 crossref_primary_10_1021_acsaem_1c02764 crossref_primary_10_1021_acs_nanolett_5b03890 crossref_primary_10_1038_s41598_017_16455_6 crossref_primary_10_1109_JPHOTOV_2016_2549745 crossref_primary_10_7567_JJAP_56_122302 crossref_primary_10_1109_JPHOTOV_2023_3309916 crossref_primary_10_1063_1_4930002 crossref_primary_10_1002_pip_3094 crossref_primary_10_1155_2021_9946329 crossref_primary_10_1088_1361_6439_ab4d1f crossref_primary_10_1016_j_rser_2017_08_013 crossref_primary_10_1016_j_solener_2019_03_042 crossref_primary_10_1007_s11664_020_08490_3 crossref_primary_10_1063_1_5096540 crossref_primary_10_1016_j_jpowsour_2020_228074 crossref_primary_10_1038_s41560_018_0190_4 crossref_primary_10_1016_j_ijhydene_2016_02_086 crossref_primary_10_1002_pip_2856 crossref_primary_10_1021_acs_nanolett_8b03322 crossref_primary_10_1109_JPHOTOV_2019_2937226 crossref_primary_10_1002_pip_3704 crossref_primary_10_3390_nano12193486 crossref_primary_10_1021_acsphotonics_5b00222 crossref_primary_10_7567_JJAP_55_022301 crossref_primary_10_1002_admi_201601118 crossref_primary_10_1016_j_rser_2017_01_071 crossref_primary_10_1016_j_solener_2021_04_062 crossref_primary_10_1063_1_4948958 crossref_primary_10_1016_j_xcrp_2023_101701 crossref_primary_10_1007_s11051_017_4091_4 crossref_primary_10_3390_en13010225 crossref_primary_10_1103_PhysRevB_91_115312 crossref_primary_10_1002_aesr_202300073 crossref_primary_10_1109_JPHOTOV_2015_2494690 crossref_primary_10_4236_epe_2022_1410028 crossref_primary_10_1051_e3sconf_20171603002 crossref_primary_10_1016_j_solmat_2017_08_034 crossref_primary_10_1016_j_rser_2017_05_017 crossref_primary_10_3367_UFNr_2016_02_037703 crossref_primary_10_1080_01430750_2018_1472655 crossref_primary_10_1063_1_5011394 crossref_primary_10_1016_j_solener_2016_04_036 crossref_primary_10_48084_etasr_935 crossref_primary_10_1063_1_5092436 crossref_primary_10_1088_0268_1242_30_9_094010 crossref_primary_10_1088_1361_6463_aa7bfd crossref_primary_10_1038_ncomms9834 crossref_primary_10_1063_1_4905652 crossref_primary_10_1142_S0217979218300074 crossref_primary_10_1063_5_0062671 crossref_primary_10_1021_acsaelm_9b00118 crossref_primary_10_1063_1_4985614 crossref_primary_10_1016_j_solmat_2020_110398 crossref_primary_10_34133_2021_6849171 crossref_primary_10_1039_C7TC00275K crossref_primary_10_1002_pip_3398 crossref_primary_10_1016_j_solener_2022_09_036 crossref_primary_10_1002_pip_2753 crossref_primary_10_1038_nmat3946 crossref_primary_10_1038_nenergy_2017_43 crossref_primary_10_3390_en13102631 crossref_primary_10_1002_advs_201700792 crossref_primary_10_1039_C5TA03389F crossref_primary_10_1063_1_4943366 crossref_primary_10_1016_j_mssp_2020_105344 crossref_primary_10_1002_pip_3609 crossref_primary_10_1088_0268_1242_30_10_105031 crossref_primary_10_3390_app7060589 crossref_primary_10_1016_j_solmat_2015_01_031 crossref_primary_10_35848_1347_4065_ab6a2d crossref_primary_10_1007_s12647_018_0272_6 crossref_primary_10_1007_s41061_021_00334_w crossref_primary_10_1016_j_solmat_2018_05_008 crossref_primary_10_1039_C8CS00431E crossref_primary_10_1007_s11664_016_4691_2 crossref_primary_10_1002_solr_202301047 crossref_primary_10_1063_1_4893024 crossref_primary_10_7567_JJAP_56_092301 crossref_primary_10_1002_pip_2991 crossref_primary_10_1016_j_optlastec_2018_04_012 crossref_primary_10_3390_photonics9060404 crossref_primary_10_1002_ente_202300223 crossref_primary_10_1002_aenm_201601992 crossref_primary_10_1109_JPHOTOV_2018_2802203 crossref_primary_10_1016_j_jcrysgro_2015_02_040 crossref_primary_10_1088_0957_4484_27_6_065706 crossref_primary_10_1016_j_jcrysgro_2017_05_030 crossref_primary_10_1088_1361_6463_50_3_035106 crossref_primary_10_1016_j_rser_2022_112553 crossref_primary_10_1063_1_5011371 crossref_primary_10_7567_JJAP_54_08KE10 crossref_primary_10_1016_j_solmat_2021_111522 crossref_primary_10_1038_srep39163 crossref_primary_10_1051_epjpv_2022027 crossref_primary_10_1002_aenm_201400589 crossref_primary_10_1002_adma_202311473 crossref_primary_10_7567_JJAP_54_08KE07 crossref_primary_10_7567_JJAP_54_08KE05 crossref_primary_10_1016_j_solmat_2023_112651 crossref_primary_10_7567_JJAP_54_08KE09 crossref_primary_10_1039_C5NR07252B crossref_primary_10_1021_acsanm_0c02768 crossref_primary_10_1109_JPHOTOV_2016_2551460 crossref_primary_10_1016_j_joule_2018_04_003 crossref_primary_10_1149_2162_8777_abb794 crossref_primary_10_1016_j_micrna_2023_207595 crossref_primary_10_1364_OE_22_0A1243 crossref_primary_10_1016_j_enconman_2023_117289 crossref_primary_10_3390_polym14030532 crossref_primary_10_1002_ese3_182 crossref_primary_10_1002_adom_201801229 crossref_primary_10_7567_JJAP_54_08KE03 crossref_primary_10_3103_S1062873819010118 crossref_primary_10_7567_JJAP_54_08KE02 crossref_primary_10_1016_j_enconman_2015_04_082 crossref_primary_10_1016_j_renene_2020_01_002 crossref_primary_10_2139_ssrn_4003263 crossref_primary_10_1155_2015_537538 crossref_primary_10_7567_APEX_11_077101 crossref_primary_10_1002_admi_201900921 crossref_primary_10_1016_j_rser_2017_03_044 crossref_primary_10_1109_JPHOTOV_2014_2364132 crossref_primary_10_1116_1_4939754 crossref_primary_10_1016_j_jpcs_2019_109093 crossref_primary_10_3390_en11092455 crossref_primary_10_1109_JPHOTOV_2016_2612358 crossref_primary_10_1016_j_plantsci_2018_11_010 crossref_primary_10_1021_acs_cgd_1c00410 crossref_primary_10_1016_j_enconman_2019_03_034 crossref_primary_10_4236_sgre_2020_115005 crossref_primary_10_1155_2015_872163 crossref_primary_10_1063_1_4884678 crossref_primary_10_1038_s41598_017_01854_6 crossref_primary_10_1016_j_solmat_2021_111022 crossref_primary_10_1007_s12633_023_02466_8 crossref_primary_10_1007_s00542_020_05125_9 crossref_primary_10_1021_acsami_9b09377 crossref_primary_10_1039_C8TC06476H crossref_primary_10_1073_pnas_1617391113 crossref_primary_10_7498_aps_64_177802 crossref_primary_10_7567_JJAP_56_032301 crossref_primary_10_1002_aelm_202300437 crossref_primary_10_1016_j_solener_2017_01_031 crossref_primary_10_1109_JPHOTOV_2022_3215263 crossref_primary_10_1002_pip_3127 crossref_primary_10_1002_pip_3128 crossref_primary_10_1063_1_5046543 crossref_primary_10_1557_adv_2016_429 crossref_primary_10_1016_j_rser_2021_112047 crossref_primary_10_1016_j_enconman_2016_05_072 crossref_primary_10_7567_APEX_11_031003 crossref_primary_10_1002_aenm_201802310 crossref_primary_10_1007_s12273_022_0895_y crossref_primary_10_1155_2014_582083 crossref_primary_10_1016_j_joule_2024_02_025 crossref_primary_10_1007_s13272_023_00684_9 crossref_primary_10_1021_acsami_2c06393 crossref_primary_10_1088_0256_307X_34_2_028802 crossref_primary_10_1109_JPHOTOV_2017_2655484 crossref_primary_10_1016_j_jclepro_2019_118444 crossref_primary_10_1063_1_4992805 crossref_primary_10_1088_1361_6641_ab708e crossref_primary_10_3390_ijms20040976 crossref_primary_10_1080_10408436_2016_1182469 crossref_primary_10_1109_TSG_2014_2380318 crossref_primary_10_1002_pssb_202300103 crossref_primary_10_1038_s41598_019_41982_9 crossref_primary_10_1109_TNANO_2016_2566674 crossref_primary_10_7567_1882_0786_ab0aa5 crossref_primary_10_1063_1_5049367 crossref_primary_10_1134_S1063782616040163 crossref_primary_10_3390_app12020820 crossref_primary_10_1364_OE_384620 crossref_primary_10_1109_JPHOTOV_2017_2778567 crossref_primary_10_3390_nano6060098 crossref_primary_10_1016_j_mne_2021_100083 crossref_primary_10_7567_1347_4065_aafd19 crossref_primary_10_1063_5_0125998 crossref_primary_10_1155_2019_5090981 crossref_primary_10_1016_j_energy_2015_04_095 crossref_primary_10_1109_JPHOTOV_2015_2407159 crossref_primary_10_1016_j_apsusc_2021_150513 crossref_primary_10_1007_s12039_023_02160_7 crossref_primary_10_1002_pssa_202300660 crossref_primary_10_1002_pip_2697 crossref_primary_10_1002_solr_202400012 crossref_primary_10_1109_JPHOTOV_2015_2397605 crossref_primary_10_1002_pip_3308 crossref_primary_10_1063_1_4909507 crossref_primary_10_1016_j_jlumin_2016_06_052 crossref_primary_10_1109_JPHOTOV_2019_2892079 crossref_primary_10_1063_1_4906237 crossref_primary_10_1109_JPHOTOV_2017_2777667 crossref_primary_10_1111_jiec_12855 crossref_primary_10_1016_j_solener_2023_04_066 crossref_primary_10_1038_s41598_019_56457_0 crossref_primary_10_1116_1_4975759 crossref_primary_10_31857_S1028096023040118 crossref_primary_10_1002_pssa_202000804 crossref_primary_10_1063_1_4869121 crossref_primary_10_3390_photonics6020046 crossref_primary_10_1016_j_commatsci_2021_111016 crossref_primary_10_1515_nanoph_2017_0034 crossref_primary_10_1016_j_apsusc_2016_07_163 crossref_primary_10_1016_j_jpcs_2023_111265 crossref_primary_10_1016_j_solmat_2017_06_046 crossref_primary_10_1039_C8NR03827A crossref_primary_10_7567_APEX_11_106501 crossref_primary_10_7567_JJAP_56_08MC11 crossref_primary_10_1016_j_rser_2022_113027 crossref_primary_10_1016_j_renene_2021_05_046 crossref_primary_10_1038_am_2015_102 crossref_primary_10_1109_JPHOTOV_2017_2782561 crossref_primary_10_1039_D3MA00408B crossref_primary_10_1016_j_solmat_2019_110359 crossref_primary_10_1016_j_solmat_2019_110118 crossref_primary_10_1117_1_JPE_6_035501 crossref_primary_10_1155_2020_1907530 crossref_primary_10_1002_pssa_201900512 crossref_primary_10_1016_j_jcrysgro_2014_12_014 crossref_primary_10_1016_j_solmat_2019_110235 crossref_primary_10_1016_j_jcrysgro_2014_07_056 crossref_primary_10_7567_JJAP_53_122301 crossref_primary_10_1063_1_4893898 crossref_primary_10_1088_2053_1591_ab20b6 crossref_primary_10_3938_jkps_70_693 crossref_primary_10_1002_pip_2585 crossref_primary_10_3390_nano8121048 crossref_primary_10_1002_pip_2597 crossref_primary_10_1007_s11082_017_1284_0 crossref_primary_10_15407_Surface_2019_11_270 crossref_primary_10_1002_pip_3207 crossref_primary_10_1364_OE_23_00A322 crossref_primary_10_1039_C6TA08309A crossref_primary_10_1088_1361_6641_ac13af crossref_primary_10_1038_s41467_019_12353_9 crossref_primary_10_1016_j_pquantelec_2020_100300 crossref_primary_10_1073_pnas_2019198117 crossref_primary_10_1364_OME_7_003826 crossref_primary_10_3390_nano9121742 crossref_primary_10_1063_5_0017172 crossref_primary_10_1002_pip_3200 crossref_primary_10_1109_JPHOTOV_2019_2957661 crossref_primary_10_1002_ese3_125 crossref_primary_10_1063_1_4931428 crossref_primary_10_1557_adv_2016_457 crossref_primary_10_7567_JJAP_54_056601 crossref_primary_10_1016_j_energy_2015_07_123 crossref_primary_10_1021_acsaem_9b01800 crossref_primary_10_1007_s11237_017_9503_0 crossref_primary_10_1364_OE_26_022123 crossref_primary_10_7567_JJAP_55_031601 crossref_primary_10_1016_j_microrel_2023_115249 crossref_primary_10_1063_1_4922275 crossref_primary_10_1016_j_isci_2023_108129 crossref_primary_10_7567_JJAP_57_08RD02 crossref_primary_10_1016_j_solmat_2020_110653 crossref_primary_10_1016_j_solmat_2020_110774 crossref_primary_10_1016_j_energy_2015_02_105 crossref_primary_10_7567_JJAP_54_08KA13 crossref_primary_10_1016_j_renene_2021_11_018 crossref_primary_10_7567_JJAP_57_08RD04 crossref_primary_10_1016_j_joule_2022_04_024 crossref_primary_10_1038_ncomms7902 crossref_primary_10_1007_s11664_020_08417_y crossref_primary_10_1109_JPHOTOV_2018_2846519 crossref_primary_10_1016_j_solmat_2022_111780 crossref_primary_10_1039_C9SE00007K crossref_primary_10_5757_vacmag_1_4_4 crossref_primary_10_1039_C9SE00237E crossref_primary_10_1039_C8CE01258J crossref_primary_10_4236_jemaa_2014_613039 crossref_primary_10_1016_j_solener_2019_03_084 crossref_primary_10_1088_1742_6596_877_1_012030 crossref_primary_10_1038_s41560_018_0112_5 crossref_primary_10_1039_C7EE02212C crossref_primary_10_1038_s41467_018_03103_4 crossref_primary_10_1039_D2TA01603F crossref_primary_10_1039_D3QM01179H crossref_primary_10_1021_acsaem_2c03127 |
Cites_doi | 10.1063/1.3658282 10.1109/PVSC.2011.6186332 10.1063/1.4822190 10.1063/1.2988497 10.1016/j.solmat.2008.07.014 10.1109/JPHOTOV.2013.2273097 10.1002/pip.407 10.1002/pip.2404 10.1146/annurev.matsci.28.1.215 10.1103/PhysRevB.76.085303 10.1002/pip.1255 10.1016/j.jcrysgro.2009.10.059 10.1063/1.4753823 10.1002/pip.514 10.1063/1.3601472 10.1109/JPHOTOV.2011.2180893 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7SP 7TB 8FD FR3 L7M 7QQ 7U5 JG9 |
DOI | 10.1002/pip.2475 |
DatabaseName | Istex Pascal-Francis CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Ceramic Abstracts Solid State and Superconductivity Abstracts Materials Research Database |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Materials Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts |
DatabaseTitleList | CrossRef Engineering Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1099-159X |
EndPage | 282 |
ExternalDocumentID | 3218587441 10_1002_pip_2475 28175101 PIP2475 ark_67375_WNG_D3TT0W30_D |
Genre | miscellaneous |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW AAYXX CITATION 7SP 7TB 8FD FR3 L7M 7QQ 7U5 JG9 |
ID | FETCH-LOGICAL-c4645-bc1e5205f7c595a8cd4f916b278799597f5293f8c44c5b105699f96e5f0bc8123 |
IEDL.DBID | DR2 |
ISSN | 1062-7995 |
IngestDate | Fri Aug 16 01:50:15 EDT 2024 Thu Oct 10 17:39:41 EDT 2024 Fri Aug 23 01:04:27 EDT 2024 Tue Sep 20 21:47:10 EDT 2022 Sat Aug 24 00:55:02 EDT 2024 Wed Oct 30 09:50:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Tandem solar cell Ternary compound Performance evaluation Binary compound Conversion rate Gallium phosphide Mismatching III-V compound Indium phosphide Wafer bonding Direct method Multijunction solar cells concentrator cells Concentrator solar cells III―V semiconductors multi-junction solar cells Wafer |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4645-bc1e5205f7c595a8cd4f916b278799597f5293f8c44c5b105699f96e5f0bc8123 |
Notes | ark:/67375/WNG-D3TT0W30-D ArticleID:PIP2475 istex:B91B43534A1D6E84372C462BB49BD48115E22DC9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1498115474 |
PQPubID | 1016445 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1520931713 proquest_journals_1498115474 crossref_primary_10_1002_pip_2475 pascalfrancis_primary_28175101 wiley_primary_10_1002_pip_2475_PIP2475 istex_primary_ark_67375_WNG_D3TT0W30_D |
PublicationCentury | 2000 |
PublicationDate | March 2014 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Progress in photovoltaics |
PublicationTitleAlternate | Prog. Photovolt: Res. Appl |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Law DC, King RR, Yoon H, Archer MJ, Boca A, Fetzer CM, Mesropian S, Isshiki T, Haddad M, Edmondson KM, Bhusari D, Yen J, Sherif RA, Atwater HA, Karam NH. Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems. Solar Energy Materials and Solar Cells 2008; 94: 1314-1318. Ermer JH, Jones RK, Hebert P, Pien P, King RR, Bhusari D, Brandt R, Al-Taher O, Fetzer C, Kinsey GS, Karam N. Status of C3MJ + and C4MJ production concentrator solar cells at Spectrolab. IEEE Journal of Photovoltaics 2012; 2(2): 209-213. Derendorf K, Essig S, Oliva E, Klinger V, Roesener T, Philipps SP, Benick J, Hermle M, Schachtner M, Siefer G, Jäger W, Dimroth F. Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE Journal of Photovoltaics 2013; 3(4): 1423-1428. King RR, Bhusari D, Larrabee D, Liu XQ, Rehder E, Edmondson K, Cotal H, Jones RK, Ermer JH, Fetzer CM, Law DC, Karam NH. Solar cell generations over 40% efficiency. Progress in Photovoltaics: Research and Applications 2012; 20: 801-815. Meusel M, Baur C, Létay G, Bett AW, Warta W, Fernandez E. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Progress in Photovoltaics: Research and Applications 2003; 11(8): 499-414. Stan M, Aikena D, Choa B, Cornfelda A, Leya V, Patela P, Sharpsa P, Varghese T. High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures. Journal of Crystal Growth 2010; 312(8): 1370-1374. Meusel M, Adelhelm R, Dimroth F, Bett AW, Warta W. Spectral mismatch correction and spectrometric characterization of monolithic III-V multi-junction solar cells. Progress in Photovoltaics: Research and Applications 2002; 10(4): 243-255. Geisz JF, Friedman DJ, Ward JS, Duda A, Olavarria WJ, Moriarty TE, Kiehl JT, Romero MJ, Norman AG, Jones KM. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Applied Physics Letters 2008; 93(12): 123501-123505. Goesele U, Alexe M, Kopperschmidt P, Tong Q-Y. Semiconductor wafer bonding. Annual Review of Materials Science 1998; 28: 215-241. Moriceau H, Rieutord F, Fournel F, Le Tiec Y, Di Cioccio L, Morales C, Charvet AM, Deguet C. Overview of recent direct wafer bonding advances and applications. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010; 1: 043004. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research and Applications 2013; 21: 827-837. Rönsch S, Hoheisel R, Dimroth F, Bett AW. Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements. Applied Physics Letters 2011; 98(25): 251113. Rau U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B 2007; 76: 085301-085303. 1998; 28 2012; 2 2013; 3 2010; 1 2012 2011 2013; 21 2010; 312 2002; 10 2006 2011; 98 2013 2008; 94 2007; 76 2008; 93 2012; 20 2003; 11 Moriceau H (e_1_2_6_12_1) 2010; 1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – year: 2011 – volume: 20 start-page: 801 year: 2012 end-page: 815 article-title: Solar cell generations over 40% efficiency publication-title: Progress in Photovoltaics: Research and Applications – volume: 2 start-page: 209 issue: 2 year: 2012 end-page: 213 article-title: Status of C3MJ + and C4MJ production concentrator solar cells at Spectrolab publication-title: IEEE Journal of Photovoltaics – volume: 3 start-page: 1423 issue: 4 year: 2013 end-page: 1428 article-title: Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding publication-title: IEEE Journal of Photovoltaics – volume: 93 start-page: 123501 issue: 12 year: 2008 end-page: 123505 article-title: 40.8% efficient inverted triple‐junction solar cell with two independently metamorphic junctions publication-title: Applied Physics Letters – start-page: 22 year: 2013 end-page: 25 – volume: 28 start-page: 215 year: 1998 end-page: 241 article-title: Semiconductor wafer bonding publication-title: Annual Review of Materials Science – volume: 312 start-page: 1370 issue: 8 year: 2010 end-page: 1374 article-title: High‐efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures publication-title: Journal of Crystal Growth – volume: 98 start-page: 251113 issue: 25 year: 2011 article-title: Subcell I‐V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements publication-title: Applied Physics Letters – volume: 1 start-page: 043004 year: 2010 article-title: Overview of recent direct wafer bonding advances and applications publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology – volume: 94 start-page: 1314 year: 2008 end-page: 1318 article-title: Future technology pathways of terrestrial III‐V multijunction solar cells for concentrator photovoltaic systems publication-title: Solar Energy Materials and Solar Cells – start-page: 1 year: 2011 end-page: 4 – start-page: 14 year: 2012 end-page: 19 – volume: 11 start-page: 499 issue: 8 year: 2003 end-page: 414 article-title: Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple‐junction solar cells: measurement artifacts and their explanation publication-title: Progress in Photovoltaics: Research and Applications – volume: 10 start-page: 243 issue: 4 year: 2002 end-page: 255 article-title: Spectral mismatch correction and spectrometric characterization of monolithic III‐V multi‐junction solar cells publication-title: Progress in Photovoltaics: Research and Applications – start-page: 768 year: 2006 end-page: 771 – start-page: 5 year: 2011 end-page: 8 – volume: 21 start-page: 827 year: 2013 end-page: 837 article-title: Solar cell efficiency tables (version 42) publication-title: Progress in Photovoltaics: Research and Applications – volume: 76 start-page: 085301 year: 2007 end-page: 085303 article-title: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells publication-title: Physical Review B – ident: e_1_2_6_2_1 doi: 10.1063/1.3658282 – ident: e_1_2_6_15_1 doi: 10.1109/PVSC.2011.6186332 – ident: e_1_2_6_7_1 doi: 10.1063/1.4822190 – ident: e_1_2_6_6_1 doi: 10.1063/1.2988497 – volume: 1 start-page: 043004 year: 2010 ident: e_1_2_6_12_1 article-title: Overview of recent direct wafer bonding advances and applications publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology contributor: fullname: Moriceau H – ident: e_1_2_6_14_1 doi: 10.1016/j.solmat.2008.07.014 – ident: e_1_2_6_16_1 doi: 10.1109/JPHOTOV.2013.2273097 – ident: e_1_2_6_18_1 doi: 10.1002/pip.407 – ident: e_1_2_6_8_1 doi: 10.1002/pip.2404 – ident: e_1_2_6_11_1 doi: 10.1146/annurev.matsci.28.1.215 – ident: e_1_2_6_13_1 – ident: e_1_2_6_19_1 doi: 10.1103/PhysRevB.76.085303 – ident: e_1_2_6_4_1 doi: 10.1002/pip.1255 – ident: e_1_2_6_10_1 doi: 10.1016/j.jcrysgro.2009.10.059 – ident: e_1_2_6_9_1 – ident: e_1_2_6_5_1 doi: 10.1063/1.4753823 – ident: e_1_2_6_17_1 doi: 10.1002/pip.514 – ident: e_1_2_6_20_1 doi: 10.1063/1.3601472 – ident: e_1_2_6_3_1 doi: 10.1109/JPHOTOV.2011.2180893 |
SSID | ssj0017896 |
Score | 2.6266897 |
Snippet | ABSTRACT
Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing... Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 277 |
SubjectTerms | Applied sciences Bonding concentrator cells Conversion Energy Exact sciences and technology Gallium arsenide III-V semiconductors Lattice parameters Materials selection multi-junction solar cells Natural energy Photovoltaic cells Photovoltaic conversion Semiconductors Solar cells Solar cells. Photoelectrochemical cells Solar energy wafer bonding |
Title | Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency |
URI | https://api.istex.fr/ark:/67375/WNG-D3TT0W30-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2475 https://www.proquest.com/docview/1498115474 https://search.proquest.com/docview/1520931713 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA9yvuiD32K984igvm1389U0j8V6vRM8ivTogQ8hyW7gPNiWbgtyT_4J_o3-Jc7sl1dBEJ92YROYnclMfklmfiHkDcu1906YxEfvE5l7Az4XWeIzr3TmcyFyLBT-dD46vZAfL9Vlm1WJtTANP0S_4YaeUcdrdHDnq_Q3aej6aj3kUmN9ORMas7mmn3vmKKbH9dVcsOABAGmM6nhnM552Hfdmoruo1G-YGekqUE5sbrXYg523wWs9-5w8JF86uZukk-vhbuuH4eYPSsf_-7FH5EELSumkGUWPyZ2ifELu36IqfEri0sViQ_0Kd8xphB4_v__4CpMiGpbO3Fk5T2duUqUpvk-qefukAesicQcZFve0woU0xcOCiuIOMJVyqN_SouaxwCLQZ-Ti5MPi_WnS3tGQBDwTTXxgheKZijoooxxehRQBcXoOgQCpzHRUACjiOEgZlAcwNzImmlGhYuYDgAvxnByUq7J4QaiQSpswMhBSoDHnJlfMZbnkLGfC62JAXnf2suuGisM2pMvcgs4s6mxA3tWG7Bu4zTWmrmlll-czOxWLRbYUmZ0OyPGepfsOfAyACuLUgBx1pretW1ewTjJj5C_SEoTpP4NDouJcWax20AYTiwCVMQHC1Hb-q7R2fjbH58t_bXhI7gFgk00O3BE52G52xSsARVt_XA__Xz9NB3g |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-69mHbQ_e3LF3XabDtzfEfSVFEn8KyJtnaEEZK-jAQlm3BVnBCnMDY0z5CP2M_Se_s2GsGg7EnGXwC-c4n_XQ6_Q7gbZgqa2OuPeus9URqNfqcCz0bWKkCm3Ke0kXh83FneCE-XcrLHTip78JU_BBNwI08o5yvycEpIO3_Zg1dfFu0I6HkPdhDb-dUt6H_peGOClW3LM6FWx6EkFrLmnk2iPy659ZatEdq_UG5kXGB6nFVXYst4HkXvpbrz-kj-FqPvEo7uWqvV7ad_PyD1PE_P-0x7G9wKetVP9IT2Mnyp_DwDlvhM3Cz2GVLZucUNGcOe9z8uv6O6yLZlg3iUT7xB3Gv8H167hWTTcsSuhpJQWTc37OC9tKMzgsKRkFgJkRbvWNZSWVB90Cfw8Xpx-mHobcp0-AldCzq2STMZBRIpxKpZUzVkByCThvhXEBsZspJxBSumwiRSIt4rqO1051MusAmiC_4Aezm8zx7AYwLqXTS0TiroHAU6VSGcZCKKExDblXWgje1wcyiYuMwFe9yZFBnhnTWgvelJRuBeHlF2WtKmtl4YPp8Og1mPDD9FhxvmbrpEHURU-FU1YKj2vZm49kFbpV0lyiMlMDBNK_RJ0lxcZ7N1yhDuUUIzEKOgykN_dfRmsloQu3hvwq-hvvD6fmZORuNP7-EB4jfRJUSdwS7q-U6e4UYaWWPS1-4BaHJC5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZtAqU9NH2Fuk1SFdre1vuSVtbRxLXjPsxSHBzoQUjaFbSBtfHaEHLqT-hv7C_JzL4aFwqlJy2sBLMzO6NPo9EnQt6EmTBGx9IzzhiPZUaCz7nQM4HhIjBZHGd4UPjzLDk7Zx8u-EVTVYlnYWp-iC7hhp5RxWt08FXm_N-koatvq37EBL9L9lkCwBcB0ZeOOioUg-puLljxAIKUkrfEs0HktyN3pqJ91OoVlkbqErTj6mstdnDnbfRaTT_jA_K1FbyuOrnsbzemb6__4HT8vy97RB42qJQO69_oMbmTF0_Ig1tchU-JW2iXr6lZYsqcOhjx68fP7zAromXpRE-L1J_oYen7-Dws06alFg9GYgoZVve0xJU0xd2CkmIKmDLWF29pXhFZ4CnQZ-R8_H5-euY1lzR4FjdFPWPDnEcBd8JyyTXeheQAcpoIIgFymQnHAVG4gWXMcgNoLpHSySTnLjAW0EV8SPaKZZE_JzRmXEibSIgp0DmKZMZDHWQsCrMwNiLvkdetvdSq5uJQNetypEBnCnXWI-8qQ3Yd9PoSa9cEV4vZRI3i-TxYxIEa9cjJjqW7AdEAEBUEqh45ak2vGr8uYaEkB0hgJBgI070Gj0TF6SJfbqEPVhYBLAtjEKay81-lVek0xfbFv3Z8Re6lo7H6NJ19fEnuA3hjdT3cEdnbrLf5MQCkjTmpPOEGeToKPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wafer+bonded+four-junction+GaInP%2FGaAs%2F%2FGaInAsP%2FGaInAs+concentrator+solar+cells+with+44.7%25+efficiency&rft.jtitle=Progress+in+photovoltaics&rft.au=Dimroth%2C+Frank&rft.au=Grave%2C+Matthias&rft.au=Beutel%2C+Paul&rft.au=Fiedeler%2C+Ulrich&rft.date=2014-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=22&rft.issue=3&rft.spage=277&rft.epage=282&rft_id=info:doi/10.1002%2Fpip.2475&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_D3TT0W30_D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |