Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency

ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap ener...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 22; no. 3; pp. 277 - 282
Main Authors Dimroth, Frank, Grave, Matthias, Beutel, Paul, Fiedeler, Ulrich, Karcher, Christian, Tibbits, Thomas N. D., Oliva, Eduard, Siefer, Gerald, Schachtner, Michael, Wekkeli, Alexander, Bett, Andreas W., Krause, Rainer, Piccin, Matteo, Blanc, Nicolas, Drazek, Charlotte, Guiot, Eric, Ghyselen, Bruno, Salvetat, Thierry, Tauzin, Aurélie, Signamarcheix, Thomas, Dobrich, Anja, Hannappel, Thomas, Schwarzburg, Klaus
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.03.2014
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III‐V multi‐junction solar cells having four and in the future even more junctions.
AbstractList ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd.
Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III-V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four‐junction solar cell architectures with optimum bandgap combination are found for lattice‐mismatched III–V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III–V multi‐junction solar cells having four and in the future even more junctions. Copyright © 2014 John Wiley & Sons, Ltd. In this work, a GaAs‐based top tandem solar cell structure was bonded to an InP‐based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four‐junction solar cell with a new record efficiency of 44.7% at 297‐times concentration of the AM1.5d (ASTM G173‐03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III‐V multi‐junction solar cells having four and in the future even more junctions.
Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III-V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions. Copyright copyright 2014 John Wiley & Sons, Ltd. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions.
Author Schachtner, Michael
Schwarzburg, Klaus
Hannappel, Thomas
Bett, Andreas W.
Blanc, Nicolas
Guiot, Eric
Grave, Matthias
Beutel, Paul
Siefer, Gerald
Ghyselen, Bruno
Drazek, Charlotte
Oliva, Eduard
Dobrich, Anja
Krause, Rainer
Signamarcheix, Thomas
Tibbits, Thomas N. D.
Wekkeli, Alexander
Piccin, Matteo
Dimroth, Frank
Tauzin, Aurélie
Karcher, Christian
Salvetat, Thierry
Fiedeler, Ulrich
Author_xml – sequence: 1
  givenname: Frank
  surname: Dimroth
  fullname: Dimroth, Frank
  email: Correspondence: Frank Dimroth, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany., frank.dimroth@ise.fraunhofer.de
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 2
  givenname: Matthias
  surname: Grave
  fullname: Grave, Matthias
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 3
  givenname: Paul
  surname: Beutel
  fullname: Beutel, Paul
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 4
  givenname: Ulrich
  surname: Fiedeler
  fullname: Fiedeler, Ulrich
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 5
  givenname: Christian
  surname: Karcher
  fullname: Karcher, Christian
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 6
  givenname: Thomas N. D.
  surname: Tibbits
  fullname: Tibbits, Thomas N. D.
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 7
  givenname: Eduard
  surname: Oliva
  fullname: Oliva, Eduard
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 8
  givenname: Gerald
  surname: Siefer
  fullname: Siefer, Gerald
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 9
  givenname: Michael
  surname: Schachtner
  fullname: Schachtner, Michael
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 10
  givenname: Alexander
  surname: Wekkeli
  fullname: Wekkeli, Alexander
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 11
  givenname: Andreas W.
  surname: Bett
  fullname: Bett, Andreas W.
  organization: Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110, Freiburg, Germany
– sequence: 12
  givenname: Rainer
  surname: Krause
  fullname: Krause, Rainer
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 13
  givenname: Matteo
  surname: Piccin
  fullname: Piccin, Matteo
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 14
  givenname: Nicolas
  surname: Blanc
  fullname: Blanc, Nicolas
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 15
  givenname: Charlotte
  surname: Drazek
  fullname: Drazek, Charlotte
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 16
  givenname: Eric
  surname: Guiot
  fullname: Guiot, Eric
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 17
  givenname: Bruno
  surname: Ghyselen
  fullname: Ghyselen, Bruno
  organization: SOITEC S.A., Parc Technologique des Fontaines, 38190, Bernin, France
– sequence: 18
  givenname: Thierry
  surname: Salvetat
  fullname: Salvetat, Thierry
  organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France
– sequence: 19
  givenname: Aurélie
  surname: Tauzin
  fullname: Tauzin, Aurélie
  organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France
– sequence: 20
  givenname: Thomas
  surname: Signamarcheix
  fullname: Signamarcheix, Thomas
  organization: CEA LETI MINATEC campus, 17 rue des Martyrs, 38054, Grenoble, France
– sequence: 21
  givenname: Anja
  surname: Dobrich
  fullname: Dobrich, Anja
  organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
– sequence: 22
  givenname: Thomas
  surname: Hannappel
  fullname: Hannappel, Thomas
  organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
– sequence: 23
  givenname: Klaus
  surname: Schwarzburg
  fullname: Schwarzburg, Klaus
  organization: Helmholtz-Zentrum Berlin HZB, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28175101$$DView record in Pascal Francis
BookMark eNp1kMFqGzEURUVJoUkayCcISqCbsfVmpNFoaZLUMYTECwdnJzSyROVOJFca4_jvqyFDAoGu3l0cDvfdM3TigzcIXQKZACHldOd2k5Jy9gWdAhGiACaeT4ZclwUXgn1DZyltCQHeiPoUbdbKmojb4Ddmg23Yx2K797p3weO5WvjldK5maTod8iwtx4t18Nr4Pqo-RJxCpyLWpusSPrj-N6Z0wq-wsdZpZ7w-fkdfreqSuRjvOXr6dbu6vivuH-eL69l9oWlNWdFqMKwkzHLNBFON3lAroG5L3gzNBbesFJVtNKWatUBYLYQVtWGWtLqBsjpHP9-8uxj-7k3q5YtLQy_lTdgnCdkuKuBQZfTHJ3Sbf_e5nQQqGgBGOf0Q6hhSisbKXXQvKh4lEDnMLfPccpg7o1ejUCWtOhuV1y6982UDnAGBzBVv3MF15vhfn1wulqN35F3qzes7r-IfWfMqg-uHubypViuyrkgO_wDuj5ug
CODEN PPHOED
CitedBy_id crossref_primary_10_3389_fphy_2020_631925
crossref_primary_10_1002_adom_202202681
crossref_primary_10_1109_JPHOTOV_2018_2794387
crossref_primary_10_1002_aenm_201602358
crossref_primary_10_1002_pip_2777
crossref_primary_10_1002_pssa_201532811
crossref_primary_10_1016_j_jcrysgro_2022_126769
crossref_primary_10_1209_0295_5075_126_36002
crossref_primary_10_1016_j_solmat_2020_110501
crossref_primary_10_1109_JPHOTOV_2015_2416006
crossref_primary_10_1109_JPHOTOV_2021_3132897
crossref_primary_10_1063_1_5085405
crossref_primary_10_3389_fphy_2020_585707
crossref_primary_10_1016_j_spmi_2021_106927
crossref_primary_10_1016_j_solener_2017_10_003
crossref_primary_10_1063_1_4954003
crossref_primary_10_1109_JPHOTOV_2015_2458571
crossref_primary_10_1002_aenm_201700345
crossref_primary_10_1016_j_enconman_2017_05_059
crossref_primary_10_1109_JPHOTOV_2015_2501718
crossref_primary_10_1063_1_4963198
crossref_primary_10_1016_j_matpr_2018_02_014
crossref_primary_10_1109_JPHOTOV_2019_2933190
crossref_primary_10_1002_pip_2893
crossref_primary_10_1186_s11671_016_1743_8
crossref_primary_10_1039_D3TA01211E
crossref_primary_10_1088_1674_4926_36_4_044011
crossref_primary_10_1002_er_3708
crossref_primary_10_1109_JPHOTOV_2016_2537543
crossref_primary_10_1117_1_JPE_8_045503
crossref_primary_10_1016_j_solmat_2015_05_042
crossref_primary_10_1088_1742_6596_690_1_012036
crossref_primary_10_1016_j_jcrysgro_2019_02_064
crossref_primary_10_1016_j_mssp_2021_106365
crossref_primary_10_1016_j_solmat_2015_01_020
crossref_primary_10_7567_APEX_9_016501
crossref_primary_10_7567_JJAP_56_025501
crossref_primary_10_1002_pssa_202300293
crossref_primary_10_1039_C5RA25013G
crossref_primary_10_1109_JPHOTOV_2015_2501722
crossref_primary_10_1088_1361_6463_aaaf08
crossref_primary_10_1088_1361_6528_abbc23
crossref_primary_10_1016_j_solmat_2015_09_064
crossref_primary_10_1088_1742_6596_690_1_012032
crossref_primary_10_35848_1347_4065_ac993f
crossref_primary_10_1088_0022_3727_49_46_465105
crossref_primary_10_1109_JPHOTOV_2015_2501729
crossref_primary_10_1021_acsaem_9b00011
crossref_primary_10_1016_j_solener_2017_03_028
crossref_primary_10_1016_j_nanoen_2020_104980
crossref_primary_10_1039_C6CS00066E
crossref_primary_10_1109_JPHOTOV_2015_2478072
crossref_primary_10_3390_nano9111518
crossref_primary_10_1002_adfm_202206790
crossref_primary_10_1088_1674_1056_26_7_074202
crossref_primary_10_7567_JJAP_56_08MC01
crossref_primary_10_1007_s00339_016_0438_4
crossref_primary_10_1038_srep07836
crossref_primary_10_1063_5_0073274
crossref_primary_10_1088_1361_6528_ab3ef7
crossref_primary_10_1109_JPHOTOV_2018_2871573
crossref_primary_10_1134_S1027451023020301
crossref_primary_10_1002_adts_202200718
crossref_primary_10_1002_solr_202400273
crossref_primary_10_1039_D1MA00570G
crossref_primary_10_3390_en14113143
crossref_primary_10_7567_APEX_7_112301
crossref_primary_10_1109_JPHOTOV_2016_2540247
crossref_primary_10_1021_acsaelm_9b00041
crossref_primary_10_1063_1_5094472
crossref_primary_10_1002_pip_2791
crossref_primary_10_7567_JJAP_57_075801
crossref_primary_10_1002_admi_202201648
crossref_primary_10_1016_j_tsf_2021_139064
crossref_primary_10_1016_j_solmat_2015_01_005
crossref_primary_10_1088_0256_307X_38_4_046201
crossref_primary_10_1002_pip_2568
crossref_primary_10_1364_OPTICA_2_000056
crossref_primary_10_1109_JPHOTOV_2014_2345437
crossref_primary_10_1002_ente_202000667
crossref_primary_10_1038_npjcompumats_2015_3
crossref_primary_10_1116_1_4906511
crossref_primary_10_1016_j_apenergy_2016_01_077
crossref_primary_10_1364_OME_457345
crossref_primary_10_1016_j_solener_2016_09_031
crossref_primary_10_1021_acsaem_1c02764
crossref_primary_10_1021_acs_nanolett_5b03890
crossref_primary_10_1038_s41598_017_16455_6
crossref_primary_10_1109_JPHOTOV_2016_2549745
crossref_primary_10_7567_JJAP_56_122302
crossref_primary_10_1109_JPHOTOV_2023_3309916
crossref_primary_10_1063_1_4930002
crossref_primary_10_1002_pip_3094
crossref_primary_10_1155_2021_9946329
crossref_primary_10_1088_1361_6439_ab4d1f
crossref_primary_10_1016_j_rser_2017_08_013
crossref_primary_10_1016_j_solener_2019_03_042
crossref_primary_10_1007_s11664_020_08490_3
crossref_primary_10_1063_1_5096540
crossref_primary_10_1016_j_jpowsour_2020_228074
crossref_primary_10_1038_s41560_018_0190_4
crossref_primary_10_1016_j_ijhydene_2016_02_086
crossref_primary_10_1002_pip_2856
crossref_primary_10_1021_acs_nanolett_8b03322
crossref_primary_10_1109_JPHOTOV_2019_2937226
crossref_primary_10_1002_pip_3704
crossref_primary_10_3390_nano12193486
crossref_primary_10_1021_acsphotonics_5b00222
crossref_primary_10_7567_JJAP_55_022301
crossref_primary_10_1002_admi_201601118
crossref_primary_10_1016_j_rser_2017_01_071
crossref_primary_10_1016_j_solener_2021_04_062
crossref_primary_10_1063_1_4948958
crossref_primary_10_1016_j_xcrp_2023_101701
crossref_primary_10_1007_s11051_017_4091_4
crossref_primary_10_3390_en13010225
crossref_primary_10_1103_PhysRevB_91_115312
crossref_primary_10_1002_aesr_202300073
crossref_primary_10_1109_JPHOTOV_2015_2494690
crossref_primary_10_4236_epe_2022_1410028
crossref_primary_10_1051_e3sconf_20171603002
crossref_primary_10_1016_j_solmat_2017_08_034
crossref_primary_10_1016_j_rser_2017_05_017
crossref_primary_10_3367_UFNr_2016_02_037703
crossref_primary_10_1080_01430750_2018_1472655
crossref_primary_10_1063_1_5011394
crossref_primary_10_1016_j_solener_2016_04_036
crossref_primary_10_48084_etasr_935
crossref_primary_10_1063_1_5092436
crossref_primary_10_1088_0268_1242_30_9_094010
crossref_primary_10_1088_1361_6463_aa7bfd
crossref_primary_10_1038_ncomms9834
crossref_primary_10_1063_1_4905652
crossref_primary_10_1142_S0217979218300074
crossref_primary_10_1063_5_0062671
crossref_primary_10_1021_acsaelm_9b00118
crossref_primary_10_1063_1_4985614
crossref_primary_10_1016_j_solmat_2020_110398
crossref_primary_10_34133_2021_6849171
crossref_primary_10_1039_C7TC00275K
crossref_primary_10_1002_pip_3398
crossref_primary_10_1016_j_solener_2022_09_036
crossref_primary_10_1002_pip_2753
crossref_primary_10_1038_nmat3946
crossref_primary_10_1038_nenergy_2017_43
crossref_primary_10_3390_en13102631
crossref_primary_10_1002_advs_201700792
crossref_primary_10_1039_C5TA03389F
crossref_primary_10_1063_1_4943366
crossref_primary_10_1016_j_mssp_2020_105344
crossref_primary_10_1002_pip_3609
crossref_primary_10_1088_0268_1242_30_10_105031
crossref_primary_10_3390_app7060589
crossref_primary_10_1016_j_solmat_2015_01_031
crossref_primary_10_35848_1347_4065_ab6a2d
crossref_primary_10_1007_s12647_018_0272_6
crossref_primary_10_1007_s41061_021_00334_w
crossref_primary_10_1016_j_solmat_2018_05_008
crossref_primary_10_1039_C8CS00431E
crossref_primary_10_1007_s11664_016_4691_2
crossref_primary_10_1002_solr_202301047
crossref_primary_10_1063_1_4893024
crossref_primary_10_7567_JJAP_56_092301
crossref_primary_10_1002_pip_2991
crossref_primary_10_1016_j_optlastec_2018_04_012
crossref_primary_10_3390_photonics9060404
crossref_primary_10_1002_ente_202300223
crossref_primary_10_1002_aenm_201601992
crossref_primary_10_1109_JPHOTOV_2018_2802203
crossref_primary_10_1016_j_jcrysgro_2015_02_040
crossref_primary_10_1088_0957_4484_27_6_065706
crossref_primary_10_1016_j_jcrysgro_2017_05_030
crossref_primary_10_1088_1361_6463_50_3_035106
crossref_primary_10_1016_j_rser_2022_112553
crossref_primary_10_1063_1_5011371
crossref_primary_10_7567_JJAP_54_08KE10
crossref_primary_10_1016_j_solmat_2021_111522
crossref_primary_10_1038_srep39163
crossref_primary_10_1051_epjpv_2022027
crossref_primary_10_1002_aenm_201400589
crossref_primary_10_1002_adma_202311473
crossref_primary_10_7567_JJAP_54_08KE07
crossref_primary_10_7567_JJAP_54_08KE05
crossref_primary_10_1016_j_solmat_2023_112651
crossref_primary_10_7567_JJAP_54_08KE09
crossref_primary_10_1039_C5NR07252B
crossref_primary_10_1021_acsanm_0c02768
crossref_primary_10_1109_JPHOTOV_2016_2551460
crossref_primary_10_1016_j_joule_2018_04_003
crossref_primary_10_1149_2162_8777_abb794
crossref_primary_10_1016_j_micrna_2023_207595
crossref_primary_10_1364_OE_22_0A1243
crossref_primary_10_1016_j_enconman_2023_117289
crossref_primary_10_3390_polym14030532
crossref_primary_10_1002_ese3_182
crossref_primary_10_1002_adom_201801229
crossref_primary_10_7567_JJAP_54_08KE03
crossref_primary_10_3103_S1062873819010118
crossref_primary_10_7567_JJAP_54_08KE02
crossref_primary_10_1016_j_enconman_2015_04_082
crossref_primary_10_1016_j_renene_2020_01_002
crossref_primary_10_2139_ssrn_4003263
crossref_primary_10_1155_2015_537538
crossref_primary_10_7567_APEX_11_077101
crossref_primary_10_1002_admi_201900921
crossref_primary_10_1016_j_rser_2017_03_044
crossref_primary_10_1109_JPHOTOV_2014_2364132
crossref_primary_10_1116_1_4939754
crossref_primary_10_1016_j_jpcs_2019_109093
crossref_primary_10_3390_en11092455
crossref_primary_10_1109_JPHOTOV_2016_2612358
crossref_primary_10_1016_j_plantsci_2018_11_010
crossref_primary_10_1021_acs_cgd_1c00410
crossref_primary_10_1016_j_enconman_2019_03_034
crossref_primary_10_4236_sgre_2020_115005
crossref_primary_10_1155_2015_872163
crossref_primary_10_1063_1_4884678
crossref_primary_10_1038_s41598_017_01854_6
crossref_primary_10_1016_j_solmat_2021_111022
crossref_primary_10_1007_s12633_023_02466_8
crossref_primary_10_1007_s00542_020_05125_9
crossref_primary_10_1021_acsami_9b09377
crossref_primary_10_1039_C8TC06476H
crossref_primary_10_1073_pnas_1617391113
crossref_primary_10_7498_aps_64_177802
crossref_primary_10_7567_JJAP_56_032301
crossref_primary_10_1002_aelm_202300437
crossref_primary_10_1016_j_solener_2017_01_031
crossref_primary_10_1109_JPHOTOV_2022_3215263
crossref_primary_10_1002_pip_3127
crossref_primary_10_1002_pip_3128
crossref_primary_10_1063_1_5046543
crossref_primary_10_1557_adv_2016_429
crossref_primary_10_1016_j_rser_2021_112047
crossref_primary_10_1016_j_enconman_2016_05_072
crossref_primary_10_7567_APEX_11_031003
crossref_primary_10_1002_aenm_201802310
crossref_primary_10_1007_s12273_022_0895_y
crossref_primary_10_1155_2014_582083
crossref_primary_10_1016_j_joule_2024_02_025
crossref_primary_10_1007_s13272_023_00684_9
crossref_primary_10_1021_acsami_2c06393
crossref_primary_10_1088_0256_307X_34_2_028802
crossref_primary_10_1109_JPHOTOV_2017_2655484
crossref_primary_10_1016_j_jclepro_2019_118444
crossref_primary_10_1063_1_4992805
crossref_primary_10_1088_1361_6641_ab708e
crossref_primary_10_3390_ijms20040976
crossref_primary_10_1080_10408436_2016_1182469
crossref_primary_10_1109_TSG_2014_2380318
crossref_primary_10_1002_pssb_202300103
crossref_primary_10_1038_s41598_019_41982_9
crossref_primary_10_1109_TNANO_2016_2566674
crossref_primary_10_7567_1882_0786_ab0aa5
crossref_primary_10_1063_1_5049367
crossref_primary_10_1134_S1063782616040163
crossref_primary_10_3390_app12020820
crossref_primary_10_1364_OE_384620
crossref_primary_10_1109_JPHOTOV_2017_2778567
crossref_primary_10_3390_nano6060098
crossref_primary_10_1016_j_mne_2021_100083
crossref_primary_10_7567_1347_4065_aafd19
crossref_primary_10_1063_5_0125998
crossref_primary_10_1155_2019_5090981
crossref_primary_10_1016_j_energy_2015_04_095
crossref_primary_10_1109_JPHOTOV_2015_2407159
crossref_primary_10_1016_j_apsusc_2021_150513
crossref_primary_10_1007_s12039_023_02160_7
crossref_primary_10_1002_pssa_202300660
crossref_primary_10_1002_pip_2697
crossref_primary_10_1002_solr_202400012
crossref_primary_10_1109_JPHOTOV_2015_2397605
crossref_primary_10_1002_pip_3308
crossref_primary_10_1063_1_4909507
crossref_primary_10_1016_j_jlumin_2016_06_052
crossref_primary_10_1109_JPHOTOV_2019_2892079
crossref_primary_10_1063_1_4906237
crossref_primary_10_1109_JPHOTOV_2017_2777667
crossref_primary_10_1111_jiec_12855
crossref_primary_10_1016_j_solener_2023_04_066
crossref_primary_10_1038_s41598_019_56457_0
crossref_primary_10_1116_1_4975759
crossref_primary_10_31857_S1028096023040118
crossref_primary_10_1002_pssa_202000804
crossref_primary_10_1063_1_4869121
crossref_primary_10_3390_photonics6020046
crossref_primary_10_1016_j_commatsci_2021_111016
crossref_primary_10_1515_nanoph_2017_0034
crossref_primary_10_1016_j_apsusc_2016_07_163
crossref_primary_10_1016_j_jpcs_2023_111265
crossref_primary_10_1016_j_solmat_2017_06_046
crossref_primary_10_1039_C8NR03827A
crossref_primary_10_7567_APEX_11_106501
crossref_primary_10_7567_JJAP_56_08MC11
crossref_primary_10_1016_j_rser_2022_113027
crossref_primary_10_1016_j_renene_2021_05_046
crossref_primary_10_1038_am_2015_102
crossref_primary_10_1109_JPHOTOV_2017_2782561
crossref_primary_10_1039_D3MA00408B
crossref_primary_10_1016_j_solmat_2019_110359
crossref_primary_10_1016_j_solmat_2019_110118
crossref_primary_10_1117_1_JPE_6_035501
crossref_primary_10_1155_2020_1907530
crossref_primary_10_1002_pssa_201900512
crossref_primary_10_1016_j_jcrysgro_2014_12_014
crossref_primary_10_1016_j_solmat_2019_110235
crossref_primary_10_1016_j_jcrysgro_2014_07_056
crossref_primary_10_7567_JJAP_53_122301
crossref_primary_10_1063_1_4893898
crossref_primary_10_1088_2053_1591_ab20b6
crossref_primary_10_3938_jkps_70_693
crossref_primary_10_1002_pip_2585
crossref_primary_10_3390_nano8121048
crossref_primary_10_1002_pip_2597
crossref_primary_10_1007_s11082_017_1284_0
crossref_primary_10_15407_Surface_2019_11_270
crossref_primary_10_1002_pip_3207
crossref_primary_10_1364_OE_23_00A322
crossref_primary_10_1039_C6TA08309A
crossref_primary_10_1088_1361_6641_ac13af
crossref_primary_10_1038_s41467_019_12353_9
crossref_primary_10_1016_j_pquantelec_2020_100300
crossref_primary_10_1073_pnas_2019198117
crossref_primary_10_1364_OME_7_003826
crossref_primary_10_3390_nano9121742
crossref_primary_10_1063_5_0017172
crossref_primary_10_1002_pip_3200
crossref_primary_10_1109_JPHOTOV_2019_2957661
crossref_primary_10_1002_ese3_125
crossref_primary_10_1063_1_4931428
crossref_primary_10_1557_adv_2016_457
crossref_primary_10_7567_JJAP_54_056601
crossref_primary_10_1016_j_energy_2015_07_123
crossref_primary_10_1021_acsaem_9b01800
crossref_primary_10_1007_s11237_017_9503_0
crossref_primary_10_1364_OE_26_022123
crossref_primary_10_7567_JJAP_55_031601
crossref_primary_10_1016_j_microrel_2023_115249
crossref_primary_10_1063_1_4922275
crossref_primary_10_1016_j_isci_2023_108129
crossref_primary_10_7567_JJAP_57_08RD02
crossref_primary_10_1016_j_solmat_2020_110653
crossref_primary_10_1016_j_solmat_2020_110774
crossref_primary_10_1016_j_energy_2015_02_105
crossref_primary_10_7567_JJAP_54_08KA13
crossref_primary_10_1016_j_renene_2021_11_018
crossref_primary_10_7567_JJAP_57_08RD04
crossref_primary_10_1016_j_joule_2022_04_024
crossref_primary_10_1038_ncomms7902
crossref_primary_10_1007_s11664_020_08417_y
crossref_primary_10_1109_JPHOTOV_2018_2846519
crossref_primary_10_1016_j_solmat_2022_111780
crossref_primary_10_1039_C9SE00007K
crossref_primary_10_5757_vacmag_1_4_4
crossref_primary_10_1039_C9SE00237E
crossref_primary_10_1039_C8CE01258J
crossref_primary_10_4236_jemaa_2014_613039
crossref_primary_10_1016_j_solener_2019_03_084
crossref_primary_10_1088_1742_6596_877_1_012030
crossref_primary_10_1038_s41560_018_0112_5
crossref_primary_10_1039_C7EE02212C
crossref_primary_10_1038_s41467_018_03103_4
crossref_primary_10_1039_D2TA01603F
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1021_acsaem_2c03127
Cites_doi 10.1063/1.3658282
10.1109/PVSC.2011.6186332
10.1063/1.4822190
10.1063/1.2988497
10.1016/j.solmat.2008.07.014
10.1109/JPHOTOV.2013.2273097
10.1002/pip.407
10.1002/pip.2404
10.1146/annurev.matsci.28.1.215
10.1103/PhysRevB.76.085303
10.1002/pip.1255
10.1016/j.jcrysgro.2009.10.059
10.1063/1.4753823
10.1002/pip.514
10.1063/1.3601472
10.1109/JPHOTOV.2011.2180893
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
7QQ
7U5
JG9
DOI 10.1002/pip.2475
DatabaseName Istex
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Materials Research Database
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
DatabaseTitleList CrossRef
Engineering Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1099-159X
EndPage 282
ExternalDocumentID 3218587441
10_1002_pip_2475
28175101
PIP2475
ark_67375_WNG_D3TT0W30_D
Genre miscellaneous
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
7QQ
7U5
JG9
ID FETCH-LOGICAL-c4645-bc1e5205f7c595a8cd4f916b278799597f5293f8c44c5b105699f96e5f0bc8123
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Fri Aug 16 01:50:15 EDT 2024
Thu Oct 10 17:39:41 EDT 2024
Fri Aug 23 01:04:27 EDT 2024
Tue Sep 20 21:47:10 EDT 2022
Sat Aug 24 00:55:02 EDT 2024
Wed Oct 30 09:50:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Tandem solar cell
Ternary compound
Performance evaluation
Binary compound
Conversion rate
Gallium phosphide
Mismatching
III-V compound
Indium phosphide
Wafer bonding
Direct method
Multijunction solar cells
concentrator cells
Concentrator solar cells
III―V semiconductors
multi-junction solar cells
Wafer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4645-bc1e5205f7c595a8cd4f916b278799597f5293f8c44c5b105699f96e5f0bc8123
Notes ark:/67375/WNG-D3TT0W30-D
ArticleID:PIP2475
istex:B91B43534A1D6E84372C462BB49BD48115E22DC9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1498115474
PQPubID 1016445
PageCount 6
ParticipantIDs proquest_miscellaneous_1520931713
proquest_journals_1498115474
crossref_primary_10_1002_pip_2475
pascalfrancis_primary_28175101
wiley_primary_10_1002_pip_2475_PIP2475
istex_primary_ark_67375_WNG_D3TT0W30_D
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationTitleAlternate Prog. Photovolt: Res. Appl
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Law DC, King RR, Yoon H, Archer MJ, Boca A, Fetzer CM, Mesropian S, Isshiki T, Haddad M, Edmondson KM, Bhusari D, Yen J, Sherif RA, Atwater HA, Karam NH. Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems. Solar Energy Materials and Solar Cells 2008; 94: 1314-1318.
Ermer JH, Jones RK, Hebert P, Pien P, King RR, Bhusari D, Brandt R, Al-Taher O, Fetzer C, Kinsey GS, Karam N. Status of C3MJ + and C4MJ production concentrator solar cells at Spectrolab. IEEE Journal of Photovoltaics 2012; 2(2): 209-213.
Derendorf K, Essig S, Oliva E, Klinger V, Roesener T, Philipps SP, Benick J, Hermle M, Schachtner M, Siefer G, Jäger W, Dimroth F. Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE Journal of Photovoltaics 2013; 3(4): 1423-1428.
King RR, Bhusari D, Larrabee D, Liu XQ, Rehder E, Edmondson K, Cotal H, Jones RK, Ermer JH, Fetzer CM, Law DC, Karam NH. Solar cell generations over 40% efficiency. Progress in Photovoltaics: Research and Applications 2012; 20: 801-815.
Meusel M, Baur C, Létay G, Bett AW, Warta W, Fernandez E. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Progress in Photovoltaics: Research and Applications 2003; 11(8): 499-414.
Stan M, Aikena D, Choa B, Cornfelda A, Leya V, Patela P, Sharpsa P, Varghese T. High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures. Journal of Crystal Growth 2010; 312(8): 1370-1374.
Meusel M, Adelhelm R, Dimroth F, Bett AW, Warta W. Spectral mismatch correction and spectrometric characterization of monolithic III-V multi-junction solar cells. Progress in Photovoltaics: Research and Applications 2002; 10(4): 243-255.
Geisz JF, Friedman DJ, Ward JS, Duda A, Olavarria WJ, Moriarty TE, Kiehl JT, Romero MJ, Norman AG, Jones KM. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Applied Physics Letters 2008; 93(12): 123501-123505.
Goesele U, Alexe M, Kopperschmidt P, Tong Q-Y. Semiconductor wafer bonding. Annual Review of Materials Science 1998; 28: 215-241.
Moriceau H, Rieutord F, Fournel F, Le Tiec Y, Di Cioccio L, Morales C, Charvet AM, Deguet C. Overview of recent direct wafer bonding advances and applications. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010; 1: 043004.
Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research and Applications 2013; 21: 827-837.
Rönsch S, Hoheisel R, Dimroth F, Bett AW. Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements. Applied Physics Letters 2011; 98(25): 251113.
Rau U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B 2007; 76: 085301-085303.
1998; 28
2012; 2
2013; 3
2010; 1
2012
2011
2013; 21
2010; 312
2002; 10
2006
2011; 98
2013
2008; 94
2007; 76
2008; 93
2012; 20
2003; 11
Moriceau H (e_1_2_6_12_1) 2010; 1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – year: 2011
– volume: 20
  start-page: 801
  year: 2012
  end-page: 815
  article-title: Solar cell generations over 40% efficiency
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 2
  start-page: 209
  issue: 2
  year: 2012
  end-page: 213
  article-title: Status of C3MJ + and C4MJ production concentrator solar cells at Spectrolab
  publication-title: IEEE Journal of Photovoltaics
– volume: 3
  start-page: 1423
  issue: 4
  year: 2013
  end-page: 1428
  article-title: Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding
  publication-title: IEEE Journal of Photovoltaics
– volume: 93
  start-page: 123501
  issue: 12
  year: 2008
  end-page: 123505
  article-title: 40.8% efficient inverted triple‐junction solar cell with two independently metamorphic junctions
  publication-title: Applied Physics Letters
– start-page: 22
  year: 2013
  end-page: 25
– volume: 28
  start-page: 215
  year: 1998
  end-page: 241
  article-title: Semiconductor wafer bonding
  publication-title: Annual Review of Materials Science
– volume: 312
  start-page: 1370
  issue: 8
  year: 2010
  end-page: 1374
  article-title: High‐efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures
  publication-title: Journal of Crystal Growth
– volume: 98
  start-page: 251113
  issue: 25
  year: 2011
  article-title: Subcell I‐V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements
  publication-title: Applied Physics Letters
– volume: 1
  start-page: 043004
  year: 2010
  article-title: Overview of recent direct wafer bonding advances and applications
  publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology
– volume: 94
  start-page: 1314
  year: 2008
  end-page: 1318
  article-title: Future technology pathways of terrestrial III‐V multijunction solar cells for concentrator photovoltaic systems
  publication-title: Solar Energy Materials and Solar Cells
– start-page: 1
  year: 2011
  end-page: 4
– start-page: 14
  year: 2012
  end-page: 19
– volume: 11
  start-page: 499
  issue: 8
  year: 2003
  end-page: 414
  article-title: Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple‐junction solar cells: measurement artifacts and their explanation
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 10
  start-page: 243
  issue: 4
  year: 2002
  end-page: 255
  article-title: Spectral mismatch correction and spectrometric characterization of monolithic III‐V multi‐junction solar cells
  publication-title: Progress in Photovoltaics: Research and Applications
– start-page: 768
  year: 2006
  end-page: 771
– start-page: 5
  year: 2011
  end-page: 8
– volume: 21
  start-page: 827
  year: 2013
  end-page: 837
  article-title: Solar cell efficiency tables (version 42)
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 76
  start-page: 085301
  year: 2007
  end-page: 085303
  article-title: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells
  publication-title: Physical Review B
– ident: e_1_2_6_2_1
  doi: 10.1063/1.3658282
– ident: e_1_2_6_15_1
  doi: 10.1109/PVSC.2011.6186332
– ident: e_1_2_6_7_1
  doi: 10.1063/1.4822190
– ident: e_1_2_6_6_1
  doi: 10.1063/1.2988497
– volume: 1
  start-page: 043004
  year: 2010
  ident: e_1_2_6_12_1
  article-title: Overview of recent direct wafer bonding advances and applications
  publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology
  contributor:
    fullname: Moriceau H
– ident: e_1_2_6_14_1
  doi: 10.1016/j.solmat.2008.07.014
– ident: e_1_2_6_16_1
  doi: 10.1109/JPHOTOV.2013.2273097
– ident: e_1_2_6_18_1
  doi: 10.1002/pip.407
– ident: e_1_2_6_8_1
  doi: 10.1002/pip.2404
– ident: e_1_2_6_11_1
  doi: 10.1146/annurev.matsci.28.1.215
– ident: e_1_2_6_13_1
– ident: e_1_2_6_19_1
  doi: 10.1103/PhysRevB.76.085303
– ident: e_1_2_6_4_1
  doi: 10.1002/pip.1255
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jcrysgro.2009.10.059
– ident: e_1_2_6_9_1
– ident: e_1_2_6_5_1
  doi: 10.1063/1.4753823
– ident: e_1_2_6_17_1
  doi: 10.1002/pip.514
– ident: e_1_2_6_20_1
  doi: 10.1063/1.3601472
– ident: e_1_2_6_3_1
  doi: 10.1109/JPHOTOV.2011.2180893
SSID ssj0017896
Score 2.6266897
Snippet ABSTRACT Triple‐junction solar cells from III–V compound semiconductors have thus far delivered the highest solar‐electric conversion efficiencies. Increasing...
Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 277
SubjectTerms Applied sciences
Bonding
concentrator cells
Conversion
Energy
Exact sciences and technology
Gallium arsenide
III-V semiconductors
Lattice parameters
Materials selection
multi-junction solar cells
Natural energy
Photovoltaic cells
Photovoltaic conversion
Semiconductors
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
wafer bonding
Title Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency
URI https://api.istex.fr/ark:/67375/WNG-D3TT0W30-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2475
https://www.proquest.com/docview/1498115474
https://search.proquest.com/docview/1520931713
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA9yvuiD32K984igvm1389U0j8V6vRM8ivTogQ8hyW7gPNiWbgtyT_4J_o3-Jc7sl1dBEJ92YROYnclMfklmfiHkDcu1906YxEfvE5l7Az4XWeIzr3TmcyFyLBT-dD46vZAfL9Vlm1WJtTANP0S_4YaeUcdrdHDnq_Q3aej6aj3kUmN9ORMas7mmn3vmKKbH9dVcsOABAGmM6nhnM552Hfdmoruo1G-YGekqUE5sbrXYg523wWs9-5w8JF86uZukk-vhbuuH4eYPSsf_-7FH5EELSumkGUWPyZ2ifELu36IqfEri0sViQ_0Kd8xphB4_v__4CpMiGpbO3Fk5T2duUqUpvk-qefukAesicQcZFve0woU0xcOCiuIOMJVyqN_SouaxwCLQZ-Ti5MPi_WnS3tGQBDwTTXxgheKZijoooxxehRQBcXoOgQCpzHRUACjiOEgZlAcwNzImmlGhYuYDgAvxnByUq7J4QaiQSpswMhBSoDHnJlfMZbnkLGfC62JAXnf2suuGisM2pMvcgs4s6mxA3tWG7Bu4zTWmrmlll-czOxWLRbYUmZ0OyPGepfsOfAyACuLUgBx1pretW1ewTjJj5C_SEoTpP4NDouJcWax20AYTiwCVMQHC1Hb-q7R2fjbH58t_bXhI7gFgk00O3BE52G52xSsARVt_XA__Xz9NB3g
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-69mHbQ_e3LF3XabDtzfEfSVFEn8KyJtnaEEZK-jAQlm3BVnBCnMDY0z5CP2M_Se_s2GsGg7EnGXwC-c4n_XQ6_Q7gbZgqa2OuPeus9URqNfqcCz0bWKkCm3Ke0kXh83FneCE-XcrLHTip78JU_BBNwI08o5yvycEpIO3_Zg1dfFu0I6HkPdhDb-dUt6H_peGOClW3LM6FWx6EkFrLmnk2iPy659ZatEdq_UG5kXGB6nFVXYst4HkXvpbrz-kj-FqPvEo7uWqvV7ad_PyD1PE_P-0x7G9wKetVP9IT2Mnyp_DwDlvhM3Cz2GVLZucUNGcOe9z8uv6O6yLZlg3iUT7xB3Gv8H167hWTTcsSuhpJQWTc37OC9tKMzgsKRkFgJkRbvWNZSWVB90Cfw8Xpx-mHobcp0-AldCzq2STMZBRIpxKpZUzVkByCThvhXEBsZspJxBSumwiRSIt4rqO1051MusAmiC_4Aezm8zx7AYwLqXTS0TiroHAU6VSGcZCKKExDblXWgje1wcyiYuMwFe9yZFBnhnTWgvelJRuBeHlF2WtKmtl4YPp8Og1mPDD9FhxvmbrpEHURU-FU1YKj2vZm49kFbpV0lyiMlMDBNK_RJ0lxcZ7N1yhDuUUIzEKOgykN_dfRmsloQu3hvwq-hvvD6fmZORuNP7-EB4jfRJUSdwS7q-U6e4UYaWWPS1-4BaHJC5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZtAqU9NH2Fuk1SFdre1vuSVtbRxLXjPsxSHBzoQUjaFbSBtfHaEHLqT-hv7C_JzL4aFwqlJy2sBLMzO6NPo9EnQt6EmTBGx9IzzhiPZUaCz7nQM4HhIjBZHGd4UPjzLDk7Zx8u-EVTVYlnYWp-iC7hhp5RxWt08FXm_N-koatvq37EBL9L9lkCwBcB0ZeOOioUg-puLljxAIKUkrfEs0HktyN3pqJ91OoVlkbqErTj6mstdnDnbfRaTT_jA_K1FbyuOrnsbzemb6__4HT8vy97RB42qJQO69_oMbmTF0_Ig1tchU-JW2iXr6lZYsqcOhjx68fP7zAromXpRE-L1J_oYen7-Dws06alFg9GYgoZVve0xJU0xd2CkmIKmDLWF29pXhFZ4CnQZ-R8_H5-euY1lzR4FjdFPWPDnEcBd8JyyTXeheQAcpoIIgFymQnHAVG4gWXMcgNoLpHSySTnLjAW0EV8SPaKZZE_JzRmXEibSIgp0DmKZMZDHWQsCrMwNiLvkdetvdSq5uJQNetypEBnCnXWI-8qQ3Yd9PoSa9cEV4vZRI3i-TxYxIEa9cjJjqW7AdEAEBUEqh45ak2vGr8uYaEkB0hgJBgI070Gj0TF6SJfbqEPVhYBLAtjEKay81-lVek0xfbFv3Z8Re6lo7H6NJ19fEnuA3hjdT3cEdnbrLf5MQCkjTmpPOEGeToKPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wafer+bonded+four-junction+GaInP%2FGaAs%2F%2FGaInAsP%2FGaInAs+concentrator+solar+cells+with+44.7%25+efficiency&rft.jtitle=Progress+in+photovoltaics&rft.au=Dimroth%2C+Frank&rft.au=Grave%2C+Matthias&rft.au=Beutel%2C+Paul&rft.au=Fiedeler%2C+Ulrich&rft.date=2014-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=22&rft.issue=3&rft.spage=277&rft.epage=282&rft_id=info:doi/10.1002%2Fpip.2475&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_D3TT0W30_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon