Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations
SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd.
Saved in:
Published in | International journal for numerical methods in engineering Vol. 102; no. 5; pp. 1136 - 1161 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
04.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd. In this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd. In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with low Reynolds number. Copyright copyright 2014 John Wiley & Sons, Ltd. Summary In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with low Reynolds number. Copyright © 2014 John Wiley & Sons, Ltd. |
Author | Quarteroni, Alfio Ballarin, Francesco Rozza, Gianluigi Manzoni, Andrea |
Author_xml | – sequence: 1 givenname: Francesco surname: Ballarin fullname: Ballarin, Francesco organization: MOX - Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, I-20133, Milano, Italy – sequence: 2 givenname: Andrea surname: Manzoni fullname: Manzoni, Andrea email: Correspondence to: Andrea Manzoni, SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy., amanzoni@sissa.it organization: SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy – sequence: 3 givenname: Alfio surname: Quarteroni fullname: Quarteroni, Alfio organization: MOX - Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, I-20133, Milano, Italy – sequence: 4 givenname: Gianluigi surname: Rozza fullname: Rozza, Gianluigi organization: SISSA MathLab, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy |
BookMark | eNp1kU1Lw0AQhhdRsH6APyHgxUvqbrLJNEc_apXWKljwuOwmU1ibZONuotZf79ZKRVHmMId53uGdeffIdm1qJOSI0T6jNDqtK-xzgGiL9BjNIKQRhW3S86MsTLIB2yV7zj1RylhC4x5pH7rGYqXf0QaulUqX-l222tSBmQf3d5fhSJZoF7oOZNNY86arzbSRVlbYWq8tvBZlsQx0nZvKL3ROqxKDqXzRaMOH1izQBfjcfYrdAdmZy9Lh4VffJ7Or4eziOpzcjW4uziZhzlMehQoVAufIOCQKC5UBhQgUA65UkUASJ8Wc-xpkKaQsjpDGKgWe80IyT8X75GS91ht_7tC1otIux7KUNZrOCZYOEsgGPFuhx7_QJ9PZ2pvzFDBGGUTcU_01lVvjnMW5yHX7eVJrpS4Fo2KVgfAZiFUG3w42gsb6D9rlX2i4Rl91ict_OTG9Hf7ktX_924aXdiFSiCERj9ORmNHxOb28T8U4_gBR9qh7 |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1002_nme_4889 crossref_primary_10_1016_j_physd_2020_132368 crossref_primary_10_1016_j_cma_2024_116930 crossref_primary_10_1002_nme_6942 crossref_primary_10_1016_j_jcp_2021_110260 crossref_primary_10_1063_5_0202509 crossref_primary_10_3390_fluids6060229 crossref_primary_10_1002_pamm_202200265 crossref_primary_10_1007_s10915_020_01232_x crossref_primary_10_1002_fld_5118 crossref_primary_10_1007_s10444_019_09722_9 crossref_primary_10_1007_s10915_022_02082_5 crossref_primary_10_1016_j_jcp_2020_109789 crossref_primary_10_1016_j_camwa_2021_10_006 crossref_primary_10_3390_act13030088 crossref_primary_10_1109_TMTT_2022_3205597 crossref_primary_10_1051_m2an_2022044 crossref_primary_10_1007_s11831_024_10197_1 crossref_primary_10_1016_j_crme_2019_11_012 crossref_primary_10_1016_j_jcp_2020_109550 crossref_primary_10_1016_j_jcp_2022_111904 crossref_primary_10_1016_j_amc_2023_127920 crossref_primary_10_1016_j_buildenv_2021_108315 crossref_primary_10_1016_j_cpc_2023_109022 crossref_primary_10_1137_19M1276686 crossref_primary_10_1016_j_jcp_2021_110378 crossref_primary_10_1007_s10915_022_02019_y crossref_primary_10_1063_5_0039986 crossref_primary_10_1007_s10237_019_01182_w crossref_primary_10_1007_s10444_019_09712_x crossref_primary_10_1016_j_cma_2024_117458 crossref_primary_10_1002_nme_7624 crossref_primary_10_1115_1_4036491 crossref_primary_10_1137_16M1056444 crossref_primary_10_1016_j_compfluid_2020_104477 crossref_primary_10_1002_pamm_202000240 crossref_primary_10_1515_jnma_2022_0025 crossref_primary_10_1016_j_compfluid_2022_105604 crossref_primary_10_1109_TMAG_2024_3358540 crossref_primary_10_1088_1742_6596_1669_1_012031 crossref_primary_10_1016_j_cma_2016_10_005 crossref_primary_10_1051_m2an_2019030 crossref_primary_10_1016_j_cma_2018_06_035 crossref_primary_10_1515_jnma_2023_0039 crossref_primary_10_1109_TIM_2019_2955188 crossref_primary_10_3390_fluids6070259 crossref_primary_10_1016_j_jcp_2019_01_031 crossref_primary_10_1007_s10915_022_02049_6 crossref_primary_10_1016_j_physd_2023_133852 crossref_primary_10_1016_j_ijheatfluidflow_2020_108554 crossref_primary_10_1016_j_camwa_2016_01_030 crossref_primary_10_1016_j_jcp_2021_110666 crossref_primary_10_1016_j_pnucene_2022_104148 crossref_primary_10_3390_math7080757 crossref_primary_10_3934_acse_2023008 crossref_primary_10_1016_j_compfluid_2022_105536 crossref_primary_10_1016_j_compfluid_2018_01_035 crossref_primary_10_1002_fld_4684 crossref_primary_10_3389_fphys_2023_1148540 crossref_primary_10_1016_j_compfluid_2024_106307 crossref_primary_10_1137_19M128702X crossref_primary_10_1016_j_cma_2024_117161 crossref_primary_10_1016_j_camwa_2019_06_026 crossref_primary_10_1016_j_camwa_2024_05_004 crossref_primary_10_1016_j_jcp_2019_07_053 crossref_primary_10_1063_5_0225839 crossref_primary_10_1002_pamm_201900435 crossref_primary_10_1016_j_camwa_2019_08_003 crossref_primary_10_1002_cnm_3367 crossref_primary_10_1016_j_camwa_2021_09_004 crossref_primary_10_1016_j_cma_2023_116683 crossref_primary_10_1186_s40323_023_00242_2 crossref_primary_10_1016_j_camwa_2021_07_016 crossref_primary_10_1016_j_ast_2023_108412 crossref_primary_10_1016_j_jcp_2020_109916 crossref_primary_10_1016_j_camwa_2020_03_019 crossref_primary_10_1007_s10444_019_09739_0 crossref_primary_10_1007_s00466_024_02517_w crossref_primary_10_1186_s40323_016_0076_6 crossref_primary_10_3390_fluids6080266 crossref_primary_10_1007_s10444_019_09716_7 crossref_primary_10_1007_s10915_022_02032_1 crossref_primary_10_1016_j_cma_2021_114181 crossref_primary_10_1016_j_jcp_2020_109402 crossref_primary_10_1109_JMMCT_2023_3301978 crossref_primary_10_1016_j_jcp_2021_110802 crossref_primary_10_3390_biomimetics8070523 crossref_primary_10_1016_j_cma_2021_113762 crossref_primary_10_1016_j_compfluid_2019_104348 crossref_primary_10_1515_jnma_2020_0098 crossref_primary_10_1007_s10915_020_01328_4 crossref_primary_10_1002_nme_6321 crossref_primary_10_3390_fluids3040084 crossref_primary_10_1002_nme_6324 crossref_primary_10_1016_j_pnucene_2020_103551 crossref_primary_10_1093_imanum_dry094 crossref_primary_10_1103_PhysRevFluids_6_094401 crossref_primary_10_1016_j_cma_2016_08_006 crossref_primary_10_1016_j_finel_2023_104021 crossref_primary_10_1016_j_camwa_2023_09_039 crossref_primary_10_1002_nme_4963 crossref_primary_10_1002_nme_70005 crossref_primary_10_1007_s12289_022_01691_7 crossref_primary_10_3934_mine_2023096 crossref_primary_10_1016_j_jcp_2020_109513 crossref_primary_10_1137_17M1145136 crossref_primary_10_1016_j_heliyon_2024_e34928 crossref_primary_10_1007_s11837_019_03886_x crossref_primary_10_1016_j_jcp_2025_113728 crossref_primary_10_1016_j_apnum_2022_12_003 crossref_primary_10_1002_nme_5923 crossref_primary_10_1016_j_cma_2018_11_038 crossref_primary_10_1016_j_cam_2024_115767 crossref_primary_10_1016_j_jcp_2024_113563 crossref_primary_10_1016_j_camwa_2022_07_017 crossref_primary_10_1007_s10915_021_01623_8 crossref_primary_10_1016_j_nucengdes_2023_112454 crossref_primary_10_1002_fld_4994 crossref_primary_10_1016_j_jcp_2024_113282 crossref_primary_10_1016_j_jcp_2020_109736 crossref_primary_10_1063_5_0061577 crossref_primary_10_1051_m2an_2022077 crossref_primary_10_1186_s40323_023_00249_9 crossref_primary_10_1080_10618562_2018_1514115 crossref_primary_10_1016_j_jcp_2017_05_010 crossref_primary_10_1002_nme_5499 crossref_primary_10_1016_j_camwa_2018_09_036 crossref_primary_10_1016_j_jcp_2023_112405 crossref_primary_10_1016_j_cpc_2019_107013 crossref_primary_10_1016_j_cma_2022_115627 crossref_primary_10_1016_j_jcp_2022_111412 crossref_primary_10_1016_j_jcp_2024_112863 crossref_primary_10_3390_en12071271 crossref_primary_10_1016_j_compfluid_2023_105813 crossref_primary_10_2139_ssrn_4134905 crossref_primary_10_1016_j_jcp_2024_113397 crossref_primary_10_1007_s10444_016_9485_9 crossref_primary_10_1088_1742_6596_2018_1_012042 crossref_primary_10_1002_fld_4363 crossref_primary_10_1137_19M1285330 crossref_primary_10_1016_j_camwa_2021_10_020 crossref_primary_10_3390_fluids6080296 crossref_primary_10_3934_mine_2022021 crossref_primary_10_1137_19M1246444 crossref_primary_10_1137_22M1509114 crossref_primary_10_1051_epjconf_202124706055 crossref_primary_10_1016_j_cam_2017_06_026 crossref_primary_10_1007_s10915_021_01467_2 crossref_primary_10_1016_j_cma_2022_114687 crossref_primary_10_1016_j_cma_2018_12_040 crossref_primary_10_1016_j_tsep_2021_100841 crossref_primary_10_2514_1_J061647 crossref_primary_10_1016_j_rinam_2023_100430 crossref_primary_10_1137_20M1341866 crossref_primary_10_1016_j_cma_2025_117811 crossref_primary_10_1137_17M1150591 crossref_primary_10_1002_fld_4252 crossref_primary_10_1016_j_cma_2022_115773 crossref_primary_10_1137_18M1221618 crossref_primary_10_1007_s10444_020_09827_6 crossref_primary_10_1016_j_compfluid_2020_104615 crossref_primary_10_1016_j_rineng_2021_100316 crossref_primary_10_1016_j_cma_2020_113273 crossref_primary_10_1002_nme_7295 crossref_primary_10_3390_fluids6090302 crossref_primary_10_1007_s10237_017_0893_7 crossref_primary_10_1016_j_cma_2016_12_011 crossref_primary_10_1007_s10915_023_02160_2 crossref_primary_10_2139_ssrn_3969807 crossref_primary_10_1016_j_jcp_2016_03_065 crossref_primary_10_1016_j_jcp_2020_109681 crossref_primary_10_3390_math8040570 crossref_primary_10_1016_j_jcp_2016_07_040 |
Cites_doi | 10.1002/nme.1620170505 10.1016/j.physd.2005.02.006 10.1007/s00211-012-0510-8 10.1016/0045-7949(93)90340-J 10.1016/j.cma.2006.04.004 10.1146/annurev.fl.25.010193.002543 10.1137/0910047 10.1016/j.jcp.2014.01.011 10.1007/s001620050119 10.1016/j.cma.2010.12.026 10.1016/S0045-7949(00)00123-1 10.1016/j.camwa.2012.02.034 10.1051/m2an/2014013 10.1016/j.jcp.2008.09.024 10.1007/978-3-642-61623-5 10.1002/cnm.1465 10.1137/S1064827598333181 10.1137/S0036142900382612 10.1016/j.cma.2012.02.005 10.1007/s00162-009-0112-y 10.1016/j.crma.2004.08.006 10.1017/S0022112009006363 10.1016/j.jcp.2013.02.028 10.1063/1.869686 10.1016/j.cma.2006.08.004 10.1016/j.cma.2012.04.015 10.1002/num.20249 10.1002/fld.3777 10.1007/978-88-470-5522-3 10.1002/cnm.2559 10.1007/978-3-642-36519-5 10.1002/nme.3050 10.1016/0020-7225(81)90013-6 10.1007/s00211-013-0534-8 10.1093/oso/9780198528678.001.0001 10.1016/j.cma.2006.07.011 10.1137/110854084 10.1016/j.jcp.2013.12.004 10.1007/s00366-006-0049-3 10.1002/fld.867 10.1090/chel/343 10.1016/j.jcp.2009.03.008 10.1051/m2an/2013090 10.1016/0045-7825(90)90157-H 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W 10.1002/fld.2025 10.1016/j.cma.2006.09.005 10.1002/fld.2712 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.4772 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 1161 |
ExternalDocumentID | 3648544181 10_1002_nme_4772 NME4772 ark_67375_WNG_T0KB0DP6_K |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c4642-bebe744e1475bedb970727b174bbd57535df4f4f89676132e03b674c4da1b173 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Thu Jul 10 23:06:15 EDT 2025 Fri Jul 25 12:06:19 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Wed Jan 22 16:59:04 EST 2025 Wed Oct 30 09:49:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4642-bebe744e1475bedb970727b174bbd57535df4f4f89676132e03b674c4da1b173 |
Notes | istex:22ECE7674C0E4321FF93591FD3F8E36AAD759F6D ark:/67375/WNG-T0KB0DP6-K Special issue on Model Order Reduction, D. Amsallem, C. Farhat, B. Haasdonk (eds.). ArticleID:NME4772 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11311/1038536 |
PQID | 1671101724 |
PQPubID | 996376 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_1685798497 proquest_journals_1671101724 crossref_citationtrail_10_1002_nme_4772 crossref_primary_10_1002_nme_4772 wiley_primary_10_1002_nme_4772_NME4772 istex_primary_ark_67375_WNG_T0KB0DP6_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 4 May 2015 |
PublicationDateYYYYMMDD | 2015-05-04 |
PublicationDate_xml | – month: 05 year: 2015 text: 4 May 2015 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis 2003; 40(2): 492-515. Xiao D, Fang F, Buchan A, Pain C, Navon I, Du J, Hu G. Non-linear model reduction for the Navier-Stokes equations using the residual DEIM method. Journal of Computational Physics 2014; 263:1-18. Deparis S, Rozza G. Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: applications to natural convection in a cavity. Journal of Computational Physics 2009; 228(12): 4359-4378. Elman H., Silvester D, Wathen A, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, OUP: Oxford 2005. Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. International Journal of Numerical Methods in Biomedical Engineering 2013; 29(7): 741-776. Gerner A, Veroy K. Certified reduced basis methods for parametrized saddle point problems. SIAM Journal of Scientific Computing 2012; 34(5): A2812-A2836. Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647. Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7): 1685-1699. Braack M, Burman E, John V, Lube G. Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 853-866. Manzoni A. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Mathematical Modelling and Numerical Analysis 2014; 48(4): 1199-1226. Akhtar I, Nayfeh AH, Ribbens CJ. On the stability and extension of reduced-order Galerkin models in incompressible flows. Theoretical and Computational Fluid Dynamics 2009; 23(3): 213-237. Quarteroni A, Rozza G. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numerical Methods for Partial Differential Equations 2007; 23(4): 923-948. Caiazzo A, Iliescu T, John V, Schyschlowa S. A numerical investigation of velocity-pressure reduced order models for incompressible flows. Journal of Computational Physics 2014; 259:598-616. Weller J, Lombardi E, Bergmann M, Iollo A. Numerical methods for low-order modeling of fluid flows based on POD. Inteanational Journal of Numerical Methods of Fluids 2010; 63(2): 249-268. Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering(2011), 862): 155-181. Girault V, Raviart PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag: Berlin and New York 1986. Burkardt J, Gunzburger M, Lee H. POD and CVT-based reduced-order modeling of Navier-Stokes flows. Computer Methods in Applied Mechanics and Engineering 2006; 196(1- 3): 337-355. Rozza G, Huynh D, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik 2013; 125(1): 115-152. Engelman MS, Strang G, Bathe KJ. The application of quasi-Newton methods in fluid mechanics. International Journal for Numerical Methods in Engineering 1981; 17(5): 707-718. Manzoni A, Quarteroni A, Rozza G. Model reduction techniques for fast blood flow simulation in parametrized geometries. International Journal of Numerical Methods in Biomedical Engineering 2012; 28(6-7): 604-625. Christensen E, Brøns M, Sørensen J. Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM Journal of Scientific Computing 1999; 21(4): 1419-1434. Bathe K. The inf-sup condition and its evaluation for mixed finite element methods. Computers & Structures 2001; 792): 243-252. Brezzi F, Bathe K. A discourse on the stability conditions for mixed finite element formulations. Computer Methods in Applied Mechanics and Engineering 1990; 82(1-3): 27-57. Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 1988; 192(115): 173-355. Bergmann M, Bruneau C, Iollo A. Enablers for robust POD models. Journal of Computational Physics 2009; 228(2): 516-538. Rozza G, Veroy K. On the stability of reduced basis methods for Stokes equations in parametrized domains. Computer Methods in Applied Mechanics and Engineering 2007; 196(7): 1244-1260. Wang Z, Akhtar I, Borggaard J, Iliescu T. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering 2012; 237-240: 10-26. Temam R, Navier-Stokes Equations, AMS Chelsea: Providence, Rhode Island 2001. Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique 2004; 339(9): 667-672. Knezevic D, Peterson J. A high-performance parallel implementation of the certified reduced basis method. Computer Methods in Applied Mechanics and Engineering 2011; 200(13-16): 1455-1466. Manzoni A, Quarteroni A, Rozza G. Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids 2012; 70(5): 646-670. Boffi D, Brezzi F, Fortin M, Mixed Finite Elements and Applications, Springer-Verlag: Berlin-Heidelberg 2013. Kirk B, Peterson J, Stogner R, Carey G. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering Computations 2006; 22(3-4): 237-254. Hay A, Borggaard J, Pelletier D. Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics 2009; 629: 41-72. Quarteroni A2014, Numerical Models for Differential Problems, Modeling, Simulation and Applications (MS&A), vol. 8, Springer-Verlag: Italia, Milano. Gunzburger M, Peterson J, Shadid J. Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 1030-1047. Quarteroni A, Rozza G, Manzoni A. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. Journal of Mathematics Indiana 2011; 1(3): 1-49. Chapelle D, Gariah A, Moireau P, Sainte-Marie J. A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems - analysis, assessments and applications to parameter estimation. ESAIM Mathematical Modelling and Numerical Analysis 2013; 47(6): 1821-1843. Iollo A, Lanteri S, Désidéri J. Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theoretical and Computational Fluid Dynamics 2000; 13(6): 377-396. Iapichino L, Quarteroni A, Rozza G. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering 2012; 221-222: 63-82. Ciarlet P. T-coercivity: application to the discretization of Helmholtz-like problems. Computers & Mathematics with Applications 2012; 64(1): 22-34. Chesnel L, Ciarlet P. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik 2013; 124(1): 1-29. Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2013; 72(12): 1219-1243. Malkus D. Eigenproblems associated with the discrete LBB condition for incompressible finite elements. International Journal of Engineering Science 1981; 19(10): 1299-1310. Sirisup S, Karniadakis GE. Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. Journal of Physics D 2005; 202(3): 218-237. Ravindran S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International Journal of Numerical Methods in Fluids 2000; 34: 425-448. Peterson J. The reduced basis method for incompressible viscous flow calculations. SIAM Journal of Scientific and Statistical Computing 1989; 10: 777-786. Chapelle D, Bathe K. The inf-sup test. Computers & Structures 1993; 47(4-5): 537-545. Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 1993; 25(1): 539-575. Veroy K, Patera A. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Inteanational Journal of Numerical Methods of Fluids 2005; 47(8-9): 773-788. 2009; 23 1993; 25 2013; 29 1993; 47 2014; 259 2013; 47 2011; 1 1988; 192 2012; 221–222 2006; 196 2014; 48 2013; 125 1999; 21 2013; 124 2005 2013; 242 2012; 34 2010; 63 1990; 82 2005; 47 2012; 70 2009; 629 2012; 237–240 1989; 10 2001 2000; 34 2000; 13 2006; 22 2005; 202 2013; 72 2007; 196 2011; 86 1986 2012; 28 1981; 17 2014 2013 1981; 19 2009; 228 2004; 339 1998; 10 2003; 40 2001; 79 2007; 23 2014; 263 2011; 200 2012; 64 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Kirk B (e_1_2_10_55_1) 2006; 22 e_1_2_10_18_1 Lassila T (e_1_2_10_2_1) 2013 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 Amsallem D (e_1_2_10_24_1) 2013 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 Elman H. (e_1_2_10_47_1) 2005 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Quarteroni A (e_1_2_10_39_1) 2011; 1 Aubry N (e_1_2_10_4_1) 1988; 192 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Antil H (e_1_2_10_35_1) 2013 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 |
References_xml | – reference: Knezevic D, Peterson J. A high-performance parallel implementation of the certified reduced basis method. Computer Methods in Applied Mechanics and Engineering 2011; 200(13-16): 1455-1466. – reference: Hay A, Borggaard J, Pelletier D. Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics 2009; 629: 41-72. – reference: Ravindran S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International Journal of Numerical Methods in Fluids 2000; 34: 425-448. – reference: Brezzi F, Bathe K. A discourse on the stability conditions for mixed finite element formulations. Computer Methods in Applied Mechanics and Engineering 1990; 82(1-3): 27-57. – reference: Weller J, Lombardi E, Bergmann M, Iollo A. Numerical methods for low-order modeling of fluid flows based on POD. Inteanational Journal of Numerical Methods of Fluids 2010; 63(2): 249-268. – reference: Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM Journal on Numerical Analysis 2003; 40(2): 492-515. – reference: Iollo A, Lanteri S, Désidéri J. Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theoretical and Computational Fluid Dynamics 2000; 13(6): 377-396. – reference: Sirisup S, Karniadakis GE. Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. Journal of Physics D 2005; 202(3): 218-237. – reference: Chapelle D, Bathe K. The inf-sup test. Computers & Structures 1993; 47(4-5): 537-545. – reference: Baiges J, Codina R, Idelsohn S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2013; 72(12): 1219-1243. – reference: Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. International Journal of Numerical Methods in Biomedical Engineering 2013; 29(7): 741-776. – reference: Girault V, Raviart PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag: Berlin and New York 1986. – reference: Elman H., Silvester D, Wathen A, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, OUP: Oxford 2005. – reference: Christensen E, Brøns M, Sørensen J. Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM Journal of Scientific Computing 1999; 21(4): 1419-1434. – reference: Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 1993; 25(1): 539-575. – reference: Gerner A, Veroy K. Certified reduced basis methods for parametrized saddle point problems. SIAM Journal of Scientific Computing 2012; 34(5): A2812-A2836. – reference: Wang Z, Akhtar I, Borggaard J, Iliescu T. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering 2012; 237-240: 10-26. – reference: Bergmann M, Bruneau C, Iollo A. Enablers for robust POD models. Journal of Computational Physics 2009; 228(2): 516-538. – reference: Akhtar I, Nayfeh AH, Ribbens CJ. On the stability and extension of reduced-order Galerkin models in incompressible flows. Theoretical and Computational Fluid Dynamics 2009; 23(3): 213-237. – reference: Chapelle D, Gariah A, Moireau P, Sainte-Marie J. A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems - analysis, assessments and applications to parameter estimation. ESAIM Mathematical Modelling and Numerical Analysis 2013; 47(6): 1821-1843. – reference: Temam R, Navier-Stokes Equations, AMS Chelsea: Providence, Rhode Island 2001. – reference: Bathe K. The inf-sup condition and its evaluation for mixed finite element methods. Computers & Structures 2001; 792): 243-252. – reference: Engelman MS, Strang G, Bathe KJ. The application of quasi-Newton methods in fluid mechanics. International Journal for Numerical Methods in Engineering 1981; 17(5): 707-718. – reference: Manzoni A, Quarteroni A, Rozza G. Model reduction techniques for fast blood flow simulation in parametrized geometries. International Journal of Numerical Methods in Biomedical Engineering 2012; 28(6-7): 604-625. – reference: Rozza G, Veroy K. On the stability of reduced basis methods for Stokes equations in parametrized domains. Computer Methods in Applied Mechanics and Engineering 2007; 196(7): 1244-1260. – reference: Peterson J. The reduced basis method for incompressible viscous flow calculations. SIAM Journal of Scientific and Statistical Computing 1989; 10: 777-786. – reference: Burkardt J, Gunzburger M, Lee H. POD and CVT-based reduced-order modeling of Navier-Stokes flows. Computer Methods in Applied Mechanics and Engineering 2006; 196(1- 3): 337-355. – reference: Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7): 1685-1699. – reference: Quarteroni A2014, Numerical Models for Differential Problems, Modeling, Simulation and Applications (MS&A), vol. 8, Springer-Verlag: Italia, Milano. – reference: Gunzburger M, Peterson J, Shadid J. Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 1030-1047. – reference: Carlberg K, Bou-Mosleh C, Farhat C. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering(2011), 862): 155-181. – reference: Rozza G, Huynh D, Manzoni A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numerische Mathematik 2013; 125(1): 115-152. – reference: Braack M, Burman E, John V, Lube G. Stabilized finite element methods for the generalized Oseen problem. Computer Methods in Applied Mechanics and Engineering 2007; 196(4-6): 853-866. – reference: Deparis S, Rozza G. Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: applications to natural convection in a cavity. Journal of Computational Physics 2009; 228(12): 4359-4378. – reference: Manzoni A, Quarteroni A, Rozza G. Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids 2012; 70(5): 646-670. – reference: Iapichino L, Quarteroni A, Rozza G. A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering 2012; 221-222: 63-82. – reference: Veroy K, Patera A. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Inteanational Journal of Numerical Methods of Fluids 2005; 47(8-9): 773-788. – reference: Boffi D, Brezzi F, Fortin M, Mixed Finite Elements and Applications, Springer-Verlag: Berlin-Heidelberg 2013. – reference: Malkus D. Eigenproblems associated with the discrete LBB condition for incompressible finite elements. International Journal of Engineering Science 1981; 19(10): 1299-1310. – reference: Chesnel L, Ciarlet P. T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik 2013; 124(1): 1-29. – reference: Carlberg K, Farhat C, Cortial J, Amsallem D. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 2013; 242:623-647. – reference: Quarteroni A, Rozza G, Manzoni A. Certified reduced basis approximation for parametrized partial differential equations in industrial applications. Journal of Mathematics Indiana 2011; 1(3): 1-49. – reference: Ciarlet P. T-coercivity: application to the discretization of Helmholtz-like problems. Computers & Mathematics with Applications 2012; 64(1): 22-34. – reference: Kirk B, Peterson J, Stogner R, Carey G. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering Computations 2006; 22(3-4): 237-254. – reference: Manzoni A. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Mathematical Modelling and Numerical Analysis 2014; 48(4): 1199-1226. – reference: Quarteroni A, Rozza G. Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numerical Methods for Partial Differential Equations 2007; 23(4): 923-948. – reference: Xiao D, Fang F, Buchan A, Pain C, Navon I, Du J, Hu G. Non-linear model reduction for the Navier-Stokes equations using the residual DEIM method. Journal of Computational Physics 2014; 263:1-18. – reference: Barrault M, Maday Y, Nguyen N, Patera A. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique 2004; 339(9): 667-672. – reference: Aubry N, Holmes P, Lumley J, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 1988; 192(115): 173-355. – reference: Caiazzo A, Iliescu T, John V, Schyschlowa S. A numerical investigation of velocity-pressure reduced order models for incompressible flows. Journal of Computational Physics 2014; 259:598-616. – volume: 48 start-page: 1199 issue: 4 year: 2014 end-page: 1226 article-title: An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows publication-title: ESAIM Mathematical Modelling and Numerical Analysis – volume: 47 start-page: 1821 issue: 6 year: 2013 end-page: 1843 article-title: A Galerkin strategy with proper orthogonal decomposition for parameter‐dependent problems – analysis, assessments and applications to parameter estimation publication-title: ESAIM Mathematical Modelling and Numerical Analysis – volume: 196 start-page: 853 issue: 4–6 year: 2007 end-page: 866 article-title: Stabilized finite element methods for the generalized Oseen problem publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 29 start-page: 741 issue: 7 year: 2013 end-page: 776 article-title: A reduced computational and geometrical framework for inverse problems in hemodynamics publication-title: International Journal of Numerical Methods in Biomedical Engineering – year: 2005 – volume: 70 start-page: 646 issue: 5 year: 2012 end-page: 670 article-title: Shape optimization for viscous flows by reduced basis methods and free‐form deformation publication-title: International Journal for Numerical Methods in Fluids – volume: 339 start-page: 667 issue: 9 year: 2004 end-page: 672 article-title: An ‘empirical interpolation’ method: application to efficient reduced‐basis discretization of partial differential equations publication-title: Comptes Rendus de l Academie des Sciences Paris. Série. I Mathematique – volume: 196 start-page: 1030 issue: 4–6 year: 2007 end-page: 1047 article-title: Reduced‐order modeling of time‐dependent PDEs with multiple parameters in the boundary data publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2001 – volume: 259 start-page: 598 year: 2014 end-page: 616 article-title: A numerical investigation of velocity‐pressure reduced order models for incompressible flows publication-title: Journal of Computational Physics – volume: 228 start-page: 516 issue: 2 year: 2009 end-page: 538 article-title: Enablers for robust POD models publication-title: Journal of Computational Physics – volume: 25 start-page: 539 issue: 1 year: 1993 end-page: 575 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annual Review of Fluid Mechanics – volume: 10 start-page: 777 year: 1989 end-page: 786 article-title: The reduced basis method for incompressible viscous flow calculations publication-title: SIAM Journal of Scientific and Statistical Computing – year: 2014 – year: 1986 – volume: 23 start-page: 923 issue: 4 year: 2007 end-page: 948 article-title: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods publication-title: Numerical Methods for Partial Differential Equations – volume: 629 start-page: 41 year: 2009 end-page: 72 article-title: Local improvements to reduced‐order models using sensitivity analysis of the proper orthogonal decomposition publication-title: Journal of Fluid Mechanics – volume: 82 start-page: 27 issue: 1–3 year: 1990 end-page: 57 article-title: A discourse on the stability conditions for mixed finite element formulations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 63 start-page: 249 issue: 2 year: 2010 end-page: 268 article-title: Numerical methods for low‐order modeling of fluid flows based on POD publication-title: Inteanational Journal of Numerical Methods of Fluids – volume: 263 start-page: 1 year: 2014 end-page: 18 article-title: Non‐linear model reduction for the Navier–Stokes equations using the residual DEIM method publication-title: Journal of Computational Physics – volume: 40 start-page: 492 issue: 2 year: 2003 end-page: 515 article-title: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics publication-title: SIAM Journal on Numerical Analysis – volume: 202 start-page: 218 issue: 3 year: 2005 end-page: 237 article-title: Stability and accuracy of periodic flow solutions obtained by a POD‐penalty method publication-title: Journal of Physics D – volume: 22 start-page: 237 issue: 3‐4 year: 2006 end-page: 254 article-title: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations publication-title: Engineering Computations – volume: 124 start-page: 1 issue: 1 year: 2013 end-page: 29 article-title: T‐coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients publication-title: Numerische Mathematik – volume: 19 start-page: 1299 issue: 10 year: 1981 end-page: 1310 article-title: Eigenproblems associated with the discrete LBB condition for incompressible finite elements publication-title: International Journal of Engineering Science – volume: 21 start-page: 1419 issue: 4 year: 1999 end-page: 1434 article-title: Evaluation of proper orthogonal decomposition‐based decomposition techniques applied to parameter‐dependent nonturbulent flows publication-title: SIAM Journal of Scientific Computing – volume: 221–222 start-page: 63 year: 2012 end-page: 82 article-title: A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 10 start-page: 1685 issue: 7 year: 1998 end-page: 1699 article-title: Proper orthogonal decomposition and low‐dimensional models for driven cavity flows publication-title: Physics of Fluids – volume: 86 start-page: 155 issue: 2 year: 2011 end-page: 181 article-title: Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations publication-title: International Journal for Numerical Methods in Engineering – volume: 47 start-page: 773 issue: 8‐9 year: 2005 end-page: 788 article-title: Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds publication-title: Inteanational Journal of Numerical Methods of Fluids – volume: 242 start-page: 623 year: 2013 end-page: 647 article-title: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows publication-title: Journal of Computational Physics – volume: 200 start-page: 1455 issue: 13–16 year: 2011 end-page: 1466 article-title: A high‐performance parallel implementation of the certified reduced basis method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 237–240 start-page: 10 year: 2012 end-page: 26 article-title: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 13 start-page: 377 issue: 6 year: 2000 end-page: 396 article-title: Stability properties of POD–Galerkin approximations for the compressible Navier–Stokes equations publication-title: Theoretical and Computational Fluid Dynamics – volume: 34 start-page: 425 year: 2000 end-page: 448 article-title: A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition publication-title: International Journal of Numerical Methods in Fluids – volume: 228 start-page: 4359 issue: 12 year: 2009 end-page: 4378 article-title: Reduced basis method for multi‐parameter‐dependent steady Navier–Stokes equations: applications to natural convection in a cavity publication-title: Journal of Computational Physics – volume: 196 start-page: 1244 issue: 7 year: 2007 end-page: 1260 article-title: On the stability of reduced basis methods for Stokes equations in parametrized domains publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 192 start-page: 173 issue: 115 year: 1988 end-page: 355 article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer publication-title: Journal of Fluid Mechanics – volume: 17 start-page: 707 issue: 5 year: 1981 end-page: 718 article-title: The application of quasi‐Newton methods in fluid mechanics publication-title: International Journal for Numerical Methods in Engineering – volume: 196 start-page: 337 issue: 1– 3 year: 2006 end-page: 355 article-title: POD and CVT‐based reduced‐order modeling of Navier–Stokes flows publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 1 start-page: 1 issue: 3 year: 2011 end-page: 49 article-title: Certified reduced basis approximation for parametrized partial differential equations in industrial applications publication-title: Journal of Mathematics Indiana – start-page: 215 year: 2013 end-page: 233 – volume: 72 start-page: 1219 issue: 12 year: 2013 end-page: 1243 article-title: Explicit reduced‐order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations publication-title: International Journal for Numerical Methods in Fluids – start-page: 101 year: 2013 end-page: 136 – volume: 64 start-page: 22 issue: 1 year: 2012 end-page: 34 article-title: T‐coercivity: application to the discretization of Helmholtz‐like problems publication-title: Computers & Mathematics with Applications – volume: 23 start-page: 213 issue: 3 year: 2009 end-page: 237 article-title: On the stability and extension of reduced‐order Galerkin models in incompressible flows publication-title: Theoretical and Computational Fluid Dynamics – volume: 34 start-page: A2812 issue: 5 year: 2012 end-page: A2836 article-title: Certified reduced basis methods for parametrized saddle point problems publication-title: SIAM Journal of Scientific Computing – start-page: 235 year: 2013 end-page: 274 – volume: 79 start-page: 243 issue: 2 year: 2001 end-page: 252 article-title: The inf‐sup condition and its evaluation for mixed finite element methods publication-title: Computers & Structures – volume: 125 start-page: 115 issue: 1 year: 2013 end-page: 152 article-title: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf‐sup stability constants publication-title: Numerische Mathematik – volume: 28 start-page: 604 issue: 6–7 year: 2012 end-page: 625 article-title: Model reduction techniques for fast blood flow simulation in parametrized geometries publication-title: International Journal of Numerical Methods in Biomedical Engineering – volume: 47 start-page: 537 issue: 4‐5 year: 1993 end-page: 545 article-title: The inf‐sup test publication-title: Computers & Structures – year: 2013 – start-page: 101 volume-title: Reduced Order Methods for Modeling and Computational Reduction year: 2013 ident: e_1_2_10_35_1 – ident: e_1_2_10_33_1 doi: 10.1002/nme.1620170505 – ident: e_1_2_10_26_1 doi: 10.1016/j.physd.2005.02.006 – start-page: 235 volume-title: Reduced Order Methods for Modeling and Computational Reduction year: 2013 ident: e_1_2_10_2_1 – ident: e_1_2_10_51_1 doi: 10.1007/s00211-012-0510-8 – ident: e_1_2_10_48_1 doi: 10.1016/0045-7949(93)90340-J – ident: e_1_2_10_37_1 doi: 10.1016/j.cma.2006.04.004 – ident: e_1_2_10_6_1 doi: 10.1146/annurev.fl.25.010193.002543 – ident: e_1_2_10_15_1 doi: 10.1137/0910047 – ident: e_1_2_10_40_1 doi: 10.1016/j.jcp.2014.01.011 – ident: e_1_2_10_10_1 doi: 10.1007/s001620050119 – start-page: 215 volume-title: Reduced Order Methods for Modeling and Computational Reduction year: 2013 ident: e_1_2_10_24_1 – ident: e_1_2_10_54_1 doi: 10.1016/j.cma.2010.12.026 – ident: e_1_2_10_49_1 doi: 10.1016/S0045-7949(00)00123-1 – ident: e_1_2_10_50_1 doi: 10.1016/j.camwa.2012.02.034 – ident: e_1_2_10_19_1 doi: 10.1051/m2an/2014013 – ident: e_1_2_10_9_1 doi: 10.1016/j.jcp.2008.09.024 – ident: e_1_2_10_46_1 doi: 10.1007/978-3-642-61623-5 – ident: e_1_2_10_21_1 doi: 10.1002/cnm.1465 – ident: e_1_2_10_12_1 doi: 10.1137/S1064827598333181 – ident: e_1_2_10_13_1 doi: 10.1137/S0036142900382612 – ident: e_1_2_10_32_1 doi: 10.1016/j.cma.2012.02.005 – ident: e_1_2_10_25_1 doi: 10.1007/s00162-009-0112-y – ident: e_1_2_10_34_1 doi: 10.1016/j.crma.2004.08.006 – ident: e_1_2_10_11_1 doi: 10.1017/S0022112009006363 – volume: 192 start-page: 173 issue: 115 year: 1988 ident: e_1_2_10_4_1 article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer publication-title: Journal of Fluid Mechanics – ident: e_1_2_10_41_1 doi: 10.1016/j.jcp.2013.02.028 – ident: e_1_2_10_5_1 doi: 10.1063/1.869686 – ident: e_1_2_10_36_1 doi: 10.1016/j.cma.2006.08.004 – ident: e_1_2_10_14_1 doi: 10.1016/j.cma.2012.04.015 – ident: e_1_2_10_17_1 doi: 10.1002/num.20249 – ident: e_1_2_10_22_1 doi: 10.1002/fld.3777 – ident: e_1_2_10_38_1 doi: 10.1007/978-88-470-5522-3 – ident: e_1_2_10_20_1 doi: 10.1002/cnm.2559 – ident: e_1_2_10_44_1 doi: 10.1007/978-3-642-36519-5 – ident: e_1_2_10_42_1 doi: 10.1002/nme.3050 – ident: e_1_2_10_52_1 doi: 10.1016/0020-7225(81)90013-6 – ident: e_1_2_10_29_1 doi: 10.1007/s00211-013-0534-8 – volume: 1 start-page: 1 issue: 3 year: 2011 ident: e_1_2_10_39_1 article-title: Certified reduced basis approximation for parametrized partial differential equations in industrial applications publication-title: Journal of Mathematics Indiana – volume-title: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics year: 2005 ident: e_1_2_10_47_1 doi: 10.1093/oso/9780198528678.001.0001 – ident: e_1_2_10_53_1 doi: 10.1016/j.cma.2006.07.011 – ident: e_1_2_10_30_1 doi: 10.1137/110854084 – ident: e_1_2_10_27_1 doi: 10.1016/j.jcp.2013.12.004 – volume: 22 start-page: 237 issue: 3 year: 2006 ident: e_1_2_10_55_1 article-title: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations publication-title: Engineering Computations doi: 10.1007/s00366-006-0049-3 – ident: e_1_2_10_16_1 doi: 10.1002/fld.867 – ident: e_1_2_10_45_1 doi: 10.1090/chel/343 – ident: e_1_2_10_18_1 doi: 10.1016/j.jcp.2009.03.008 – ident: e_1_2_10_23_1 doi: 10.1051/m2an/2013090 – ident: e_1_2_10_43_1 doi: 10.1016/0045-7825(90)90157-H – ident: e_1_2_10_7_1 doi: 10.1002/1097-0363(20001115)34:5<425::AID-FLD67>3.0.CO;2-W – ident: e_1_2_10_3_1 – ident: e_1_2_10_8_1 doi: 10.1002/fld.2025 – ident: e_1_2_10_28_1 doi: 10.1016/j.cma.2006.09.005 – ident: e_1_2_10_31_1 doi: 10.1002/fld.2712 |
SSID | ssj0011503 |
Score | 2.5917575 |
Snippet | SummaryIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations... In this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with... Summary In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations... In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1136 |
SubjectTerms | Approximation Decomposition equivalent inf-sup condition Low Reynolds number Mathematical analysis Navier-Stokes equations Numerical analysis parametrized Navier-Stokes equations pressure stabilization proper orthogonal decomposition reduced basis method Stabilization |
Title | Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations |
URI | https://api.istex.fr/ark:/67375/WNG-T0KB0DP6-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4772 https://www.proquest.com/docview/1671101724 https://www.proquest.com/docview/1685798497 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeIEHBgNEx0BGQvCULhdfkkdgNzG1TKyISTxYdnwqTV3a0bRS6RP_gX_IL-Gc3NQhkBDKQxT5JHacc_nsHH9m7KWPQGfKerRvBYEQuQqclD6IYrBCWSG0p_mOwVCdfBLvL-RFk1VJa2Fqfohuwo0so_LXZODWlfsbpKEF9AViQ3S_lKpFeOhjxxxFOCdpsztklkYt72wY77c33ohEt6lTVzdg5iZYraLN0Tb70razTjKZ9JcL18_Xv1E4_t-L3Gf3GhDK39Ra84DdgukO224AKW_MvdxhdzfYCvFq0FG8lg_Z6nx5PYficg1zjgiTcmzrFZ18NuZnHw5-fv9xjMGHpuJ5RVy-uiy6ciIcL2gvrzXWV-nZN040EUWdluuugA8tRWx8yvliNoGSw9ealLx8xEZHh6N3J0GzjUOQCxzdBA71RAsBkdDSgXeZDhE0ORwKOecRLSbSjwUeaaY0gosYwsQpLXLhbYRSyWO2NZ1N4QnjqG0KfAIZPguRRW7HluhsdKIynacp9Njr9ouavKE4p502rkxNzhwb7GtDfd1jLzrJ65rW4w8yryql6ATsfEJpcFqaz8NjMwpP34YHZ8qc9theqzWm8QCliZSOyN3FAuvqitF26YeMncJsSTKp1FkqMo11VSry18aY4eCQzrv_KviU3UFsJ6vcTLHHthbzJTxD_LRwzytL-QXaMRuP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfG9gA8MBggCgOMhOApXT4cOxFPwD4KXcPEitgDkhUnV2nq0o6mlUqf-B_4D_lLuHM-1CGQEMpDFPkSO86d72fn_DvGnuceqFimOdq3BEeITDomDHPH8yEVMhVC5bTeMUhk75N4fxaebbBXzV6Yih-iXXAjy7DjNRk4LUjvrbGGFtAVCA6vsS1K6G3nUx9b7ihCOkET3xHGkdcwz7r-XnPnFV-0Rd26vAI01-Gq9TeH2-xL09IqzGTcXcxNN1v9RuL4n69ym92qcSh_XSnOHbYBkx22XWNSXlt8ucNurhEW4tWgZXkt77Ll6eJyBsX5CmYcQSaF2VabOvl0xE8-7P_8_uMI_Q-txnPLXb48L9py4hwvKJ3XCuuzqvaNE1NEUUXmmgvgSUpOG59yOp-OoeTwteIlL--x4eHB8G3PqTM5OJnACY5jUFWUEOAJFRrITaxcxE0GZ0PG5AgYgzAfCTyiWCrEFz64gZFKZCJPPZQK7rPNyXQCDxhHhZOQBxDjsxBcZOkoJUYbFchYZVEEHfay-aQ6q1nOKdnGha74mX2Nfa2przvsWSt5WTF7_EHmhdWKViCdjSkSToX6c3Kkh27_jbt_InW_w3YbtdH1IFBqTyqPRjxfYF1tMZov_ZNJJzBdkEwUqjgSscK6rI78tTE6GRzQ-eG_Cj5l13vDwbE-fpf0H7EbCPVCG6opdtnmfLaAxwin5uaJNZtfaZUfqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxA8MBggCgOMhOApXS6OnTwCXTcoDRUrYtIerDg-laYubelFKn3iP_AP-SWck5s6BBJCeYgin8SO8x37s3P8mbEX1gMVy9Sif0twhMikY8LQOp4PqZCpEMrSfEc_kSefxfuz8KyKqqS1MKU-RDPhRp5RtNfk4DM7OtwSDc2hLZAbXme7QroRIbrzqZGOIqIT1OEdYRx5tfCs6x_Wd17pinapVtdXeOY2Wy26m-4eO68LWkaZjNurpWlnm980HP_vTe6w2xUL5a9L2Nxl12Cyz_YqRsorf1_ss1tbcoV41W80Xhf32Pp0NZtDfrGBOUeKSUG25ZJOPh3xwcfOz-8_jrH3obl4XiiXry_yJp0Ux3PazGuD-RVA-8ZJJyIv43LNJfAkpS4bn3K6nI5hweFrqUq-uM-G3aPh2xOn2sfByQQObxyDQFFCgCdUaMCaWLnImgyOhYyxSBeD0I4EHlEsFbILH9zASCUyYVMPrYIHbGcyncBDxhFuEmwAMT4LqUWWjlLSs1GBjFUWRdBir-ovqrNK45y22rjUpTqzr7GuNdV1iz1vLGelrscfbF4WoGgM0vmY4uBUqL8kx3ro9t64nYHUvRY7qFGjqyZgoT2pPGrvfIF5NcnovPRHJp3AdEU2UajiSMQK8yog8tfC6KR_ROdH_2r4jN0YdLr6w7uk95jdRJ4XFnGa4oDtLOcreIJcammeFk7zCyCyHmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supremizer+stabilization+of+POD-Galerkin+approximation+of+parametrized+steady+incompressible+Navier-Stokes+equations&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Ballarin%2C+Francesco&rft.au=Manzoni%2C+Andrea&rft.au=Quarteroni%2C+Alfio&rft.au=Rozza%2C+Gianluigi&rft.date=2015-05-04&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=102&rft.issue=5&rft.spage=1136&rft.epage=1161&rft_id=info:doi/10.1002%2Fnme.4772&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |