Soft Graphoepitaxy for Large Area Directed Self-Assembly of Polystyrene-block-Poly(dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography

Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographical...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 22; pp. 3425 - 3432
Main Authors Borah, Dipu, Rasappa, Sozaraj, Salaun, Mathieu, Zellsman, Marc, Lorret, Olivier, Liontos, George, Ntetsikas, Konstantinos, Avgeropoulos, Apostolos, Morris, Michael A.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.06.2015
Wiley
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201500100

Cover

Loading…
Abstract Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns. A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene‐block‐polydimethylsiloxane BCP with well‐ordered microphase segregation upon solvent annealing.
AbstractList Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well-ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on-chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab-on-chip, or in other technologies requiring simple nanodimensional patterns. A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self-assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene-block-polydimethylsiloxane BCP with well-ordered microphase segregation upon solvent annealing.
Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns. A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene‐block‐polydimethylsiloxane BCP with well‐ordered microphase segregation upon solvent annealing.
Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐ block ‐polydimethylsiloxane (PS‐ b ‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns.
Author Borah, Dipu
Liontos, George
Lorret, Olivier
Morris, Michael A.
Salaun, Mathieu
Rasappa, Sozaraj
Avgeropoulos, Apostolos
Ntetsikas, Konstantinos
Zellsman, Marc
Author_xml – sequence: 1
  givenname: Dipu
  surname: Borah
  fullname: Borah, Dipu
  email: d.borah@ucc.ie
  organization: Department of Chemistry, University College Cork, Cork, Ireland
– sequence: 2
  givenname: Sozaraj
  surname: Rasappa
  fullname: Rasappa, Sozaraj
  organization: Department of Chemistry, University College Cork, Cork, Ireland
– sequence: 3
  givenname: Mathieu
  surname: Salaun
  fullname: Salaun, Mathieu
  organization: Laboratoire des Technologies de la Microelectronique (CNRS), 38054, Grenoble, France
– sequence: 4
  givenname: Marc
  surname: Zellsman
  fullname: Zellsman, Marc
  organization: Laboratoire des Technologies de la Microelectronique (CNRS), 38054, Grenoble, France
– sequence: 5
  givenname: Olivier
  surname: Lorret
  fullname: Lorret, Olivier
  organization: Profactor GmbH, Functional Surfaces and Nanostructures, 4407, Steyr-Gleink, Austria
– sequence: 6
  givenname: George
  surname: Liontos
  fullname: Liontos, George
  organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece
– sequence: 7
  givenname: Konstantinos
  surname: Ntetsikas
  fullname: Ntetsikas, Konstantinos
  organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece
– sequence: 8
  givenname: Apostolos
  surname: Avgeropoulos
  fullname: Avgeropoulos, Apostolos
  organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece
– sequence: 9
  givenname: Michael A.
  surname: Morris
  fullname: Morris, Michael A.
  email: d.borah@ucc.ie
  organization: Department of Chemistry, University College Cork, Cork, Ireland
BackLink https://hal.univ-grenoble-alpes.fr/hal-01869187$$DView record in HAL
BookMark eNqFkV9v0zAUxSM0JLbBK89-3B5SbCfNn8fSrS0o6yY6xN4sx7lezZw42C40n40vh0OhQkiIJ9v3_s710T1n0UlnOoii1wRPCMb0DW9kO6GYTDEO72fRKclIFieYFifHO3l4EZ059zkgeZ6kp9H3jZEeLS3vtwZ65fl-QNJYVHH7CGhmgaMrZUF4aNAGtIxnzkFb6wEZie6MHpwfLHQQ19qIp3isXDSqBb8dtFPa7HkHl-jt2ERz04d2CxaZDq15Z3ruPdgujL673WzQZlc7b7kHhxa8tkrw8dd6-Mmqtreq86hSfmseR7_Dy-i55NrBq1_nefRxcX0_X8XV7fLdfFbFIs1SHJMybTJKk6bAdUJLnBaJpDmXpRQCQ1LQGkuZltmUhnIjmlyktE5I3aQ4L0uaJefR5WHulmsWXLTcDsxwxVazio01TIqsJEX-lQT24sD21nzZgfOsVU6A1mEPZucYyUM4RVmUeUDTAyqscc6CZCLs3yvThSUozQhmY65szJUdcw2yyV-y35b-KSgPgm9Kw_Afms2uFjd_auODVjkP-6OW2yeW5Uk-ZZ_WS3aTre4f3q8_sCr5AR_Oyj8
CitedBy_id crossref_primary_10_1002_pola_29396
crossref_primary_10_1088_1361_6528_aa61c9
crossref_primary_10_1039_D0MA00672F
crossref_primary_10_1016_j_jallcom_2021_161140
crossref_primary_10_3390_polym16060846
crossref_primary_10_1021_acs_macromol_9b01759
crossref_primary_10_1039_C7SM01788J
crossref_primary_10_1016_j_ijleo_2019_163479
crossref_primary_10_1088_0957_4484_27_46_465301
crossref_primary_10_1021_acs_macromol_2c01633
crossref_primary_10_3390_nano8010032
crossref_primary_10_1002_pat_3850
crossref_primary_10_1021_acsomega_1c05124
crossref_primary_10_3390_molecules25235527
crossref_primary_10_1021_acsomega_7b00781
crossref_primary_10_1021_acsapm_2c01128
crossref_primary_10_3390_nano7100304
crossref_primary_10_1021_acs_macromol_7b00945
crossref_primary_10_1016_j_snb_2019_127070
Cites_doi 10.1021/la030129x
10.1039/c3ra47380e
10.1039/c3tc30300d
10.2494/photopolymer.25.239
10.1557/mrs2005.249
10.1002/adma.200803302
10.1002/polb.21838
10.1063/1.3657777
10.1109/JMEMS.2005.859191
10.1021/ma991551g
10.1166/jnn.2010.2958
10.1016/j.polymertesting.2006.08.005
10.1016/j.mser.2004.12.003
10.1002/anie.200200546
10.1088/1468-6996/9/1/014109
10.1116/1.1528919
10.1103/PhysRevB.38.1255
10.1002/adma.200802855
10.1021/nn102720m
10.1021/nl035100s
10.1016/j.eurpolymj.2011.07.025
10.1021/nn201391d
10.1021/nl049209r
10.1063/1.1766071
10.1016/j.coche.2012.10.008
10.1021/am302150z
10.1016/j.tsf.2009.10.015
10.1088/0022-3727/44/17/174012
10.1021/nl070924l
10.1007/s11671-010-9696-9
10.1021/am301012p
10.1116/1.3662399
10.1021/cr030076o
10.1016/j.progpolymsci.2009.06.003
10.1021/am302830w
10.1021/la304140q
10.1021/nn4035519
10.1002/adma.200600882
10.1088/0957-4484/20/29/292001
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
DOI 10.1002/adfm.201500100
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1616-3028
EndPage 3432
ExternalDocumentID oai_HAL_hal_01869187v1
10_1002_adfm_201500100
ADFM201500100
ark_67375_WNG_M6HTXJNR_L
Genre article
GrantInformation_xml – fundername: Science Foundation Ireland
  funderid: 09/IN.1/602
– fundername: EU FP7 NMP Project, LAMAND
  funderid: 245565
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
1XC
ID FETCH-LOGICAL-c4640-194d6223d80b3290483f27af9fcc0e382b0ff49652f27dcd7c42b31bd40799263
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri May 09 12:17:06 EDT 2025
Tue Aug 05 09:12:20 EDT 2025
Tue Jul 01 01:30:19 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Wed Jan 22 16:19:12 EST 2025
Wed Oct 30 09:49:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4640-194d6223d80b3290483f27af9fcc0e382b0ff49652f27dcd7c42b31bd40799263
Notes istex:8BDDCF0AA1E1D25EAF127C9231E2EE6016B1E77D
EU FP7 NMP Project, LAMAND - No. 245565
Science Foundation Ireland - No. 09/IN.1/602
ark:/67375/WNG-M6HTXJNR-L
ArticleID:ADFM201500100
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1513-9000
0000-0002-7619-4871
PQID 1701089897
PQPubID 23500
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01869187v1
proquest_miscellaneous_1701089897
crossref_citationtrail_10_1002_adfm_201500100
crossref_primary_10_1002_adfm_201500100
wiley_primary_10_1002_adfm_201500100_ADFM201500100
istex_primary_ark_67375_WNG_M6HTXJNR_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References H. Namatsu, Y. Watanabe, K. Yamazaki, T. Yamaguchi, M. Nagase, Y. Ono, A. Fujiwara, S. Horiguchi, J. Vac. Sci. Technol. B 2003, 21, 1.
M. Wissen, N. Bogdanski, S. Moellenbeck, H. C. Scheer, in 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792 (Ed. Uwe F. W. Behringer), SPIE, Bellingham, WA, USA 2008, V7920.
D. Borah, M. Ozmen, S. Rasappa, M. T. Shaw, J. D. Holmes, M. A. Morris, Langmuir 2013, 29, 2809.
L. J. Guo, Adv. Mater. 2007, 19, 495.
C. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952.
S. Chung, J. R. Felts, D. Wang, W. P. King, J. J. De Yoreo, Appl. Phys. Lett. 2011, 99, 193101.
R. A. Farrell, N. Kehagias, M. T. Shaw, V. Reboud, M. Zelsmann, J. D. Holmes, C. M. Sotomayor Torres, M. A. Morris, ACS Nano 2011, 5, 1073.
C. T. Kirk, Phys. Rev. B: Condens. Matter 1998, 38, 1255.
Y. S. Jung, C. A. Ross, Adv. Mater. 2009, 21, 2540.
D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, M. A. Morris, ACS Nano 2013, 7, 6583.
P. Kumar, Nanoscale Res. Lett. 2010, 5, 1367.
Y. Hirai, S. Hafizovic, N. Matsuzuka, J. G. Korvink, O. Tabata, J. Microelectromech. Syst. 2006, 15, 159.
R. A. Segalman, Mater. Sci. Eng., R 2005, 48, 191.
J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769.
R. G. Hobbs, R. A. Farrell, C. T. Bolger, R. A. Kelly, M. A. Morris, N. Petkov, J. D. Holmes, ACS Appl. Mater. Interfaces 2012, 4, 4637.
D. Borah, S. Rasappa, R. Senthamaraikannan, B. Kosmala, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 88.
M. Salaün, N. Kehagias, B. Salhi, T. Baron, J. Boussey, C. M. Sotomayor Torres, M. Zelsmann, J. Vac. Sci. Technol. B 2011, 29, 06F208.
S. Mathieu, M. Zelsmann, S. Archambault, D. Borah, N. Kehagias, C. Simao, O. Lorret, M. T. Shaw, C. Sotomayor Torres, M. A. Morris, J. Mater. Chem. C 2013, 1, 3544.
A. E. Grigorescu, C. W. Hagen, Nanotechnology 2009, 20, 292001.
N. Politakos, E. Ntoukas, A. Avgeropoulos, V. Krikorian, B. D. Pate, E. L. Thomas, R. M. Hill, J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2419.
M. Bracˇicˇ, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Köstler, K. Stana-Kleinschek, L. Fras-Zemljicˇ, RSC Adv. 2014, 4, 11955.
M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299.
M. Vayer, M. A. Hillmyer, M. Dirany, G. Thevenin, R. Erre, C. Sinturel, Thin Solid Films 2010, 518, 3710.
C. Simao, A. Francone, D. Borah, O. Lorret, M. Salaun, B. Kosmala, M. T. Shaw, B. Dittert, N. Kehagias, M. Zelsmann, M. A. Morris, C. M. Sotomayor Torres, J. Photopolym. Sci. Technol. 2012, 25, 239.
D. A. Winesett, S. Story, J. Luning, H. Ade, Langmuir 2003, 19, 8526.
I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161.
C. Acikgoz, M. A. Hempenius, J. Huskens, G. J. Vancso, Eur. Polym. J. 2011, 47, 2033.
I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692.
K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109.
H.-W. Li, W. T. S. Huck, Nano Lett. 2004, 4, 1633.
D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. T. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, M. A. Morris, J. Phys. D: Appl. Phys. 2011, 44, 174012.
M. Takenaka, H. Hasegawa, Curr. Opin. Chem. Eng. 2013, 2, 88.
C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. P. Russell, C. J. Hawker, D. A. Egolf, I. V. Melnikov, E. Bodenschatz, Macromolecules 2000, 33, 857.
T. H. Kim, J. Hwang, H. Acharya, C. Park, J. Nanosci. Nanotechnol. 2010, 10, 6883.
B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171.
S. M. Park, X. Liang, B. D. Harteneck, T. E. Pick, N. Hiroshiba, Y. Wu, B. A. Helms, D. L. Olynick, ACS Nano 2011, 5, 8523.
M. Zenkiewicz, Polym. Test 2007, 26, 14.
Y. S. Jung, C. A. Ross, Nano Lett. 2007, 7, 2046.
T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 2004, 4, 699.
D. Borah, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 2004.
2013; 29
2007; 19
2010; 10
2009; 47
2004; 84
2009; 21
2013; 1
2009; 20
2013; 2
2006; 15
2008; 9
2004; 4
2008
2011; 99
2003; 19
2005; 48
2013; 7
2013; 5
2011; 5
2009; 34
1998; 38
2010; 518
2014; 4
2000; 33
2005; 105
2005; 30
2011; 44
2007; 7
2011; 47
2012; 25
2010; 5
2012; 4
2011; 29
2003; 42
2003; 21
2007; 26
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
Wissen M. (e_1_2_6_1_1) 2008
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: S. Chung, J. R. Felts, D. Wang, W. P. King, J. J. De Yoreo, Appl. Phys. Lett. 2011, 99, 193101.
– reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769.
– reference: D. Borah, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 2004.
– reference: Y. S. Jung, C. A. Ross, Nano Lett. 2007, 7, 2046.
– reference: D. Borah, M. Ozmen, S. Rasappa, M. T. Shaw, J. D. Holmes, M. A. Morris, Langmuir 2013, 29, 2809.
– reference: R. A. Segalman, Mater. Sci. Eng., R 2005, 48, 191.
– reference: C. T. Kirk, Phys. Rev. B: Condens. Matter 1998, 38, 1255.
– reference: M. Takenaka, H. Hasegawa, Curr. Opin. Chem. Eng. 2013, 2, 88.
– reference: C. Acikgoz, M. A. Hempenius, J. Huskens, G. J. Vancso, Eur. Polym. J. 2011, 47, 2033.
– reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692.
– reference: B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171.
– reference: M. Vayer, M. A. Hillmyer, M. Dirany, G. Thevenin, R. Erre, C. Sinturel, Thin Solid Films 2010, 518, 3710.
– reference: Y. Hirai, S. Hafizovic, N. Matsuzuka, J. G. Korvink, O. Tabata, J. Microelectromech. Syst. 2006, 15, 159.
– reference: C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. P. Russell, C. J. Hawker, D. A. Egolf, I. V. Melnikov, E. Bodenschatz, Macromolecules 2000, 33, 857.
– reference: C. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952.
– reference: D. A. Winesett, S. Story, J. Luning, H. Ade, Langmuir 2003, 19, 8526.
– reference: M. Bracˇicˇ, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Köstler, K. Stana-Kleinschek, L. Fras-Zemljicˇ, RSC Adv. 2014, 4, 11955.
– reference: T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 2004, 4, 699.
– reference: H. Namatsu, Y. Watanabe, K. Yamazaki, T. Yamaguchi, M. Nagase, Y. Ono, A. Fujiwara, S. Horiguchi, J. Vac. Sci. Technol. B 2003, 21, 1.
– reference: M. Zenkiewicz, Polym. Test 2007, 26, 14.
– reference: S. M. Park, X. Liang, B. D. Harteneck, T. E. Pick, N. Hiroshiba, Y. Wu, B. A. Helms, D. L. Olynick, ACS Nano 2011, 5, 8523.
– reference: M. Salaün, N. Kehagias, B. Salhi, T. Baron, J. Boussey, C. M. Sotomayor Torres, M. Zelsmann, J. Vac. Sci. Technol. B 2011, 29, 06F208.
– reference: A. E. Grigorescu, C. W. Hagen, Nanotechnology 2009, 20, 292001.
– reference: P. Kumar, Nanoscale Res. Lett. 2010, 5, 1367.
– reference: T. H. Kim, J. Hwang, H. Acharya, C. Park, J. Nanosci. Nanotechnol. 2010, 10, 6883.
– reference: N. Politakos, E. Ntoukas, A. Avgeropoulos, V. Krikorian, B. D. Pate, E. L. Thomas, R. M. Hill, J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2419.
– reference: H.-W. Li, W. T. S. Huck, Nano Lett. 2004, 4, 1633.
– reference: I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161.
– reference: S. Mathieu, M. Zelsmann, S. Archambault, D. Borah, N. Kehagias, C. Simao, O. Lorret, M. T. Shaw, C. Sotomayor Torres, M. A. Morris, J. Mater. Chem. C 2013, 1, 3544.
– reference: M. Wissen, N. Bogdanski, S. Moellenbeck, H. C. Scheer, in 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792 (Ed. Uwe F. W. Behringer), SPIE, Bellingham, WA, USA 2008, V7920.
– reference: D. Borah, S. Rasappa, R. Senthamaraikannan, B. Kosmala, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 88.
– reference: Y. S. Jung, C. A. Ross, Adv. Mater. 2009, 21, 2540.
– reference: M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299.
– reference: D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. T. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, M. A. Morris, J. Phys. D: Appl. Phys. 2011, 44, 174012.
– reference: R. G. Hobbs, R. A. Farrell, C. T. Bolger, R. A. Kelly, M. A. Morris, N. Petkov, J. D. Holmes, ACS Appl. Mater. Interfaces 2012, 4, 4637.
– reference: D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, M. A. Morris, ACS Nano 2013, 7, 6583.
– reference: R. A. Farrell, N. Kehagias, M. T. Shaw, V. Reboud, M. Zelsmann, J. D. Holmes, C. M. Sotomayor Torres, M. A. Morris, ACS Nano 2011, 5, 1073.
– reference: K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109.
– reference: C. Simao, A. Francone, D. Borah, O. Lorret, M. Salaun, B. Kosmala, M. T. Shaw, B. Dittert, N. Kehagias, M. Zelsmann, M. A. Morris, C. M. Sotomayor Torres, J. Photopolym. Sci. Technol. 2012, 25, 239.
– reference: L. J. Guo, Adv. Mater. 2007, 19, 495.
– volume: 9
  start-page: 014109
  year: 2008
  publication-title: Sci. Technol. Adv. Mater.
– volume: 47
  start-page: 2033
  year: 2011
  publication-title: Eur. Polym. J.
– volume: 29
  start-page: 06F208
  year: 2011
  publication-title: J. Vac. Sci. Technol. B
– volume: 5
  start-page: 2004
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6883
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 29
  start-page: 2809
  year: 2013
  publication-title: Langmuir
– volume: 4
  start-page: 699
  year: 2004
  publication-title: Nano Lett.
– volume: 7
  start-page: 2046
  year: 2007
  publication-title: Nano Lett.
– volume: 19
  start-page: 8526
  year: 2003
  publication-title: Langmuir
– volume: 33
  start-page: 857
  year: 2000
  publication-title: Macromolecules
– volume: 30
  start-page: 952
  year: 2005
  publication-title: MRS Bull.
– volume: 518
  start-page: 3710
  year: 2010
  publication-title: Thin Solid Films
– volume: 4
  start-page: 1633
  year: 2004
  publication-title: Nano Lett.
– volume: 26
  start-page: 14
  year: 2007
  publication-title: Polym. Test
– volume: 84
  start-page: 5299
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 11955
  year: 2014
  publication-title: RSC Adv.
– volume: 34
  start-page: 1161
  year: 2009
  publication-title: Prog. Polym. Sci.
– start-page: V7920
  year: 2008
– volume: 1
  start-page: 3544
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 6583
  year: 2013
  publication-title: ACS Nano
– volume: 20
  start-page: 292001
  year: 2009
  publication-title: Nanotechnology
– volume: 5
  start-page: 1073
  year: 2011
  publication-title: ACS Nano
– volume: 99
  start-page: 193101
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 4769
  year: 2009
  publication-title: Adv. Mater.
– volume: 15
  start-page: 159
  year: 2006
  publication-title: J. Microelectromech. Syst.
– volume: 4
  start-page: 4637
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 2540
  year: 2009
  publication-title: Adv. Mater.
– volume: 47
  start-page: 2419
  year: 2009
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 21
  start-page: 1
  year: 2003
  publication-title: J. Vac. Sci. Technol. B
– volume: 48
  start-page: 191
  year: 2005
  publication-title: Mater. Sci. Eng., R
– volume: 5
  start-page: 88
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 1255
  year: 1998
  publication-title: Phys. Rev. B: Condens. Matter
– volume: 105
  start-page: 1171
  year: 2005
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1367
  year: 2010
  publication-title: Nanoscale Res. Lett.
– volume: 25
  start-page: 239
  year: 2012
  publication-title: J. Photopolym. Sci. Technol.
– volume: 44
  start-page: 174012
  year: 2011
  publication-title: J. Phys. D: Appl. Phys.
– volume: 42
  start-page: 1692
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 495
  year: 2007
  publication-title: Adv. Mater.
– volume: 5
  start-page: 8523
  year: 2011
  publication-title: ACS Nano
– volume: 2
  start-page: 88
  year: 2013
  publication-title: Curr. Opin. Chem. Eng.
– ident: e_1_2_6_35_1
  doi: 10.1021/la030129x
– ident: e_1_2_6_36_1
  doi: 10.1039/c3ra47380e
– ident: e_1_2_6_33_1
  doi: 10.1039/c3tc30300d
– ident: e_1_2_6_34_1
  doi: 10.2494/photopolymer.25.239
– ident: e_1_2_6_9_1
  doi: 10.1557/mrs2005.249
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.200803302
– start-page: V7920
  volume-title: 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792
  year: 2008
  ident: e_1_2_6_1_1
– ident: e_1_2_6_26_1
  doi: 10.1002/polb.21838
– ident: e_1_2_6_2_1
  doi: 10.1063/1.3657777
– ident: e_1_2_6_5_1
  doi: 10.1109/JMEMS.2005.859191
– ident: e_1_2_6_37_1
  doi: 10.1021/ma991551g
– ident: e_1_2_6_23_1
  doi: 10.1166/jnn.2010.2958
– ident: e_1_2_6_40_1
  doi: 10.1016/j.polymertesting.2006.08.005
– ident: e_1_2_6_13_1
  doi: 10.1016/j.mser.2004.12.003
– ident: e_1_2_6_6_1
  doi: 10.1002/anie.200200546
– ident: e_1_2_6_8_1
  doi: 10.1088/1468-6996/9/1/014109
– ident: e_1_2_6_4_1
  doi: 10.1116/1.1528919
– ident: e_1_2_6_32_1
  doi: 10.1103/PhysRevB.38.1255
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.200802855
– ident: e_1_2_6_21_1
  doi: 10.1021/nn102720m
– ident: e_1_2_6_18_1
  doi: 10.1021/nl035100s
– ident: e_1_2_6_16_1
  doi: 10.1016/j.eurpolymj.2011.07.025
– ident: e_1_2_6_25_1
  doi: 10.1021/nn201391d
– ident: e_1_2_6_19_1
  doi: 10.1021/nl049209r
– ident: e_1_2_6_15_1
  doi: 10.1063/1.1766071
– ident: e_1_2_6_10_1
  doi: 10.1016/j.coche.2012.10.008
– ident: e_1_2_6_28_1
  doi: 10.1021/am302150z
– ident: e_1_2_6_24_1
  doi: 10.1016/j.tsf.2009.10.015
– ident: e_1_2_6_20_1
  doi: 10.1088/0022-3727/44/17/174012
– ident: e_1_2_6_31_1
  doi: 10.1021/nl070924l
– ident: e_1_2_6_7_1
  doi: 10.1007/s11671-010-9696-9
– ident: e_1_2_6_30_1
  doi: 10.1021/am301012p
– ident: e_1_2_6_22_1
  doi: 10.1116/1.3662399
– ident: e_1_2_6_17_1
  doi: 10.1021/cr030076o
– ident: e_1_2_6_12_1
  doi: 10.1016/j.progpolymsci.2009.06.003
– ident: e_1_2_6_27_1
  doi: 10.1021/am302830w
– ident: e_1_2_6_29_1
  doi: 10.1021/la304140q
– ident: e_1_2_6_39_1
  doi: 10.1021/nn4035519
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.200600882
– ident: e_1_2_6_3_1
  doi: 10.1088/0957-4484/20/29/292001
SSID ssj0017734
Score 2.273283
Snippet Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block...
Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self-assembly (DSA) of block...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3425
SubjectTerms block copolymer
Block copolymers
Cylinders
directed self-assembly
Lithography
nanoimprint lithography
Nanostructure
pattern transfer
Physics
polyhedral oligomeric silsequioxane (POSS)
Segregations
Self assembly
Silicon substrates
Surface chemistry
Title Soft Graphoepitaxy for Large Area Directed Self-Assembly of Polystyrene-block-Poly(dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography
URI https://api.istex.fr/ark:/67375/WNG-M6HTXJNR-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500100
https://www.proquest.com/docview/1701089897
https://hal.univ-grenoble-alpes.fr/hal-01869187
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgucCBN9rykkGIx6G7iZPmcSwL3WrVltV2V_Rm-amtmiaoSVHDiZ_AX-Kv8EuYSdrQIiEkOCWxx1ISj2c-2-NvCHmhVRQB6oCBJJRp-5pJuPNs2_OFZQrZUiSeHR6Ogv6FfzLpTLZO8df8EM2CG46Myl7jABcyP_xFGiq0xZPkAGhgSoGTdgzYQlR01vBHuWFYbysHLgZ4uZMNa6PDDneb73ilq5cYE3kNf_NqB3huw9fK__RuEbF58zrsZHawLOSB-vIbqeP_fNptcnMNTmm31qY75IpJ75IbW5SF98j3Mdhteow015nBjCOrkgLupQOMKIeWRtDaihpNxyaxP75-w33luUxKmll6miVljgvfqYEaCZ50Blcsfa2nmM26TPJpkq1Eat7Qt1hNjzCNQzk3C5qlFJwBzPLxBBK4B3r6YTymaPoqit2c9oSssh5BlSwr2ekcFy4LOpgWl2ty7vvkovf-_KjfXqeBaCs_wJ3n2NcBoBgdOdJjMXLgWxYKG1ulHONFTDrWIu09g2KtdKh8Jj1XapirxjELvAdkL81Ss09oBGjPDRSYMcBdAI2iuGNdGwVWeVpEKmyR9kYNuFpzpGOqjoTX7M6MY9fwpmta5FUj_6lmB_mj5HPQqkYISb373QHHMgezgrlR-NltkZeV0jViYjHDwLuwwz-Ojvkw6J9PTkZnfNAizzZaycEc4B4P9Eu2zDnS6zuYEhS-hVU69pcX4913vWHz9PBfGj0i1_G-DqB7TPaKxdI8AahWyKfVcPwJ_Y06DA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgewAexl103AxCwB6yJU6ay2PZ6MpIy7R2om9WfNOqpgnqBTU88RP4S_wVfgnnJG1YkRASPLW1j6WkPj7-bB9_HyEvlAxDQB0wkBKpLU8xAd9cY7leYphEthSBd4e7Pb9z7p0Mm-tsQrwLU_FD1BtuODLKeI0DHDekD36xhibK4FVyQDSwpoBV-zbKeqOIwdFZzSDlBEF1sOw7mOLlDNe8jTY72Gy_MS9dvcCsyG38o5cb0PMygC1noPZNItbPXiWejPcXc7Evv_xG6_hfL3eL7KzwKW1VDnWbXNHZHXLjEmvhXfK9D6GbHiPTda5RdGRZUIC-NMakcmipE1oFUq1oX6fmx9dveLQ8EWlBc0NP87SY4d53pqFGwGQ6hk8sfa1GKGhdpLNRmi-TTO_RN1hND1HJoZjoKc0zCvMBLPTxEhLMEPT0Q79PMfqVLLsz2k5EKXwEVaIobUcT3Luc03g0v1jxc98j5-23g8OOtVKCsKTn4-Fz5CkfgIwKbeGyCGnwDQsSExkpbe2GTNjGIPM9g2IlVSA9JlxHKFiuRhHz3ftkK8sz_YDQEACf40uIZAC9AB2FUdM4JvSNdFUSyqBBrLUfcLmiSUe1jpRXBM-MY9fwumsa5FVt_6kiCPmj5XNwq9oIeb07rZhjmY3CYE4YfHYa5GXpdbVZMh1j7l3Q5B97x7zrdwbDk94Zjxvk2dotOUQEPOaBfskXM44M-zaqgsK7sNLJ_vJgvHXU7ta_dv-l0VNyrTPoxjx-13v_kFzH8iqf7hHZmk8X-jEgt7l4Uo7Nn3MsPiY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZjtMwFLVgRkLwwI4oq0GI5aEziZNmeSwzZMqQlmo6I_pmxZumapqMuqCGJz6BX-JX-BLuTdrQIiEkeGprX0tJfZdj-_pcQl4oGQSAOsCQEqmbrmICvjmm6biJYRLZUgTeHe72vM6ZezxsDTdu8Vf8EPWGG1pG6a_RwC-U2f9FGpoogzfJAdDAkgIW7buuBxaDsOikJpCyfb86V_ZszPCyh2vaRovtb4_fCkuXzzEpchf_5-UW8tzEr2UAim6QZP3oVd7JeG8xF3vyy2-sjv_zbjfJ9RU6pe1KnW6RSzq7Ta5tcBbeId8H4LjpEfJc5xpLjiwLCsCXxphSDiN1Qis3qhUd6NT8-PoND5YnIi1obmg_T4sZ7nxnGnoEhNIxfGLrazXCctZFOhul-TLJ9Bv6FrvpAdZxKCZ6SvOMQjSAZT5eQYL4QPsfBwOKvq_k2J3RKBFl2SPoEkUpO5rgzuWcxqP5-Yqd-y45i96dHnSaqzoQTel6ePQcusoDGKMCSzgsRBJ8w_zEhEZKSzsBE5YxyHvPoFlJ5UuXCccWCharYcg85x7ZyfJM3yc0ALhnexL8GAAvwEZB2DK2CTwjHZUE0m-Q5loNuFyRpGOtjpRX9M6M49Twemoa5FUtf1HRg_xR8jloVS2ErN6ddsyxzcKyYHbgf7Yb5GWpdLVYMh1j5p3f4p96R7zrdU6Hx70THjfIs7VWcvAHeMgD85IvZhz59S2sCQrvwkod-8uD8fZh1K1_PfiXQU_Jlf5hxOP3vQ8PyVVsrpLpHpGd-XShHwNsm4snpWX-BKy6PN4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Graphoepitaxy+for+Large+Area+Directed+Self-Assembly+of+Polystyrene-block-Poly%28dimethylsiloxane%29+Block+Copolymer+on+Nanopatterned+POSS+Substrates+Fabricated+by+Nanoimprint+Lithography&rft.jtitle=Advanced+functional+materials&rft.au=Borah%2C+Dipu&rft.au=Rasappa%2C+Sozaraj&rft.au=Salaun%2C+Mathieu&rft.au=Zellsman%2C+Marc&rft.date=2015-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=22&rft.spage=3425&rft.epage=3432&rft_id=info:doi/10.1002%2Fadfm.201500100&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon