Chloroquine Enhances the Radiosensitivity of Bladder Cancer Cells by Inhibiting Autophagy and Activating Apoptosis
Background/Aims: Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction. Met...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 45; no. 1; pp. 54 - 66 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2018
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
ISSN | 1015-8987 1421-9778 1421-9778 |
DOI | 10.1159/000486222 |
Cover
Loading…
Abstract | Background/Aims: Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction. Methods: Bladder cancer cell lines were irradiated with or without chloroquine. Cell proliferation was determined by a Cell Counting Kit 8 assay. The radiosensitization effect of chloroquine was evaluated by clonogenic survival and progression of xenograft tumors. Cell apoptosis was detected by flow cytometry and western blot. Radiation-induced DNA double strand break was measured by the staining of γ-H2AX. In addition, autophagy was detected by western blot, immunofluorescence staining, and electron microscopy. Results: The treatment with chloroquine alone inhibited the proliferation of bladder cancer cells in a dose-dependent manner. Low cytotoxic concentrations of chloroquine enhanced the radiation sensitivity of bladder cancer cells with a sensitization enhancement ratio of 1.53 and 1.40. Chloroquine also obviously weakened the repair of radiation-induced DNA damage. A combination of radiation and chloroquine enhanced the apoptosis rate of EJ and T24 cells and down-regulated the expression of Bcl-2 while up-regulating the expression of caspase-3. Additionally, the relevant markers of autophagy were obviously increased in the combined group, meaning that chloroquine inhibited autophagy induced by irradiation. Furthermore, subcutaneous xenograft tumors displayed that the combination of radiation and chloroquine could impede tumorigenesis in vivo. Conclusion: In summary, these results provided support that by inhibiting autophagy and activating apoptosis, chloroquine might be a potentially promising radiosensitizer in the radiation therapy of bladder cancer. |
---|---|
AbstractList | Background/Aims: Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction. Methods: Bladder cancer cell lines were irradiated with or without chloroquine. Cell proliferation was determined by a Cell Counting Kit 8 assay. The radiosensitization effect of chloroquine was evaluated by clonogenic survival and progression of xenograft tumors. Cell apoptosis was detected by flow cytometry and western blot. Radiation-induced DNA double strand break was measured by the staining of γ-H2AX. In addition, autophagy was detected by western blot, immunofluorescence staining, and electron microscopy. Results: The treatment with chloroquine alone inhibited the proliferation of bladder cancer cells in a dose-dependent manner. Low cytotoxic concentrations of chloroquine enhanced the radiation sensitivity of bladder cancer cells with a sensitization enhancement ratio of 1.53 and 1.40. Chloroquine also obviously weakened the repair of radiation-induced DNA damage. A combination of radiation and chloroquine enhanced the apoptosis rate of EJ and T24 cells and down-regulated the expression of Bcl-2 while up-regulating the expression of caspase-3. Additionally, the relevant markers of autophagy were obviously increased in the combined group, meaning that chloroquine inhibited autophagy induced by irradiation. Furthermore, subcutaneous xenograft tumors displayed that the combination of radiation and chloroquine could impede tumorigenesis in vivo. Conclusion: In summary, these results provided support that by inhibiting autophagy and activating apoptosis, chloroquine might be a potentially promising radiosensitizer in the radiation therapy of bladder cancer. Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction.BACKGROUND/AIMSChloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction.Bladder cancer cell lines were irradiated with or without chloroquine. Cell proliferation was determined by a Cell Counting Kit 8 assay. The radiosensitization effect of chloroquine was evaluated by clonogenic survival and progression of xenograft tumors. Cell apoptosis was detected by flow cytometry and western blot. Radiation-induced DNA double strand break was measured by the staining of γ-H2AX. In addition, autophagy was detected by western blot, immunofluorescence staining, and electron microscopy.METHODSBladder cancer cell lines were irradiated with or without chloroquine. Cell proliferation was determined by a Cell Counting Kit 8 assay. The radiosensitization effect of chloroquine was evaluated by clonogenic survival and progression of xenograft tumors. Cell apoptosis was detected by flow cytometry and western blot. Radiation-induced DNA double strand break was measured by the staining of γ-H2AX. In addition, autophagy was detected by western blot, immunofluorescence staining, and electron microscopy.The treatment with chloroquine alone inhibited the proliferation of bladder cancer cells in a dose-dependent manner. Low cytotoxic concentrations of chloroquine enhanced the radiation sensitivity of bladder cancer cells with a sensitization enhancement ratio of 1.53 and 1.40. Chloroquine also obviously weakened the repair of radiation-induced DNA damage. A combination of radiation and chloroquine enhanced the apoptosis rate of EJ and T24 cells and down-regulated the expression of Bcl-2 while up-regulating the expression of caspase-3. Additionally, the relevant markers of autophagy were obviously increased in the combined group, meaning that chloroquine inhibited autophagy induced by irradiation. Furthermore, subcutaneous xenograft tumors displayed that the combination of radiation and chloroquine could impede tumorigenesis in vivo.RESULTSThe treatment with chloroquine alone inhibited the proliferation of bladder cancer cells in a dose-dependent manner. Low cytotoxic concentrations of chloroquine enhanced the radiation sensitivity of bladder cancer cells with a sensitization enhancement ratio of 1.53 and 1.40. Chloroquine also obviously weakened the repair of radiation-induced DNA damage. A combination of radiation and chloroquine enhanced the apoptosis rate of EJ and T24 cells and down-regulated the expression of Bcl-2 while up-regulating the expression of caspase-3. Additionally, the relevant markers of autophagy were obviously increased in the combined group, meaning that chloroquine inhibited autophagy induced by irradiation. Furthermore, subcutaneous xenograft tumors displayed that the combination of radiation and chloroquine could impede tumorigenesis in vivo.In summary, these results provided support that by inhibiting autophagy and activating apoptosis, chloroquine might be a potentially promising radiosensitizer in the radiation therapy of bladder cancer.CONCLUSIONIn summary, these results provided support that by inhibiting autophagy and activating apoptosis, chloroquine might be a potentially promising radiosensitizer in the radiation therapy of bladder cancer. Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the radiosensitizing effect of chloroquine in bladder cancer, with an emphasis on autophagy inhibition and apoptosis induction. Bladder cancer cell lines were irradiated with or without chloroquine. Cell proliferation was determined by a Cell Counting Kit 8 assay. The radiosensitization effect of chloroquine was evaluated by clonogenic survival and progression of xenograft tumors. Cell apoptosis was detected by flow cytometry and western blot. Radiation-induced DNA double strand break was measured by the staining of γ-H2AX. In addition, autophagy was detected by western blot, immunofluorescence staining, and electron microscopy. The treatment with chloroquine alone inhibited the proliferation of bladder cancer cells in a dose-dependent manner. Low cytotoxic concentrations of chloroquine enhanced the radiation sensitivity of bladder cancer cells with a sensitization enhancement ratio of 1.53 and 1.40. Chloroquine also obviously weakened the repair of radiation-induced DNA damage. A combination of radiation and chloroquine enhanced the apoptosis rate of EJ and T24 cells and down-regulated the expression of Bcl-2 while up-regulating the expression of caspase-3. Additionally, the relevant markers of autophagy were obviously increased in the combined group, meaning that chloroquine inhibited autophagy induced by irradiation. Furthermore, subcutaneous xenograft tumors displayed that the combination of radiation and chloroquine could impede tumorigenesis in vivo. In summary, these results provided support that by inhibiting autophagy and activating apoptosis, chloroquine might be a potentially promising radiosensitizer in the radiation therapy of bladder cancer. |
Author | Yang, Haiwei Wang, Zengjun Tang, Jinyuan Li, Pengchao Si, Shuhui Tao, Jun Yu, Hao Lv, Qiang Gu, Min Wang, Feng Yang, Xiao |
Author_xml | – sequence: 1 givenname: Feng surname: Wang fullname: Wang, Feng – sequence: 2 givenname: Jinyuan surname: Tang fullname: Tang, Jinyuan – sequence: 3 givenname: Pengchao surname: Li fullname: Li, Pengchao email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 4 givenname: Shuhui surname: Si fullname: Si, Shuhui email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 5 givenname: Hao surname: Yu fullname: Yu, Hao email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 6 givenname: Xiao surname: Yang fullname: Yang, Xiao email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 7 givenname: Jun surname: Tao fullname: Tao, Jun – sequence: 8 givenname: Qiang surname: Lv fullname: Lv, Qiang – sequence: 9 givenname: Min surname: Gu fullname: Gu, Min email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 10 givenname: Haiwei surname: Yang fullname: Yang, Haiwei email: haiweiyang@njmu.edu.cn, lancetgu@aliyun.com – sequence: 11 givenname: Zengjun surname: Wang fullname: Wang, Zengjun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29316551$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtv1DAUhSNURB-wYI-QpW5gMdSPxI_lNCowUiUQgrV14zgTDxk72Eml-fd4SJlF1dW1fb575HvPZXHmg7dF8ZbgT4RU6gZjXEpOKX1RXJCSkpUSQp7lMybVSiopzovLlHY4X4Wir4pzqhjhVUUuilj3Q4jhz-y8RXe-B29sQlNv0Q9oXUjWJze5BzcdUOjQ7QBtayOqj1gudhgSag5o43vXZM5v0XqewtjD9oDAt2htcjMswhjGKSSXXhcvOxiSffNYr4pfn-9-1l9X99--bOr1_cqUnE2rznS2BWVLQUTXYUMxwxVtGgxNyduSCYNBNJwD76AF4LLkxioKgHFDuTLsqtgsvm2AnR6j20M86ABO_3sIcashTs4MVhNQDBpCukaaEkwlS0aMqCSmgpeUHr0-LF7jcVc2TXrvksnjg7dhTpooqSrOGKsyev0E3YU5-jyppoQIwomQMlPvH6m52dv29L3_yWTg4wKYGFKKtjshBOtj6vqUemZvnrDGTXnrwU8R3PBsx7ul4zfErY0n75N8_axcf79dCD22HfsLemrCPA |
CitedBy_id | crossref_primary_10_1080_14728222_2021_1992384 crossref_primary_10_1016_j_matdes_2023_111858 crossref_primary_10_3390_ijms23147518 crossref_primary_10_1016_j_yexcr_2018_11_004 crossref_primary_10_1007_s11010_020_03708_8 crossref_primary_10_1080_15548627_2019_1582973 crossref_primary_10_1016_j_tox_2024_153831 crossref_primary_10_3390_jcm10235473 crossref_primary_10_3389_fonc_2022_915240 crossref_primary_10_3389_fonc_2021_626309 crossref_primary_10_3389_fcell_2021_672693 crossref_primary_10_1016_j_ejmech_2019_111640 crossref_primary_10_3389_fcell_2021_683940 crossref_primary_10_1016_j_urolonc_2024_07_017 crossref_primary_10_1667_RADE_20_00009 crossref_primary_10_1002_ptr_6925 crossref_primary_10_3389_fonc_2020_00886 crossref_primary_10_1111_1759_7714_15494 crossref_primary_10_1038_s41598_019_42864_w crossref_primary_10_3390_curroncol30060406 crossref_primary_10_1007_s12272_020_01239_w crossref_primary_10_1016_j_canlet_2018_08_029 crossref_primary_10_3390_ijms221810171 crossref_primary_10_1002_jcp_30817 crossref_primary_10_1111_febs_16125 crossref_primary_10_1016_j_bbcan_2024_189196 crossref_primary_10_2478_acph_2023_0016 crossref_primary_10_1016_j_drup_2019_100643 crossref_primary_10_3389_fonc_2022_957373 crossref_primary_10_1038_s41374_021_00690_7 crossref_primary_10_1177_20587392211049878 crossref_primary_10_1002_cam4_3739 crossref_primary_10_1667_RR15099_1 crossref_primary_10_1007_s00109_020_01971_2 crossref_primary_10_3389_fphar_2021_576093 crossref_primary_10_3390_ijms23158671 crossref_primary_10_1007_s11030_021_10347_8 crossref_primary_10_1016_j_intimp_2024_112623 crossref_primary_10_1080_21655979_2021_1965694 crossref_primary_10_1016_j_ijbiomac_2024_132347 crossref_primary_10_2478_acph_2019_0048 crossref_primary_10_1016_j_canlet_2024_216867 crossref_primary_10_1007_s11255_019_02210_5 crossref_primary_10_1007_s11626_020_00490_1 crossref_primary_10_3390_ijms241914887 crossref_primary_10_1038_s41598_020_73310_x crossref_primary_10_1136_bmjonc_2023_000192 crossref_primary_10_1177_1535370220959336 crossref_primary_10_1002_ijc_34991 crossref_primary_10_1038_s41419_022_04791_z crossref_primary_10_1667_RADE_20_00057_1 crossref_primary_10_3390_neuroglia1020020 crossref_primary_10_1016_j_bcp_2021_114588 crossref_primary_10_1111_bcpt_14110 crossref_primary_10_3390_cancers11101599 crossref_primary_10_1177_02841851211038808 crossref_primary_10_1016_j_bbrc_2023_01_081 crossref_primary_10_1007_s11030_020_10147_6 crossref_primary_10_1016_j_freeradbiomed_2020_10_014 crossref_primary_10_3390_cancers13010087 crossref_primary_10_3389_fonc_2024_1390518 crossref_primary_10_1002_smll_202402312 crossref_primary_10_1515_oncologie_2024_0097 crossref_primary_10_1111_jcmm_16552 crossref_primary_10_2147_IJN_S458910 crossref_primary_10_1089_cbr_2019_3538 crossref_primary_10_3390_cells9122709 crossref_primary_10_1016_j_ecoenv_2022_114123 crossref_primary_10_1016_j_mehy_2020_110434 crossref_primary_10_3390_cancers15215269 crossref_primary_10_1186_s13578_021_00570_z crossref_primary_10_2478_acph_2018_0039 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by S. Karger AG, Basel 2018 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2018 The Author(s). Published by S. Karger AG, Basel – notice: 2018 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1159/000486222 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 66 |
ExternalDocumentID | oai_doaj_org_article_1a93ab11fb8c4ac58431c7580276422c 29316551 10_1159_000486222 486222 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PQQKQ PROAC PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO CAG CITATION COF ITC PHGZM PHGZT PJZUB PPXIY RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c463t-fcfeda9e4717ff0c203052bb0ab46d437c0a7b66a6fadaa6846ce92aa00b269c3 |
IEDL.DBID | M-- |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Fri Jul 11 01:30:16 EDT 2025 Fri Jul 25 04:41:42 EDT 2025 Thu Apr 03 06:54:12 EDT 2025 Tue Aug 05 12:06:05 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Thu Sep 05 18:04:35 EDT 2024 Thu Aug 29 12:04:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Radiosensitivity Bladder cancer Autophagy Chloroquine Apoptosis |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2018 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-fcfeda9e4717ff0c203052bb0ab46d437c0a7b66a6fadaa6846ce92aa00b269c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000486222 |
PMID | 29316551 |
PQID | 2117161788 |
PQPubID | 2047990 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a93ab11fb8c4ac58431c7580276422c proquest_journals_2117161788 crossref_primary_10_1159_000486222 crossref_citationtrail_10_1159_000486222 karger_primary_486222 pubmed_primary_29316551 proquest_miscellaneous_1989563335 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2018 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Dinney CP, McConkey DJ, Millikan RE, Wu X, Bar-Eli M, Adam L, Kamat AM, Siefker-Radtke AO, Tuziak T, Sabichi AL, Grossman HB, Benedict WF, Czerniak B: Focus on bladder cancer. Cancer Cell 2004; 6: 111-116.1532469410.1016/j.ccr.2004.08.002 Qin L, Xu T, Xia L, Wang X, Zhang X, Zhang X, Zhu Z, Zhong S, Wang C, Shen Z: Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. Drug Des Devel Ther 2016; 10: 1035-1045.2702224310.2147/DDDT.S101701 Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C: The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 2009; 125: 717-722.19431142 10.1002/ijc.24402 Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP: Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011; 99: 287-292.21722986 10.1016/j.radonc.2011.06.002 Rubinsztein DC, Codogno P, Levine B: Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11: 709-730.22935804 10.1038/nrd3802 Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM: Molecular response of human glioblastoma multiforme cells to ionizing radiation: Cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 2003; 98: 378-384.1259362610.3171/jns.2003.98.2.0378 Avniel-Polak S, Leibowitz G, Riahi Y, Glaser B, Gross DJ, Grozinsky-Glasberg S: Abrogation of autophagy by chloroquine alone or in combination with mTOR inhibitors induces apoptosis in neuroendocrine tumor cells. Neuroendocrinology 2016; 103: 724-737.2661920710.1159/000442589 Kim JJ, Tannock IF: Repopulation of cancer cells during therapy: An important cause of treatment failure. Nat Rev Cancer 2005; 5: 516-525.1596549310.1038/nrc1650 Glick D, Barth S, Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221: 3-12.20225336 10.1002/path.2697 Koukourakis MI, Mitrakas AG, Giatromanolaki A: Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: Evidence and issues to resolve. Br J Cancer 2016; 114: 485-496.2688997510.1038/bjc.2016.19 Siegel RL, Miller KD, Jemal A: Cancer Statistics, 2017 CA Cancer J Clin 2017; 67: 7-30.2805510310.3322/caac.21387 Makowska A, Eble M, Prescher K, Hoss M, Kontny U: Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. Plos One 2016; 11:e166766.27902742 10.1371/journal.pone.0166766 Shoshan-Barmatz V, Krelin Y, Chen Q: VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr Med Chem DOI: 10.2174/092986732466617061610520028618997 10.2174/0929867324666170616105200 Cheng CW, Wu TX, Shang HC, Li YP, Altman DG, Moher D, Bian ZX: CONSORT extension for chinese herbal medicine formulas 2017: Recommendations, explanation, and elaboration. Ann Intern Med 2017; 167:W7-W20.2865498810.7326/IsTranslatedFrom_M17-2977_1 Kotwal S, Choudhury A, Johnston C, Paul AB, Whelan P, Kiltie AE: Similar treatment outcomes for radical cystectomy and radical radiotherapy in invasive bladder cancer treated at a United Kingdom specialist treatment center. Int J Radiat Oncol Biol Phys 2008; 70: 456-463.1864050610.1016/j.ijrobp.2008.03.037 Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyas E, Lopez-Bonet E, Martin-Castillo B, Joven J, Menendez JA: The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep 2013; 3: 2469.2396585110.1038/srep02469 Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X: Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. Bmc Neurol 2016; 16: 178.2764444210.1186/s12883-016-0700-6 Kondo Y, Kanzawa T, Sawaya R, Kondo S: The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726-734.1614888510.1038/nrc1692 Pascolo S: Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 2016; 771: 139-144.2668763210.1016/j.ejphar.2015.12.017 Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131-24145.1758030410.1074/jbc.M702824200 Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, Zhuang L, Luo J, Chen H, Liu L, Chen Z, Meng Z: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 2013; 145: 1133-1143.2391694410.1053/j.gastro.2013.07.048 Kim YB, Hong SJ, Yang SC, Cho JH, Choi YD, Kim GE, Rha KH, Han WK, Cho NH, Oh YT: Pattern of failure in bladder cancer patients treated with radical cystectomy: Rationale for adjuvant radiotherapy. J Korean Med Sci 2010; 25: 835-840.2051430210.3346/jkms.2010.25.6.835 Efstathiou JA, Spiegel DY, Shipley WU, Heney NM, Kaufman DS, Niemierko A, Coen JJ, Skowronski RY, Paly JJ, McGovern FJ, Zietman AL: Long-term outcomes of selective bladder preservation by combined-modality therapy for invasive bladder cancer: The MGH experience. Eur Urol 2012; 61: 705-711.2210111410.1016/j.eururo.2011.11.010 Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891-2906.1507715210.1038/sj.onc.1207521 Ogier-Denis E, Codogno P: Autophagy: A barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603: 113-128.1261831110.1016/S0304-419X(03)00004-0 Zhao H, Cai Y, Santi S, Lafrenie R, Lee H: Chloroquine-mediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis. Radiat Res 2005; 164: 250-257.1613719710.1667/RR3436.1 Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013; 368: 1845-1846.2365665810.1056/NEJMc1303158 Chang JS, Lara PJ, Pan CX: Progress in personalizing chemotherapy for bladder cancer. Adv Urol 2012; 2012: 364919.22400017 10.1155/2012/364919 Chen Z, Zhu R, Zheng J, Chen C, Huang C, Ma J, Xu C, Zhai W, Zheng J: Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017; 8: 50023-50033.28654902 10.18632/oncotarget.18483 Kundu M, Thompson CB: Autophagy: Basic principles and relevance to disease. Annu Rev Pathol 2008; 3: 427-455.1803912910.1146/annurev.pathmechdis.2.010506.091842 Fulda S, Debatin KM: Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798-4811.1689209210.1038/sj.onc.1209608 Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schonthal AH, Chen TC: Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus 2014; 37:E12.25434381 10.3171/2014.9.FOCUS14504 Wang Q, Zhu J, Zhang K, Jiang C, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Liu Z: Induction of cytoprotective autophagy in PC-12 cells by cadmium. Biochem Biophys Res Commun 2013; 438: 186-192.23880342 10.1016/j.bbrc.2013.07.050 Jin Z, El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4: 139-163.1572572610.4161/cbt.4.2.1508 |
References_xml | – reference: Koukourakis MI, Mitrakas AG, Giatromanolaki A: Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: Evidence and issues to resolve. Br J Cancer 2016; 114: 485-496.2688997510.1038/bjc.2016.19 – reference: Cheng CW, Wu TX, Shang HC, Li YP, Altman DG, Moher D, Bian ZX: CONSORT extension for chinese herbal medicine formulas 2017: Recommendations, explanation, and elaboration. Ann Intern Med 2017; 167:W7-W20.2865498810.7326/IsTranslatedFrom_M17-2977_1 – reference: Wang Q, Zhu J, Zhang K, Jiang C, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Liu Z: Induction of cytoprotective autophagy in PC-12 cells by cadmium. Biochem Biophys Res Commun 2013; 438: 186-192.23880342 10.1016/j.bbrc.2013.07.050 – reference: Ogier-Denis E, Codogno P: Autophagy: A barrier or an adaptive response to cancer. Biochim Biophys Acta 2003; 1603: 113-128.1261831110.1016/S0304-419X(03)00004-0 – reference: Fulda S, Debatin KM: Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798-4811.1689209210.1038/sj.onc.1209608 – reference: Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, Zhuang L, Luo J, Chen H, Liu L, Chen Z, Meng Z: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 2013; 145: 1133-1143.2391694410.1053/j.gastro.2013.07.048 – reference: Kotwal S, Choudhury A, Johnston C, Paul AB, Whelan P, Kiltie AE: Similar treatment outcomes for radical cystectomy and radical radiotherapy in invasive bladder cancer treated at a United Kingdom specialist treatment center. Int J Radiat Oncol Biol Phys 2008; 70: 456-463.1864050610.1016/j.ijrobp.2008.03.037 – reference: Chang JS, Lara PJ, Pan CX: Progress in personalizing chemotherapy for bladder cancer. Adv Urol 2012; 2012: 364919.22400017 10.1155/2012/364919 – reference: Kim YB, Hong SJ, Yang SC, Cho JH, Choi YD, Kim GE, Rha KH, Han WK, Cho NH, Oh YT: Pattern of failure in bladder cancer patients treated with radical cystectomy: Rationale for adjuvant radiotherapy. J Korean Med Sci 2010; 25: 835-840.2051430210.3346/jkms.2010.25.6.835 – reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T: P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131-24145.1758030410.1074/jbc.M702824200 – reference: Pascolo S: Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 2016; 771: 139-144.2668763210.1016/j.ejphar.2015.12.017 – reference: Chen Z, Zhu R, Zheng J, Chen C, Huang C, Ma J, Xu C, Zhai W, Zheng J: Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017; 8: 50023-50033.28654902 10.18632/oncotarget.18483 – reference: Siegel RL, Miller KD, Jemal A: Cancer Statistics, 2017 CA Cancer J Clin 2017; 67: 7-30.2805510310.3322/caac.21387 – reference: Kondo Y, Kanzawa T, Sawaya R, Kondo S: The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726-734.1614888510.1038/nrc1692 – reference: Avniel-Polak S, Leibowitz G, Riahi Y, Glaser B, Gross DJ, Grozinsky-Glasberg S: Abrogation of autophagy by chloroquine alone or in combination with mTOR inhibitors induces apoptosis in neuroendocrine tumor cells. Neuroendocrinology 2016; 103: 724-737.2661920710.1159/000442589 – reference: Shoshan-Barmatz V, Krelin Y, Chen Q: VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr Med Chem DOI: 10.2174/092986732466617061610520028618997 10.2174/0929867324666170616105200 – reference: Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891-2906.1507715210.1038/sj.onc.1207521 – reference: Glick D, Barth S, Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221: 3-12.20225336 10.1002/path.2697 – reference: Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schonthal AH, Chen TC: Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus 2014; 37:E12.25434381 10.3171/2014.9.FOCUS14504 – reference: Jin Z, El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4: 139-163.1572572610.4161/cbt.4.2.1508 – reference: Kundu M, Thompson CB: Autophagy: Basic principles and relevance to disease. Annu Rev Pathol 2008; 3: 427-455.1803912910.1146/annurev.pathmechdis.2.010506.091842 – reference: Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X: Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis. Bmc Neurol 2016; 16: 178.2764444210.1186/s12883-016-0700-6 – reference: Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyas E, Lopez-Bonet E, Martin-Castillo B, Joven J, Menendez JA: The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep 2013; 3: 2469.2396585110.1038/srep02469 – reference: Dinney CP, McConkey DJ, Millikan RE, Wu X, Bar-Eli M, Adam L, Kamat AM, Siefker-Radtke AO, Tuziak T, Sabichi AL, Grossman HB, Benedict WF, Czerniak B: Focus on bladder cancer. Cancer Cell 2004; 6: 111-116.1532469410.1016/j.ccr.2004.08.002 – reference: Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013; 368: 1845-1846.2365665810.1056/NEJMc1303158 – reference: Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G, Rodemann HP: Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011; 99: 287-292.21722986 10.1016/j.radonc.2011.06.002 – reference: Qin L, Xu T, Xia L, Wang X, Zhang X, Zhang X, Zhu Z, Zhong S, Wang C, Shen Z: Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. Drug Des Devel Ther 2016; 10: 1035-1045.2702224310.2147/DDDT.S101701 – reference: Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C: The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 2009; 125: 717-722.19431142 10.1002/ijc.24402 – reference: Rubinsztein DC, Codogno P, Levine B: Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11: 709-730.22935804 10.1038/nrd3802 – reference: Zhao H, Cai Y, Santi S, Lafrenie R, Lee H: Chloroquine-mediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis. Radiat Res 2005; 164: 250-257.1613719710.1667/RR3436.1 – reference: Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM: Molecular response of human glioblastoma multiforme cells to ionizing radiation: Cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 2003; 98: 378-384.1259362610.3171/jns.2003.98.2.0378 – reference: Efstathiou JA, Spiegel DY, Shipley WU, Heney NM, Kaufman DS, Niemierko A, Coen JJ, Skowronski RY, Paly JJ, McGovern FJ, Zietman AL: Long-term outcomes of selective bladder preservation by combined-modality therapy for invasive bladder cancer: The MGH experience. Eur Urol 2012; 61: 705-711.2210111410.1016/j.eururo.2011.11.010 – reference: Kim JJ, Tannock IF: Repopulation of cancer cells during therapy: An important cause of treatment failure. Nat Rev Cancer 2005; 5: 516-525.1596549310.1038/nrc1650 – reference: Makowska A, Eble M, Prescher K, Hoss M, Kontny U: Chloroquine sensitizes nasopharyngeal carcinoma cells but not nasoepithelial cells to irradiation by blocking autophagy. Plos One 2016; 11:e166766.27902742 10.1371/journal.pone.0166766 |
SSID | ssj0015792 |
Score | 2.4864318 |
Snippet | Background/Aims: Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to... Chloroquine was formerly used as an anti-malarial agent drug but has now been proven to be useful for various diseases. This study aimed to investigate the... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | Animals Apoptosis Apoptosis - drug effects Apoptosis - radiation effects Autophagy Autophagy - drug effects Autophagy - radiation effects Bladder cancer Breast cancer Cancer therapies Caspase 3 - metabolism Cell Line, Tumor Cell Proliferation - drug effects Chemotherapy Chloroquine Chloroquine - pharmacology Cytotoxicity DNA Damage - drug effects DNA Damage - radiation effects Down-Regulation - drug effects Down-Regulation - radiation effects Humans Mice Mice, Inbred BALB C Mice, Nude Microtubule-Associated Proteins - metabolism Original Paper Proteins Proto-Oncogene Proteins c-bcl-2 - genetics Proto-Oncogene Proteins c-bcl-2 - metabolism Radiation therapy Radiation Tolerance - drug effects Radiation Tolerance - radiation effects Radiation, Ionizing Radiation-Sensitizing Agents - pharmacology Radiosensitivity Sequestosome-1 Protein - metabolism Tumors Up-Regulation - drug effects Up-Regulation - radiation effects Urinary Bladder Neoplasms - drug therapy Urinary Bladder Neoplasms - pathology Urinary Bladder Neoplasms - radiotherapy X-rays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA6yIHoRXVetrhLFg5eyTZqkzXGm7LIKiogLewv56QwO7TCdOcx_70vTFhXFi6dCXkjbfC9932te3kPoLTB-JojXOS-Iy5mwJDeGu9zTQOqgHRiteHb44ydxfcM-3PLbn0p9xZiwlB44TdwF0bLUhpBgasu0BXtZEgskF9wpoM7Uxq8v2LzJmRr3D3gl0z4n4XkNbvWYUwhs98VwjFpQSn-xREPCfrBC32P89e7vdHMwO1cP0YORL-JFes5H6I5vT9HdVEHyeIruNVPBtsdo16zA-YbxgDjiy3YV8ewxEDz8Rbt118dQ9VQrAncBLzfxm7PDTewGF7_Z9Ngc8ft2tTbrGAyNF4eYdUB_O2LdOrywqRJaFGy77b7r1_0Zurm6_Npc52NJhdwyUe7zYIN3WnowSVUIhaVxvVNjCm2YcKysbKErI4QWgJPWAoC0XlKti8JQIW35BJ20XeufISwNeEqEWumsZ1xXElBxgC0XgfmqkBl6N02vsmO-8Vj2YqMGv4NLNSORoTdz121KsvGnTsuI0dwh5sUeGkBb1Kgt6l_akqGzhPA8zDT4-W_tzedlEqmtCyCe9EGNa7xX4DpX0Tus6wy9nsWAedxy0a3vDr2KEWlclGXJM_Q06dF8ByBaRABhff4_XuwFug9Urk4_h87RyX538C-BLu3Nq2Fl_ABeVw6E priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56Ivoiep5aPSWKD76Ua9ImbZ9kt9xxCoqIB_tW8qu3i0vba3cf9r-_maatKOpTIROmpV-S-SaZzBDyHhh_IplToYiYDRNpWKi1sKHjFcsqZcFo4d3hL1_l5VXyeSVW44ZbP4ZVTmvisFDbxuAe-Rk4Kily8Sz72N6EWDUKT1fHEhp3yT1MXYYhXelqdriYSHN_2slEmIFzPWYWAgt-Nlymlpzz3-zRkLYfbNFPjMLu_k06B-Nz8Zg8GlkjXXiYn5A7rj4m930dycMxeVBMZduekq5YgwsO-oA-0vN6jaj2FGge_a7spukxYN1XjKBNRZdbXHk6WmA3eLjttqf6QD_V643eYEg0Xewx94C6PlBVW7owvh4aCtqm3TX9pj8hVxfnP4rLcCysEJpExruwMpWzKndgmNKqigzHWc-1jpROpE3i1EQq1VIqCWgpJQFO43KuVBRpLnMTPyNHdVO7F4TmGvwlxk1ujUuESnOTCgsIC1klLo3ygHyYfm9pxqzjWPxiWw7eh8jLGYmAvJu7tj7Vxt86LRGjuQNmxx4amu66HCdbyVQeK81YpTOTKAMcK2bwXRm44OBucROQE4_wrGZSfvpHe_Ft6UVlaysQT-OhHGd6X_4alwF5O4sBczx4UbVr9n2JcWlCxnEsAvLcj6P5DUC3mATa-vL_yl-Rh0DVMr_5c0qOdt3evQY6tNNvhjF_CxgXBss priority: 102 providerName: ProQuest |
Title | Chloroquine Enhances the Radiosensitivity of Bladder Cancer Cells by Inhibiting Autophagy and Activating Apoptosis |
URI | https://karger.com/doi/10.1159/000486222 https://www.ncbi.nlm.nih.gov/pubmed/29316551 https://www.proquest.com/docview/2117161788 https://www.proquest.com/docview/1989563335 https://doaj.org/article/1a93ab11fb8c4ac58431c7580276422c |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3Pa9swFBZry9guY-u6zV0XtLHDLmKWbcnWMTEp3aCllBVyM_rZhAU7xMkh_32fLNvQsZ4MkiwJf5Lf-_Tjewh9B48_49RKwmJqSMY1JUoxQ2ziaOGkAaPl7w5f3_Cr--z3gi369Q5_F-avP__cSaOO2gJgcH92d5852LIjdAI8KvUq-deEjPsFLBdhX5MyUgCN7jWEnrzqdX9FSjlj9IkR6rT6wQCFpp_3NDuLc_kWveldRTwN2L5DL2x9il6G4JGHU_SqHGK1vUfbcgm8G-oDnxHP66WHssXg2-E7aVZN60-phzARuHF4tva_my0ufTF42PW6xeqAf9XLlVr5c9B4uveCA_LhgGVt8FSHIGg-Y9Nsdk27as_Q_eX8T3lF-mgKRGc83RGnnTVSWLBGuXOxTvxUT5SKpcq4ydJcxzJXnEsOEEnJAUNtRSJlHKuEC51-QMd1U9tPCAsFJIkmWhhtMyZzoXNmAFbGXWbzWETox_B5K91LjfuIF-uqoxxMVCMoEfo2Ft0EfY3_FZp5jMYCXhK7S2i2D1U_wyoqRSoVpU4VOpMaHKuUQr8K4N3AsRIdobOA8FjNUPnFP-nl7SxkVRvjIHsYD1U_vdsKWHPuiWFRROjrmA2Y-90WWdtm31b-MBrjaZqyCH0M42hsYRiH58_06TN6DY5ZEZZ6LtDxbru3X8D52akJOsoX-QSdzOY3t3eTbglh0s2FR8E6_rA |
linkProvider | Karger AG |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJzReEIwBhQEGgcRLtNiJneQBobZ0atlWTdMm7S34K2tFlYSmFeo_xd_IOU6CQMDbniLF1uXjzuffzz7fIfQWEH_IiREe84n2Qq6IJyXTnqEZiTOhYdKyZ4fPZnxyFX6-Ztc76Ed7FsaGVbY-sXbUulB2jfwIiEpksXgcfyy_ebZqlN1dbUtoOLM4MdvvQNmqD9NPoN93lB6PL0cTr6kq4KmQB2svU5nRIjHglaMs8xW1Jk-l9IUMuQ6DSPkikpwLDq8qBIdvUSahQvi-pDxRAci9g3bDAKhMD-0Ox7Pzi27fgkWJ218lzIuBzje5jAAzHNXHtzml9LcZsC4UALPfVxv3vfo3zK2nu-MH6H6DU_HAGdZDtGPyfXTXVa7c7qO9UVso7hFajeZA-kEeAFY8zufWjioMwBJfCL0oKhsi72pU4CLDw6X1dSs8st3gYpbLCsstnubzhVzYIGw82NhsB-Jmi0Wu8UC5Cmy2oSzKdVEtqgN0dSs__THq5UVuniKcSGBohKpEKxMyESUqYhpsivEsNJGf9NH79vemqslzbsttLNOa77Ak7TTRR2-6rqVL7vG3TkOro66Dzcdd3yhWN2kzvFMikkBIQjIZq1AoQHUBgfeKgfQDwaOqjw6chjsxrfDDP-6PzoeuKS11Bs2tPaSNb6nSXyOhj153zaBzu9UjclNsqtRGwjEeBAHroyfOjronAMAjHIDys_8Lf4X2Jpdnp-npdHbyHN0DoBi7padD1FuvNuYFgLG1fNmMAIy-3Pag-wlmQUbY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBGNAYYBBIPESLXZip3lAqO1WrQymCTGpb8HXtaJKQtIK9a_x6ziOkyAQ8LanSrF1muRc_H3x8TkIvQLEH3NiRMBCooOYKxJIyXRgqCVDKzQsWu7s8MczfnIRv5-z-Q760Z2FcWmVXUxsArUulPtGfghEJXFYHAibbdMizo-m78pvgesg5XZau3Ya3kROzfY70Lf67ewIdP2a0unx58lJ0HYYCFTMo3VglTVapAYidGJtqKgzfyplKGTMdRwlKhSJ5FxwuG0hODyXMikVIgwl5amKQO41dD2JGHE-lsx7skdYkvqdVsKCIRD7tqoRoIfD5iA3p5T-thY2LQNgHfzqMsCrfwPeZuGb3kV3WsSKR97E7qEdk--hG76H5XYP3Zp0LePuo2qyAPoP8gC64uN84SyqxgAx8Sehl0XtkuV9twpcWDxeuahX4YmbBj9mtaqx3OJZvljKpUvHxqONq3sgLrdY5BqPlO_F5gbKolwX9bLeRxdX8sofoN28yM0jhFMJXI1QlWplYiaSVCVMg3UxbmOThOkAveleb6baiueu8cYqa5gPS7NeEwP0sp9a-jIff5s0djrqJ7jK3M2ForrMWkfPiEgjIQmxcqhioQDfRQTuawj0H6geVQO07zXci-mEH_xxfXI-9kNZqS0Md_aQtVGmzn75xAC96IdB527TR-Sm2NSZy4ljPIoiNkAPvR31_wBQj3CAzI__L_w5ugmuln2YnZ0-QbcBMQ79N6gDtLuuNuYpoLK1fNaYP0ZfrtrffgIE80mo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chloroquine+Enhances+the+Radiosensitivity+of+Bladder+Cancer+Cells+by+Inhibiting+Autophagy+and+Activating+Apoptosis&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Wang%2C+Feng&rft.au=Tang%2C+Jinyuan&rft.au=Li%2C+Pengchao&rft.au=Si%2C+Shuhui&rft.date=2018-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=45&rft.issue=1&rft.spage=54&rft.epage=66&rft_id=info:doi/10.1159%2F000486222&rft_id=info%3Apmid%2F29316551&rft.externalDocID=486222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |