A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila

CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wi...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 39; no. 8; p. 110843
Main Authors López Del Amo, Víctor, Juste, Sara Sanz, Gantz, Valentino M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond. [Display omitted] •Nickase versions of Cas9 trigger DNA homology-directed (HDR) repair in vivo•Paired DNA nicks into DNA promote gene-drive’s super-Mendelian inheritance•Efficient gene-drive propagation occurs when 5′ overhangs are generated•Nickase genedrive-producing 3′ overhangs do not trigger HDR Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the Drosophila germ line, providing alternative designs for CRISPR-based gene-drive.
AbstractList CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond. Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the Drosophila germ line, providing alternative designs for CRISPR-based gene-drive.
CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5′ overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond. [Display omitted] •Nickase versions of Cas9 trigger DNA homology-directed (HDR) repair in vivo•Paired DNA nicks into DNA promote gene-drive’s super-Mendelian inheritance•Efficient gene-drive propagation occurs when 5′ overhangs are generated•Nickase genedrive-producing 3′ overhangs do not trigger HDR Gene-drives using wild-type Cas9 offer solutions to fight vector-borne diseases, yet alternative strategies are needed to increase the available toolkit. López Del Amo et al. describe a nickase-based gene-drive system that promotes super-Mendelian inheritance of an engineered cassette in the Drosophila germ line, providing alternative designs for CRISPR-based gene-drive.
CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5' overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.
ArticleNumber 110843
Author Juste, Sara Sanz
López Del Amo, Víctor
Gantz, Valentino M.
AuthorAffiliation 1 Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
2 Lead contact
AuthorAffiliation_xml – name: 2 Lead contact
– name: 1 Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
Author_xml – sequence: 1
  givenname: Víctor
  orcidid: 0000-0002-5567-3072
  surname: López Del Amo
  fullname: López Del Amo, Víctor
  email: vlopezdelamo@ucsd.edu
  organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 2
  givenname: Sara Sanz
  surname: Juste
  fullname: Juste, Sara Sanz
  organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 3
  givenname: Valentino M.
  orcidid: 0000-0003-2453-0711
  surname: Gantz
  fullname: Gantz, Valentino M.
  email: vgantz@ucsd.edu
  organization: Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35613590$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxa2Kiv_foEI5csnisR0bX5DQtgUkqh5azpbXmbDeJnawsyvx7evVAoVLffFIfvPG835HZC_EgIR8AToDCvJiNXPYJxxnjDI2A6CXgn8ih4wB1MCE2ntXH5DTnFe0HEkBtNgnB7yRwBtND8mv6yp498dmrOY26-oRA9Zt8hus8nOecKjGFIc4Ya7yesRU_8DQYu9tqHxYYvKTDQ5LXX1NMcdx6Xt7Qj53ts94-nIfk4fv337Pb-v7nzd38-v72gnJp7qTouko1YtGCicboZgTtpVK8k51TgClC4HaStoVhXKca4XMalBK6wUH5Mfkauc7rhcDtg7DlGxvxuQHm55NtN58fAl-aR7jxmjQlInLYnD-YpDi0xrzZAafS7C9DRjX2TCpSmgc9FYqdlJX1swJu7cxQM0WiVmZHRKzRWJ2SErb2fsvvjW9Avi3A5agNh6Tyc5jibT1Cd1k2uj_P-EvTA2grg
CitedBy_id crossref_primary_10_1126_sciadv_abo0721
crossref_primary_10_1360_SSV_2022_0053
crossref_primary_10_1016_j_ggedit_2022_100017
crossref_primary_10_1111_jen_13314
Cites_doi 10.1038/nbt.3439
10.1038/s41587-020-0508-1
10.3390/ijms19103035
10.1016/j.dnarep.2016.12.005
10.1073/pnas.1208507109
10.1093/g3journal/jkaa063
10.1093/nar/gky222
10.1038/nrg2380
10.1038/s41467-019-13977-7
10.1073/pnas.1405500111
10.7554/eLife.51701
10.1016/j.cub.2020.12.018
10.1093/jhered/esh023
10.1093/nar/gkaa1236
10.1016/j.celrep.2020.107841
10.1073/pnas.2010214117
10.1016/j.celrep.2019.12.064
10.1073/pnas.2004838117
10.1038/ncomms13905
10.1016/j.fob.2014.06.007
10.1093/nar/gkw179
10.1073/pnas.1720354115
10.1038/nbt.2675
10.7554/eLife.41439
10.1038/s41576-021-00386-0
10.1371/journal.pgen.1007039
10.1126/science.aaa5945
10.1016/j.cell.2013.09.040
10.1093/genetics/135.1.81
10.1038/s41586-019-0875-2
10.1038/s41467-021-21771-7
10.1093/nar/gkm734
10.1038/s41467-020-19426-0
10.1073/pnas.1521077112
10.7554/eLife.30281
10.1126/science.1225829
10.1073/pnas.131009198
10.1002/bies.201500102
10.1038/nbt.4245
10.1038/s41419-018-1146-0
10.1093/emboj/19.20.5492
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.celrep.2022.110843
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 110843
ExternalDocumentID 10_1016_j_celrep_2022_110843
35613590
S2211124722006167
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
ADVLN
AKRWK
NPM
AAYXX
CITATION
HZ~
IPNFZ
RIG
7X8
5PM
ID FETCH-LOGICAL-c463t-f645f009b564c65472c4ad6763f7fc4100b4e9a60fb567c3397e2a917799b31e3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Tue Sep 17 21:06:58 EDT 2024
Sat Oct 05 04:23:20 EDT 2024
Thu Sep 26 15:25:17 EDT 2024
Wed Oct 16 00:41:09 EDT 2024
Tue Jul 25 20:58:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords CRISPR
germline
Drosophila
CP: Microbiology
CP: Molecular biology
gene drives
homology-directed repair
nickase
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-f645f009b564c65472c4ad6763f7fc4100b4e9a60fb567c3397e2a917799b31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
V.L.D.A. and V.M.G. conceived the project. V.L.D.A. designed and obtained the nickase gene-drive constructs in Drosophila. V.L.D.A. and S.S.J. performed the experiments. V.L.D.A., V.M.G., and S.S.J. created the figure visualizations. V.L.D.A. wrote the manuscript, which was edited by all of the authors.
ORCID 0000-0003-2453-0711
0000-0002-5567-3072
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.110843
PMID 35613590
PQID 2670063198
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9190248
proquest_miscellaneous_2670063198
crossref_primary_10_1016_j_celrep_2022_110843
pubmed_primary_35613590
elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110843
PublicationCentury 2000
PublicationDate 2022-05-24
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Weitzel, Grunwald, Levina, Gantz, Hedrick, Bier, Cooper (bib40) 2021
Kuzminov (bib22) 2001; 98
Garrood, Kranjc, Petri, Kim, Guo, Hammond, Morianou, Pattanayak, Joung, Crisanti, Simoni (bib13) 2021; 118
Hammond, Kyrou, Bruttini, North, Galizi, Karlsson, Kranjc, Carpi, D’Aurizio, Crisanti, Nolan (bib19) 2017; 13
Vriend, Prakash, Chen, Vanoli, Cavallo, Zhang, Jasin, Krawczyk (bib36) 2016; 44
Lee, Lloyd (bib42) 2014; 4
Wang, Hays (bib37) 2007; 35
Champer, Liu, Oh, Reeves, Luthra, Oakes, Clark, Messer (bib8) 2018; 115
Adolfi, Gantz, Jasinskiene, Lee, Hwang, Terradas, Bulger, Ramaiah, Bennett, Emerson (bib1) 2020; 11
Aryal, Wasylishen, Lozano (bib2) 2018; 9
Wang, Zhao, Duan, Liu, Zhang, Zhou, Hu, Feng, Liu, Wu (bib39) 2018; 19
Bier (bib3) 2021; 23
Champer, Chung, Lee, Liu, Yang, Wen, Clark, Messer (bib9) 2019; 8
López Del Amo, Bishop, Sánchez C, Bennett, Feng, Marshall, Bier, Gantz (bib26) 2020; 11
Bothmer, Phadke, Barrera, Margulies, Lee, Buquicchio, Moss, Abdulkerim, Selleck, Jayaram (bib4) 2017; 8
Carballar-Lejarazú, Ogaugwu, Tushar, Kelsey, Pham, Murphy, Schmidt, Lee, Lanzaro, James (bib6) 2020; 117
Grunwald, Gantz, Poplawski, Xu, Bier, Cooper (bib17) 2019; 566
Hammond, Galizi, Kyrou, Simoni, Siniscalchi, Katsanos, Gribble, Baker, Marois, Russell (bib18) 2016; 34
Ren, Yang, Mao, Chang, Qiao, Wang, Sun, Hu, Cui, Liu, Ji, Xu, Ni (bib43) 2014; 4
Vriend, Krawczyk (bib35) 2017; 50
Hyodo, Rahman, Karnan, Ito, Toyoda, Ota, Wahiduzzaman, Tsuzuki, Okada, Hosokawa, Konishi (bib20) 2020; 30
Gantz, Bier (bib10) 2015; 348
Reyes, Kolodziejczak, Devakumar, Kubota, Kolodner, Putnam, Hombauer (bib31) 2021; 31
López Del Amo, Leger, Cox, Gill, Bishop, Scanlon, Walker, Gantz, Choudhary (bib25) 2020; 31
Wang, Liu, Janssen, Le Bouteiller, Frock, Gonçalves (bib38) 2021; 49
Gloor, Preston, Johnson-Schlitz, Nassif, Phillis, Benz, Robertson, Engels (bib15) 1993; 135
Simoni, Hammond, Beaghton, Galizi, Taxiarchi, Kyrou, Meacci, Gribble, Morselli, Burt (bib33) 2020; 38
Ran, Hsu, Lin, Gootenberg, Konermann, Trevino, Scott, Inoue, Matoba, Zhang, Zhang (bib30) 2013; 155
Gantz, Bier (bib11) 2016; 38
Gantz, Jasinskiene, Tatarenkova, Fazekas, Macias, Bier, James (bib12) 2015; 112
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib21) 2012; 337
Li, Yang, Kandul, Bui, Gamez, Raban, Bennett, Sánchez C, Lanzaro, Schmidt (bib24) 2020; 9
Mali, Aach, Stranges, Esvelt, Moosburner, Kosuri, Yang, Church (bib28) 2013; 31
Terradas, Buchman, Bennett, Shriner, Marshall, Akbari, Bier (bib34) 2021; 12
Chafin, Vitolo, Henricksen, Bambara, Hayes (bib7) 2000; 19
Severson, DeBruyn, Lovin, Brown, Knudson, Morlais (bib32) 2004; 95
Main, Marcantonio, Johnston, Rasgon, Brown, Barker (bib27) 2021; 11
Port, Chen, Lee, Bullock (bib29) 2014; 111
Caldecott (bib5) 2008; 9
Gopalappa, Suresh, Ramakrishna, Kim (bib16) 2018; 46
Xu, Gantz, Siomava, Bier (bib41) 2017; 6
Kyrou, Hammond, Galizi, Kranjc, Burt, Beaghton, Nolan, Crisanti (bib23) 2018; 36
Gasiunas, Barrangou, Horvath, Siksnys (bib14) 2012; 109
Hammond (10.1016/j.celrep.2022.110843_bib19) 2017; 13
Jinek (10.1016/j.celrep.2022.110843_bib21) 2012; 337
Grunwald (10.1016/j.celrep.2022.110843_bib17) 2019; 566
Reyes (10.1016/j.celrep.2022.110843_bib31) 2021; 31
Severson (10.1016/j.celrep.2022.110843_bib32) 2004; 95
Kyrou (10.1016/j.celrep.2022.110843_bib23) 2018; 36
López Del Amo (10.1016/j.celrep.2022.110843_bib26) 2020; 11
Vriend (10.1016/j.celrep.2022.110843_bib36) 2016; 44
Bothmer (10.1016/j.celrep.2022.110843_bib4) 2017; 8
Ren (10.1016/j.celrep.2022.110843_bib43) 2014; 4
Bier (10.1016/j.celrep.2022.110843_bib3) 2021; 23
Li (10.1016/j.celrep.2022.110843_bib24) 2020; 9
Ran (10.1016/j.celrep.2022.110843_bib30) 2013; 155
Gantz (10.1016/j.celrep.2022.110843_bib11) 2016; 38
Gantz (10.1016/j.celrep.2022.110843_bib12) 2015; 112
Wang (10.1016/j.celrep.2022.110843_bib38) 2021; 49
Weitzel (10.1016/j.celrep.2022.110843_bib40) 2021
Gantz (10.1016/j.celrep.2022.110843_bib10) 2015; 348
Garrood (10.1016/j.celrep.2022.110843_bib13) 2021; 118
Gloor (10.1016/j.celrep.2022.110843_bib15) 1993; 135
López Del Amo (10.1016/j.celrep.2022.110843_bib25) 2020; 31
Caldecott (10.1016/j.celrep.2022.110843_bib5) 2008; 9
Adolfi (10.1016/j.celrep.2022.110843_bib1) 2020; 11
Chafin (10.1016/j.celrep.2022.110843_bib7) 2000; 19
Terradas (10.1016/j.celrep.2022.110843_bib34) 2021; 12
Vriend (10.1016/j.celrep.2022.110843_bib35) 2017; 50
Carballar-Lejarazú (10.1016/j.celrep.2022.110843_bib6) 2020; 117
Hammond (10.1016/j.celrep.2022.110843_bib18) 2016; 34
Aryal (10.1016/j.celrep.2022.110843_bib2) 2018; 9
Main (10.1016/j.celrep.2022.110843_bib27) 2021; 11
Champer (10.1016/j.celrep.2022.110843_bib8) 2018; 115
Hyodo (10.1016/j.celrep.2022.110843_bib20) 2020; 30
Wang (10.1016/j.celrep.2022.110843_bib37) 2007; 35
Kuzminov (10.1016/j.celrep.2022.110843_bib22) 2001; 98
Gasiunas (10.1016/j.celrep.2022.110843_bib14) 2012; 109
Xu (10.1016/j.celrep.2022.110843_bib41) 2017; 6
Gopalappa (10.1016/j.celrep.2022.110843_bib16) 2018; 46
Wang (10.1016/j.celrep.2022.110843_bib39) 2018; 19
Lee (10.1016/j.celrep.2022.110843_bib42) 2014; 4
Simoni (10.1016/j.celrep.2022.110843_bib33) 2020; 38
Mali (10.1016/j.celrep.2022.110843_bib28) 2013; 31
Champer (10.1016/j.celrep.2022.110843_bib9) 2019; 8
Port (10.1016/j.celrep.2022.110843_bib29) 2014; 111
References_xml – volume: 9
  start-page: 619
  year: 2008
  end-page: 631
  ident: bib5
  article-title: Single-strand break repair and genetic disease
  publication-title: Nat. Rev. Genet.
  contributor:
    fullname: Caldecott
– volume: 118
  year: 2021
  ident: bib13
  article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: Simoni
– volume: 112
  start-page: E6736
  year: 2015
  end-page: E6743
  ident: bib12
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: James
– volume: 111
  start-page: E2967
  year: 2014
  end-page: E2976
  ident: bib29
  article-title: Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: Bullock
– volume: 95
  start-page: 103
  year: 2004
  end-page: 113
  ident: bib32
  article-title: Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae
  publication-title: J. Hered.
  contributor:
    fullname: Morlais
– volume: 117
  start-page: 22805
  year: 2020
  end-page: 22814
  ident: bib6
  article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: James
– volume: 135
  start-page: 81
  year: 1993
  end-page: 95
  ident: bib15
  article-title: Type I repressors of P element mobility
  publication-title: Genetics
  contributor:
    fullname: Engels
– volume: 34
  start-page: 78
  year: 2016
  end-page: 83
  ident: bib18
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Russell
– volume: 11
  start-page: jkaa063
  year: 2021
  ident: bib27
  article-title: Whole-genome assembly of Culex tarsalis
  publication-title: G3
  contributor:
    fullname: Barker
– volume: 38
  start-page: 50
  year: 2016
  end-page: 63
  ident: bib11
  article-title: The dawn of active genetics
  publication-title: Bioessays
  contributor:
    fullname: Bier
– volume: 30
  start-page: 1195
  year: 2020
  end-page: 1207.e7
  ident: bib20
  article-title: Tandem paired nicking promotes Precise genome editing with scarce interference by p53
  publication-title: Cell Rep.
  contributor:
    fullname: Konishi
– volume: 44
  start-page: 5204
  year: 2016
  end-page: 5217
  ident: bib36
  article-title: Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Krawczyk
– volume: 19
  start-page: 3035
  year: 2018
  ident: bib39
  article-title: Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Wu
– volume: 115
  start-page: 5522
  year: 2018
  end-page: 5527
  ident: bib8
  article-title: Reducing resistance allele formation in CRISPR gene drive
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: Messer
– volume: 36
  start-page: 1062
  year: 2018
  end-page: 1066
  ident: bib23
  article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Crisanti
– volume: 9
  start-page: 1099
  year: 2018
  ident: bib2
  article-title: CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo
  publication-title: Cell Death Dis.
  contributor:
    fullname: Lozano
– volume: 46
  start-page: e71
  year: 2018
  ident: bib16
  article-title: Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Kim
– volume: 9
  start-page: e51701
  year: 2020
  ident: bib24
  article-title: Development of a confinable gene drive system in the human disease vector Aedes aegypti
  publication-title: Elife
  contributor:
    fullname: Schmidt
– volume: 11
  start-page: 352
  year: 2020
  ident: bib26
  article-title: A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment
  publication-title: Nat. Commun.
  contributor:
    fullname: Gantz
– volume: 12
  start-page: 1480
  year: 2021
  ident: bib34
  article-title: Inherently confinable split-drive systems in Drosophila
  publication-title: Nat. Commun.
  contributor:
    fullname: Bier
– volume: 31
  start-page: 107841
  year: 2020
  ident: bib25
  article-title: Small-molecule control of super-mendelian inheritance in gene drives
  publication-title: Cell Rep.
  contributor:
    fullname: Choudhary
– volume: 348
  start-page: 442
  year: 2015
  end-page: 444
  ident: bib10
  article-title: The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
  publication-title: Science
  contributor:
    fullname: Bier
– volume: 49
  start-page: 1173
  year: 2021
  end-page: 1198
  ident: bib38
  article-title: Precise and broad scope genome editing based on high-specificity Cas9 nickases
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Gonçalves
– volume: 6
  start-page: e30281
  year: 2017
  ident: bib41
  article-title: CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity
  publication-title: Elife
  contributor:
    fullname: Bier
– volume: 13
  start-page: e1007039
  year: 2017
  ident: bib19
  article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito
  publication-title: PLoS Genet.
  contributor:
    fullname: Nolan
– year: 2021
  ident: bib40
  article-title: Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline
  publication-title: bioRxiv
  contributor:
    fullname: Cooper
– volume: 23
  start-page: 5
  year: 2021
  end-page: 22
  ident: bib3
  article-title: Gene drives gaining speed
  publication-title: Nat. Rev. Genet.
  contributor:
    fullname: Bier
– volume: 98
  start-page: 8241
  year: 2001
  end-page: 8246
  ident: bib22
  article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: Kuzminov
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: bib28
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Church
– volume: 38
  start-page: 1054
  year: 2020
  end-page: 1060
  ident: bib33
  article-title: A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Burt
– volume: 50
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib35
  article-title: Nick-initiated homologous recombination: Protecting the genome, one strand at a time
  publication-title: DNA Repair
  contributor:
    fullname: Krawczyk
– volume: 4
  start-page: 637
  year: 2014
  end-page: 642
  ident: bib42
  article-title: Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice
  publication-title: FEBS Open Bio
  contributor:
    fullname: Lloyd
– volume: 19
  start-page: 5492
  year: 2000
  end-page: 5501
  ident: bib7
  article-title: Human DNA ligase I efficiently seals nicks in nucleosomes
  publication-title: EMBO J.
  contributor:
    fullname: Hayes
– volume: 155
  start-page: 479
  year: 2013
  end-page: 480
  ident: bib30
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  contributor:
    fullname: Zhang
– volume: 35
  start-page: 6727
  year: 2007
  end-page: 6739
  ident: bib37
  article-title: Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Hays
– volume: 8
  start-page: 13905
  year: 2017
  ident: bib4
  article-title: Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus
  publication-title: Nat. Commun.
  contributor:
    fullname: Jayaram
– volume: 8
  start-page: e41439
  year: 2019
  ident: bib9
  article-title: Molecular safeguarding of CRISPR gene drive experiments
  publication-title: Elife
  contributor:
    fullname: Messer
– volume: 11
  start-page: 5553
  year: 2020
  ident: bib1
  article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi
  publication-title: Nat. Commun.
  contributor:
    fullname: Emerson
– volume: 566
  start-page: 105
  year: 2019
  end-page: 109
  ident: bib17
  article-title: Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline
  publication-title: Nature
  contributor:
    fullname: Cooper
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib21
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  contributor:
    fullname: Charpentier
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: bib14
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. U S A
  contributor:
    fullname: Siksnys
– volume: 4
  start-page: 1955
  year: 2014
  end-page: 1962
  ident: bib43
  publication-title: Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (Bethesda)
  contributor:
    fullname: Ni
– volume: 31
  start-page: 1268
  year: 2021
  end-page: 1276.e6
  ident: bib31
  article-title: Ligation of newly replicated DNA controls the timing of DNA mismatch repair
  publication-title: Curr. Biol.
  contributor:
    fullname: Hombauer
– volume: 34
  start-page: 78
  year: 2016
  ident: 10.1016/j.celrep.2022.110843_bib18
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3439
  contributor:
    fullname: Hammond
– volume: 38
  start-page: 1054
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib33
  article-title: A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0508-1
  contributor:
    fullname: Simoni
– volume: 19
  start-page: 3035
  year: 2018
  ident: 10.1016/j.celrep.2022.110843_bib39
  article-title: Paired CRISPR/Cas9 nickases mediate efficient site-specific integration of F9 into rDNA locus of mouse ESCs
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19103035
  contributor:
    fullname: Wang
– volume: 50
  start-page: 1
  year: 2017
  ident: 10.1016/j.celrep.2022.110843_bib35
  article-title: Nick-initiated homologous recombination: Protecting the genome, one strand at a time
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2016.12.005
  contributor:
    fullname: Vriend
– volume: 109
  start-page: E2579
  year: 2012
  ident: 10.1016/j.celrep.2022.110843_bib14
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1208507109
  contributor:
    fullname: Gasiunas
– volume: 11
  start-page: jkaa063
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib27
  article-title: Whole-genome assembly of Culex tarsalis
  publication-title: G3
  doi: 10.1093/g3journal/jkaa063
  contributor:
    fullname: Main
– volume: 46
  start-page: e71
  year: 2018
  ident: 10.1016/j.celrep.2022.110843_bib16
  article-title: Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky222
  contributor:
    fullname: Gopalappa
– volume: 9
  start-page: 619
  year: 2008
  ident: 10.1016/j.celrep.2022.110843_bib5
  article-title: Single-strand break repair and genetic disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2380
  contributor:
    fullname: Caldecott
– volume: 11
  start-page: 352
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib26
  article-title: A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13977-7
  contributor:
    fullname: López Del Amo
– volume: 111
  start-page: E2967
  year: 2014
  ident: 10.1016/j.celrep.2022.110843_bib29
  article-title: Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1405500111
  contributor:
    fullname: Port
– volume: 9
  start-page: e51701
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib24
  article-title: Development of a confinable gene drive system in the human disease vector Aedes aegypti
  publication-title: Elife
  doi: 10.7554/eLife.51701
  contributor:
    fullname: Li
– volume: 31
  start-page: 1268
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib31
  article-title: Ligation of newly replicated DNA controls the timing of DNA mismatch repair
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.12.018
  contributor:
    fullname: Reyes
– volume: 95
  start-page: 103
  year: 2004
  ident: 10.1016/j.celrep.2022.110843_bib32
  article-title: Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae
  publication-title: J. Hered.
  doi: 10.1093/jhered/esh023
  contributor:
    fullname: Severson
– volume: 49
  start-page: 1173
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib38
  article-title: Precise and broad scope genome editing based on high-specificity Cas9 nickases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1236
  contributor:
    fullname: Wang
– volume: 31
  start-page: 107841
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib25
  article-title: Small-molecule control of super-mendelian inheritance in gene drives
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107841
  contributor:
    fullname: López Del Amo
– volume: 117
  start-page: 22805
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib6
  article-title: Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.2010214117
  contributor:
    fullname: Carballar-Lejarazú
– year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib40
  article-title: Meiotic Cas9 expression mediates genotype conversion in the male and female mouse germline
  publication-title: bioRxiv
  contributor:
    fullname: Weitzel
– volume: 30
  start-page: 1195
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib20
  article-title: Tandem paired nicking promotes Precise genome editing with scarce interference by p53
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.12.064
  contributor:
    fullname: Hyodo
– volume: 118
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib13
  article-title: Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.2004838117
  contributor:
    fullname: Garrood
– volume: 8
  start-page: 13905
  year: 2017
  ident: 10.1016/j.celrep.2022.110843_bib4
  article-title: Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13905
  contributor:
    fullname: Bothmer
– volume: 4
  start-page: 637
  year: 2014
  ident: 10.1016/j.celrep.2022.110843_bib42
  article-title: Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice
  publication-title: FEBS Open Bio
  doi: 10.1016/j.fob.2014.06.007
  contributor:
    fullname: Lee
– volume: 44
  start-page: 5204
  year: 2016
  ident: 10.1016/j.celrep.2022.110843_bib36
  article-title: Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw179
  contributor:
    fullname: Vriend
– volume: 115
  start-page: 5522
  year: 2018
  ident: 10.1016/j.celrep.2022.110843_bib8
  article-title: Reducing resistance allele formation in CRISPR gene drive
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1720354115
  contributor:
    fullname: Champer
– volume: 31
  start-page: 833
  year: 2013
  ident: 10.1016/j.celrep.2022.110843_bib28
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
  contributor:
    fullname: Mali
– volume: 8
  start-page: e41439
  year: 2019
  ident: 10.1016/j.celrep.2022.110843_bib9
  article-title: Molecular safeguarding of CRISPR gene drive experiments
  publication-title: Elife
  doi: 10.7554/eLife.41439
  contributor:
    fullname: Champer
– volume: 4
  start-page: 1955
  year: 2014
  ident: 10.1016/j.celrep.2022.110843_bib43
  publication-title: Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (Bethesda)
  contributor:
    fullname: Ren
– volume: 23
  start-page: 5
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib3
  article-title: Gene drives gaining speed
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00386-0
  contributor:
    fullname: Bier
– volume: 13
  start-page: e1007039
  year: 2017
  ident: 10.1016/j.celrep.2022.110843_bib19
  article-title: The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007039
  contributor:
    fullname: Hammond
– volume: 348
  start-page: 442
  year: 2015
  ident: 10.1016/j.celrep.2022.110843_bib10
  article-title: The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
  publication-title: Science
  doi: 10.1126/science.aaa5945
  contributor:
    fullname: Gantz
– volume: 155
  start-page: 479
  year: 2013
  ident: 10.1016/j.celrep.2022.110843_bib30
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.040
  contributor:
    fullname: Ran
– volume: 135
  start-page: 81
  year: 1993
  ident: 10.1016/j.celrep.2022.110843_bib15
  article-title: Type I repressors of P element mobility
  publication-title: Genetics
  doi: 10.1093/genetics/135.1.81
  contributor:
    fullname: Gloor
– volume: 566
  start-page: 105
  year: 2019
  ident: 10.1016/j.celrep.2022.110843_bib17
  article-title: Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline
  publication-title: Nature
  doi: 10.1038/s41586-019-0875-2
  contributor:
    fullname: Grunwald
– volume: 12
  start-page: 1480
  year: 2021
  ident: 10.1016/j.celrep.2022.110843_bib34
  article-title: Inherently confinable split-drive systems in Drosophila
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21771-7
  contributor:
    fullname: Terradas
– volume: 35
  start-page: 6727
  year: 2007
  ident: 10.1016/j.celrep.2022.110843_bib37
  article-title: Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm734
  contributor:
    fullname: Wang
– volume: 11
  start-page: 5553
  year: 2020
  ident: 10.1016/j.celrep.2022.110843_bib1
  article-title: Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19426-0
  contributor:
    fullname: Adolfi
– volume: 112
  start-page: E6736
  year: 2015
  ident: 10.1016/j.celrep.2022.110843_bib12
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1521077112
  contributor:
    fullname: Gantz
– volume: 6
  start-page: e30281
  year: 2017
  ident: 10.1016/j.celrep.2022.110843_bib41
  article-title: CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity
  publication-title: Elife
  doi: 10.7554/eLife.30281
  contributor:
    fullname: Xu
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.celrep.2022.110843_bib21
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
  contributor:
    fullname: Jinek
– volume: 98
  start-page: 8241
  year: 2001
  ident: 10.1016/j.celrep.2022.110843_bib22
  article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.131009198
  contributor:
    fullname: Kuzminov
– volume: 38
  start-page: 50
  year: 2016
  ident: 10.1016/j.celrep.2022.110843_bib11
  article-title: The dawn of active genetics
  publication-title: Bioessays
  doi: 10.1002/bies.201500102
  contributor:
    fullname: Gantz
– volume: 36
  start-page: 1062
  year: 2018
  ident: 10.1016/j.celrep.2022.110843_bib23
  article-title: A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4245
  contributor:
    fullname: Kyrou
– volume: 9
  start-page: 1099
  year: 2018
  ident: 10.1016/j.celrep.2022.110843_bib2
  article-title: CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1146-0
  contributor:
    fullname: Aryal
– volume: 19
  start-page: 5492
  year: 2000
  ident: 10.1016/j.celrep.2022.110843_bib7
  article-title: Human DNA ligase I efficiently seals nicks in nucleosomes
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.20.5492
  contributor:
    fullname: Chafin
SSID ssj0000601194
Score 2.400125
Snippet CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 110843
SubjectTerms CRISPR
Drosophila
gene drives
germline
homology-directed repair
nickase
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8iCL6I384vIvga1qZpujzOqYgwX6awt5BkKValjm578L_3Lm2HU0TwrR9JG-7Sy-_S-90RcjlJcxG7zDEwwBkT0lvWs5FhkQf8YI1K0hi5w8MHefck7sfpeI0MWi4MhlU2tr-26cFaN1e6jTS706Lojjj4LrA6ZRy94lgioxyeHEh846vlPgvmG4lDPURsz7BDy6ALYV7Ov1UeE1dyHkLiRfLbCvUTgX4PpPyyMt1uk60GUtJ-PeodsubLXbJRF5n82COjPi0L9wqrFR2YmaIwYzybVGDlaJ3GmU5DSJ6f0dli6is2xF1x3P2gRYnswDlODDim11UoelC8mX3ydHvzOLhjTSkF5oRM5iyXIs0BTtlUCof1hrkTZiLBuORZ7kQcRVZ4ZWSUQ4vMJYBSPDfgymVK2ST2yQFZL99Lf0SoTY3kALK4VU5MBFLS88hnVkQuUdLlHcJa8elpnTFDt6FkL7oWt0Zx61rcHZK1MtYrmtdg1P_oedGqRMNHgX86TOnfFzPNkXwkwbr0OuSwVtFyLAm6TKmK4L0ryls2wITbq3fK4jkk3laAnrjoHf97xCdkE88w-oCLU7I-rxb-DEDN3J6HWfsJBkv1JQ
  priority: 102
  providerName: Elsevier
Title A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila
URI https://dx.doi.org/10.1016/j.celrep.2022.110843
https://www.ncbi.nlm.nih.gov/pubmed/35613590
https://search.proquest.com/docview/2670063198
https://pubmed.ncbi.nlm.nih.gov/PMC9190248
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdZxmAvZd9LtxUN-qrhyGc5eigj61ayQffSBvImJEVm6YKT2gk0_33vLLtb15XtxRgsIXF3uvudfB-MHc6zAoY-9wIVcC5ABSdGLrEiCYgfnNVpNqTc4dPvajKFb7Ns1mNdz9aWgPVfXTvqJzWtlh-uLncf8cAf_YrV8mFZBao-KWUT1w7pA_ZQAvrqFMzXAv6om6nGGXQ5dPdMvs9G3cWgf4ZS_mabTp6wvRZU8nGUgqesF8pn7FFsM7l7zs7GvFz4n2iv-LGtNUeZCWJeoZ7jsZAzXzdBeaHm9XYdKnFK9-J0_8EXJeUHbkg08J1_rpq2B4ulfcGmJ1_OjyeibaYgPKh0IwoFWYGAymUKPHUclh7sXKF6KfLCwzBJHARtVVLgiNyniFOCtOjM5Vq7dBjSl6xfrsrwmnGXWYXEzaTTHuZASelFEnIHiU-18sWAiY58Zh1rZpgumOzCRHIbIreJ5B6wvKOxae1-tOcGufyPme87lhg8FvSvw5Zhta2NpPQjhfplNGCvIotu9pKS05TpBNe9xbybAVRy-_aXcvGjKb2tET9JGO3_x7pv2GPaKUUaSHjL-ptqG94hgNm4g8bxx-fX2aeDRj6vAWN28qA
link.rule.ids 230,315,783,787,867,888,2228,3513,24330,27936,27937,45886
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kKYr2UrRNF3dlgFwJSxRFmsfUTeAsziUJ4BtB0hSqNlAM2T7k7zOjxahTFAVyEyQSImZGbx6pWQAO5nkh06ADRwDWXKro-cgnjicR-YN3JstTyh2eXqjJtTyd5bMdGPe5MBRW2WF_i-kNWnd3hp00h4uyHF4K3Lugd9KCdsWp0k_gKaVdkpmfzL5vDlqo4EjaNESkCZxm9Cl0TZxXiDd1pMqVQjQx8TL7l4v6m4I-jKT8wzUdv4KXHadkh-2yX8NOrN7As7bL5N0eXB6yqgy_0V2xsVsahiYT-bxGmGNtHWe2aGLy4pIt14tY8ykdi9PxBysrSg9ckWXgNftRN10Pyhv3Fq6Pj67GE971UuBBqmzFCyXzAvmUz5UM1HBYBOnmCtGl0EWQaZJ4GY1TSYEjdMiQpkThcC-njfFZGrN3sFvdVvEDMJ87JZBlCW-CnEvKSS-SqL1MQmZUKAbAe_HZRVsyw_axZL9sK25L4ratuAegexnbLdVbRPX_zNzvVWLxq6BfHa6Kt-ulFZR9pBBeRgN436pos5aM9ky5SfC9W8rbDKCK29tPqvJnU3nbIH0ScvTx0Sv-Bs8nV9Nze35ycfYJXtATCkUQ8jPsrup1_IIMZ-W_NhZ8D4ca-FM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nickase+Cas9+gene-drive+system+promotes+super-Mendelian+inheritance+in+Drosophila&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=L%C3%B3pez+Del+Amo%2C+V%C3%ADctor&rft.au=Juste%2C+Sara+Sanz&rft.au=Gantz%2C+Valentino+M&rft.date=2022-05-24&rft.eissn=2211-1247&rft.volume=39&rft.issue=8&rft.spage=110843&rft.epage=110843&rft_id=info:doi/10.1016%2Fj.celrep.2022.110843&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon