Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations

SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 102; no. 5; pp. 1136 - 1161
Main Authors Ballarin, Francesco, Manzoni, Andrea, Quarteroni, Alfio, Rozza, Gianluigi
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 04.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.
In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with low Reynolds number. Copyright copyright 2014 John Wiley & Sons, Ltd.
Summary In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.
Author Quarteroni, Alfio
Ballarin, Francesco
Rozza, Gianluigi
Manzoni, Andrea
Author_xml – sequence: 1
  givenname: Francesco
  surname: Ballarin
  fullname: Ballarin, Francesco
  organization: MOX - Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, I-20133, Milano, Italy
– sequence: 2
  givenname: Andrea
  surname: Manzoni
  fullname: Manzoni, Andrea
  email: Correspondence to: Andrea Manzoni, SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy., amanzoni@sissa.it
  organization: SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy
– sequence: 3
  givenname: Alfio
  surname: Quarteroni
  fullname: Quarteroni, Alfio
  organization: MOX - Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, I-20133, Milano, Italy
– sequence: 4
  givenname: Gianluigi
  surname: Rozza
  fullname: Rozza, Gianluigi
  organization: SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy
BookMark eNp1kU1Lw0AQhhdRsH6APyHgxUvqbrLJNEc_apXWKljwuOwmU1ibZONuotZf79ZKRVHmMId53uGdeffIdm1qJOSI0T6jNDqtK-xzgGiL9BjNIKQRhW3S86MsTLIB2yV7zj1RylhC4x5pH7rGYqXf0QaulUqX-l222tSBmQf3d5fhSJZoF7oOZNNY86arzbSRVlbYWq8tvBZlsQx0nZvKL3ROqxKDqXzRaMOH1izQBfjcfYrdAdmZy9Lh4VffJ7Or4eziOpzcjW4uziZhzlMehQoVAufIOCQKC5UBhQgUA65UkUASJ8Wc-xpkKaQsjpDGKgWe80IyT8X75GS91ht_7tC1otIux7KUNZrOCZYOEsgGPFuhx7_QJ9PZ2pvzFDBGGUTcU_01lVvjnMW5yHX7eVJrpS4Fo2KVgfAZiFUG3w42gsb6D9rlX2i4Rl91ict_OTG9Hf7ktX_924aXdiFSiCERj9ORmNHxOb28T8U4_gBR9qh7
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_4889
crossref_primary_10_1016_j_physd_2020_132368
crossref_primary_10_1016_j_cma_2024_116930
crossref_primary_10_1002_nme_6942
crossref_primary_10_1016_j_jcp_2021_110260
crossref_primary_10_1063_5_0202509
crossref_primary_10_3390_fluids6060229
crossref_primary_10_1002_pamm_202200265
crossref_primary_10_1007_s10915_020_01232_x
crossref_primary_10_1002_fld_5118
crossref_primary_10_1007_s10444_019_09722_9
crossref_primary_10_1007_s10915_022_02082_5
crossref_primary_10_1016_j_jcp_2020_109789
crossref_primary_10_1016_j_camwa_2021_10_006
crossref_primary_10_3390_act13030088
crossref_primary_10_1109_TMTT_2022_3205597
crossref_primary_10_1051_m2an_2022044
crossref_primary_10_1007_s11831_024_10197_1
crossref_primary_10_1016_j_crme_2019_11_012
crossref_primary_10_1016_j_jcp_2020_109550
crossref_primary_10_1016_j_jcp_2022_111904
crossref_primary_10_1016_j_amc_2023_127920
crossref_primary_10_1016_j_buildenv_2021_108315
crossref_primary_10_1016_j_cpc_2023_109022
crossref_primary_10_1137_19M1276686
crossref_primary_10_1016_j_jcp_2021_110378
crossref_primary_10_1007_s10915_022_02019_y
crossref_primary_10_1063_5_0039986
crossref_primary_10_1007_s10237_019_01182_w
crossref_primary_10_1007_s10444_019_09712_x
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1002_nme_7624
crossref_primary_10_1115_1_4036491
crossref_primary_10_1137_16M1056444
crossref_primary_10_1016_j_compfluid_2020_104477
crossref_primary_10_1002_pamm_202000240
crossref_primary_10_1515_jnma_2022_0025
crossref_primary_10_1016_j_compfluid_2022_105604
crossref_primary_10_1109_TMAG_2024_3358540
crossref_primary_10_1088_1742_6596_1669_1_012031
crossref_primary_10_1016_j_cma_2016_10_005
crossref_primary_10_1051_m2an_2019030
crossref_primary_10_1016_j_cma_2018_06_035
crossref_primary_10_1515_jnma_2023_0039
crossref_primary_10_1109_TIM_2019_2955188
crossref_primary_10_3390_fluids6070259
crossref_primary_10_1016_j_jcp_2019_01_031
crossref_primary_10_1007_s10915_022_02049_6
crossref_primary_10_1016_j_physd_2023_133852
crossref_primary_10_1016_j_ijheatfluidflow_2020_108554
crossref_primary_10_1016_j_camwa_2016_01_030
crossref_primary_10_1016_j_jcp_2021_110666
crossref_primary_10_1016_j_pnucene_2022_104148
crossref_primary_10_3390_math7080757
crossref_primary_10_3934_acse_2023008
crossref_primary_10_1016_j_compfluid_2022_105536
crossref_primary_10_1016_j_compfluid_2018_01_035
crossref_primary_10_1002_fld_4684
crossref_primary_10_3389_fphys_2023_1148540
crossref_primary_10_1016_j_compfluid_2024_106307
crossref_primary_10_1137_19M128702X
crossref_primary_10_1016_j_cma_2024_117161
crossref_primary_10_1016_j_camwa_2019_06_026
crossref_primary_10_1016_j_camwa_2024_05_004
crossref_primary_10_1016_j_jcp_2019_07_053
crossref_primary_10_1063_5_0225839
crossref_primary_10_1002_pamm_201900435
crossref_primary_10_1016_j_camwa_2019_08_003
crossref_primary_10_1002_cnm_3367
crossref_primary_10_1016_j_camwa_2021_09_004
crossref_primary_10_1016_j_cma_2023_116683
crossref_primary_10_1186_s40323_023_00242_2
crossref_primary_10_1016_j_camwa_2021_07_016
crossref_primary_10_1016_j_ast_2023_108412
crossref_primary_10_1016_j_jcp_2020_109916
crossref_primary_10_1016_j_camwa_2020_03_019
crossref_primary_10_1007_s10444_019_09739_0
crossref_primary_10_1007_s00466_024_02517_w
crossref_primary_10_1186_s40323_016_0076_6
crossref_primary_10_3390_fluids6080266
crossref_primary_10_1007_s10444_019_09716_7
crossref_primary_10_1007_s10915_022_02032_1
crossref_primary_10_1016_j_cma_2021_114181
crossref_primary_10_1016_j_jcp_2020_109402
crossref_primary_10_1109_JMMCT_2023_3301978
crossref_primary_10_1016_j_jcp_2021_110802
crossref_primary_10_3390_biomimetics8070523
crossref_primary_10_1016_j_cma_2021_113762
crossref_primary_10_1016_j_compfluid_2019_104348
crossref_primary_10_1515_jnma_2020_0098
crossref_primary_10_1007_s10915_020_01328_4
crossref_primary_10_1002_nme_6321
crossref_primary_10_3390_fluids3040084
crossref_primary_10_1002_nme_6324
crossref_primary_10_1016_j_pnucene_2020_103551
crossref_primary_10_1093_imanum_dry094
crossref_primary_10_1103_PhysRevFluids_6_094401
crossref_primary_10_1016_j_cma_2016_08_006
crossref_primary_10_1016_j_finel_2023_104021
crossref_primary_10_1016_j_camwa_2023_09_039
crossref_primary_10_1002_nme_4963
crossref_primary_10_1002_nme_70005
crossref_primary_10_1007_s12289_022_01691_7
crossref_primary_10_3934_mine_2023096
crossref_primary_10_1016_j_jcp_2020_109513
crossref_primary_10_1137_17M1145136
crossref_primary_10_1016_j_heliyon_2024_e34928
crossref_primary_10_1007_s11837_019_03886_x
crossref_primary_10_1016_j_jcp_2025_113728
crossref_primary_10_1016_j_apnum_2022_12_003
crossref_primary_10_1002_nme_5923
crossref_primary_10_1016_j_cma_2018_11_038
crossref_primary_10_1016_j_cam_2024_115767
crossref_primary_10_1016_j_jcp_2024_113563
crossref_primary_10_1016_j_camwa_2022_07_017
crossref_primary_10_1007_s10915_021_01623_8
crossref_primary_10_1016_j_nucengdes_2023_112454
crossref_primary_10_1002_fld_4994
crossref_primary_10_1016_j_jcp_2024_113282
crossref_primary_10_1016_j_jcp_2020_109736
crossref_primary_10_1063_5_0061577
crossref_primary_10_1051_m2an_2022077
crossref_primary_10_1186_s40323_023_00249_9
crossref_primary_10_1080_10618562_2018_1514115
crossref_primary_10_1016_j_jcp_2017_05_010
crossref_primary_10_1002_nme_5499
crossref_primary_10_1016_j_camwa_2018_09_036
crossref_primary_10_1016_j_jcp_2023_112405
crossref_primary_10_1016_j_cpc_2019_107013
crossref_primary_10_1016_j_cma_2022_115627
crossref_primary_10_1016_j_jcp_2022_111412
crossref_primary_10_1016_j_jcp_2024_112863
crossref_primary_10_3390_en12071271
crossref_primary_10_1016_j_compfluid_2023_105813
crossref_primary_10_2139_ssrn_4134905
crossref_primary_10_1016_j_jcp_2024_113397
crossref_primary_10_1007_s10444_016_9485_9
crossref_primary_10_1088_1742_6596_2018_1_012042
crossref_primary_10_1002_fld_4363
crossref_primary_10_1137_19M1285330
crossref_primary_10_1016_j_camwa_2021_10_020
crossref_primary_10_3390_fluids6080296
crossref_primary_10_3934_mine_2022021
crossref_primary_10_1137_19M1246444
crossref_primary_10_1137_22M1509114
crossref_primary_10_1051_epjconf_202124706055
crossref_primary_10_1016_j_cam_2017_06_026
crossref_primary_10_1007_s10915_021_01467_2
crossref_primary_10_1016_j_cma_2022_114687
crossref_primary_10_1016_j_cma_2018_12_040
crossref_primary_10_1016_j_tsep_2021_100841
crossref_primary_10_2514_1_J061647
crossref_primary_10_1016_j_rinam_2023_100430
crossref_primary_10_1137_20M1341866
crossref_primary_10_1016_j_cma_2025_117811
crossref_primary_10_1137_17M1150591
crossref_primary_10_1002_fld_4252
crossref_primary_10_1016_j_cma_2022_115773
crossref_primary_10_1137_18M1221618
crossref_primary_10_1007_s10444_020_09827_6
crossref_primary_10_1016_j_compfluid_2020_104615
crossref_primary_10_1016_j_rineng_2021_100316
crossref_primary_10_1016_j_cma_2020_113273
crossref_primary_10_1002_nme_7295
crossref_primary_10_3390_fluids6090302
crossref_primary_10_1007_s10237_017_0893_7
crossref_primary_10_1016_j_cma_2016_12_011
crossref_primary_10_1007_s10915_023_02160_2
crossref_primary_10_2139_ssrn_3969807
crossref_primary_10_1016_j_jcp_2016_03_065
crossref_primary_10_1016_j_jcp_2020_109681
crossref_primary_10_3390_math8040570
crossref_primary_10_1016_j_jcp_2016_07_040
Cites_doi 10.1002/nme.1620170505
10.1016/j.physd.2005.02.006
10.1007/s00211-012-0510-8
10.1016/0045-7949(93)90340-J
10.1016/j.cma.2006.04.004
10.1146/annurev.fl.25.010193.002543
10.1137/0910047
10.1016/j.jcp.2014.01.011
10.1007/s001620050119
10.1016/j.cma.2010.12.026
10.1016/S0045-7949(00)00123-1
10.1016/j.camwa.2012.02.034
10.1051/m2an/2014013
10.1016/j.jcp.2008.09.024
10.1007/978-3-642-61623-5
10.1002/cnm.1465
10.1137/S1064827598333181
10.1137/S0036142900382612
10.1016/j.cma.2012.02.005
10.1007/s00162-009-0112-y
10.1016/j.crma.2004.08.006
10.1017/S0022112009006363
10.1016/j.jcp.2013.02.028
10.1063/1.869686
10.1016/j.cma.2006.08.004
10.1016/j.cma.2012.04.015
10.1002/num.20249
10.1002/fld.3777
10.1007/978-88-470-5522-3
10.1002/cnm.2559
10.1007/978-3-642-36519-5
10.1002/nme.3050
10.1016/0020-7225(81)90013-6
10.1007/s00211-013-0534-8
10.1093/oso/9780198528678.001.0001
10.1016/j.cma.2006.07.011
10.1137/110854084
10.1016/j.jcp.2013.12.004
10.1007/s00366-006-0049-3
10.1002/fld.867
10.1090/chel/343
10.1016/j.jcp.2009.03.008
10.1051/m2an/2013090
10.1016/0045-7825(90)90157-H
10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
10.1002/fld.2025
10.1016/j.cma.2006.09.005
10.1002/fld.2712
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.4772
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1161
ExternalDocumentID 3648544181
10_1002_nme_4772
NME4772
ark_67375_WNG_T0KB0DP6_K
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4642-bebe744e1475bedb970727b174bbd57535df4f4f89676132e03b674c4da1b173
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Jul 10 23:06:15 EDT 2025
Fri Jul 25 12:06:19 EDT 2025
Tue Jul 01 04:32:00 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Wed Jan 22 16:59:04 EST 2025
Wed Oct 30 09:49:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4642-bebe744e1475bedb970727b174bbd57535df4f4f89676132e03b674c4da1b173
Notes istex:22ECE7674C0E4321FF93591FD3F8E36AAD759F6D
ark:/67375/WNG-T0KB0DP6-K
Special issue on Model Order Reduction, D. Amsallem, C. Farhat, B. Haasdonk (eds.).
ArticleID:NME4772
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/11311/1038536
PQID 1671101724
PQPubID 996376
PageCount 26
ParticipantIDs proquest_miscellaneous_1685798497
proquest_journals_1671101724
crossref_citationtrail_10_1002_nme_4772
crossref_primary_10_1002_nme_4772
wiley_primary_10_1002_nme_4772_NME4772
istex_primary_ark_67375_WNG_T0KB0DP6_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 4 May 2015
PublicationDateYYYYMMDD 2015-05-04
PublicationDate_xml – month: 05
  year: 2015
  text: 4 May 2015
  day: 04
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis 2003; 40(2): 492-515.
Xiao D, Fang F, Buchan A, Pain C, Navon I, Du J, Hu G. Non-linear model reduction for the Navier-Stokes equations using the residual DEIM method. Journal of Computational Physics 2014; 263:1-18.
Deparis S, Rozza G. Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: applications to natural convection in a cavity. Journal of Computational Physics 2009; 228(12): 4359-4378.
Elman H., Silvester D, Wathen A, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, OUP: Oxford 2005.
Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. International Journal of Numerical Methods in Biomedical Engineering 2013; 29(7): 741-776.
Gerner A, Veroy K. Certified reduced basis methods for parametrized saddle point problems. SIAM Journal of Scientific Computing 2012; 34(5): A2812-A2836.
Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647.
Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7): 1685-1699.
Braack M, Burman E, John V, Lube G. Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 853-866.
Manzoni A. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Mathematical Modelling and Numerical Analysis 2014; 48(4): 1199-1226.
Akhtar I, Nayfeh AH, Ribbens CJ. On the stability and extension of reduced-order Galerkin models in incompressible flows. Theoretical and Computational Fluid Dynamics 2009; 23(3): 213-237.
Quarteroni A, Rozza G. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numerical Methods for Partial Differential Equations 2007; 23(4): 923-948.
Caiazzo A, Iliescu T, John V, Schyschlowa S. A numerical investigation of velocity-pressure reduced order models for incompressible flows. Journal of Computational Physics 2014; 259:598-616.
Weller J, Lombardi E, Bergmann M, Iollo A. Numerical methods for low-order modeling of fluid flows based on POD. Inteanational Journal of Numerical Methods of Fluids 2010; 63(2): 249-268.
Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering(2011), 862): 155-181.
Girault V, Raviart PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag: Berlin and New York 1986.
Burkardt J, Gunzburger M, Lee H. POD and CVT-based reduced-order modeling of Navier-Stokes flows. Computer Methods in Applied Mechanics and Engineering 2006; 196(1- 3): 337-355.
Rozza G, Huynh D, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik 2013; 125(1): 115-152.
Engelman MS, Strang G, Bathe KJ. The application of quasi-Newton methods in fluid mechanics. International Journal for Numerical Methods in Engineering 1981; 17(5): 707-718.
Manzoni A, Quarteroni A, Rozza G. Model reduction techniques for fast blood flow simulation in parametrized geometries. International Journal of Numerical Methods in Biomedical Engineering 2012; 28(6-7): 604-625.
Christensen E, Brøns M, Sørensen J. Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM Journal of Scientific Computing 1999; 21(4): 1419-1434.
Bathe K. The inf-sup condition and its evaluation for mixed finite element methods. Computers & Structures 2001; 792): 243-252.
Brezzi F, Bathe K. A discourse on the stability conditions for mixed finite element formulations. Computer Methods in Applied Mechanics and Engineering 1990; 82(1-3): 27-57.
Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 1988; 192(115): 173-355.
Bergmann M, Bruneau C, Iollo A. Enablers for robust POD models. Journal of Computational Physics 2009; 228(2): 516-538.
Rozza G, Veroy K. On the stability of reduced basis methods for Stokes equations in parametrized domains. Computer Methods in Applied Mechanics and Engineering 2007; 196(7): 1244-1260.
Wang Z, Akhtar I, Borggaard J, Iliescu T. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering 2012; 237-240: 10-26.
Temam R, Navier-Stokes Equations, AMS Chelsea: Providence, Rhode Island 2001.
Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique 2004; 339(9): 667-672.
Knezevic D, Peterson J. A high-performance parallel implementation of the certified reduced basis method. Computer Methods in Applied Mechanics and Engineering 2011; 200(13-16): 1455-1466.
Manzoni A, Quarteroni A, Rozza G. Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids 2012; 70(5): 646-670.
Boffi D, Brezzi F, Fortin M, Mixed Finite Elements and Applications, Springer-Verlag: Berlin-Heidelberg 2013.
Kirk B, Peterson J, Stogner R, Carey G. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering Computations 2006; 22(3-4): 237-254.
Hay A, Borggaard J, Pelletier D. Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics 2009; 629: 41-72.
Quarteroni A2014, Numerical Models for Differential Problems, Modeling, Simulation and Applications (MS&A), vol. 8, Springer-Verlag: Italia, Milano.
Gunzburger M, Peterson J, Shadid J. Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 1030-1047.
Quarteroni A, Rozza G, Manzoni A. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. Journal of Mathematics Indiana 2011; 1(3): 1-49.
Chapelle D, Gariah A, Moireau P, Sainte-Marie J. A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems - analysis, assessments and applications to parameter estimation. ESAIM Mathematical Modelling and Numerical Analysis 2013; 47(6): 1821-1843.
Iollo A, Lanteri S, Désidéri J. Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theoretical and Computational Fluid Dynamics 2000; 13(6): 377-396.
Iapichino L, Quarteroni A, Rozza G. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering 2012; 221-222: 63-82.
Ciarlet P. T-coercivity: application to the discretization of Helmholtz-like problems. Computers & Mathematics with Applications 2012; 64(1): 22-34.
Chesnel L, Ciarlet P. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik 2013; 124(1): 1-29.
Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2013; 72(12): 1219-1243.
Malkus D. Eigenproblems associated with the discrete LBB condition for incompressible finite elements. International Journal of Engineering Science 1981; 19(10): 1299-1310.
Sirisup S, Karniadakis GE. Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. Journal of Physics D 2005; 202(3): 218-237.
Ravindran S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International Journal of Numerical Methods in Fluids 2000; 34: 425-448.
Peterson J. The reduced basis method for incompressible viscous flow calculations. SIAM Journal of Scientific and Statistical Computing 1989; 10: 777-786.
Chapelle D, Bathe K. The inf-sup test. Computers & Structures 1993; 47(4-5): 537-545.
Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 1993; 25(1): 539-575.
Veroy K, Patera A. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Inteanational Journal of Numerical Methods of Fluids 2005; 47(8-9): 773-788.
2009; 23
1993; 25
2013; 29
1993; 47
2014; 259
2013; 47
2011; 1
1988; 192
2012; 221–222
2006; 196
2014; 48
2013; 125
1999; 21
2013; 124
2005
2013; 242
2012; 34
2010; 63
1990; 82
2005; 47
2012; 70
2009; 629
2012; 237–240
1989; 10
2001
2000; 34
2000; 13
2006; 22
2005; 202
2013; 72
2007; 196
2011; 86
1986
2012; 28
1981; 17
2014
2013
1981; 19
2009; 228
2004; 339
1998; 10
2003; 40
2001; 79
2007; 23
2014; 263
2011; 200
2012; 64
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Kirk B (e_1_2_10_55_1) 2006; 22
e_1_2_10_18_1
Lassila T (e_1_2_10_2_1) 2013
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
Amsallem D (e_1_2_10_24_1) 2013
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
Elman H. (e_1_2_10_47_1) 2005
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Quarteroni A (e_1_2_10_39_1) 2011; 1
Aubry N (e_1_2_10_4_1) 1988; 192
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Antil H (e_1_2_10_35_1) 2013
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – reference: Knezevic D, Peterson J. A high-performance parallel implementation of the certified reduced basis method. Computer Methods in Applied Mechanics and Engineering 2011; 200(13-16): 1455-1466.
– reference: Hay A, Borggaard J, Pelletier D. Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics 2009; 629: 41-72.
– reference: Ravindran S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International Journal of Numerical Methods in Fluids 2000; 34: 425-448.
– reference: Brezzi F, Bathe K. A discourse on the stability conditions for mixed finite element formulations. Computer Methods in Applied Mechanics and Engineering 1990; 82(1-3): 27-57.
– reference: Weller J, Lombardi E, Bergmann M, Iollo A. Numerical methods for low-order modeling of fluid flows based on POD. Inteanational Journal of Numerical Methods of Fluids 2010; 63(2): 249-268.
– reference: Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis 2003; 40(2): 492-515.
– reference: Iollo A, Lanteri S, Désidéri J. Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theoretical and Computational Fluid Dynamics 2000; 13(6): 377-396.
– reference: Sirisup S, Karniadakis GE. Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. Journal of Physics D 2005; 202(3): 218-237.
– reference: Chapelle D, Bathe K. The inf-sup test. Computers & Structures 1993; 47(4-5): 537-545.
– reference: Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2013; 72(12): 1219-1243.
– reference: Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. International Journal of Numerical Methods in Biomedical Engineering 2013; 29(7): 741-776.
– reference: Girault V, Raviart PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag: Berlin and New York 1986.
– reference: Elman H., Silvester D, Wathen A, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, OUP: Oxford 2005.
– reference: Christensen E, Brøns M, Sørensen J. Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM Journal of Scientific Computing 1999; 21(4): 1419-1434.
– reference: Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 1993; 25(1): 539-575.
– reference: Gerner A, Veroy K. Certified reduced basis methods for parametrized saddle point problems. SIAM Journal of Scientific Computing 2012; 34(5): A2812-A2836.
– reference: Wang Z, Akhtar I, Borggaard J, Iliescu T. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering 2012; 237-240: 10-26.
– reference: Bergmann M, Bruneau C, Iollo A. Enablers for robust POD models. Journal of Computational Physics 2009; 228(2): 516-538.
– reference: Akhtar I, Nayfeh AH, Ribbens CJ. On the stability and extension of reduced-order Galerkin models in incompressible flows. Theoretical and Computational Fluid Dynamics 2009; 23(3): 213-237.
– reference: Chapelle D, Gariah A, Moireau P, Sainte-Marie J. A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems - analysis, assessments and applications to parameter estimation. ESAIM Mathematical Modelling and Numerical Analysis 2013; 47(6): 1821-1843.
– reference: Temam R, Navier-Stokes Equations, AMS Chelsea: Providence, Rhode Island 2001.
– reference: Bathe K. The inf-sup condition and its evaluation for mixed finite element methods. Computers & Structures 2001; 792): 243-252.
– reference: Engelman MS, Strang G, Bathe KJ. The application of quasi-Newton methods in fluid mechanics. International Journal for Numerical Methods in Engineering 1981; 17(5): 707-718.
– reference: Manzoni A, Quarteroni A, Rozza G. Model reduction techniques for fast blood flow simulation in parametrized geometries. International Journal of Numerical Methods in Biomedical Engineering 2012; 28(6-7): 604-625.
– reference: Rozza G, Veroy K. On the stability of reduced basis methods for Stokes equations in parametrized domains. Computer Methods in Applied Mechanics and Engineering 2007; 196(7): 1244-1260.
– reference: Peterson J. The reduced basis method for incompressible viscous flow calculations. SIAM Journal of Scientific and Statistical Computing 1989; 10: 777-786.
– reference: Burkardt J, Gunzburger M, Lee H. POD and CVT-based reduced-order modeling of Navier-Stokes flows. Computer Methods in Applied Mechanics and Engineering 2006; 196(1- 3): 337-355.
– reference: Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7): 1685-1699.
– reference: Quarteroni A2014, Numerical Models for Differential Problems, Modeling, Simulation and Applications (MS&A), vol. 8, Springer-Verlag: Italia, Milano.
– reference: Gunzburger M, Peterson J, Shadid J. Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 1030-1047.
– reference: Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering(2011), 862): 155-181.
– reference: Rozza G, Huynh D, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik 2013; 125(1): 115-152.
– reference: Braack M, Burman E, John V, Lube G. Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 853-866.
– reference: Deparis S, Rozza G. Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: applications to natural convection in a cavity. Journal of Computational Physics 2009; 228(12): 4359-4378.
– reference: Manzoni A, Quarteroni A, Rozza G. Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids 2012; 70(5): 646-670.
– reference: Iapichino L, Quarteroni A, Rozza G. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering 2012; 221-222: 63-82.
– reference: Veroy K, Patera A. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Inteanational Journal of Numerical Methods of Fluids 2005; 47(8-9): 773-788.
– reference: Boffi D, Brezzi F, Fortin M, Mixed Finite Elements and Applications, Springer-Verlag: Berlin-Heidelberg 2013.
– reference: Malkus D. Eigenproblems associated with the discrete LBB condition for incompressible finite elements. International Journal of Engineering Science 1981; 19(10): 1299-1310.
– reference: Chesnel L, Ciarlet P. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik 2013; 124(1): 1-29.
– reference: Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647.
– reference: Quarteroni A, Rozza G, Manzoni A. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. Journal of Mathematics Indiana 2011; 1(3): 1-49.
– reference: Ciarlet P. T-coercivity: application to the discretization of Helmholtz-like problems. Computers & Mathematics with Applications 2012; 64(1): 22-34.
– reference: Kirk B, Peterson J, Stogner R, Carey G. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering Computations 2006; 22(3-4): 237-254.
– reference: Manzoni A. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Mathematical Modelling and Numerical Analysis 2014; 48(4): 1199-1226.
– reference: Quarteroni A, Rozza G. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numerical Methods for Partial Differential Equations 2007; 23(4): 923-948.
– reference: Xiao D, Fang F, Buchan A, Pain C, Navon I, Du J, Hu G. Non-linear model reduction for the Navier-Stokes equations using the residual DEIM method. Journal of Computational Physics 2014; 263:1-18.
– reference: Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique 2004; 339(9): 667-672.
– reference: Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 1988; 192(115): 173-355.
– reference: Caiazzo A, Iliescu T, John V, Schyschlowa S. A numerical investigation of velocity-pressure reduced order models for incompressible flows. Journal of Computational Physics 2014; 259:598-616.
– volume: 48
  start-page: 1199
  issue: 4
  year: 2014
  end-page: 1226
  article-title: An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows
  publication-title: ESAIM Mathematical Modelling and Numerical Analysis
– volume: 47
  start-page: 1821
  issue: 6
  year: 2013
  end-page: 1843
  article-title: A Galerkin strategy with proper orthogonal decomposition for parameter‐dependent problems – analysis, assessments and applications to parameter estimation
  publication-title: ESAIM Mathematical Modelling and Numerical Analysis
– volume: 196
  start-page: 853
  issue: 4–6
  year: 2007
  end-page: 866
  article-title: Stabilized finite element methods for the generalized Oseen problem
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 29
  start-page: 741
  issue: 7
  year: 2013
  end-page: 776
  article-title: A reduced computational and geometrical framework for inverse problems in hemodynamics
  publication-title: International Journal of Numerical Methods in Biomedical Engineering
– year: 2005
– volume: 70
  start-page: 646
  issue: 5
  year: 2012
  end-page: 670
  article-title: Shape optimization for viscous flows by reduced basis methods and free‐form deformation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  end-page: 672
  article-title: An ‘empirical interpolation’ method: application to efficient reduced‐basis discretization of partial differential equations
  publication-title: Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique
– volume: 196
  start-page: 1030
  issue: 4–6
  year: 2007
  end-page: 1047
  article-title: Reduced‐order modeling of time‐dependent PDEs with multiple parameters in the boundary data
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2001
– volume: 259
  start-page: 598
  year: 2014
  end-page: 616
  article-title: A numerical investigation of velocity‐pressure reduced order models for incompressible flows
  publication-title: Journal of Computational Physics
– volume: 228
  start-page: 516
  issue: 2
  year: 2009
  end-page: 538
  article-title: Enablers for robust POD models
  publication-title: Journal of Computational Physics
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  end-page: 575
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annual Review of Fluid Mechanics
– volume: 10
  start-page: 777
  year: 1989
  end-page: 786
  article-title: The reduced basis method for incompressible viscous flow calculations
  publication-title: SIAM Journal of Scientific and Statistical Computing
– year: 2014
– year: 1986
– volume: 23
  start-page: 923
  issue: 4
  year: 2007
  end-page: 948
  article-title: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 629
  start-page: 41
  year: 2009
  end-page: 72
  article-title: Local improvements to reduced‐order models using sensitivity analysis of the proper orthogonal decomposition
  publication-title: Journal of Fluid Mechanics
– volume: 82
  start-page: 27
  issue: 1–3
  year: 1990
  end-page: 57
  article-title: A discourse on the stability conditions for mixed finite element formulations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 63
  start-page: 249
  issue: 2
  year: 2010
  end-page: 268
  article-title: Numerical methods for low‐order modeling of fluid flows based on POD
  publication-title: Inteanational Journal of Numerical Methods of Fluids
– volume: 263
  start-page: 1
  year: 2014
  end-page: 18
  article-title: Non‐linear model reduction for the Navier–Stokes equations using the residual DEIM method
  publication-title: Journal of Computational Physics
– volume: 40
  start-page: 492
  issue: 2
  year: 2003
  end-page: 515
  article-title: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics
  publication-title: SIAM Journal on Numerical Analysis
– volume: 202
  start-page: 218
  issue: 3
  year: 2005
  end-page: 237
  article-title: Stability and accuracy of periodic flow solutions obtained by a POD‐penalty method
  publication-title: Journal of Physics D
– volume: 22
  start-page: 237
  issue: 3‐4
  year: 2006
  end-page: 254
  article-title: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Engineering Computations
– volume: 124
  start-page: 1
  issue: 1
  year: 2013
  end-page: 29
  article-title: T‐coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients
  publication-title: Numerische Mathematik
– volume: 19
  start-page: 1299
  issue: 10
  year: 1981
  end-page: 1310
  article-title: Eigenproblems associated with the discrete LBB condition for incompressible finite elements
  publication-title: International Journal of Engineering Science
– volume: 21
  start-page: 1419
  issue: 4
  year: 1999
  end-page: 1434
  article-title: Evaluation of proper orthogonal decomposition‐based decomposition techniques applied to parameter‐dependent nonturbulent flows
  publication-title: SIAM Journal of Scientific Computing
– volume: 221–222
  start-page: 63
  year: 2012
  end-page: 82
  article-title: A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 10
  start-page: 1685
  issue: 7
  year: 1998
  end-page: 1699
  article-title: Proper orthogonal decomposition and low‐dimensional models for driven cavity flows
  publication-title: Physics of Fluids
– volume: 86
  start-page: 155
  issue: 2
  year: 2011
  end-page: 181
  article-title: Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 47
  start-page: 773
  issue: 8‐9
  year: 2005
  end-page: 788
  article-title: Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds
  publication-title: Inteanational Journal of Numerical Methods of Fluids
– volume: 242
  start-page: 623
  year: 2013
  end-page: 647
  article-title: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows
  publication-title: Journal of Computational Physics
– volume: 200
  start-page: 1455
  issue: 13–16
  year: 2011
  end-page: 1466
  article-title: A high‐performance parallel implementation of the certified reduced basis method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 237–240
  start-page: 10
  year: 2012
  end-page: 26
  article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 377
  issue: 6
  year: 2000
  end-page: 396
  article-title: Stability properties of POD–Galerkin approximations for the compressible Navier–Stokes equations
  publication-title: Theoretical and Computational Fluid Dynamics
– volume: 34
  start-page: 425
  year: 2000
  end-page: 448
  article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition
  publication-title: International Journal of Numerical Methods in Fluids
– volume: 228
  start-page: 4359
  issue: 12
  year: 2009
  end-page: 4378
  article-title: Reduced basis method for multi‐parameter‐dependent steady Navier–Stokes equations: applications to natural convection in a cavity
  publication-title: Journal of Computational Physics
– volume: 196
  start-page: 1244
  issue: 7
  year: 2007
  end-page: 1260
  article-title: On the stability of reduced basis methods for Stokes equations in parametrized domains
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 192
  start-page: 173
  issue: 115
  year: 1988
  end-page: 355
  article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer
  publication-title: Journal of Fluid Mechanics
– volume: 17
  start-page: 707
  issue: 5
  year: 1981
  end-page: 718
  article-title: The application of quasi‐Newton methods in fluid mechanics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 196
  start-page: 337
  issue: 1– 3
  year: 2006
  end-page: 355
  article-title: POD and CVT‐based reduced‐order modeling of Navier–Stokes flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 1
  start-page: 1
  issue: 3
  year: 2011
  end-page: 49
  article-title: Certified reduced basis approximation for parametrized partial differential equations in industrial applications
  publication-title: Journal of Mathematics Indiana
– start-page: 215
  year: 2013
  end-page: 233
– volume: 72
  start-page: 1219
  issue: 12
  year: 2013
  end-page: 1243
  article-title: Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– start-page: 101
  year: 2013
  end-page: 136
– volume: 64
  start-page: 22
  issue: 1
  year: 2012
  end-page: 34
  article-title: T‐coercivity: application to the discretization of Helmholtz‐like problems
  publication-title: Computers & Mathematics with Applications
– volume: 23
  start-page: 213
  issue: 3
  year: 2009
  end-page: 237
  article-title: On the stability and extension of reduced‐order Galerkin models in incompressible flows
  publication-title: Theoretical and Computational Fluid Dynamics
– volume: 34
  start-page: A2812
  issue: 5
  year: 2012
  end-page: A2836
  article-title: Certified reduced basis methods for parametrized saddle point problems
  publication-title: SIAM Journal of Scientific Computing
– start-page: 235
  year: 2013
  end-page: 274
– volume: 79
  start-page: 243
  issue: 2
  year: 2001
  end-page: 252
  article-title: The inf‐sup condition and its evaluation for mixed finite element methods
  publication-title: Computers & Structures
– volume: 125
  start-page: 115
  issue: 1
  year: 2013
  end-page: 152
  article-title: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf‐sup stability constants
  publication-title: Numerische Mathematik
– volume: 28
  start-page: 604
  issue: 6–7
  year: 2012
  end-page: 625
  article-title: Model reduction techniques for fast blood flow simulation in parametrized geometries
  publication-title: International Journal of Numerical Methods in Biomedical Engineering
– volume: 47
  start-page: 537
  issue: 4‐5
  year: 1993
  end-page: 545
  article-title: The inf‐sup test
  publication-title: Computers & Structures
– year: 2013
– start-page: 101
  volume-title: Reduced Order Methods for Modeling and Computational Reduction
  year: 2013
  ident: e_1_2_10_35_1
– ident: e_1_2_10_33_1
  doi: 10.1002/nme.1620170505
– ident: e_1_2_10_26_1
  doi: 10.1016/j.physd.2005.02.006
– start-page: 235
  volume-title: Reduced Order Methods for Modeling and Computational Reduction
  year: 2013
  ident: e_1_2_10_2_1
– ident: e_1_2_10_51_1
  doi: 10.1007/s00211-012-0510-8
– ident: e_1_2_10_48_1
  doi: 10.1016/0045-7949(93)90340-J
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cma.2006.04.004
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev.fl.25.010193.002543
– ident: e_1_2_10_15_1
  doi: 10.1137/0910047
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jcp.2014.01.011
– ident: e_1_2_10_10_1
  doi: 10.1007/s001620050119
– start-page: 215
  volume-title: Reduced Order Methods for Modeling and Computational Reduction
  year: 2013
  ident: e_1_2_10_24_1
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cma.2010.12.026
– ident: e_1_2_10_49_1
  doi: 10.1016/S0045-7949(00)00123-1
– ident: e_1_2_10_50_1
  doi: 10.1016/j.camwa.2012.02.034
– ident: e_1_2_10_19_1
  doi: 10.1051/m2an/2014013
– ident: e_1_2_10_9_1
  doi: 10.1016/j.jcp.2008.09.024
– ident: e_1_2_10_46_1
  doi: 10.1007/978-3-642-61623-5
– ident: e_1_2_10_21_1
  doi: 10.1002/cnm.1465
– ident: e_1_2_10_12_1
  doi: 10.1137/S1064827598333181
– ident: e_1_2_10_13_1
  doi: 10.1137/S0036142900382612
– ident: e_1_2_10_32_1
  doi: 10.1016/j.cma.2012.02.005
– ident: e_1_2_10_25_1
  doi: 10.1007/s00162-009-0112-y
– ident: e_1_2_10_34_1
  doi: 10.1016/j.crma.2004.08.006
– ident: e_1_2_10_11_1
  doi: 10.1017/S0022112009006363
– volume: 192
  start-page: 173
  issue: 115
  year: 1988
  ident: e_1_2_10_4_1
  article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer
  publication-title: Journal of Fluid Mechanics
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jcp.2013.02.028
– ident: e_1_2_10_5_1
  doi: 10.1063/1.869686
– ident: e_1_2_10_36_1
  doi: 10.1016/j.cma.2006.08.004
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cma.2012.04.015
– ident: e_1_2_10_17_1
  doi: 10.1002/num.20249
– ident: e_1_2_10_22_1
  doi: 10.1002/fld.3777
– ident: e_1_2_10_38_1
  doi: 10.1007/978-88-470-5522-3
– ident: e_1_2_10_20_1
  doi: 10.1002/cnm.2559
– ident: e_1_2_10_44_1
  doi: 10.1007/978-3-642-36519-5
– ident: e_1_2_10_42_1
  doi: 10.1002/nme.3050
– ident: e_1_2_10_52_1
  doi: 10.1016/0020-7225(81)90013-6
– ident: e_1_2_10_29_1
  doi: 10.1007/s00211-013-0534-8
– volume: 1
  start-page: 1
  issue: 3
  year: 2011
  ident: e_1_2_10_39_1
  article-title: Certified reduced basis approximation for parametrized partial differential equations in industrial applications
  publication-title: Journal of Mathematics Indiana
– volume-title: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics
  year: 2005
  ident: e_1_2_10_47_1
  doi: 10.1093/oso/9780198528678.001.0001
– ident: e_1_2_10_53_1
  doi: 10.1016/j.cma.2006.07.011
– ident: e_1_2_10_30_1
  doi: 10.1137/110854084
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jcp.2013.12.004
– volume: 22
  start-page: 237
  issue: 3
  year: 2006
  ident: e_1_2_10_55_1
  article-title: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations
  publication-title: Engineering Computations
  doi: 10.1007/s00366-006-0049-3
– ident: e_1_2_10_16_1
  doi: 10.1002/fld.867
– ident: e_1_2_10_45_1
  doi: 10.1090/chel/343
– ident: e_1_2_10_18_1
  doi: 10.1016/j.jcp.2009.03.008
– ident: e_1_2_10_23_1
  doi: 10.1051/m2an/2013090
– ident: e_1_2_10_43_1
  doi: 10.1016/0045-7825(90)90157-H
– ident: e_1_2_10_7_1
  doi: 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W
– ident: e_1_2_10_3_1
– ident: e_1_2_10_8_1
  doi: 10.1002/fld.2025
– ident: e_1_2_10_28_1
  doi: 10.1016/j.cma.2006.09.005
– ident: e_1_2_10_31_1
  doi: 10.1002/fld.2712
SSID ssj0011503
Score 2.5917575
Snippet SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations...
In this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with...
Summary In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations...
In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1136
SubjectTerms Approximation
Decomposition
equivalent inf-sup condition
Low Reynolds number
Mathematical analysis
Navier-Stokes equations
Numerical analysis
parametrized Navier-Stokes equations
pressure stabilization
proper orthogonal decomposition
reduced basis method
Stabilization
Title Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations
URI https://api.istex.fr/ark:/67375/WNG-T0KB0DP6-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4772
https://www.proquest.com/docview/1671101724
https://www.proquest.com/docview/1685798497
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeIEHBgNEx0BGQvCULhdfkkdgNzG1TKyISTxYdnwqTV3a0bRS6RP_gX_IL-Gc3NQhkBDKQxT5JHacc_nsHH9m7KWPQGfKerRvBYEQuQqclD6IYrBCWSG0p_mOwVCdfBLvL-RFk1VJa2Fqfohuwo0so_LXZODWlfsbpKEF9AViQ3S_lKpFeOhjxxxFOCdpsztklkYt72wY77c33ohEt6lTVzdg5iZYraLN0Tb70razTjKZ9JcL18_Xv1E4_t-L3Gf3GhDK39Ra84DdgukO224AKW_MvdxhdzfYCvFq0FG8lg_Z6nx5PYficg1zjgiTcmzrFZ18NuZnHw5-fv9xjMGHpuJ5RVy-uiy6ciIcL2gvrzXWV-nZN040EUWdluuugA8tRWx8yvliNoGSw9ealLx8xEZHh6N3J0GzjUOQCxzdBA71RAsBkdDSgXeZDhE0ORwKOecRLSbSjwUeaaY0gosYwsQpLXLhbYRSyWO2NZ1N4QnjqG0KfAIZPguRRW7HluhsdKIynacp9Njr9ouavKE4p502rkxNzhwb7GtDfd1jLzrJ65rW4w8yryql6ATsfEJpcFqaz8NjMwpP34YHZ8qc9theqzWm8QCliZSOyN3FAuvqitF26YeMncJsSTKp1FkqMo11VSry18aY4eCQzrv_KviU3UFsJ6vcTLHHthbzJTxD_LRwzytL-QXaMRuP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfG9gA8MBggCgOMhOApXT4cOxFPwD4KXcPEitgDkhUnV2nq0o6mlUqf-B_4D_lLuHM-1CGQEMpDFPkSO86d72fn_DvGnuceqFimOdq3BEeITDomDHPH8yEVMhVC5bTeMUhk75N4fxaebbBXzV6Yih-iXXAjy7DjNRk4LUjvrbGGFtAVCA6vsS1K6G3nUx9b7ihCOkET3xHGkdcwz7r-XnPnFV-0Rd26vAI01-Gq9TeH2-xL09IqzGTcXcxNN1v9RuL4n69ym92qcSh_XSnOHbYBkx22XWNSXlt8ucNurhEW4tWgZXkt77Ll6eJyBsX5CmYcQSaF2VabOvl0xE8-7P_8_uMI_Q-txnPLXb48L9py4hwvKJ3XCuuzqvaNE1NEUUXmmgvgSUpOG59yOp-OoeTwteIlL--x4eHB8G3PqTM5OJnACY5jUFWUEOAJFRrITaxcxE0GZ0PG5AgYgzAfCTyiWCrEFz64gZFKZCJPPZQK7rPNyXQCDxhHhZOQBxDjsxBcZOkoJUYbFchYZVEEHfay-aQ6q1nOKdnGha74mX2Nfa2przvsWSt5WTF7_EHmhdWKViCdjSkSToX6c3Kkh27_jbt_InW_w3YbtdH1IFBqTyqPRjxfYF1tMZov_ZNJJzBdkEwUqjgSscK6rI78tTE6GRzQ-eG_Cj5l13vDwbE-fpf0H7EbCPVCG6opdtnmfLaAxwin5uaJNZtfaZUfqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxA8MBggCgOMhOApXS6OnTwCXTcoDRUrYtIerDg-laYubelFKn3iP_AP-SWck5s6BBJCeYgin8SO8x37s3P8mbEX1gMVy9Sif0twhMikY8LQOp4PqZCpEMrSfEc_kSefxfuz8KyKqqS1MKU-RDPhRp5RtNfk4DM7OtwSDc2hLZAbXme7QroRIbrzqZGOIqIT1OEdYRx5tfCs6x_Wd17pinapVtdXeOY2Wy26m-4eO68LWkaZjNurpWlnm980HP_vTe6w2xUL5a9L2Nxl12Cyz_YqRsorf1_ss1tbcoV41W80Xhf32Pp0NZtDfrGBOUeKSUG25ZJOPh3xwcfOz-8_jrH3obl4XiiXry_yJp0Ux3PazGuD-RVA-8ZJJyIv43LNJfAkpS4bn3K6nI5hweFrqUq-uM-G3aPh2xOn2sfByQQObxyDQFFCgCdUaMCaWLnImgyOhYyxSBeD0I4EHlEsFbILH9zASCUyYVMPrYIHbGcyncBDxhFuEmwAMT4LqUWWjlLSs1GBjFUWRdBir-ovqrNK45y22rjUpTqzr7GuNdV1iz1vLGelrscfbF4WoGgM0vmY4uBUqL8kx3ro9t64nYHUvRY7qFGjqyZgoT2pPGrvfIF5NcnovPRHJp3AdEU2UajiSMQK8yog8tfC6KR_ROdH_2r4jN0YdLr6w7uk95jdRJ4XFnGa4oDtLOcreIJcammeFk7zCyCyHmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supremizer+stabilization+of+POD-Galerkin+approximation+of+parametrized+steady+incompressible+Navier-Stokes+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Ballarin%2C+Francesco&rft.au=Manzoni%2C+Andrea&rft.au=Quarteroni%2C+Alfio&rft.au=Rozza%2C+Gianluigi&rft.date=2015-05-04&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=102&rft.issue=5&rft.spage=1136&rft.epage=1161&rft_id=info:doi/10.1002%2Fnme.4772&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon