A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila
CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wi...
Saved in:
Published in | Cell reports (Cambridge) Vol. 39; no. 8; p. 110843 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.
[Display omitted]
•Nickase versions of Cas9 trigger DNA homology-directed (HDR) repair in vivo•Paired DNA nicks into DNA promote gene-drive’s super-Mendelian inheritance•Efficient gene-drive propagation occurs when 5′ overhangs are generated•Nickase genedrive-producing 3′ overhangs do not trigger HDR
Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the Drosophila germ line, providing alternative designs for CRISPR-based gene-drive. |
---|---|
AbstractList | CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.
Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the
Drosophila
germ line, providing alternative designs for CRISPR-based gene-drive. CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond. [Display omitted] •Nickase versions of Cas9 trigger DNA homology-directed (HDR) repair in vivo•Paired DNA nicks into DNA promote gene-drive’s super-Mendelian inheritance•Efficient gene-drive propagation occurs when 5′ overhangs are generated•Nickase genedrive-producing 3′ overhangs do not trigger HDR Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the Drosophila germ line, providing alternative designs for CRISPR-based gene-drive. CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5' overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond. |
ArticleNumber | 110843 |
Author | Juste, Sara Sanz López Del Amo, Víctor Gantz, Valentino M. |
AuthorAffiliation | 1 Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA 2 Lead contact |
AuthorAffiliation_xml | – name: 2 Lead contact – name: 1 Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA |
Author_xml | – sequence: 1 givenname: Víctor orcidid: 0000-0002-5567-3072 surname: López Del Amo fullname: López Del Amo, Víctor email: vlopezdelamo@ucsd.edu organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 2 givenname: Sara Sanz surname: Juste fullname: Juste, Sara Sanz organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 3 givenname: Valentino M. orcidid: 0000-0003-2453-0711 surname: Gantz fullname: Gantz, Valentino M. email: vgantz@ucsd.edu organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35613590$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxa2Kiv_foEI5csnisR0bX5DQtgUkqh5azpbXmbDeJnawsyvx7evVAoVLffFIfvPG835HZC_EgIR8AToDCvJiNXPYJxxnjDI2A6CXgn8ih4wB1MCE2ntXH5DTnFe0HEkBtNgnB7yRwBtND8mv6yp498dmrOY26-oRA9Zt8hus8nOecKjGFIc4Ya7yesRU_8DQYu9tqHxYYvKTDQ5LXX1NMcdx6Xt7Qj53ts94-nIfk4fv337Pb-v7nzd38-v72gnJp7qTouko1YtGCicboZgTtpVK8k51TgClC4HaStoVhXKca4XMalBK6wUH5Mfkauc7rhcDtg7DlGxvxuQHm55NtN58fAl-aR7jxmjQlInLYnD-YpDi0xrzZAafS7C9DRjX2TCpSmgc9FYqdlJX1swJu7cxQM0WiVmZHRKzRWJ2SErb2fsvvjW9Avi3A5agNh6Tyc5jibT1Cd1k2uj_P-EvTA2grg |
CitedBy_id | crossref_primary_10_1126_sciadv_abo0721 crossref_primary_10_1360_SSV_2022_0053 crossref_primary_10_1016_j_ggedit_2022_100017 crossref_primary_10_1111_jen_13314 |
Cites_doi | 10.1038/nbt.3439 10.1038/s41587-020-0508-1 10.3390/ijms19103035 10.1016/j.dnarep.2016.12.005 10.1073/pnas.1208507109 10.1093/g3journal/jkaa063 10.1093/nar/gky222 10.1038/nrg2380 10.1038/s41467-019-13977-7 10.1073/pnas.1405500111 10.7554/eLife.51701 10.1016/j.cub.2020.12.018 10.1093/jhered/esh023 10.1093/nar/gkaa1236 10.1016/j.celrep.2020.107841 10.1073/pnas.2010214117 10.1016/j.celrep.2019.12.064 10.1073/pnas.2004838117 10.1038/ncomms13905 10.1016/j.fob.2014.06.007 10.1093/nar/gkw179 10.1073/pnas.1720354115 10.1038/nbt.2675 10.7554/eLife.41439 10.1038/s41576-021-00386-0 10.1371/journal.pgen.1007039 10.1126/science.aaa5945 10.1016/j.cell.2013.09.040 10.1093/genetics/135.1.81 10.1038/s41586-019-0875-2 10.1038/s41467-021-21771-7 10.1093/nar/gkm734 10.1038/s41467-020-19426-0 10.1073/pnas.1521077112 10.7554/eLife.30281 10.1126/science.1225829 10.1073/pnas.131009198 10.1002/bies.201500102 10.1038/nbt.4245 10.1038/s41419-018-1146-0 10.1093/emboj/19.20.5492 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.celrep.2022.110843 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 110843 |
ExternalDocumentID | 10_1016_j_celrep_2022_110843 35613590 S2211124722006167 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU ADVLN AKRWK NPM AAYXX CITATION HZ~ IPNFZ RIG 7X8 5PM |
ID | FETCH-LOGICAL-c463t-f645f009b564c65472c4ad6763f7fc4100b4e9a60fb567c3397e2a917799b31e3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Tue Sep 17 21:06:58 EDT 2024 Sat Oct 05 04:23:20 EDT 2024 Thu Sep 26 15:25:17 EDT 2024 Wed Oct 16 00:41:09 EDT 2024 Tue Jul 25 20:58:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | CRISPR germline Drosophila CP: Microbiology CP: Molecular biology gene drives homology-directed repair nickase |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-f645f009b564c65472c4ad6763f7fc4100b4e9a60fb567c3397e2a917799b31e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS V.L.D.A. and V.M.G. conceived the project. V.L.D.A. designed and obtained the nickase gene-drive constructs in Drosophila. V.L.D.A. and S.S.J. performed the experiments. V.L.D.A., V.M.G., and S.S.J. created the figure visualizations. V.L.D.A. wrote the manuscript, which was edited by all of the authors. |
ORCID | 0000-0003-2453-0711 0000-0002-5567-3072 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.110843 |
PMID | 35613590 |
PQID | 2670063198 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9190248 proquest_miscellaneous_2670063198 crossref_primary_10_1016_j_celrep_2022_110843 pubmed_primary_35613590 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110843 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-24 |
PublicationDateYYYYMMDD | 2022-05-24 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Weitzel, Grunwald, Levina, Gantz, Hedrick, Bier, Cooper (bib40) 2021 Kuzminov (bib22) 2001; 98 Garrood, Kranjc, Petri, Kim, Guo, Hammond, Morianou, Pattanayak, Joung, Crisanti, Simoni (bib13) 2021; 118 Hammond, Kyrou, Bruttini, North, Galizi, Karlsson, Kranjc, Carpi, D’Aurizio, Crisanti, Nolan (bib19) 2017; 13 Vriend, Prakash, Chen, Vanoli, Cavallo, Zhang, Jasin, Krawczyk (bib36) 2016; 44 Lee, Lloyd (bib42) 2014; 4 Wang, Hays (bib37) 2007; 35 Champer, Liu, Oh, Reeves, Luthra, Oakes, Clark, Messer (bib8) 2018; 115 Adolfi, Gantz, Jasinskiene, Lee, Hwang, Terradas, Bulger, Ramaiah, Bennett, Emerson (bib1) 2020; 11 Aryal, Wasylishen, Lozano (bib2) 2018; 9 Wang, Zhao, Duan, Liu, Zhang, Zhou, Hu, Feng, Liu, Wu (bib39) 2018; 19 Bier (bib3) 2021; 23 Champer, Chung, Lee, Liu, Yang, Wen, Clark, Messer (bib9) 2019; 8 López Del Amo, Bishop, Sánchez C, Bennett, Feng, Marshall, Bier, Gantz (bib26) 2020; 11 Bothmer, Phadke, Barrera, Margulies, Lee, Buquicchio, Moss, Abdulkerim, Selleck, Jayaram (bib4) 2017; 8 Carballar-Lejarazú, Ogaugwu, Tushar, Kelsey, Pham, Murphy, Schmidt, Lee, Lanzaro, James (bib6) 2020; 117 Grunwald, Gantz, Poplawski, Xu, Bier, Cooper (bib17) 2019; 566 Hammond, Galizi, Kyrou, Simoni, Siniscalchi, Katsanos, Gribble, Baker, Marois, Russell (bib18) 2016; 34 Ren, Yang, Mao, Chang, Qiao, Wang, Sun, Hu, Cui, Liu, Ji, Xu, Ni (bib43) 2014; 4 Vriend, Krawczyk (bib35) 2017; 50 Hyodo, Rahman, Karnan, Ito, Toyoda, Ota, Wahiduzzaman, Tsuzuki, Okada, Hosokawa, Konishi (bib20) 2020; 30 Gantz, Bier (bib10) 2015; 348 Reyes, Kolodziejczak, Devakumar, Kubota, Kolodner, Putnam, Hombauer (bib31) 2021; 31 López Del Amo, Leger, Cox, Gill, Bishop, Scanlon, Walker, Gantz, Choudhary (bib25) 2020; 31 Wang, Liu, Janssen, Le Bouteiller, Frock, Gonçalves (bib38) 2021; 49 Gloor, Preston, Johnson-Schlitz, Nassif, Phillis, Benz, Robertson, Engels (bib15) 1993; 135 Simoni, Hammond, Beaghton, Galizi, Taxiarchi, Kyrou, Meacci, Gribble, Morselli, Burt (bib33) 2020; 38 Ran, Hsu, Lin, Gootenberg, Konermann, Trevino, Scott, Inoue, Matoba, Zhang, Zhang (bib30) 2013; 155 Gantz, Bier (bib11) 2016; 38 Gantz, Jasinskiene, Tatarenkova, Fazekas, Macias, Bier, James (bib12) 2015; 112 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib21) 2012; 337 Li, Yang, Kandul, Bui, Gamez, Raban, Bennett, Sánchez C, Lanzaro, Schmidt (bib24) 2020; 9 Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib28) 2013; 31 Terradas, Buchman, Bennett, Shriner, Marshall, Akbari, Bier (bib34) 2021; 12 Chafin, Vitolo, Henricksen, Bambara, Hayes (bib7) 2000; 19 Severson, DeBruyn, Lovin, Brown, Knudson, Morlais (bib32) 2004; 95 Main, Marcantonio, Johnston, Rasgon, Brown, Barker (bib27) 2021; 11 Port, Chen, Lee, Bullock (bib29) 2014; 111 Caldecott (bib5) 2008; 9 Gopalappa, Suresh, Ramakrishna, Kim (bib16) 2018; 46 Xu, Gantz, Siomava, Bier (bib41) 2017; 6 Kyrou, Hammond, Galizi, Kranjc, Burt, Beaghton, Nolan, Crisanti (bib23) 2018; 36 Gasiunas, Barrangou, Horvath, Siksnys (bib14) 2012; 109 Hammond (10.1016/j.celrep.2022.110843_bib19) 2017; 13 Jinek (10.1016/j.celrep.2022.110843_bib21) 2012; 337 Grunwald (10.1016/j.celrep.2022.110843_bib17) 2019; 566 Reyes (10.1016/j.celrep.2022.110843_bib31) 2021; 31 Severson (10.1016/j.celrep.2022.110843_bib32) 2004; 95 Kyrou (10.1016/j.celrep.2022.110843_bib23) 2018; 36 López Del Amo (10.1016/j.celrep.2022.110843_bib26) 2020; 11 Vriend (10.1016/j.celrep.2022.110843_bib36) 2016; 44 Bothmer (10.1016/j.celrep.2022.110843_bib4) 2017; 8 Ren (10.1016/j.celrep.2022.110843_bib43) 2014; 4 Bier (10.1016/j.celrep.2022.110843_bib3) 2021; 23 Li (10.1016/j.celrep.2022.110843_bib24) 2020; 9 Ran (10.1016/j.celrep.2022.110843_bib30) 2013; 155 Gantz (10.1016/j.celrep.2022.110843_bib11) 2016; 38 Gantz (10.1016/j.celrep.2022.110843_bib12) 2015; 112 Wang (10.1016/j.celrep.2022.110843_bib38) 2021; 49 Weitzel (10.1016/j.celrep.2022.110843_bib40) 2021 Gantz (10.1016/j.celrep.2022.110843_bib10) 2015; 348 Garrood (10.1016/j.celrep.2022.110843_bib13) 2021; 118 Gloor (10.1016/j.celrep.2022.110843_bib15) 1993; 135 López Del Amo (10.1016/j.celrep.2022.110843_bib25) 2020; 31 Caldecott (10.1016/j.celrep.2022.110843_bib5) 2008; 9 Adolfi (10.1016/j.celrep.2022.110843_bib1) 2020; 11 Chafin (10.1016/j.celrep.2022.110843_bib7) 2000; 19 Terradas (10.1016/j.celrep.2022.110843_bib34) 2021; 12 Vriend (10.1016/j.celrep.2022.110843_bib35) 2017; 50 Carballar-Lejarazú (10.1016/j.celrep.2022.110843_bib6) 2020; 117 Hammond (10.1016/j.celrep.2022.110843_bib18) 2016; 34 Aryal (10.1016/j.celrep.2022.110843_bib2) 2018; 9 Main (10.1016/j.celrep.2022.110843_bib27) 2021; 11 Champer (10.1016/j.celrep.2022.110843_bib8) 2018; 115 Hyodo (10.1016/j.celrep.2022.110843_bib20) 2020; 30 Wang (10.1016/j.celrep.2022.110843_bib37) 2007; 35 Kuzminov (10.1016/j.celrep.2022.110843_bib22) 2001; 98 Gasiunas (10.1016/j.celrep.2022.110843_bib14) 2012; 109 Xu (10.1016/j.celrep.2022.110843_bib41) 2017; 6 Gopalappa (10.1016/j.celrep.2022.110843_bib16) 2018; 46 Wang (10.1016/j.celrep.2022.110843_bib39) 2018; 19 Lee (10.1016/j.celrep.2022.110843_bib42) 2014; 4 Simoni (10.1016/j.celrep.2022.110843_bib33) 2020; 38 Mali (10.1016/j.celrep.2022.110843_bib28) 2013; 31 Champer (10.1016/j.celrep.2022.110843_bib9) 2019; 8 Port (10.1016/j.celrep.2022.110843_bib29) 2014; 111 |
References_xml | – volume: 9 start-page: 619 year: 2008 end-page: 631 ident: bib5 article-title: Single-strand break repair and genetic disease publication-title: Nat. Rev. Genet. contributor: fullname: Caldecott – volume: 118 year: 2021 ident: bib13 article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: Simoni – volume: 112 start-page: E6736 year: 2015 end-page: E6743 ident: bib12 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: James – volume: 111 start-page: E2967 year: 2014 end-page: E2976 ident: bib29 article-title: Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: Bullock – volume: 95 start-page: 103 year: 2004 end-page: 113 ident: bib32 article-title: Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae publication-title: J. Hered. contributor: fullname: Morlais – volume: 117 start-page: 22805 year: 2020 end-page: 22814 ident: bib6 article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: James – volume: 135 start-page: 81 year: 1993 end-page: 95 ident: bib15 article-title: Type I repressors of P element mobility publication-title: Genetics contributor: fullname: Engels – volume: 34 start-page: 78 year: 2016 end-page: 83 ident: bib18 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. contributor: fullname: Russell – volume: 11 start-page: jkaa063 year: 2021 ident: bib27 article-title: Whole-genome assembly of Culex tarsalis publication-title: G3 contributor: fullname: Barker – volume: 38 start-page: 50 year: 2016 end-page: 63 ident: bib11 article-title: The dawn of active genetics publication-title: Bioessays contributor: fullname: Bier – volume: 30 start-page: 1195 year: 2020 end-page: 1207.e7 ident: bib20 article-title: Tandem paired nicking promotes Precise genome editing with scarce interference by p53 publication-title: Cell Rep. contributor: fullname: Konishi – volume: 44 start-page: 5204 year: 2016 end-page: 5217 ident: bib36 article-title: Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks publication-title: Nucleic Acids Res. contributor: fullname: Krawczyk – volume: 19 start-page: 3035 year: 2018 ident: bib39 article-title: Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs publication-title: Int. J. Mol. Sci. contributor: fullname: Wu – volume: 115 start-page: 5522 year: 2018 end-page: 5527 ident: bib8 article-title: Reducing resistance allele formation in CRISPR gene drive publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: Messer – volume: 36 start-page: 1062 year: 2018 end-page: 1066 ident: bib23 article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes publication-title: Nat. Biotechnol. contributor: fullname: Crisanti – volume: 9 start-page: 1099 year: 2018 ident: bib2 article-title: CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo publication-title: Cell Death Dis. contributor: fullname: Lozano – volume: 46 start-page: e71 year: 2018 ident: bib16 article-title: Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption publication-title: Nucleic Acids Res. contributor: fullname: Kim – volume: 9 start-page: e51701 year: 2020 ident: bib24 article-title: Development of a confinable gene drive system in the human disease vector Aedes aegypti publication-title: Elife contributor: fullname: Schmidt – volume: 11 start-page: 352 year: 2020 ident: bib26 article-title: A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment publication-title: Nat. Commun. contributor: fullname: Gantz – volume: 12 start-page: 1480 year: 2021 ident: bib34 article-title: Inherently confinable split-drive systems in Drosophila publication-title: Nat. Commun. contributor: fullname: Bier – volume: 31 start-page: 107841 year: 2020 ident: bib25 article-title: Small-molecule control of super-mendelian inheritance in gene drives publication-title: Cell Rep. contributor: fullname: Choudhary – volume: 348 start-page: 442 year: 2015 end-page: 444 ident: bib10 article-title: The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science contributor: fullname: Bier – volume: 49 start-page: 1173 year: 2021 end-page: 1198 ident: bib38 article-title: Precise and broad scope genome editing based on high-specificity Cas9 nickases publication-title: Nucleic Acids Res. contributor: fullname: Gonçalves – volume: 6 start-page: e30281 year: 2017 ident: bib41 article-title: CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity publication-title: Elife contributor: fullname: Bier – volume: 13 start-page: e1007039 year: 2017 ident: bib19 article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito publication-title: PLoS Genet. contributor: fullname: Nolan – year: 2021 ident: bib40 article-title: Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline publication-title: bioRxiv contributor: fullname: Cooper – volume: 23 start-page: 5 year: 2021 end-page: 22 ident: bib3 article-title: Gene drives gaining speed publication-title: Nat. Rev. Genet. contributor: fullname: Bier – volume: 98 start-page: 8241 year: 2001 end-page: 8246 ident: bib22 article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: Kuzminov – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: bib28 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. contributor: fullname: Church – volume: 38 start-page: 1054 year: 2020 end-page: 1060 ident: bib33 article-title: A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae publication-title: Nat. Biotechnol. contributor: fullname: Burt – volume: 50 start-page: 1 year: 2017 end-page: 13 ident: bib35 article-title: Nick-initiated homologous recombination: Protecting the genome, one strand at a time publication-title: DNA Repair contributor: fullname: Krawczyk – volume: 4 start-page: 637 year: 2014 end-page: 642 ident: bib42 article-title: Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice publication-title: FEBS Open Bio contributor: fullname: Lloyd – volume: 19 start-page: 5492 year: 2000 end-page: 5501 ident: bib7 article-title: Human DNA ligase I efficiently seals nicks in nucleosomes publication-title: EMBO J. contributor: fullname: Hayes – volume: 155 start-page: 479 year: 2013 end-page: 480 ident: bib30 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell contributor: fullname: Zhang – volume: 35 start-page: 6727 year: 2007 end-page: 6739 ident: bib37 article-title: Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision publication-title: Nucleic Acids Res. contributor: fullname: Hays – volume: 8 start-page: 13905 year: 2017 ident: bib4 article-title: Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus publication-title: Nat. Commun. contributor: fullname: Jayaram – volume: 8 start-page: e41439 year: 2019 ident: bib9 article-title: Molecular safeguarding of CRISPR gene drive experiments publication-title: Elife contributor: fullname: Messer – volume: 11 start-page: 5553 year: 2020 ident: bib1 article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi publication-title: Nat. Commun. contributor: fullname: Emerson – volume: 566 start-page: 105 year: 2019 end-page: 109 ident: bib17 article-title: Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline publication-title: Nature contributor: fullname: Cooper – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib21 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science contributor: fullname: Charpentier – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: bib14 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U S A contributor: fullname: Siksnys – volume: 4 start-page: 1955 year: 2014 end-page: 1962 ident: bib43 publication-title: Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (Bethesda) contributor: fullname: Ni – volume: 31 start-page: 1268 year: 2021 end-page: 1276.e6 ident: bib31 article-title: Ligation of newly replicated DNA controls the timing of DNA mismatch repair publication-title: Curr. Biol. contributor: fullname: Hombauer – volume: 34 start-page: 78 year: 2016 ident: 10.1016/j.celrep.2022.110843_bib18 article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3439 contributor: fullname: Hammond – volume: 38 start-page: 1054 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib33 article-title: A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0508-1 contributor: fullname: Simoni – volume: 19 start-page: 3035 year: 2018 ident: 10.1016/j.celrep.2022.110843_bib39 article-title: Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19103035 contributor: fullname: Wang – volume: 50 start-page: 1 year: 2017 ident: 10.1016/j.celrep.2022.110843_bib35 article-title: Nick-initiated homologous recombination: Protecting the genome, one strand at a time publication-title: DNA Repair doi: 10.1016/j.dnarep.2016.12.005 contributor: fullname: Vriend – volume: 109 start-page: E2579 year: 2012 ident: 10.1016/j.celrep.2022.110843_bib14 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1208507109 contributor: fullname: Gasiunas – volume: 11 start-page: jkaa063 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib27 article-title: Whole-genome assembly of Culex tarsalis publication-title: G3 doi: 10.1093/g3journal/jkaa063 contributor: fullname: Main – volume: 46 start-page: e71 year: 2018 ident: 10.1016/j.celrep.2022.110843_bib16 article-title: Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky222 contributor: fullname: Gopalappa – volume: 9 start-page: 619 year: 2008 ident: 10.1016/j.celrep.2022.110843_bib5 article-title: Single-strand break repair and genetic disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2380 contributor: fullname: Caldecott – volume: 11 start-page: 352 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib26 article-title: A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment publication-title: Nat. Commun. doi: 10.1038/s41467-019-13977-7 contributor: fullname: López Del Amo – volume: 111 start-page: E2967 year: 2014 ident: 10.1016/j.celrep.2022.110843_bib29 article-title: Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1405500111 contributor: fullname: Port – volume: 9 start-page: e51701 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib24 article-title: Development of a confinable gene drive system in the human disease vector Aedes aegypti publication-title: Elife doi: 10.7554/eLife.51701 contributor: fullname: Li – volume: 31 start-page: 1268 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib31 article-title: Ligation of newly replicated DNA controls the timing of DNA mismatch repair publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.12.018 contributor: fullname: Reyes – volume: 95 start-page: 103 year: 2004 ident: 10.1016/j.celrep.2022.110843_bib32 article-title: Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae publication-title: J. Hered. doi: 10.1093/jhered/esh023 contributor: fullname: Severson – volume: 49 start-page: 1173 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib38 article-title: Precise and broad scope genome editing based on high-specificity Cas9 nickases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1236 contributor: fullname: Wang – volume: 31 start-page: 107841 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib25 article-title: Small-molecule control of super-mendelian inheritance in gene drives publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107841 contributor: fullname: López Del Amo – volume: 117 start-page: 22805 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib6 article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.2010214117 contributor: fullname: Carballar-Lejarazú – year: 2021 ident: 10.1016/j.celrep.2022.110843_bib40 article-title: Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline publication-title: bioRxiv contributor: fullname: Weitzel – volume: 30 start-page: 1195 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib20 article-title: Tandem paired nicking promotes Precise genome editing with scarce interference by p53 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.064 contributor: fullname: Hyodo – volume: 118 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib13 article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.2004838117 contributor: fullname: Garrood – volume: 8 start-page: 13905 year: 2017 ident: 10.1016/j.celrep.2022.110843_bib4 article-title: Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus publication-title: Nat. Commun. doi: 10.1038/ncomms13905 contributor: fullname: Bothmer – volume: 4 start-page: 637 year: 2014 ident: 10.1016/j.celrep.2022.110843_bib42 article-title: Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice publication-title: FEBS Open Bio doi: 10.1016/j.fob.2014.06.007 contributor: fullname: Lee – volume: 44 start-page: 5204 year: 2016 ident: 10.1016/j.celrep.2022.110843_bib36 article-title: Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw179 contributor: fullname: Vriend – volume: 115 start-page: 5522 year: 2018 ident: 10.1016/j.celrep.2022.110843_bib8 article-title: Reducing resistance allele formation in CRISPR gene drive publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1720354115 contributor: fullname: Champer – volume: 31 start-page: 833 year: 2013 ident: 10.1016/j.celrep.2022.110843_bib28 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 contributor: fullname: Mali – volume: 8 start-page: e41439 year: 2019 ident: 10.1016/j.celrep.2022.110843_bib9 article-title: Molecular safeguarding of CRISPR gene drive experiments publication-title: Elife doi: 10.7554/eLife.41439 contributor: fullname: Champer – volume: 4 start-page: 1955 year: 2014 ident: 10.1016/j.celrep.2022.110843_bib43 publication-title: Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (Bethesda) contributor: fullname: Ren – volume: 23 start-page: 5 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib3 article-title: Gene drives gaining speed publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00386-0 contributor: fullname: Bier – volume: 13 start-page: e1007039 year: 2017 ident: 10.1016/j.celrep.2022.110843_bib19 article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007039 contributor: fullname: Hammond – volume: 348 start-page: 442 year: 2015 ident: 10.1016/j.celrep.2022.110843_bib10 article-title: The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations publication-title: Science doi: 10.1126/science.aaa5945 contributor: fullname: Gantz – volume: 155 start-page: 479 year: 2013 ident: 10.1016/j.celrep.2022.110843_bib30 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.09.040 contributor: fullname: Ran – volume: 135 start-page: 81 year: 1993 ident: 10.1016/j.celrep.2022.110843_bib15 article-title: Type I repressors of P element mobility publication-title: Genetics doi: 10.1093/genetics/135.1.81 contributor: fullname: Gloor – volume: 566 start-page: 105 year: 2019 ident: 10.1016/j.celrep.2022.110843_bib17 article-title: Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline publication-title: Nature doi: 10.1038/s41586-019-0875-2 contributor: fullname: Grunwald – volume: 12 start-page: 1480 year: 2021 ident: 10.1016/j.celrep.2022.110843_bib34 article-title: Inherently confinable split-drive systems in Drosophila publication-title: Nat. Commun. doi: 10.1038/s41467-021-21771-7 contributor: fullname: Terradas – volume: 35 start-page: 6727 year: 2007 ident: 10.1016/j.celrep.2022.110843_bib37 article-title: Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm734 contributor: fullname: Wang – volume: 11 start-page: 5553 year: 2020 ident: 10.1016/j.celrep.2022.110843_bib1 article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi publication-title: Nat. Commun. doi: 10.1038/s41467-020-19426-0 contributor: fullname: Adolfi – volume: 112 start-page: E6736 year: 2015 ident: 10.1016/j.celrep.2022.110843_bib12 article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1521077112 contributor: fullname: Gantz – volume: 6 start-page: e30281 year: 2017 ident: 10.1016/j.celrep.2022.110843_bib41 article-title: CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity publication-title: Elife doi: 10.7554/eLife.30281 contributor: fullname: Xu – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.celrep.2022.110843_bib21 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 contributor: fullname: Jinek – volume: 98 start-page: 8241 year: 2001 ident: 10.1016/j.celrep.2022.110843_bib22 article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.131009198 contributor: fullname: Kuzminov – volume: 38 start-page: 50 year: 2016 ident: 10.1016/j.celrep.2022.110843_bib11 article-title: The dawn of active genetics publication-title: Bioessays doi: 10.1002/bies.201500102 contributor: fullname: Gantz – volume: 36 start-page: 1062 year: 2018 ident: 10.1016/j.celrep.2022.110843_bib23 article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4245 contributor: fullname: Kyrou – volume: 9 start-page: 1099 year: 2018 ident: 10.1016/j.celrep.2022.110843_bib2 article-title: CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1146-0 contributor: fullname: Aryal – volume: 19 start-page: 5492 year: 2000 ident: 10.1016/j.celrep.2022.110843_bib7 article-title: Human DNA ligase I efficiently seals nicks in nucleosomes publication-title: EMBO J. doi: 10.1093/emboj/19.20.5492 contributor: fullname: Chafin |
SSID | ssj0000601194 |
Score | 2.400125 |
Snippet | CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 110843 |
SubjectTerms | CRISPR Drosophila gene drives germline homology-directed repair nickase |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8iCL6I384vIvga1qZpujzOqYgwX6awt5BkKValjm578L_3Lm2HU0TwrR9JG-7Sy-_S-90RcjlJcxG7zDEwwBkT0lvWs5FhkQf8YI1K0hi5w8MHefck7sfpeI0MWi4MhlU2tr-26cFaN1e6jTS706Lojjj4LrA6ZRy94lgioxyeHEh846vlPgvmG4lDPURsz7BDy6ALYV7Ov1UeE1dyHkLiRfLbCvUTgX4PpPyyMt1uk60GUtJ-PeodsubLXbJRF5n82COjPi0L9wqrFR2YmaIwYzybVGDlaJ3GmU5DSJ6f0dli6is2xF1x3P2gRYnswDlODDim11UoelC8mX3ydHvzOLhjTSkF5oRM5iyXIs0BTtlUCof1hrkTZiLBuORZ7kQcRVZ4ZWSUQ4vMJYBSPDfgymVK2ST2yQFZL99Lf0SoTY3kALK4VU5MBFLS88hnVkQuUdLlHcJa8elpnTFDt6FkL7oWt0Zx61rcHZK1MtYrmtdg1P_oedGqRMNHgX86TOnfFzPNkXwkwbr0OuSwVtFyLAm6TKmK4L0ryls2wITbq3fK4jkk3laAnrjoHf97xCdkE88w-oCLU7I-rxb-DEDN3J6HWfsJBkv1JQ priority: 102 providerName: Elsevier |
Title | A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila |
URI | https://dx.doi.org/10.1016/j.celrep.2022.110843 https://www.ncbi.nlm.nih.gov/pubmed/35613590 https://search.proquest.com/docview/2670063198 https://pubmed.ncbi.nlm.nih.gov/PMC9190248 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdZxmAvZd9LtxUN-qrhyGc5eigj61ayQffSBvImJEVm6YKT2gk0_33vLLtb15XtxRgsIXF3uvudfB-MHc6zAoY-9wIVcC5ABSdGLrEiCYgfnNVpNqTc4dPvajKFb7Ns1mNdz9aWgPVfXTvqJzWtlh-uLncf8cAf_YrV8mFZBao-KWUT1w7pA_ZQAvrqFMzXAv6om6nGGXQ5dPdMvs9G3cWgf4ZS_mabTp6wvRZU8nGUgqesF8pn7FFsM7l7zs7GvFz4n2iv-LGtNUeZCWJeoZ7jsZAzXzdBeaHm9XYdKnFK9-J0_8EXJeUHbkg08J1_rpq2B4ulfcGmJ1_OjyeibaYgPKh0IwoFWYGAymUKPHUclh7sXKF6KfLCwzBJHARtVVLgiNyniFOCtOjM5Vq7dBjSl6xfrsrwmnGXWYXEzaTTHuZASelFEnIHiU-18sWAiY58Zh1rZpgumOzCRHIbIreJ5B6wvKOxae1-tOcGufyPme87lhg8FvSvw5Zhta2NpPQjhfplNGCvIotu9pKS05TpBNe9xbybAVRy-_aXcvGjKb2tET9JGO3_x7pv2GPaKUUaSHjL-ptqG94hgNm4g8bxx-fX2aeDRj6vAWN28qA |
link.rule.ids | 230,315,783,787,867,888,2228,3513,24330,27936,27937,45886 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kKYr2UrRNF3dlgFwJSxRFmsfUTeAsziUJ4BtB0hSqNlAM2T7k7zOjxahTFAVyEyQSImZGbx6pWQAO5nkh06ADRwDWXKro-cgnjicR-YN3JstTyh2eXqjJtTyd5bMdGPe5MBRW2WF_i-kNWnd3hp00h4uyHF4K3Lugd9KCdsWp0k_gKaVdkpmfzL5vDlqo4EjaNESkCZxm9Cl0TZxXiDd1pMqVQjQx8TL7l4v6m4I-jKT8wzUdv4KXHadkh-2yX8NOrN7As7bL5N0eXB6yqgy_0V2xsVsahiYT-bxGmGNtHWe2aGLy4pIt14tY8ykdi9PxBysrSg9ckWXgNftRN10Pyhv3Fq6Pj67GE971UuBBqmzFCyXzAvmUz5UM1HBYBOnmCtGl0EWQaZJ4GY1TSYEjdMiQpkThcC-njfFZGrN3sFvdVvEDMJ87JZBlCW-CnEvKSS-SqL1MQmZUKAbAe_HZRVsyw_axZL9sK25L4ratuAegexnbLdVbRPX_zNzvVWLxq6BfHa6Kt-ulFZR9pBBeRgN436pos5aM9ky5SfC9W8rbDKCK29tPqvJnU3nbIH0ScvTx0Sv-Bs8nV9Nze35ycfYJXtATCkUQ8jPsrup1_IIMZ-W_NhZ8D4ca-FM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nickase+Cas9+gene-drive+system+promotes+super-Mendelian+inheritance+in+Drosophila&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=L%C3%B3pez+Del+Amo%2C+V%C3%ADctor&rft.au=Juste%2C+Sara+Sanz&rft.au=Gantz%2C+Valentino+M&rft.date=2022-05-24&rft.eissn=2211-1247&rft.volume=39&rft.issue=8&rft.spage=110843&rft.epage=110843&rft_id=info:doi/10.1016%2Fj.celrep.2022.110843&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |