A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity

Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell Vol. 42; no. 1; pp. 37 - 51.e8
Main Authors Arellano-Santoyo, Hugo, Geyer, Elisabeth A., Stokasimov, Ema, Chen, Geng-Yuan, Su, Xiaolei, Hancock, William, Rice, Luke M., Pellman, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures. •A tubulin binding switch enables length-dependent microtubule disassembly by Kip3•Tubulin binding suppresses Kip3 ATPase activity, promoting depolymerase activity•Loop11 sequence in Kip3 is necessary and sufficient for curved tubulin binding•Kip3 disassembly-resistant microtubules support the two-state binding switch model Kinesin-8s promote length-dependent microtubule disassembly. Arellano and colleagues define a mechanism for Kip3/kinesin-8 depolymerization that involves a tubulin curvature-sensing binding switch. They propose that high affinity curved tubulin binding, which is accompanied by suppressed ATPse activity, enables its depolymerase activity. This Kip3 binding switch is thus central to Kip3’s ability to selectively trim long microtubules, narrowing the length distribution of microtubules in cells.
AbstractList Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus-end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus-end, Kip3 undergoes a switch: Its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures.
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures. •A tubulin binding switch enables length-dependent microtubule disassembly by Kip3•Tubulin binding suppresses Kip3 ATPase activity, promoting depolymerase activity•Loop11 sequence in Kip3 is necessary and sufficient for curved tubulin binding•Kip3 disassembly-resistant microtubules support the two-state binding switch model Kinesin-8s promote length-dependent microtubule disassembly. Arellano and colleagues define a mechanism for Kip3/kinesin-8 depolymerization that involves a tubulin curvature-sensing binding switch. They propose that high affinity curved tubulin binding, which is accompanied by suppressed ATPse activity, enables its depolymerase activity. This Kip3 binding switch is thus central to Kip3’s ability to selectively trim long microtubules, narrowing the length distribution of microtubules in cells.
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures.
Author Su, Xiaolei
Pellman, David
Hancock, William
Geyer, Elisabeth A.
Arellano-Santoyo, Hugo
Rice, Luke M.
Chen, Geng-Yuan
Stokasimov, Ema
AuthorAffiliation 6 University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143
5 Penn State University, Department of Biomedical engineering, University Park, PA 16802
2 Dana Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA 02215
3 Department of Cell Biology, Harvard Medical School, Boston, MA 02215
4 UT Southwestern, Department of Biophysics, Dallas TX 75390
1 Howard Hughes Medical Institute, Chevy Chase, MD 20815
AuthorAffiliation_xml – name: 3 Department of Cell Biology, Harvard Medical School, Boston, MA 02215
– name: 4 UT Southwestern, Department of Biophysics, Dallas TX 75390
– name: 6 University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143
– name: 1 Howard Hughes Medical Institute, Chevy Chase, MD 20815
– name: 2 Dana Farber Cancer Institute, Department of Pediatric Oncology, Boston, MA 02215
– name: 5 Penn State University, Department of Biomedical engineering, University Park, PA 16802
Author_xml – sequence: 1
  givenname: Hugo
  surname: Arellano-Santoyo
  fullname: Arellano-Santoyo, Hugo
  organization: Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
– sequence: 2
  givenname: Elisabeth A.
  surname: Geyer
  fullname: Geyer, Elisabeth A.
  organization: Department of Biophysics, UT Southwestern, Dallas, TX 75390, USA
– sequence: 3
  givenname: Ema
  surname: Stokasimov
  fullname: Stokasimov, Ema
  organization: Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
– sequence: 4
  givenname: Geng-Yuan
  surname: Chen
  fullname: Chen, Geng-Yuan
  organization: Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
– sequence: 5
  givenname: Xiaolei
  surname: Su
  fullname: Su, Xiaolei
  organization: Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
– sequence: 6
  givenname: William
  surname: Hancock
  fullname: Hancock, William
  organization: Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
– sequence: 7
  givenname: Luke M.
  surname: Rice
  fullname: Rice, Luke M.
  organization: Department of Biophysics, UT Southwestern, Dallas, TX 75390, USA
– sequence: 8
  givenname: David
  surname: Pellman
  fullname: Pellman, David
  email: david_pellman@dfci.harvard.edu
  organization: Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28697331$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAR_YB_gFCOXJJ61vHHXpCWAgW1Egfas-XY43ZWWWexk63235NqS4ELpxlp3nsz894pO0pDQsbeAm-AgzpfNwF3HvtmwUE3XDUc4AU7AaNNDVLC0dxL0dbScH3MTktZ85kGhr9ixwujlloIOGGXq-pm6qaeUvWRUqB0V_14oNHfV7cpYO4JS3VFW3F-RQkLpdpUn3A79PsNZlewWvmRdjTuX7OX0fUF3zzVM3b75fPNxdf6-vvlt4vVde1bJcY6djp20HaLKJxDDjKG4CAGHSMuTdehQC4FKqPaNshl9E5LMEsUDk2MSogz9uGgu526DQaPacyut9tMG5f3dnBk_50kurd3w85KqQVINQu8fxLIw88Jy2g3VGYbe5dwmIqFJRihtTJyhrYHqM9DKRnj8xrg9jEDu7aHDOxjBpYrO2cw0979feIz6bfpf37A2agdYbbFEyaPgTL60YaB_r_hF1KqnZM
CitedBy_id crossref_primary_10_1016_j_ceb_2018_10_004
crossref_primary_10_1016_j_cub_2019_05_075
crossref_primary_10_1038_s41467_022_31794_3
crossref_primary_10_1038_s41580_021_00399_x
crossref_primary_10_1007_s00412_020_00736_7
crossref_primary_10_1016_j_isci_2024_108874
crossref_primary_10_1016_j_bpj_2020_02_030
crossref_primary_10_15252_embj_2021108225
crossref_primary_10_1038_s41598_021_87532_0
crossref_primary_10_7554_eLife_48627
crossref_primary_10_1091_mbc_E23_03_0096
crossref_primary_10_1016_j_ceb_2020_09_005
crossref_primary_10_1091_mbc_E21_10_0480
crossref_primary_10_1073_pnas_2115708119
crossref_primary_10_1091_mbc_E18_03_0199
crossref_primary_10_1002_cm_21734
crossref_primary_10_1016_j_devcel_2021_11_019
crossref_primary_10_1083_jcb_201708179
crossref_primary_10_1128_MCB_00386_19
crossref_primary_10_26508_lsa_201800169
crossref_primary_10_1016_j_bpj_2017_09_015
crossref_primary_10_1093_jmcb_mjz039
crossref_primary_10_1242_jcs_232306
crossref_primary_10_1016_j_bpj_2022_12_010
crossref_primary_10_15252_embr_201846196
crossref_primary_10_1016_j_ceb_2018_02_015
crossref_primary_10_1016_j_devcel_2019_04_001
crossref_primary_10_1042_BST20221238
crossref_primary_10_3390_biom9010001
crossref_primary_10_1098_rsob_220133
crossref_primary_10_3389_fcell_2022_861648
crossref_primary_10_1038_s41580_018_0009_y
crossref_primary_10_1016_j_jtbi_2023_111556
crossref_primary_10_1073_pnas_1712169114
crossref_primary_10_1002_pro_3895
crossref_primary_10_1016_j_ceb_2020_10_012
crossref_primary_10_1016_j_semcdb_2017_10_024
crossref_primary_10_1016_j_semcdb_2021_05_016
crossref_primary_10_1007_s10867_022_09623_x
crossref_primary_10_1038_s41467_022_34710_x
crossref_primary_10_1002_cm_21568
crossref_primary_10_1083_jcb_202110126
crossref_primary_10_1016_j_tcb_2018_08_004
crossref_primary_10_1038_s41563_020_00905_0
crossref_primary_10_1002_cm_21681
crossref_primary_10_1073_pnas_1801820115
Cites_doi 10.1016/0378-1119(89)90403-4
10.1016/j.cub.2005.09.054
10.1126/science.1221698
10.1038/ncb1457
10.1126/science.1243147
10.1038/emboj.2010.220
10.1038/ncb2834
10.7554/eLife.03069
10.1016/j.devcel.2007.11.014
10.1016/j.cell.2015.07.012
10.1074/jbc.M114.628032
10.1038/emboj.2011.290
10.1083/jcb.201401014
10.1083/jcb.151.5.1081
10.1073/pnas.1416737111
10.1038/ncb2801
10.1016/S1046-5928(03)00218-3
10.1242/jcs.055905
10.1038/ncb1462
10.1016/j.cub.2007.02.036
10.1016/j.devcel.2012.10.016
10.1016/j.cell.2009.07.032
10.1016/j.cub.2014.08.039
10.1146/annurev-cellbio-101512-122345
10.1016/j.cell.2013.06.021
10.1038/ncb3241
10.1038/ncb2920
10.1016/j.cub.2013.12.042
10.1091/mbc.e14-06-1132
10.1083/jcb.200805145
10.1016/S0091-679X(10)95013-9
10.7554/eLife.00290
10.1091/mbc.e03-05-0342
10.1038/45483
10.1016/j.cell.2011.11.014
10.1016/j.cub.2009.12.049
10.7554/eLife.18101
10.7554/eLife.13470
10.1016/j.tibs.2004.04.010
10.1021/bi2005174
10.1126/science.1136985
10.1128/EC.3.3.632-645.2004
10.1101/cshperspect.a019059
10.1091/mbc.12.12.3919
10.1016/S1097-2765(03)00049-2
10.1016/S0092-8674(04)00129-1
10.1083/jcb.200812052
10.1146/annurev.bi.59.070190.001321
10.1073/pnas.85.17.6314
10.1016/j.cell.2014.07.012
10.1083/jcb.201407095
10.1126/science.1243110
10.1016/j.molcel.2011.06.027
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.devcel.2017.06.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
EndPage 51.e8
ExternalDocumentID 10_1016_j_devcel_2017_06_011
28697331
S1534580717304999
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008297
– fundername: NIGMS NIH HHS
  grantid: R37 GM061345
– fundername: NIGMS NIH HHS
  grantid: R01 GM076476
– fundername: NIGMS NIH HHS
  grantid: R01 GM061345
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM098543
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAEDT
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
29F
5VS
AAIKJ
AAQFI
AAQXK
AAYXX
ADMUD
AGHFR
CITATION
FGOYB
HZ~
OZT
R2-
UHS
7X8
5PM
ID FETCH-LOGICAL-c463t-fb7fb14b2f3aae015fdda1fd7ffe98bbe3e053e68644d59fca75189e3ae8ff633
IEDL.DBID IXB
ISSN 1534-5807
IngestDate Tue Sep 17 21:12:31 EDT 2024
Fri Aug 16 08:25:55 EDT 2024
Thu Sep 26 17:50:35 EDT 2024
Sat Sep 28 08:46:56 EDT 2024
Fri Feb 23 02:26:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords microtubule associated proteins
spindle scaling
depolymerization
kinesins
microtubule dynamics
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-fb7fb14b2f3aae015fdda1fd7ffe98bbe3e053e68644d59fca75189e3ae8ff633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Equal contribution
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1534580717304999
PMID 28697331
PQID 1918377685
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5573156
proquest_miscellaneous_1918377685
crossref_primary_10_1016_j_devcel_2017_06_011
pubmed_primary_28697331
elsevier_sciencedirect_doi_10_1016_j_devcel_2017_06_011
PublicationCentury 2000
PublicationDate 2017-07-10
PublicationDateYYYYMMDD 2017-07-10
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Du, English, Ohi (bib9) 2010; 20
Alonso, Drummond, Kain, Hoeng, Amos, Cross (bib1) 2007; 316
Tomishige, Vale (bib45) 2000; 151
Vendome, Felsovalyi, Song, Yang, Jin, Brasch, Harrison, Ahlsen, Bahna, Kaczynska (bib48) 2014; 111
Wang, Nitta, Morikawa, Yajima, Inoue, Shigematsu, Kikkawa, Hirokawa (bib51) 2016; 5
Rischitor, Konzack, Fischer (bib35) 2004; 3
Mulder, Glavis-Bloom, Moores, Wagenbach, Carragher, Wordeman, Milligan (bib29) 2009; 185
Peters, Brejc, Belmont, Bodey, Lee, Yu, Guo, Sakowicz, Hartman, Moores (bib32) 2010; 29
Varga, Helenius, Tanaka, Hyman, Tanaka, Howard (bib46) 2006; 8
Zhang, Alushin, Brown, Nogales (bib54) 2015; 162
Kim, Fonseca, Stumpff (bib24) 2014; 25
Stumpff, von Dassow, Wagenbach, Asbury, Wordeman (bib39) 2008; 14
Duellberg, Cade, Holmes, Surrey (bib10) 2016; 5
Castoldi, Popov (bib6) 2003; 32
Bechstedt, Lu, Brouhard (bib4) 2014; 24
Helmke, Heald (bib20) 2014; 206
Sirajuddin, Rice, Vale (bib38) 2014; 16
Walczak, Gayek, Ohi (bib50) 2013; 29
Marshall (bib26) 2015; 7
Reber, Baumgart, Widlund, Pozniakovsky, Howard, Hyman, Jülicher (bib33) 2013; 15
Maurer, Cade, Bohner, Gustafsson, Boutant, Surrey (bib27) 2014; 24
Brouhard, Rice (bib5) 2014; 207
Loughlin, Wilbur, McNally, Nédélec, Heald (bib25) 2011; 147
Rice, Lin, Safer, Hart, Naber, Carragher, Cain, Pechatnikova, Wilson-Kubalek, Whittaker (bib34) 1999; 402
Hazel, Krutkramelis, Mooney, Tomschik, Gerow, Oakey, Gatlin (bib19) 2013; 342
West, Malmstrom, Troxell, McIntosh (bib52) 2001; 12
Gilbert, Webb, Brune, Johnson (bib14) 1995; 68
Wilbur, Heald (bib53) 2013; 2
Hackney (bib18) 1988; 85
Subramanian, Ti, Tan, Darst, Kapoor (bib42) 2013; 154
Roostalu, Cade, Surrey (bib36) 2015; 17
Varga, Leduc, Bormuth, Diez, Howard (bib47) 2009; 138
Ayaz, Ye, Huddleston, Brautigam, Rice (bib2) 2012; 337
Gell, Bormuth, Brouhard, Cohen, Diez, Friel, Helenius, Nitzsche, Petzold, Ribbe (bib13) 2010
Gandhi, Bonaccorsi, Wentworth, Doxsey, Gatti, Pereira (bib12) 2004; 15
Ogawa, Nitta, Okada, Hirokawa (bib31) 2004; 116
Chen, Arginteanu, Hancock (bib7) 2015; 290
Good, Vahey, Skandarajah, Fletcher, Heald (bib15) 2013; 342
Goshima, Wollman, Stuurman, Scholey, Vale (bib16) 2005; 15
Hunter, Caplow, Coy, Hancock, Diez, Wordeman, Howard (bib22) 2003; 11
Savoian, Glover (bib37) 2010; 123
Su, Arellano-Santoyo, Portran, Gaillard, Vantard, Thery, Pellman (bib41) 2013; 15
Takeichi (bib43) 1990; 59
Gupta, Carvalho, Roof, Pellman (bib17) 2006; 8
Niwa, Nakajima, Miki, Minato, Wang, Hirokawa (bib30) 2012; 23
Thu, Chen, Rubinstein, Chevee, Wolcott, Felsovalyi, Tapia, Shapiro, Honig, Maniatis (bib44) 2014; 158
Cross (bib8) 2004; 29
Mayr, Hümmer, Bormann, Grüner, Adio, Woehlke, Mayer (bib28) 2007; 17
Johnson, Ayaz, Huddleston, Rice (bib23) 2011; 50
Friel, Howard (bib11) 2011; 30
Su, Qiu, Gupta, Pereira-Leal, Reck-Peterson, Pellman (bib40) 2011; 43
Ayaz, Munyoki, Geyer, Piedra, Vu, Bromberg, Otwinowski, Grishin, Brautigam, Rice (bib3) 2014; 3
Wagenbach, Domnitz, Wordeman, Cooper (bib49) 2008; 183
Hovland, Flick, Johnston, Sclafani (bib21) 1989; 83
24508171 - Curr Biol. 2014 Feb 17;24(4):372-84
22904013 - Science. 2012 Aug 17;337(6096):857-60
25171406 - Cell. 2014 Aug 28;158(5):1045-59
20466138 - Methods Cell Biol. 2010;95:221-45
21884976 - Mol Cell. 2011 Sep 2;43(5):751-63
11739790 - Mol Biol Cell. 2001 Dec;12 (12 ):3919-32
23425906 - Elife. 2013 Feb 19;2:e00290
19766569 - Cell. 2009 Sep 18;138(6):1174-83
2512199 - Gene. 1989 Nov 15;83(1):57-64
24233724 - Science. 2013 Nov 15;342(6160):856-60
25070954 - J Cell Biol. 2014 Aug 4;206(3):385-93
13679514 - Mol Biol Cell. 2004 Jan;15(1):121-31
23168168 - Dev Cell. 2012 Dec 11;23 (6):1167-75
17346968 - Curr Biol. 2007 Mar 20;17 (6):488-98
12620232 - Mol Cell. 2003 Feb;11(2):445-57
10617199 - Nature. 1999 Dec 16;402(6763):778-84
16303556 - Curr Biol. 2005 Nov 22;15(22):1979-88
23870126 - Cell. 2013 Jul 18;154(2):377-90
20818331 - EMBO J. 2010 Oct 20;29(20):3437-47
23974040 - Nat Cell Biol. 2013 Sep;15(9):1116-22
22153081 - Cell. 2011 Dec 9;147(6):1397-407
21888381 - Biochemistry. 2011 Oct 11;50(40):8636-44
15189985 - Eukaryot Cell. 2004 Jun;3(3):632-45
25657001 - J Biol Chem. 2015 Apr 17;290(16):10274-94
25283777 - Curr Biol. 2014 Oct 20;24(20):2366-75
14680943 - Protein Expr Purif. 2003 Nov;32(1):83-8
11086009 - J Cell Biol. 2000 Nov 27;151(5):1081-92
25385183 - J Cell Biol. 2014 Nov 10;207(3):323-34
24633327 - Nat Cell Biol. 2014 Apr;16(4):335-44
19001124 - J Cell Biol. 2008 Nov 17;183(4):617-23
2197976 - Annu Rev Biochem. 1990;59:237-52
17412962 - Science. 2007 Apr 6;316(5821):120-3
25097237 - Elife. 2014 Aug 05;3:e03069
20144994 - J Cell Sci. 2010 Mar 1;123(Pt 5):767-76
16906145 - Nat Cell Biol. 2006 Sep;8(9):957-62
27050486 - Elife. 2016 Apr 06;5
14980225 - Cell. 2004 Feb 20;116(4):591-602
15276184 - Trends Biochem Sci. 2004 Jun;29(6):301-9
25957302 - Cold Spring Harb Perspect Biol. 2015 May 08;7(6):null
20153196 - Curr Biol. 2010 Feb 23;20(4):374-80
2970638 - Proc Natl Acad Sci U S A. 1988 Sep;85(17 ):6314-8
23875646 - Annu Rev Cell Dev Biol. 2013;29:417-41
23851487 - Nat Cell Biol. 2013 Aug;15(8):948-57
26234155 - Cell. 2015 Aug 13;162(4):849-59
21873978 - EMBO J. 2011 Aug 26;30(19):3928-39
26414402 - Nat Cell Biol. 2015 Nov;17(11):1422-34
16906148 - Nat Cell Biol. 2006 Sep;8(9):913-23
27690357 - Elife. 2016 Sep 30;5:null
19332892 - J Cell Biol. 2009 Apr 6;185(1):51-7
18267093 - Dev Cell. 2008 Feb;14 (2):252-62
25253890 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4175-84
24233723 - Science. 2013 Nov 15;342(6160):853-6
Rischitor (10.1016/j.devcel.2017.06.011_bib35) 2004; 3
Hunter (10.1016/j.devcel.2017.06.011_bib22) 2003; 11
Du (10.1016/j.devcel.2017.06.011_bib9) 2010; 20
Hackney (10.1016/j.devcel.2017.06.011_bib18) 1988; 85
Niwa (10.1016/j.devcel.2017.06.011_bib30) 2012; 23
Cross (10.1016/j.devcel.2017.06.011_bib8) 2004; 29
Marshall (10.1016/j.devcel.2017.06.011_bib26) 2015; 7
Ayaz (10.1016/j.devcel.2017.06.011_bib3) 2014; 3
Varga (10.1016/j.devcel.2017.06.011_bib47) 2009; 138
Friel (10.1016/j.devcel.2017.06.011_bib11) 2011; 30
Ogawa (10.1016/j.devcel.2017.06.011_bib31) 2004; 116
Gupta (10.1016/j.devcel.2017.06.011_bib17) 2006; 8
Duellberg (10.1016/j.devcel.2017.06.011_bib10) 2016; 5
Castoldi (10.1016/j.devcel.2017.06.011_bib6) 2003; 32
Ayaz (10.1016/j.devcel.2017.06.011_bib2) 2012; 337
Gilbert (10.1016/j.devcel.2017.06.011_bib14) 1995; 68
Brouhard (10.1016/j.devcel.2017.06.011_bib5) 2014; 207
Tomishige (10.1016/j.devcel.2017.06.011_bib45) 2000; 151
Takeichi (10.1016/j.devcel.2017.06.011_bib43) 1990; 59
Helmke (10.1016/j.devcel.2017.06.011_bib20) 2014; 206
Wang (10.1016/j.devcel.2017.06.011_bib51) 2016; 5
Loughlin (10.1016/j.devcel.2017.06.011_bib25) 2011; 147
Kim (10.1016/j.devcel.2017.06.011_bib24) 2014; 25
Wilbur (10.1016/j.devcel.2017.06.011_bib53) 2013; 2
Gandhi (10.1016/j.devcel.2017.06.011_bib12) 2004; 15
Bechstedt (10.1016/j.devcel.2017.06.011_bib4) 2014; 24
Vendome (10.1016/j.devcel.2017.06.011_bib48) 2014; 111
Good (10.1016/j.devcel.2017.06.011_bib15) 2013; 342
Gell (10.1016/j.devcel.2017.06.011_bib13) 2010
Stumpff (10.1016/j.devcel.2017.06.011_bib39) 2008; 14
Goshima (10.1016/j.devcel.2017.06.011_bib16) 2005; 15
Mulder (10.1016/j.devcel.2017.06.011_bib29) 2009; 185
Reber (10.1016/j.devcel.2017.06.011_bib33) 2013; 15
Rice (10.1016/j.devcel.2017.06.011_bib34) 1999; 402
Savoian (10.1016/j.devcel.2017.06.011_bib37) 2010; 123
Varga (10.1016/j.devcel.2017.06.011_bib46) 2006; 8
Hazel (10.1016/j.devcel.2017.06.011_bib19) 2013; 342
Thu (10.1016/j.devcel.2017.06.011_bib44) 2014; 158
Su (10.1016/j.devcel.2017.06.011_bib41) 2013; 15
Roostalu (10.1016/j.devcel.2017.06.011_bib36) 2015; 17
Chen (10.1016/j.devcel.2017.06.011_bib7) 2015; 290
Johnson (10.1016/j.devcel.2017.06.011_bib23) 2011; 50
Mayr (10.1016/j.devcel.2017.06.011_bib28) 2007; 17
Alonso (10.1016/j.devcel.2017.06.011_bib1) 2007; 316
Sirajuddin (10.1016/j.devcel.2017.06.011_bib38) 2014; 16
Wagenbach (10.1016/j.devcel.2017.06.011_bib49) 2008; 183
Su (10.1016/j.devcel.2017.06.011_bib40) 2011; 43
Zhang (10.1016/j.devcel.2017.06.011_bib54) 2015; 162
West (10.1016/j.devcel.2017.06.011_bib52) 2001; 12
Hovland (10.1016/j.devcel.2017.06.011_bib21) 1989; 83
Maurer (10.1016/j.devcel.2017.06.011_bib27) 2014; 24
Subramanian (10.1016/j.devcel.2017.06.011_bib42) 2013; 154
Walczak (10.1016/j.devcel.2017.06.011_bib50) 2013; 29
Peters (10.1016/j.devcel.2017.06.011_bib32) 2010; 29
References_xml – volume: 2
  start-page: e00290
  year: 2013
  ident: bib53
  article-title: Mitotic spindle scaling during Xenopus development by kif2a and importin α
  publication-title: eLife
  contributor:
    fullname: Heald
– volume: 185
  start-page: 51
  year: 2009
  end-page: 57
  ident: bib29
  article-title: A new model for binding of kinesin 13 to curved microtubule protofilaments
  publication-title: J. Cell Biol.
  contributor:
    fullname: Milligan
– volume: 183
  start-page: 617
  year: 2008
  end-page: 623
  ident: bib49
  article-title: A kinesin-13 mutant catalytically depolymerizes microtubules in ADP
  publication-title: J. Cell Biol.
  contributor:
    fullname: Cooper
– volume: 14
  start-page: 252
  year: 2008
  end-page: 262
  ident: bib39
  article-title: The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
  publication-title: Dev. Cell
  contributor:
    fullname: Wordeman
– volume: 290
  start-page: 10274
  year: 2015
  end-page: 10294
  ident: bib7
  article-title: Processivity of the Kinesin-2 KIF3A results from rear head gating and not front head gating
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Hancock
– volume: 7
  start-page: a019059
  year: 2015
  ident: bib26
  article-title: Subcellular size
  publication-title: Cold Spring Harb. Perspect. Biol.
  contributor:
    fullname: Marshall
– volume: 25
  start-page: 3319
  year: 2014
  end-page: 3329
  ident: bib24
  article-title: A unique kinesin-8 surface loop provides specificity for chromosome alignment
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Stumpff
– volume: 154
  start-page: 377
  year: 2013
  end-page: 390
  ident: bib42
  article-title: Marking and measuring single microtubules by PRC1 and Kinesin-4
  publication-title: Cell
  contributor:
    fullname: Kapoor
– volume: 68
  start-page: 357s
  year: 1995
  ident: bib14
  article-title: Pre-steady-state kinetics of the microtubule-kinesin ATPase
  publication-title: Biophys. J.
  contributor:
    fullname: Johnson
– volume: 3
  start-page: e03069
  year: 2014
  ident: bib3
  article-title: A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
  publication-title: Elife
  contributor:
    fullname: Rice
– volume: 15
  start-page: 1979
  year: 2005
  end-page: 1988
  ident: bib16
  article-title: Length control of the metaphase spindle
  publication-title: Curr. Biol.
  contributor:
    fullname: Vale
– volume: 16
  start-page: 335
  year: 2014
  end-page: 344
  ident: bib38
  article-title: Regulation of microtubule motors by tubulin isotypes and post-translational modifications
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Vale
– volume: 8
  start-page: 957
  year: 2006
  end-page: 962
  ident: bib46
  article-title: Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Howard
– volume: 17
  start-page: 1422
  year: 2015
  end-page: 1434
  ident: bib36
  article-title: Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Surrey
– start-page: 221
  year: 2010
  end-page: 245
  ident: bib13
  article-title: Chapter 13. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy
  publication-title: Methods in Cell Biology
  contributor:
    fullname: Ribbe
– volume: 151
  start-page: 1081
  year: 2000
  end-page: 1092
  ident: bib45
  article-title: Controlling kinesin by reversible disulfide cross-linking
  publication-title: J. Cell Biol.
  contributor:
    fullname: Vale
– volume: 24
  start-page: 2366
  year: 2014
  end-page: 2375
  ident: bib4
  article-title: Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice
  publication-title: Curr. Biol.
  contributor:
    fullname: Brouhard
– volume: 32
  start-page: 83
  year: 2003
  end-page: 88
  ident: bib6
  article-title: Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer
  publication-title: Protein Expr. Purif.
  contributor:
    fullname: Popov
– volume: 111
  start-page: E4175
  year: 2014
  end-page: E4184
  ident: bib48
  article-title: Structural and energetic determinants of adhesive binding specificity in type I cadherins
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Kaczynska
– volume: 337
  start-page: 857
  year: 2012
  end-page: 860
  ident: bib2
  article-title: A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase
  publication-title: Science
  contributor:
    fullname: Rice
– volume: 15
  start-page: 1116
  year: 2013
  end-page: 1122
  ident: bib33
  article-title: XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Jülicher
– volume: 5
  start-page: e13470
  year: 2016
  ident: bib10
  article-title: The size of the EB cap determines instantaneous microtubule stability
  publication-title: Elife
  contributor:
    fullname: Surrey
– volume: 402
  start-page: 778
  year: 1999
  end-page: 784
  ident: bib34
  article-title: A structural change in the kinesin motor protein that drives motility
  publication-title: Nature
  contributor:
    fullname: Whittaker
– volume: 30
  start-page: 3928
  year: 2011
  end-page: 3939
  ident: bib11
  article-title: The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization
  publication-title: EMBO J.
  contributor:
    fullname: Howard
– volume: 12
  start-page: 3919
  year: 2001
  end-page: 3932
  ident: bib52
  article-title: Two related kinesins, klp5 and klp6, foster microtubule disassembly and are required for meiosis in fission yeast
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: McIntosh
– volume: 17
  start-page: 488
  year: 2007
  end-page: 498
  ident: bib28
  article-title: The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
  publication-title: Curr. Biol.
  contributor:
    fullname: Mayer
– volume: 85
  start-page: 6314
  year: 1988
  end-page: 6318
  ident: bib18
  article-title: Kinesin ATPase: rate-limiting ADP release
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Hackney
– volume: 123
  start-page: 767
  year: 2010
  end-page: 776
  ident: bib37
  article-title: Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length
  publication-title: J. Cell Sci.
  contributor:
    fullname: Glover
– volume: 206
  start-page: 385
  year: 2014
  end-page: 393
  ident: bib20
  article-title: TPX2 levels modulate meiotic spindle size and architecture in
  publication-title: J. Cell Biol.
  contributor:
    fullname: Heald
– volume: 15
  start-page: 948
  year: 2013
  end-page: 957
  ident: bib41
  article-title: Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Pellman
– volume: 158
  start-page: 1045
  year: 2014
  end-page: 1059
  ident: bib44
  article-title: Single-cell identity generated by combinatorial homophilic interactions between protocadherins
  publication-title: Cell
  contributor:
    fullname: Maniatis
– volume: 162
  start-page: 849
  year: 2015
  end-page: 859
  ident: bib54
  article-title: Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins
  publication-title: Cell
  contributor:
    fullname: Nogales
– volume: 3
  start-page: 632
  year: 2004
  end-page: 645
  ident: bib35
  article-title: The kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in
  publication-title: Eukaryot. Cell
  contributor:
    fullname: Fischer
– volume: 342
  start-page: 856
  year: 2013
  end-page: 860
  ident: bib15
  article-title: Cytoplasmic volume modulates spindle size during embryogenesis
  publication-title: Science
  contributor:
    fullname: Heald
– volume: 15
  start-page: 121
  year: 2004
  end-page: 131
  ident: bib12
  article-title: The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Pereira
– volume: 5
  start-page: e18101
  year: 2016
  ident: bib51
  article-title: Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A
  publication-title: eLife
  contributor:
    fullname: Hirokawa
– volume: 59
  start-page: 237
  year: 1990
  end-page: 252
  ident: bib43
  article-title: Cadherins: a molecular family important in selective cell-cell adhesion
  publication-title: Annu. Rev. Biochem.
  contributor:
    fullname: Takeichi
– volume: 316
  start-page: 120
  year: 2007
  end-page: 123
  ident: bib1
  article-title: An ATP gate controls tubulin binding by the tethered head of Kinesin-1
  publication-title: Science
  contributor:
    fullname: Cross
– volume: 24
  start-page: 372
  year: 2014
  end-page: 384
  ident: bib27
  article-title: EB1 accelerates two conformational transitions important for microtubule maturation and dynamics
  publication-title: Curr. Biol.
  contributor:
    fullname: Surrey
– volume: 29
  start-page: 301
  year: 2004
  end-page: 309
  ident: bib8
  article-title: The kinetic mechanism of kinesin
  publication-title: Trends Biochem. Sci.
  contributor:
    fullname: Cross
– volume: 147
  start-page: 1397
  year: 2011
  end-page: 1407
  ident: bib25
  article-title: Katanin contributes to interspecies spindle length scaling in
  publication-title: Cell
  contributor:
    fullname: Heald
– volume: 207
  start-page: 323
  year: 2014
  end-page: 334
  ident: bib5
  article-title: The contribution of αβ-tubulin curvature to microtubule dynamics
  publication-title: J. Cell Biol.
  contributor:
    fullname: Rice
– volume: 116
  start-page: 591
  year: 2004
  end-page: 602
  ident: bib31
  article-title: A common mechanism for microtubule destabilizers—M type kinesins stabilize curling of the protofilament using the class-specific neck and loops
  publication-title: Cell
  contributor:
    fullname: Hirokawa
– volume: 8
  start-page: 913
  year: 2006
  end-page: 923
  ident: bib17
  article-title: Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Pellman
– volume: 138
  start-page: 1174
  year: 2009
  end-page: 1183
  ident: bib47
  article-title: Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization
  publication-title: Cell
  contributor:
    fullname: Howard
– volume: 20
  start-page: 374
  year: 2010
  end-page: 380
  ident: bib9
  article-title: The Kinesin-8 Kif18A dampens microtubule plus-end dynamics
  publication-title: Curr. Biol.
  contributor:
    fullname: Ohi
– volume: 43
  start-page: 751
  year: 2011
  end-page: 763
  ident: bib40
  article-title: Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/Kinesin-8
  publication-title: Mol. Cell
  contributor:
    fullname: Pellman
– volume: 83
  start-page: 57
  year: 1989
  end-page: 64
  ident: bib21
  article-title: Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose
  publication-title: Gene
  contributor:
    fullname: Sclafani
– volume: 29
  start-page: 417
  year: 2013
  end-page: 441
  ident: bib50
  article-title: Microtubule-depolymerizing kinesins
  publication-title: Annu. Rev. Cell Dev. Biol.
  contributor:
    fullname: Ohi
– volume: 23
  start-page: 1167
  year: 2012
  end-page: 1175
  ident: bib30
  article-title: KIF19A is a microtubule-depolymerizing kinesin for ciliary length control
  publication-title: Dev. Cell
  contributor:
    fullname: Hirokawa
– volume: 50
  start-page: 8636
  year: 2011
  end-page: 8644
  ident: bib23
  article-title: Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants
  publication-title: Biochemistry
  contributor:
    fullname: Rice
– volume: 29
  start-page: 3437
  year: 2010
  end-page: 3447
  ident: bib32
  article-title: Insight into the molecular mechanism of the multitasking kinesin-8 motor
  publication-title: EMBO J.
  contributor:
    fullname: Moores
– volume: 342
  start-page: 853
  year: 2013
  end-page: 856
  ident: bib19
  article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling
  publication-title: Science
  contributor:
    fullname: Gatlin
– volume: 11
  start-page: 445
  year: 2003
  end-page: 457
  ident: bib22
  article-title: The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends
  publication-title: Mol. Cell
  contributor:
    fullname: Howard
– volume: 83
  start-page: 57
  year: 1989
  ident: 10.1016/j.devcel.2017.06.011_bib21
  article-title: Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose
  publication-title: Gene
  doi: 10.1016/0378-1119(89)90403-4
  contributor:
    fullname: Hovland
– volume: 15
  start-page: 1979
  year: 2005
  ident: 10.1016/j.devcel.2017.06.011_bib16
  article-title: Length control of the metaphase spindle
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.09.054
  contributor:
    fullname: Goshima
– volume: 337
  start-page: 857
  year: 2012
  ident: 10.1016/j.devcel.2017.06.011_bib2
  article-title: A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase
  publication-title: Science
  doi: 10.1126/science.1221698
  contributor:
    fullname: Ayaz
– volume: 8
  start-page: 913
  year: 2006
  ident: 10.1016/j.devcel.2017.06.011_bib17
  article-title: Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1457
  contributor:
    fullname: Gupta
– volume: 342
  start-page: 856
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib15
  article-title: Cytoplasmic volume modulates spindle size during embryogenesis
  publication-title: Science
  doi: 10.1126/science.1243147
  contributor:
    fullname: Good
– volume: 29
  start-page: 3437
  year: 2010
  ident: 10.1016/j.devcel.2017.06.011_bib32
  article-title: Insight into the molecular mechanism of the multitasking kinesin-8 motor
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.220
  contributor:
    fullname: Peters
– volume: 15
  start-page: 1116
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib33
  article-title: XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2834
  contributor:
    fullname: Reber
– volume: 3
  start-page: e03069
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib3
  article-title: A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
  publication-title: Elife
  doi: 10.7554/eLife.03069
  contributor:
    fullname: Ayaz
– volume: 14
  start-page: 252
  year: 2008
  ident: 10.1016/j.devcel.2017.06.011_bib39
  article-title: The Kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.11.014
  contributor:
    fullname: Stumpff
– volume: 162
  start-page: 849
  year: 2015
  ident: 10.1016/j.devcel.2017.06.011_bib54
  article-title: Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.012
  contributor:
    fullname: Zhang
– volume: 68
  start-page: 357s
  year: 1995
  ident: 10.1016/j.devcel.2017.06.011_bib14
  article-title: Pre-steady-state kinetics of the microtubule-kinesin ATPase
  publication-title: Biophys. J.
  contributor:
    fullname: Gilbert
– volume: 290
  start-page: 10274
  year: 2015
  ident: 10.1016/j.devcel.2017.06.011_bib7
  article-title: Processivity of the Kinesin-2 KIF3A results from rear head gating and not front head gating
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.628032
  contributor:
    fullname: Chen
– volume: 30
  start-page: 3928
  year: 2011
  ident: 10.1016/j.devcel.2017.06.011_bib11
  article-title: The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.290
  contributor:
    fullname: Friel
– volume: 206
  start-page: 385
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib20
  article-title: TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201401014
  contributor:
    fullname: Helmke
– volume: 151
  start-page: 1081
  year: 2000
  ident: 10.1016/j.devcel.2017.06.011_bib45
  article-title: Controlling kinesin by reversible disulfide cross-linking
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.151.5.1081
  contributor:
    fullname: Tomishige
– volume: 111
  start-page: E4175
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib48
  article-title: Structural and energetic determinants of adhesive binding specificity in type I cadherins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1416737111
  contributor:
    fullname: Vendome
– volume: 15
  start-page: 948
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib41
  article-title: Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2801
  contributor:
    fullname: Su
– volume: 32
  start-page: 83
  year: 2003
  ident: 10.1016/j.devcel.2017.06.011_bib6
  article-title: Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer
  publication-title: Protein Expr. Purif.
  doi: 10.1016/S1046-5928(03)00218-3
  contributor:
    fullname: Castoldi
– volume: 123
  start-page: 767
  year: 2010
  ident: 10.1016/j.devcel.2017.06.011_bib37
  article-title: Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.055905
  contributor:
    fullname: Savoian
– volume: 8
  start-page: 957
  year: 2006
  ident: 10.1016/j.devcel.2017.06.011_bib46
  article-title: Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1462
  contributor:
    fullname: Varga
– volume: 17
  start-page: 488
  year: 2007
  ident: 10.1016/j.devcel.2017.06.011_bib28
  article-title: The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.02.036
  contributor:
    fullname: Mayr
– volume: 23
  start-page: 1167
  year: 2012
  ident: 10.1016/j.devcel.2017.06.011_bib30
  article-title: KIF19A is a microtubule-depolymerizing kinesin for ciliary length control
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.10.016
  contributor:
    fullname: Niwa
– volume: 138
  start-page: 1174
  year: 2009
  ident: 10.1016/j.devcel.2017.06.011_bib47
  article-title: Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.032
  contributor:
    fullname: Varga
– volume: 24
  start-page: 2366
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib4
  article-title: Doublecortin recognizes the longitudinal curvature of the microtubule end and lattice
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.08.039
  contributor:
    fullname: Bechstedt
– volume: 29
  start-page: 417
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib50
  article-title: Microtubule-depolymerizing kinesins
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122345
  contributor:
    fullname: Walczak
– volume: 154
  start-page: 377
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib42
  article-title: Marking and measuring single microtubules by PRC1 and Kinesin-4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.021
  contributor:
    fullname: Subramanian
– volume: 17
  start-page: 1422
  year: 2015
  ident: 10.1016/j.devcel.2017.06.011_bib36
  article-title: Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3241
  contributor:
    fullname: Roostalu
– volume: 16
  start-page: 335
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib38
  article-title: Regulation of microtubule motors by tubulin isotypes and post-translational modifications
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2920
  contributor:
    fullname: Sirajuddin
– volume: 24
  start-page: 372
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib27
  article-title: EB1 accelerates two conformational transitions important for microtubule maturation and dynamics
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.12.042
  contributor:
    fullname: Maurer
– volume: 25
  start-page: 3319
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib24
  article-title: A unique kinesin-8 surface loop provides specificity for chromosome alignment
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-06-1132
  contributor:
    fullname: Kim
– volume: 183
  start-page: 617
  year: 2008
  ident: 10.1016/j.devcel.2017.06.011_bib49
  article-title: A kinesin-13 mutant catalytically depolymerizes microtubules in ADP
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200805145
  contributor:
    fullname: Wagenbach
– start-page: 221
  year: 2010
  ident: 10.1016/j.devcel.2017.06.011_bib13
  article-title: Chapter 13. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy
  doi: 10.1016/S0091-679X(10)95013-9
  contributor:
    fullname: Gell
– volume: 2
  start-page: e00290
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib53
  article-title: Mitotic spindle scaling during Xenopus development by kif2a and importin α
  publication-title: eLife
  doi: 10.7554/eLife.00290
  contributor:
    fullname: Wilbur
– volume: 15
  start-page: 121
  year: 2004
  ident: 10.1016/j.devcel.2017.06.011_bib12
  article-title: The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-05-0342
  contributor:
    fullname: Gandhi
– volume: 402
  start-page: 778
  year: 1999
  ident: 10.1016/j.devcel.2017.06.011_bib34
  article-title: A structural change in the kinesin motor protein that drives motility
  publication-title: Nature
  doi: 10.1038/45483
  contributor:
    fullname: Rice
– volume: 147
  start-page: 1397
  year: 2011
  ident: 10.1016/j.devcel.2017.06.011_bib25
  article-title: Katanin contributes to interspecies spindle length scaling in Xenopus
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.014
  contributor:
    fullname: Loughlin
– volume: 20
  start-page: 374
  year: 2010
  ident: 10.1016/j.devcel.2017.06.011_bib9
  article-title: The Kinesin-8 Kif18A dampens microtubule plus-end dynamics
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.049
  contributor:
    fullname: Du
– volume: 5
  start-page: e18101
  year: 2016
  ident: 10.1016/j.devcel.2017.06.011_bib51
  article-title: Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A
  publication-title: eLife
  doi: 10.7554/eLife.18101
  contributor:
    fullname: Wang
– volume: 5
  start-page: e13470
  year: 2016
  ident: 10.1016/j.devcel.2017.06.011_bib10
  article-title: The size of the EB cap determines instantaneous microtubule stability
  publication-title: Elife
  doi: 10.7554/eLife.13470
  contributor:
    fullname: Duellberg
– volume: 29
  start-page: 301
  year: 2004
  ident: 10.1016/j.devcel.2017.06.011_bib8
  article-title: The kinetic mechanism of kinesin
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2004.04.010
  contributor:
    fullname: Cross
– volume: 50
  start-page: 8636
  year: 2011
  ident: 10.1016/j.devcel.2017.06.011_bib23
  article-title: Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants
  publication-title: Biochemistry
  doi: 10.1021/bi2005174
  contributor:
    fullname: Johnson
– volume: 316
  start-page: 120
  year: 2007
  ident: 10.1016/j.devcel.2017.06.011_bib1
  article-title: An ATP gate controls tubulin binding by the tethered head of Kinesin-1
  publication-title: Science
  doi: 10.1126/science.1136985
  contributor:
    fullname: Alonso
– volume: 3
  start-page: 632
  year: 2004
  ident: 10.1016/j.devcel.2017.06.011_bib35
  article-title: The kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.3.3.632-645.2004
  contributor:
    fullname: Rischitor
– volume: 7
  start-page: a019059
  year: 2015
  ident: 10.1016/j.devcel.2017.06.011_bib26
  article-title: Subcellular size
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a019059
  contributor:
    fullname: Marshall
– volume: 12
  start-page: 3919
  year: 2001
  ident: 10.1016/j.devcel.2017.06.011_bib52
  article-title: Two related kinesins, klp5 and klp6, foster microtubule disassembly and are required for meiosis in fission yeast
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.12.3919
  contributor:
    fullname: West
– volume: 11
  start-page: 445
  year: 2003
  ident: 10.1016/j.devcel.2017.06.011_bib22
  article-title: The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00049-2
  contributor:
    fullname: Hunter
– volume: 116
  start-page: 591
  year: 2004
  ident: 10.1016/j.devcel.2017.06.011_bib31
  article-title: A common mechanism for microtubule destabilizers—M type kinesins stabilize curling of the protofilament using the class-specific neck and loops
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00129-1
  contributor:
    fullname: Ogawa
– volume: 185
  start-page: 51
  year: 2009
  ident: 10.1016/j.devcel.2017.06.011_bib29
  article-title: A new model for binding of kinesin 13 to curved microtubule protofilaments
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200812052
  contributor:
    fullname: Mulder
– volume: 59
  start-page: 237
  year: 1990
  ident: 10.1016/j.devcel.2017.06.011_bib43
  article-title: Cadherins: a molecular family important in selective cell-cell adhesion
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.59.070190.001321
  contributor:
    fullname: Takeichi
– volume: 85
  start-page: 6314
  year: 1988
  ident: 10.1016/j.devcel.2017.06.011_bib18
  article-title: Kinesin ATPase: rate-limiting ADP release
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.85.17.6314
  contributor:
    fullname: Hackney
– volume: 158
  start-page: 1045
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib44
  article-title: Single-cell identity generated by combinatorial homophilic interactions between protocadherins
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.012
  contributor:
    fullname: Thu
– volume: 207
  start-page: 323
  year: 2014
  ident: 10.1016/j.devcel.2017.06.011_bib5
  article-title: The contribution of αβ-tubulin curvature to microtubule dynamics
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201407095
  contributor:
    fullname: Brouhard
– volume: 342
  start-page: 853
  year: 2013
  ident: 10.1016/j.devcel.2017.06.011_bib19
  article-title: Changes in cytoplasmic volume are sufficient to drive spindle scaling
  publication-title: Science
  doi: 10.1126/science.1243110
  contributor:
    fullname: Hazel
– volume: 43
  start-page: 751
  year: 2011
  ident: 10.1016/j.devcel.2017.06.011_bib40
  article-title: Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/Kinesin-8
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.027
  contributor:
    fullname: Su
SSID ssj0016180
Score 2.4814088
Snippet Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long...
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus-end to preferentially disassemble long...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Adenosine Triphosphate - metabolism
Animals
Biocatalysis
depolymerization
Hydrolysis
Kinesin - chemistry
Kinesin - metabolism
kinesins
microtubule associated proteins
microtubule dynamics
Microtubules - metabolism
Models, Biological
Models, Molecular
Mutant Proteins - metabolism
Polymerization
Protein Binding
Protein Structure, Secondary
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
spindle scaling
Sus scrofa
Tubulin - metabolism
Title A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity
URI https://dx.doi.org/10.1016/j.devcel.2017.06.011
https://www.ncbi.nlm.nih.gov/pubmed/28697331
https://search.proquest.com/docview/1918377685
https://pubmed.ncbi.nlm.nih.gov/PMC5573156
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZbCX0XZf_USDvYpEkS0rj0narCxb99B2hL0IyT4xj-KGJmnJf9872Q7LyhjsUfbZFnfW6Xe6L8Y-JrkrnDJOFF5rkUACwhTdLi68XJksCwjx6Wjg66W-uEk-T9PpFhu1uTAUVtno_lqnR23dXOk03OzMyrJzhWs1SU10I0fcjnqYantSEt90uPYkaBm7pxGxIOo2fS7GeBXwkAM5IGQWq3hK-bft6Tn8_DOK8rdtabzLXjV4kg_qKe-xLaj22Yu6w-TqNfs04NdLT9HmfFjGBBZ-9ViipHhseIQAdM4n5Ux1JhT-XlbC8DOE5LcrOquaAx_kdXeJN-xmfH49uhBN7wSRJ1otRPBZ8DLxvaCcA9zzQ1E4GYosBOgb70FRTwjQBvFQkfZD7sj_0gflwISglXrLtqu7Ct4zDsb1cAejOjoJWoPao8VI6bL4npAFkAdMtCyzs7pEhm1jx37ZmsWWWGwphE4ifdby1W6I2qIW_8eTH1oxWFwF5NpwFdwt5xatTrS00XRKD9i7WizrufSM7lNnSvzuhsDWBFRhe_NOVf6MlbbTNFNo4B7-94yP2Esa0WGw7B6z7cX9Ek4QxSz8KdsZDL9PvpzG3xVHl6Pptx9PDHD0bQ
link.rule.ids 230,315,786,790,891,3525,27602,27957,27958,45698,45909
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdY0TReprEv2AfzJF6t1nXiOI-FDQotvFAm3iw7OWuZplCt7Sb--905SbUyTZN4je3Euovvfuf7YuwwKVzplHGi9FqLBBIQphwM8OAVymRZQIhPVwMXl3p8nZzfpDdb7LjLhaGwylb2NzI9Suv2Sb-lZn9eVf0rPKtJaqIbOeL2R2wb0UBuemx7dPRlMl07E7SMDdRovqAFXQZdDPMq4WcB5IOQWSzkKeW_NNTfCPR-IOUfmunkGXvaQko-ana9y7agfs4eN00m716w0xGfrTwFnPOjKuaw8KtfFTKLx55HiEEXfFLNVX9CEfBVLQz_hKj8-x1dVy2Aj4qmwcRLdn3yeXY8Fm37BFEkWi1F8FnwMvHDoJwDVPuhLJ0MZRYC5MZ7UNQWArRBSFSmeSgcuWByUA5MCFqpV6xX39awxzgYN0QlRqV0EjQItUejkTJm8T0hCyD3mehIZudNlQzbhY99sw2JLZHYUhSdxPlZR1e7wW2Lgvw_Kz92bLB4EMi74Wq4XS0sGp5obKP1lO6z1w1b1nsZGp1Tc0r87gbD1hOoyPbmSF19jcW20zRTaOO-efCOP7An49nF1E7PLidv2Q6N0N2wHLxjveWPFbxHULP0B-1P-xvfTvVv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tubulin+Binding+Switch+Underlies+Kip3%2FKinesin-8+Depolymerase+Activity&rft.jtitle=Developmental+cell&rft.au=Arellano-Santoyo%2C+Hugo&rft.au=Geyer%2C+Elisabeth+A&rft.au=Stokasimov%2C+Ema&rft.au=Chen%2C+Geng-Yuan&rft.date=2017-07-10&rft.eissn=1878-1551&rft.volume=42&rft.issue=1&rft.spage=37&rft.epage=51.e8&rft_id=info:doi/10.1016%2Fj.devcel.2017.06.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon