Soft Graphoepitaxy for Large Area Directed Self-Assembly of Polystyrene-block-Poly(dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography
Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographical...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 22; pp. 3425 - 3432 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.06.2015
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201500100 |
Cover
Loading…
Abstract | Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns.
A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene‐block‐polydimethylsiloxane BCP with well‐ordered microphase segregation upon solvent annealing. |
---|---|
AbstractList | Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well-ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on-chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab-on-chip, or in other technologies requiring simple nanodimensional patterns. A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self-assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene-block-polydimethylsiloxane BCP with well-ordered microphase segregation upon solvent annealing. Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns. A methodology for fabricating highly ordered silicon nanostructures at a substrate is reported using nanoimprint lithography imprinted polyhedral oligomeric silsequioxane (POSS) substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymer (BCP). The patterned POSS materials provide a surface chemistry and topography for DSA of a cylinder forming polystyrene‐block‐polydimethylsiloxane BCP with well‐ordered microphase segregation upon solvent annealing. Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block copolymers (BCPs). Tailored POSS materials of tuned surface chemistry are subject to nanoimprint lithography (NIL) resulting in topographically patterned substrates with dimensions commensurate with the BCP block length. A cylinder forming polystyrene‐ block ‐polydimethylsiloxane (PS‐ b ‐PDMS) BCP is synthesized by sequential living anionic polymerization of styrene and hexamethylcyclotrisiloxane. The patterned POSS materials provide a surface chemistry and topography for DSA of this BCP and after solvent annealing the BCP shows well‐ordered microphase segregation. The orientation of the PDMS cylinders to the substrate plane could be controlled within the trench walls by the choice of the POSS materials. The BCP patterns are successfully used as on‐chip etch mask to transfer the pattern to underlying silicon substrate. This soft graphoepitaxy method shows highly promising results as a means to generate lithographic quality patterns by nonconventional methods and could be applied to both hard and soft substrates. The methodology might have application in several fields including device and interconnect fabrication, nanoimprint lithography stamp production, nanofluidic devices, lab‐on‐chip, or in other technologies requiring simple nanodimensional patterns. |
Author | Borah, Dipu Liontos, George Lorret, Olivier Morris, Michael A. Salaun, Mathieu Rasappa, Sozaraj Avgeropoulos, Apostolos Ntetsikas, Konstantinos Zellsman, Marc |
Author_xml | – sequence: 1 givenname: Dipu surname: Borah fullname: Borah, Dipu email: d.borah@ucc.ie organization: Department of Chemistry, University College Cork, Cork, Ireland – sequence: 2 givenname: Sozaraj surname: Rasappa fullname: Rasappa, Sozaraj organization: Department of Chemistry, University College Cork, Cork, Ireland – sequence: 3 givenname: Mathieu surname: Salaun fullname: Salaun, Mathieu organization: Laboratoire des Technologies de la Microelectronique (CNRS), 38054, Grenoble, France – sequence: 4 givenname: Marc surname: Zellsman fullname: Zellsman, Marc organization: Laboratoire des Technologies de la Microelectronique (CNRS), 38054, Grenoble, France – sequence: 5 givenname: Olivier surname: Lorret fullname: Lorret, Olivier organization: Profactor GmbH, Functional Surfaces and Nanostructures, 4407, Steyr-Gleink, Austria – sequence: 6 givenname: George surname: Liontos fullname: Liontos, George organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece – sequence: 7 givenname: Konstantinos surname: Ntetsikas fullname: Ntetsikas, Konstantinos organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece – sequence: 8 givenname: Apostolos surname: Avgeropoulos fullname: Avgeropoulos, Apostolos organization: Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110, Ioannina, Greece – sequence: 9 givenname: Michael A. surname: Morris fullname: Morris, Michael A. email: d.borah@ucc.ie organization: Department of Chemistry, University College Cork, Cork, Ireland |
BackLink | https://hal.univ-grenoble-alpes.fr/hal-01869187$$DView record in HAL |
BookMark | eNqFkV9v0zAUxSM0JLbBK89-3B5SbCfNn8fSrS0o6yY6xN4sx7lezZw42C40n40vh0OhQkiIJ9v3_s710T1n0UlnOoii1wRPCMb0DW9kO6GYTDEO72fRKclIFieYFifHO3l4EZ059zkgeZ6kp9H3jZEeLS3vtwZ65fl-QNJYVHH7CGhmgaMrZUF4aNAGtIxnzkFb6wEZie6MHpwfLHQQ19qIp3isXDSqBb8dtFPa7HkHl-jt2ERz04d2CxaZDq15Z3ruPdgujL673WzQZlc7b7kHhxa8tkrw8dd6-Mmqtreq86hSfmseR7_Dy-i55NrBq1_nefRxcX0_X8XV7fLdfFbFIs1SHJMybTJKk6bAdUJLnBaJpDmXpRQCQ1LQGkuZltmUhnIjmlyktE5I3aQ4L0uaJefR5WHulmsWXLTcDsxwxVazio01TIqsJEX-lQT24sD21nzZgfOsVU6A1mEPZucYyUM4RVmUeUDTAyqscc6CZCLs3yvThSUozQhmY65szJUdcw2yyV-y35b-KSgPgm9Kw_Afms2uFjd_auODVjkP-6OW2yeW5Uk-ZZ_WS3aTre4f3q8_sCr5AR_Oyj8 |
CitedBy_id | crossref_primary_10_1002_pola_29396 crossref_primary_10_1088_1361_6528_aa61c9 crossref_primary_10_1039_D0MA00672F crossref_primary_10_1016_j_jallcom_2021_161140 crossref_primary_10_3390_polym16060846 crossref_primary_10_1021_acs_macromol_9b01759 crossref_primary_10_1039_C7SM01788J crossref_primary_10_1016_j_ijleo_2019_163479 crossref_primary_10_1088_0957_4484_27_46_465301 crossref_primary_10_1021_acs_macromol_2c01633 crossref_primary_10_3390_nano8010032 crossref_primary_10_1002_pat_3850 crossref_primary_10_1021_acsomega_1c05124 crossref_primary_10_3390_molecules25235527 crossref_primary_10_1021_acsomega_7b00781 crossref_primary_10_1021_acsapm_2c01128 crossref_primary_10_3390_nano7100304 crossref_primary_10_1021_acs_macromol_7b00945 crossref_primary_10_1016_j_snb_2019_127070 |
Cites_doi | 10.1021/la030129x 10.1039/c3ra47380e 10.1039/c3tc30300d 10.2494/photopolymer.25.239 10.1557/mrs2005.249 10.1002/adma.200803302 10.1002/polb.21838 10.1063/1.3657777 10.1109/JMEMS.2005.859191 10.1021/ma991551g 10.1166/jnn.2010.2958 10.1016/j.polymertesting.2006.08.005 10.1016/j.mser.2004.12.003 10.1002/anie.200200546 10.1088/1468-6996/9/1/014109 10.1116/1.1528919 10.1103/PhysRevB.38.1255 10.1002/adma.200802855 10.1021/nn102720m 10.1021/nl035100s 10.1016/j.eurpolymj.2011.07.025 10.1021/nn201391d 10.1021/nl049209r 10.1063/1.1766071 10.1016/j.coche.2012.10.008 10.1021/am302150z 10.1016/j.tsf.2009.10.015 10.1088/0022-3727/44/17/174012 10.1021/nl070924l 10.1007/s11671-010-9696-9 10.1021/am301012p 10.1116/1.3662399 10.1021/cr030076o 10.1016/j.progpolymsci.2009.06.003 10.1021/am302830w 10.1021/la304140q 10.1021/nn4035519 10.1002/adma.200600882 10.1088/0957-4484/20/29/292001 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
DOI | 10.1002/adfm.201500100 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1616-3028 |
EndPage | 3432 |
ExternalDocumentID | oai_HAL_hal_01869187v1 10_1002_adfm_201500100 ADFM201500100 ark_67375_WNG_M6HTXJNR_L |
Genre | article |
GrantInformation_xml | – fundername: Science Foundation Ireland funderid: 09/IN.1/602 – fundername: EU FP7 NMP Project, LAMAND funderid: 245565 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 1XC |
ID | FETCH-LOGICAL-c4640-194d6223d80b3290483f27af9fcc0e382b0ff49652f27dcd7c42b31bd40799263 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri May 09 12:17:06 EDT 2025 Tue Aug 05 09:12:20 EDT 2025 Tue Jul 01 01:30:19 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:19:12 EST 2025 Wed Oct 30 09:49:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4640-194d6223d80b3290483f27af9fcc0e382b0ff49652f27dcd7c42b31bd40799263 |
Notes | istex:8BDDCF0AA1E1D25EAF127C9231E2EE6016B1E77D EU FP7 NMP Project, LAMAND - No. 245565 Science Foundation Ireland - No. 09/IN.1/602 ark:/67375/WNG-M6HTXJNR-L ArticleID:ADFM201500100 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1513-9000 0000-0002-7619-4871 |
PQID | 1701089897 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_01869187v1 proquest_miscellaneous_1701089897 crossref_citationtrail_10_1002_adfm_201500100 crossref_primary_10_1002_adfm_201500100 wiley_primary_10_1002_adfm_201500100_ADFM201500100 istex_primary_ark_67375_WNG_M6HTXJNR_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | H. Namatsu, Y. Watanabe, K. Yamazaki, T. Yamaguchi, M. Nagase, Y. Ono, A. Fujiwara, S. Horiguchi, J. Vac. Sci. Technol. B 2003, 21, 1. M. Wissen, N. Bogdanski, S. Moellenbeck, H. C. Scheer, in 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792 (Ed. Uwe F. W. Behringer), SPIE, Bellingham, WA, USA 2008, V7920. D. Borah, M. Ozmen, S. Rasappa, M. T. Shaw, J. D. Holmes, M. A. Morris, Langmuir 2013, 29, 2809. L. J. Guo, Adv. Mater. 2007, 19, 495. C. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952. S. Chung, J. R. Felts, D. Wang, W. P. King, J. J. De Yoreo, Appl. Phys. Lett. 2011, 99, 193101. R. A. Farrell, N. Kehagias, M. T. Shaw, V. Reboud, M. Zelsmann, J. D. Holmes, C. M. Sotomayor Torres, M. A. Morris, ACS Nano 2011, 5, 1073. C. T. Kirk, Phys. Rev. B: Condens. Matter 1998, 38, 1255. Y. S. Jung, C. A. Ross, Adv. Mater. 2009, 21, 2540. D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, M. A. Morris, ACS Nano 2013, 7, 6583. P. Kumar, Nanoscale Res. Lett. 2010, 5, 1367. Y. Hirai, S. Hafizovic, N. Matsuzuka, J. G. Korvink, O. Tabata, J. Microelectromech. Syst. 2006, 15, 159. R. A. Segalman, Mater. Sci. Eng., R 2005, 48, 191. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769. R. G. Hobbs, R. A. Farrell, C. T. Bolger, R. A. Kelly, M. A. Morris, N. Petkov, J. D. Holmes, ACS Appl. Mater. Interfaces 2012, 4, 4637. D. Borah, S. Rasappa, R. Senthamaraikannan, B. Kosmala, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 88. M. Salaün, N. Kehagias, B. Salhi, T. Baron, J. Boussey, C. M. Sotomayor Torres, M. Zelsmann, J. Vac. Sci. Technol. B 2011, 29, 06F208. S. Mathieu, M. Zelsmann, S. Archambault, D. Borah, N. Kehagias, C. Simao, O. Lorret, M. T. Shaw, C. Sotomayor Torres, M. A. Morris, J. Mater. Chem. C 2013, 1, 3544. A. E. Grigorescu, C. W. Hagen, Nanotechnology 2009, 20, 292001. N. Politakos, E. Ntoukas, A. Avgeropoulos, V. Krikorian, B. D. Pate, E. L. Thomas, R. M. Hill, J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2419. M. Bracˇicˇ, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Köstler, K. Stana-Kleinschek, L. Fras-Zemljicˇ, RSC Adv. 2014, 4, 11955. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299. M. Vayer, M. A. Hillmyer, M. Dirany, G. Thevenin, R. Erre, C. Sinturel, Thin Solid Films 2010, 518, 3710. C. Simao, A. Francone, D. Borah, O. Lorret, M. Salaun, B. Kosmala, M. T. Shaw, B. Dittert, N. Kehagias, M. Zelsmann, M. A. Morris, C. M. Sotomayor Torres, J. Photopolym. Sci. Technol. 2012, 25, 239. D. A. Winesett, S. Story, J. Luning, H. Ade, Langmuir 2003, 19, 8526. I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161. C. Acikgoz, M. A. Hempenius, J. Huskens, G. J. Vancso, Eur. Polym. J. 2011, 47, 2033. I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692. K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109. H.-W. Li, W. T. S. Huck, Nano Lett. 2004, 4, 1633. D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. T. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, M. A. Morris, J. Phys. D: Appl. Phys. 2011, 44, 174012. M. Takenaka, H. Hasegawa, Curr. Opin. Chem. Eng. 2013, 2, 88. C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. P. Russell, C. J. Hawker, D. A. Egolf, I. V. Melnikov, E. Bodenschatz, Macromolecules 2000, 33, 857. T. H. Kim, J. Hwang, H. Acharya, C. Park, J. Nanosci. Nanotechnol. 2010, 10, 6883. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. S. M. Park, X. Liang, B. D. Harteneck, T. E. Pick, N. Hiroshiba, Y. Wu, B. A. Helms, D. L. Olynick, ACS Nano 2011, 5, 8523. M. Zenkiewicz, Polym. Test 2007, 26, 14. Y. S. Jung, C. A. Ross, Nano Lett. 2007, 7, 2046. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 2004, 4, 699. D. Borah, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 2004. 2013; 29 2007; 19 2010; 10 2009; 47 2004; 84 2009; 21 2013; 1 2009; 20 2013; 2 2006; 15 2008; 9 2004; 4 2008 2011; 99 2003; 19 2005; 48 2013; 7 2013; 5 2011; 5 2009; 34 1998; 38 2010; 518 2014; 4 2000; 33 2005; 105 2005; 30 2011; 44 2007; 7 2011; 47 2012; 25 2010; 5 2012; 4 2011; 29 2003; 42 2003; 21 2007; 26 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 Wissen M. (e_1_2_6_1_1) 2008 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: S. Chung, J. R. Felts, D. Wang, W. P. King, J. J. De Yoreo, Appl. Phys. Lett. 2011, 99, 193101. – reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769. – reference: D. Borah, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 2004. – reference: Y. S. Jung, C. A. Ross, Nano Lett. 2007, 7, 2046. – reference: D. Borah, M. Ozmen, S. Rasappa, M. T. Shaw, J. D. Holmes, M. A. Morris, Langmuir 2013, 29, 2809. – reference: R. A. Segalman, Mater. Sci. Eng., R 2005, 48, 191. – reference: C. T. Kirk, Phys. Rev. B: Condens. Matter 1998, 38, 1255. – reference: M. Takenaka, H. Hasegawa, Curr. Opin. Chem. Eng. 2013, 2, 88. – reference: C. Acikgoz, M. A. Hempenius, J. Huskens, G. J. Vancso, Eur. Polym. J. 2011, 47, 2033. – reference: I. W. Hamley, Angew. Chem. Int. Ed. 2003, 42, 1692. – reference: B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. – reference: M. Vayer, M. A. Hillmyer, M. Dirany, G. Thevenin, R. Erre, C. Sinturel, Thin Solid Films 2010, 518, 3710. – reference: Y. Hirai, S. Hafizovic, N. Matsuzuka, J. G. Korvink, O. Tabata, J. Microelectromech. Syst. 2006, 15, 159. – reference: C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. P. Russell, C. J. Hawker, D. A. Egolf, I. V. Melnikov, E. Bodenschatz, Macromolecules 2000, 33, 857. – reference: C. J. Hawker, T. P. Russell, MRS Bull. 2005, 30, 952. – reference: D. A. Winesett, S. Story, J. Luning, H. Ade, Langmuir 2003, 19, 8526. – reference: M. Bracˇicˇ, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Köstler, K. Stana-Kleinschek, L. Fras-Zemljicˇ, RSC Adv. 2014, 4, 11955. – reference: T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 2004, 4, 699. – reference: H. Namatsu, Y. Watanabe, K. Yamazaki, T. Yamaguchi, M. Nagase, Y. Ono, A. Fujiwara, S. Horiguchi, J. Vac. Sci. Technol. B 2003, 21, 1. – reference: M. Zenkiewicz, Polym. Test 2007, 26, 14. – reference: S. M. Park, X. Liang, B. D. Harteneck, T. E. Pick, N. Hiroshiba, Y. Wu, B. A. Helms, D. L. Olynick, ACS Nano 2011, 5, 8523. – reference: M. Salaün, N. Kehagias, B. Salhi, T. Baron, J. Boussey, C. M. Sotomayor Torres, M. Zelsmann, J. Vac. Sci. Technol. B 2011, 29, 06F208. – reference: A. E. Grigorescu, C. W. Hagen, Nanotechnology 2009, 20, 292001. – reference: P. Kumar, Nanoscale Res. Lett. 2010, 5, 1367. – reference: T. H. Kim, J. Hwang, H. Acharya, C. Park, J. Nanosci. Nanotechnol. 2010, 10, 6883. – reference: N. Politakos, E. Ntoukas, A. Avgeropoulos, V. Krikorian, B. D. Pate, E. L. Thomas, R. M. Hill, J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 2419. – reference: H.-W. Li, W. T. S. Huck, Nano Lett. 2004, 4, 1633. – reference: I. W. Hamley, Prog. Polym. Sci. 2009, 34, 1161. – reference: S. Mathieu, M. Zelsmann, S. Archambault, D. Borah, N. Kehagias, C. Simao, O. Lorret, M. T. Shaw, C. Sotomayor Torres, M. A. Morris, J. Mater. Chem. C 2013, 1, 3544. – reference: M. Wissen, N. Bogdanski, S. Moellenbeck, H. C. Scheer, in 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792 (Ed. Uwe F. W. Behringer), SPIE, Bellingham, WA, USA 2008, V7920. – reference: D. Borah, S. Rasappa, R. Senthamaraikannan, B. Kosmala, M. T. Shaw, J. D. Holmes, M. A. Morris, ACS Appl. Mater. Interfaces 2013, 5, 88. – reference: Y. S. Jung, C. A. Ross, Adv. Mater. 2009, 21, 2540. – reference: M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, S. Y. Chou, Appl. Phys. Lett. 2004, 84, 5299. – reference: D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. T. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, M. A. Morris, J. Phys. D: Appl. Phys. 2011, 44, 174012. – reference: R. G. Hobbs, R. A. Farrell, C. T. Bolger, R. A. Kelly, M. A. Morris, N. Petkov, J. D. Holmes, ACS Appl. Mater. Interfaces 2012, 4, 4637. – reference: D. Borah, R. Senthamaraikannan, S. Rasappa, B. Kosmala, J. D. Holmes, M. A. Morris, ACS Nano 2013, 7, 6583. – reference: R. A. Farrell, N. Kehagias, M. T. Shaw, V. Reboud, M. Zelsmann, J. D. Holmes, C. M. Sotomayor Torres, M. A. Morris, ACS Nano 2011, 5, 1073. – reference: K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109. – reference: C. Simao, A. Francone, D. Borah, O. Lorret, M. Salaun, B. Kosmala, M. T. Shaw, B. Dittert, N. Kehagias, M. Zelsmann, M. A. Morris, C. M. Sotomayor Torres, J. Photopolym. Sci. Technol. 2012, 25, 239. – reference: L. J. Guo, Adv. Mater. 2007, 19, 495. – volume: 9 start-page: 014109 year: 2008 publication-title: Sci. Technol. Adv. Mater. – volume: 47 start-page: 2033 year: 2011 publication-title: Eur. Polym. J. – volume: 29 start-page: 06F208 year: 2011 publication-title: J. Vac. Sci. Technol. B – volume: 5 start-page: 2004 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6883 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 29 start-page: 2809 year: 2013 publication-title: Langmuir – volume: 4 start-page: 699 year: 2004 publication-title: Nano Lett. – volume: 7 start-page: 2046 year: 2007 publication-title: Nano Lett. – volume: 19 start-page: 8526 year: 2003 publication-title: Langmuir – volume: 33 start-page: 857 year: 2000 publication-title: Macromolecules – volume: 30 start-page: 952 year: 2005 publication-title: MRS Bull. – volume: 518 start-page: 3710 year: 2010 publication-title: Thin Solid Films – volume: 4 start-page: 1633 year: 2004 publication-title: Nano Lett. – volume: 26 start-page: 14 year: 2007 publication-title: Polym. Test – volume: 84 start-page: 5299 year: 2004 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 11955 year: 2014 publication-title: RSC Adv. – volume: 34 start-page: 1161 year: 2009 publication-title: Prog. Polym. Sci. – start-page: V7920 year: 2008 – volume: 1 start-page: 3544 year: 2013 publication-title: J. Mater. Chem. C – volume: 7 start-page: 6583 year: 2013 publication-title: ACS Nano – volume: 20 start-page: 292001 year: 2009 publication-title: Nanotechnology – volume: 5 start-page: 1073 year: 2011 publication-title: ACS Nano – volume: 99 start-page: 193101 year: 2011 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 4769 year: 2009 publication-title: Adv. Mater. – volume: 15 start-page: 159 year: 2006 publication-title: J. Microelectromech. Syst. – volume: 4 start-page: 4637 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 2540 year: 2009 publication-title: Adv. Mater. – volume: 47 start-page: 2419 year: 2009 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 21 start-page: 1 year: 2003 publication-title: J. Vac. Sci. Technol. B – volume: 48 start-page: 191 year: 2005 publication-title: Mater. Sci. Eng., R – volume: 5 start-page: 88 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 1255 year: 1998 publication-title: Phys. Rev. B: Condens. Matter – volume: 105 start-page: 1171 year: 2005 publication-title: Chem. Rev. – volume: 5 start-page: 1367 year: 2010 publication-title: Nanoscale Res. Lett. – volume: 25 start-page: 239 year: 2012 publication-title: J. Photopolym. Sci. Technol. – volume: 44 start-page: 174012 year: 2011 publication-title: J. Phys. D: Appl. Phys. – volume: 42 start-page: 1692 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 495 year: 2007 publication-title: Adv. Mater. – volume: 5 start-page: 8523 year: 2011 publication-title: ACS Nano – volume: 2 start-page: 88 year: 2013 publication-title: Curr. Opin. Chem. Eng. – ident: e_1_2_6_35_1 doi: 10.1021/la030129x – ident: e_1_2_6_36_1 doi: 10.1039/c3ra47380e – ident: e_1_2_6_33_1 doi: 10.1039/c3tc30300d – ident: e_1_2_6_34_1 doi: 10.2494/photopolymer.25.239 – ident: e_1_2_6_9_1 doi: 10.1557/mrs2005.249 – ident: e_1_2_6_11_1 doi: 10.1002/adma.200803302 – start-page: V7920 volume-title: 24th European Mask and Lithography Conf., Proceedings of SPIE Vol. 6792 year: 2008 ident: e_1_2_6_1_1 – ident: e_1_2_6_26_1 doi: 10.1002/polb.21838 – ident: e_1_2_6_2_1 doi: 10.1063/1.3657777 – ident: e_1_2_6_5_1 doi: 10.1109/JMEMS.2005.859191 – ident: e_1_2_6_37_1 doi: 10.1021/ma991551g – ident: e_1_2_6_23_1 doi: 10.1166/jnn.2010.2958 – ident: e_1_2_6_40_1 doi: 10.1016/j.polymertesting.2006.08.005 – ident: e_1_2_6_13_1 doi: 10.1016/j.mser.2004.12.003 – ident: e_1_2_6_6_1 doi: 10.1002/anie.200200546 – ident: e_1_2_6_8_1 doi: 10.1088/1468-6996/9/1/014109 – ident: e_1_2_6_4_1 doi: 10.1116/1.1528919 – ident: e_1_2_6_32_1 doi: 10.1103/PhysRevB.38.1255 – ident: e_1_2_6_38_1 doi: 10.1002/adma.200802855 – ident: e_1_2_6_21_1 doi: 10.1021/nn102720m – ident: e_1_2_6_18_1 doi: 10.1021/nl035100s – ident: e_1_2_6_16_1 doi: 10.1016/j.eurpolymj.2011.07.025 – ident: e_1_2_6_25_1 doi: 10.1021/nn201391d – ident: e_1_2_6_19_1 doi: 10.1021/nl049209r – ident: e_1_2_6_15_1 doi: 10.1063/1.1766071 – ident: e_1_2_6_10_1 doi: 10.1016/j.coche.2012.10.008 – ident: e_1_2_6_28_1 doi: 10.1021/am302150z – ident: e_1_2_6_24_1 doi: 10.1016/j.tsf.2009.10.015 – ident: e_1_2_6_20_1 doi: 10.1088/0022-3727/44/17/174012 – ident: e_1_2_6_31_1 doi: 10.1021/nl070924l – ident: e_1_2_6_7_1 doi: 10.1007/s11671-010-9696-9 – ident: e_1_2_6_30_1 doi: 10.1021/am301012p – ident: e_1_2_6_22_1 doi: 10.1116/1.3662399 – ident: e_1_2_6_17_1 doi: 10.1021/cr030076o – ident: e_1_2_6_12_1 doi: 10.1016/j.progpolymsci.2009.06.003 – ident: e_1_2_6_27_1 doi: 10.1021/am302830w – ident: e_1_2_6_29_1 doi: 10.1021/la304140q – ident: e_1_2_6_39_1 doi: 10.1021/nn4035519 – ident: e_1_2_6_14_1 doi: 10.1002/adma.200600882 – ident: e_1_2_6_3_1 doi: 10.1088/0957-4484/20/29/292001 |
SSID | ssj0017734 |
Score | 2.273283 |
Snippet | Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self‐assembly (DSA) of block... Polyhedral oligomeric silsequioxane (POSS) derivatives have been successfully employed as substrates for graphoepitaxial directed self-assembly (DSA) of block... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3425 |
SubjectTerms | block copolymer Block copolymers Cylinders directed self-assembly Lithography nanoimprint lithography Nanostructure pattern transfer Physics polyhedral oligomeric silsequioxane (POSS) Segregations Self assembly Silicon substrates Surface chemistry |
Title | Soft Graphoepitaxy for Large Area Directed Self-Assembly of Polystyrene-block-Poly(dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography |
URI | https://api.istex.fr/ark:/67375/WNG-M6HTXJNR-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500100 https://www.proquest.com/docview/1701089897 https://hal.univ-grenoble-alpes.fr/hal-01869187 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgucCBN9rykkGIx6G7iZPmcSwL3WrVltV2V_Rm-amtmiaoSVHDiZ_AX-Kv8EuYSdrQIiEkOCWxx1ISj2c-2-NvCHmhVRQB6oCBJJRp-5pJuPNs2_OFZQrZUiSeHR6Ogv6FfzLpTLZO8df8EM2CG46Myl7jABcyP_xFGiq0xZPkAGhgSoGTdgzYQlR01vBHuWFYbysHLgZ4uZMNa6PDDneb73ilq5cYE3kNf_NqB3huw9fK__RuEbF58zrsZHawLOSB-vIbqeP_fNptcnMNTmm31qY75IpJ75IbW5SF98j3Mdhteow015nBjCOrkgLupQOMKIeWRtDaihpNxyaxP75-w33luUxKmll6miVljgvfqYEaCZ50Blcsfa2nmM26TPJpkq1Eat7Qt1hNjzCNQzk3C5qlFJwBzPLxBBK4B3r6YTymaPoqit2c9oSssh5BlSwr2ekcFy4LOpgWl2ty7vvkovf-_KjfXqeBaCs_wJ3n2NcBoBgdOdJjMXLgWxYKG1ulHONFTDrWIu09g2KtdKh8Jj1XapirxjELvAdkL81Ss09oBGjPDRSYMcBdAI2iuGNdGwVWeVpEKmyR9kYNuFpzpGOqjoTX7M6MY9fwpmta5FUj_6lmB_mj5HPQqkYISb373QHHMgezgrlR-NltkZeV0jViYjHDwLuwwz-Ojvkw6J9PTkZnfNAizzZaycEc4B4P9Eu2zDnS6zuYEhS-hVU69pcX4913vWHz9PBfGj0i1_G-DqB7TPaKxdI8AahWyKfVcPwJ_Y06DA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgewAexl103AxCwB6yJU6ay2PZ6MpIy7R2om9WfNOqpgnqBTU88RP4S_wVfgnnJG1YkRASPLW1j6WkPj7-bB9_HyEvlAxDQB0wkBKpLU8xAd9cY7leYphEthSBd4e7Pb9z7p0Mm-tsQrwLU_FD1BtuODLKeI0DHDekD36xhibK4FVyQDSwpoBV-zbKeqOIwdFZzSDlBEF1sOw7mOLlDNe8jTY72Gy_MS9dvcCsyG38o5cb0PMygC1noPZNItbPXiWejPcXc7Evv_xG6_hfL3eL7KzwKW1VDnWbXNHZHXLjEmvhXfK9D6GbHiPTda5RdGRZUIC-NMakcmipE1oFUq1oX6fmx9dveLQ8EWlBc0NP87SY4d53pqFGwGQ6hk8sfa1GKGhdpLNRmi-TTO_RN1hND1HJoZjoKc0zCvMBLPTxEhLMEPT0Q79PMfqVLLsz2k5EKXwEVaIobUcT3Luc03g0v1jxc98j5-23g8OOtVKCsKTn4-Fz5CkfgIwKbeGyCGnwDQsSExkpbe2GTNjGIPM9g2IlVSA9JlxHKFiuRhHz3ftkK8sz_YDQEACf40uIZAC9AB2FUdM4JvSNdFUSyqBBrLUfcLmiSUe1jpRXBM-MY9fwumsa5FVt_6kiCPmj5XNwq9oIeb07rZhjmY3CYE4YfHYa5GXpdbVZMh1j7l3Q5B97x7zrdwbDk94Zjxvk2dotOUQEPOaBfskXM44M-zaqgsK7sNLJ_vJgvHXU7ta_dv-l0VNyrTPoxjx-13v_kFzH8iqf7hHZmk8X-jEgt7l4Uo7Nn3MsPiY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZjtMwFLVgRkLwwI4oq0GI5aEziZNmeSwzZMqQlmo6I_pmxZumapqMuqCGJz6BX-JX-BLuTdrQIiEkeGprX0tJfZdj-_pcQl4oGQSAOsCQEqmbrmICvjmm6biJYRLZUgTeHe72vM6ZezxsDTdu8Vf8EPWGG1pG6a_RwC-U2f9FGpoogzfJAdDAkgIW7buuBxaDsOikJpCyfb86V_ZszPCyh2vaRovtb4_fCkuXzzEpchf_5-UW8tzEr2UAim6QZP3oVd7JeG8xF3vyy2-sjv_zbjfJ9RU6pe1KnW6RSzq7Ta5tcBbeId8H4LjpEfJc5xpLjiwLCsCXxphSDiN1Qis3qhUd6NT8-PoND5YnIi1obmg_T4sZ7nxnGnoEhNIxfGLrazXCctZFOhul-TLJ9Bv6FrvpAdZxKCZ6SvOMQjSAZT5eQYL4QPsfBwOKvq_k2J3RKBFl2SPoEkUpO5rgzuWcxqP5-Yqd-y45i96dHnSaqzoQTel6ePQcusoDGKMCSzgsRBJ8w_zEhEZKSzsBE5YxyHvPoFlJ5UuXCccWCharYcg85x7ZyfJM3yc0ALhnexL8GAAvwEZB2DK2CTwjHZUE0m-Q5loNuFyRpGOtjpRX9M6M49Twemoa5FUtf1HRg_xR8jloVS2ErN6ddsyxzcKyYHbgf7Yb5GWpdLVYMh1j5p3f4p96R7zrdU6Hx70THjfIs7VWcvAHeMgD85IvZhz59S2sCQrvwkod-8uD8fZh1K1_PfiXQU_Jlf5hxOP3vQ8PyVVsrpLpHpGd-XShHwNsm4snpWX-BKy6PN4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Graphoepitaxy+for+Large+Area+Directed+Self-Assembly+of+Polystyrene-block-Poly%28dimethylsiloxane%29+Block+Copolymer+on+Nanopatterned+POSS+Substrates+Fabricated+by+Nanoimprint+Lithography&rft.jtitle=Advanced+functional+materials&rft.au=Borah%2C+Dipu&rft.au=Rasappa%2C+Sozaraj&rft.au=Salaun%2C+Mathieu&rft.au=Zellsman%2C+Marc&rft.date=2015-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=22&rft.spage=3425&rft.epage=3432&rft_id=info:doi/10.1002%2Fadfm.201500100&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |