Translational adaptation of human viruses to the tissues they infect
Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, w...
Saved in:
Published in | Cell reports (Cambridge) Vol. 34; no. 11; p. 108872 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.03.2021
The Author(s) |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2021.108872 |
Cover
Loading…
Abstract | Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.
[Display omitted]
•Viruses with distinct tissue tropisms show differences in codon usage•Viral tropism defines a unique pattern of translational adaptation to human tissues•SARS-CoV-2 is especially favored to the upper respiratory tract and the alveoli•Early viral proteins are generally better adapted than late counterparts
Viruses need to hijack the translational machinery of the host for the expression of their own proteins. Hernandez-Alias et al. show that viruses that infect different tissues use different synonymous codons, which can affect the efficiency in which they are translated across human tissues. |
---|---|
AbstractList | Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines. Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines. [Display omitted] •Viruses with distinct tissue tropisms show differences in codon usage•Viral tropism defines a unique pattern of translational adaptation to human tissues•SARS-CoV-2 is especially favored to the upper respiratory tract and the alveoli•Early viral proteins are generally better adapted than late counterparts Viruses need to hijack the translational machinery of the host for the expression of their own proteins. Hernandez-Alias et al. show that viruses that infect different tissues use different synonymous codons, which can affect the efficiency in which they are translated across human tissues. Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines. Viruses need to hijack the translational machinery of the host for the expression of their own proteins. Hernandez-Alias et al. show that viruses that infect different tissues use different synonymous codons, which can affect the efficiency in which they are translated across human tissues. Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines. |
ArticleNumber | 108872 |
Author | Schaefer, Martin H. Hernandez-Alias, Xavier Serrano, Luis Benisty, Hannah |
Author_xml | – sequence: 1 givenname: Xavier orcidid: 0000-0001-8633-499X surname: Hernandez-Alias fullname: Hernandez-Alias, Xavier email: xavier.hernandez@crg.eu organization: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain – sequence: 2 givenname: Hannah orcidid: 0000-0002-7835-9115 surname: Benisty fullname: Benisty, Hannah organization: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain – sequence: 3 givenname: Martin H. orcidid: 0000-0001-7503-6364 surname: Schaefer fullname: Schaefer, Martin H. email: martin.schaefer@ieo.it organization: IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, Milan 20139, Italy – sequence: 4 givenname: Luis orcidid: 0000-0002-5276-1392 surname: Serrano fullname: Serrano, Luis email: luis.serrano@crg.eu organization: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33730572$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1vGyEURFWiJk39D6poj7nYAXaBpYdKUfoVKVIuyRmx7KPGWoMLrKX8--CsXSU9JFzgwZuZx8wndOSDB4S-ELwgmPDL1cLAEGGzoJiSctW2gn5Ap5QSMie0EUcvzidoltIKl8UxIbL5iE7qWtSYCXqKvt9H7dOgswteD5Xu9SY_F1Ww1XJca19tXRwTpCqHKi-hyi6lcVcu4bFy3oLJn9Gx1UOC2X4_Qw8_f9xf_57f3v26ub66nZuG13lum57bMhDvpNBCSttxSwjXohUd63TTcdlyLg3XEjizhmHMjGwIk5bQtm_rM_Rt4t2M3Rp6Az5HPahNdGsdH1XQTr1-8W6p_oStEpJTyVghuNgTxPC3fCKrtUvFyUF7CGNSlGHaEszlrvX8pdY_kYN1peHr1GBiSCmCVcZN1hVpNyiC1S4qtVJTVGoXlZqiKuDmP_CB_x3Y3gAoLm8dRJWMA2-gd7HkoPrg3iZ4Atomr7M |
CitedBy_id | crossref_primary_10_1007_s10709_022_00155_9 crossref_primary_10_1016_j_virs_2024_04_008 crossref_primary_10_2139_ssrn_4102633 crossref_primary_10_3390_ijms252111614 crossref_primary_10_3390_vaccines12060670 crossref_primary_10_15252_msb_202211301 crossref_primary_10_1093_femsre_fuae029 crossref_primary_10_3390_ijms22126490 crossref_primary_10_1093_gbe_evab106 crossref_primary_10_1186_s12967_021_03037_4 crossref_primary_10_1016_j_semcdb_2023_01_011 crossref_primary_10_1016_j_psj_2024_104655 crossref_primary_10_3389_fbinf_2025_1562668 crossref_primary_10_1016_j_isci_2021_103682 crossref_primary_10_1093_gbe_evab196 crossref_primary_10_1371_journal_pcbi_1012685 crossref_primary_10_7554_eLife_90316_3 crossref_primary_10_1002_2211_5463_13781 crossref_primary_10_3390_ncrna9060069 crossref_primary_10_7554_eLife_90316 crossref_primary_10_1002_jmv_29461 |
Cites_doi | 10.1186/s12864-017-4248-7 10.1038/nrg2899 10.1093/nar/gkq901 10.1038/nature11433 10.1016/j.cell.2020.04.035 10.1056/NEJMoa1211721 10.1088/1478-3975/ab7083 10.1093/nar/gkh834 10.1093/bioinformatics/btq033 10.1007/s00239-005-0221-1 10.1007/s00239-008-9068-6 10.1038/s41591-020-0868-6 10.1093/nar/gkn578 10.7554/eLife.22206 10.1007/s00705-019-04306-w 10.1093/nar/gks772 10.1038/s41598-018-36135-3 10.1007/978-1-4939-9173-0_1 10.1038/s42003-018-0239-8 10.3390/v11020180 10.1038/s41559-020-1124-7 10.1371/journal.pcbi.1000001 10.1186/s40168-018-0422-7 10.1093/nar/9.1.213-b 10.1093/nar/gkp788 10.1016/j.datak.2014.07.008 10.1038/msb.2009.71 10.1021/acschemneuro.0c00122 10.1093/nar/gkw1002 10.1053/j.gastro.2020.03.020 10.1042/bst0210835 10.1186/1748-7188-6-26 10.1016/j.cell.2014.04.028 10.1093/nar/gkg897 10.1016/j.meegid.2020.104181 10.1093/dnares/dsx005 10.1136/gutjnl-2020-320953 10.3844/jcssp.2008.252.255 10.1128/mBio.00549-12 10.15252/msb.20199275 10.1016/S0168-1702(02)00309-X 10.15761/BGG.1000134 10.1128/JVI.73.6.4972-4982.1999 10.1016/j.cell.2020.02.052 10.1093/nar/gks986 10.1073/pnas.0506580102 10.1186/1471-2148-10-253 10.1093/nar/gkv1309 10.1371/journal.pcbi.1000502 10.1080/01969727408546059 10.1016/j.celrep.2019.05.048 10.1186/s40168-017-0283-5 10.1016/j.celrep.2017.07.029 10.1128/JVI.05903-11 10.1038/s41586-020-2008-3 10.1001/jamaneurol.2020.1127 10.1159/000491471 10.1016/j.cell.2014.08.011 10.1093/bioinformatics/btp352 10.3389/fmicb.2020.01179 10.1016/j.jmb.2019.04.021 10.1128/MCB.25.19.8643-8655.2005 10.7554/eLife.49894 10.2144/00286ir01 10.1038/nbt.1635 10.1016/j.ympev.2017.05.019 10.7554/eLife.27344 10.1056/NEJMoa030747 10.1186/s12859-017-1793-7 10.1002/jmv.25728 10.1101/gr.107524.110 10.1371/journal.pone.0056642 10.1093/molbev/msr005 10.1038/nsmb.2466 10.1038/s41586-020-2012-7 10.1073/pnas.1719375115 10.1038/nature12005 10.14309/ajg.0000000000000620 10.1093/bioinformatics/btx756 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2021 The Author(s) 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2021.108872 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 108872 |
ExternalDocumentID | PMC7962955 33730572 10_1016_j_celrep_2021_108872 S2211124721001868 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c463t-f4d6f2476b97a799fb6f116a787b5ba4b698669c6a9e65fc5005c94159f128d83 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 14:11:27 EDT 2025 Fri Jul 11 17:03:29 EDT 2025 Mon Jul 21 05:55:42 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Tue Jul 01 02:59:16 EDT 2025 Tue Jul 25 21:01:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | tropism translation SARS-CoV-2 tissue tRNA codon usage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-f4d6f2476b97a799fb6f116a787b5ba4b698669c6a9e65fc5005c94159f128d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
ORCID | 0000-0002-7835-9115 0000-0002-5276-1392 0000-0001-7503-6364 0000-0001-8633-499X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2021.108872 |
PMID | 33730572 |
PQID | 2502810695 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7962955 proquest_miscellaneous_2502810695 pubmed_primary_33730572 crossref_citationtrail_10_1016_j_celrep_2021_108872 crossref_primary_10_1016_j_celrep_2021_108872 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_108872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-16 |
PublicationDateYYYYMMDD | 2021-03-16 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc The Author(s) |
Publisher_xml | – name: Elsevier Inc – name: The Author(s) |
References | Franzo, Tucciarone, Cecchinato, Drigo (bib22) 2017; 114 Theis, Reeder, Giegerich (bib67) 2008; 36 Sharp, Stenico, Peden, Lloyd (bib61) 1993; 21 Mao, Jin, Wang, Hu, Chen, He, Chang, Hong, Zhou, Wang (bib44) 2020; 77 Pan, Mu, Yang, Sun, Wang, Yan, Li, Hu, Wang, Hu (bib51) 2020; 115 Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib58) 2013; 495 Gingold, Dahan, Pilpel (bib24) 2012; 40 Goz, Mioduser, Diament, Tuller (bib28) 2017; 24 Li, Kao, Gao, Sandig, Limmer, Pavon-Eternod, Jones, Landry, Pan, Weitzman, David (bib39) 2012; 491 Li, Bai, Hashikawa (bib40) 2020; 92 Knipe, Howley (bib36) 2013 Shackelton, Parrish, Holmes (bib60) 2006; 62 Bergman, Tuller (bib10) 2020; 17 Pechmann, Frydman (bib53) 2013; 20 Shi, Hu, Mo, Zeng, Sun, Hu (bib62) 2018; 47 Bekaert, Firth, Zhang, Gladyshev, Atkins, Baranov (bib8) 2010; 38 Hoffmann, Otto, Kurtz, Sharma, Khaitovich, Vogel, Stadler, Hackermüller (bib31) 2009; 5 Stothard (bib64) 2000; 28 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib81) 2020; 579 Ouwendijk, Dekker, van den Ham, Lenac Rovis, Haefner, Jonjic, Haas, Luider, Verjans (bib50) 2020; 11 Lorenz, Bernhart, Höner Zu Siederdissen, Tafer, Flamm, Stadler, Hofacker (bib41) 2011; 6 van Weringh, Ragonnet-Cronin, Pranckeviciene, Pavon-Eternod, Kleiman, Xia (bib68) 2011; 28 Hulo, de Castro, Masson, Bougueleret, Bairoch, Xenarios, Le Mercier (bib34) 2011; 39 Sungnak, Huang, Bécavin, Berg, Queen, Litvinukova, Talavera-López, Maatz, Reichart, Sampaziotis (bib66) 2020; 26 Zhou, Zhao, Shu, Han, Chen, Shu (bib82) 2020; 158 Al- Zoubi, Raw (bib3) 2008; 4 Morgado, Vicente (bib48) 2019; 11 Chan, Lowe (bib13) 2016; 44 Weekes, Tomasec, Huttlin, Fielding, Nusinow, Stanton, Wang, Aicheler, Murrell, Wilkinson (bib71) 2014; 157 dos Reis, Savva, Wernisch (bib18) 2004; 32 Belalov, Lukashev (bib9) 2013; 8 Athey, Alexaki, Osipova, Rostovtsev, Santana-Quintero, Katneni, Simonyan, Kimchi-Sarfaty (bib5) 2017; 18 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly, DePristo (bib45) 2010; 20 Wang, Chen, Zhou, Lian, Zhang, Du, Gong, Zhang, Cui, Geng (bib70) 2020 Aiewsakun, Simmonds (bib2) 2018; 6 Alexaki, Kames, Holcomb, Athey, Santana-Quintero, Lam, Hamasaki-Katagiri, Osipova, Simonyan, Bar (bib4) 2019; 431 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib75) 2012; 367 Fielding, Weekes, Nobre, Ruckova, Wilkie, Paulo, Chang, Suárez, Davies, Antrobus (bib21) 2017; 6 Zhang, Kang, Gong, Xu, Wang, Li, Li, Cui, Xiao, Zhan (bib77) 2020; 69 Broszeit, Tzarum, Zhu, Nemanichvili, Eggink, Leenders, Li, Liu, Wolfert, Papanikolaou (bib11) 2019; 27 Gogakos, Brown, Garzia, Meyer, Hafner, Tuschl (bib26) 2017; 20 Mioduser, Goz, Tuller (bib47) 2017; 18 dos Reis, Wernisch, Savva (bib17) 2003; 31 Lucks, Nelson, Kudla, Plotkin (bib42) 2008; 4 Chang, Thomas, Sova, Green, Palermo, Katze (bib15) 2013; 4 Grantham, Gautier, Gouy, Jacobzone, Mercier (bib29) 1981; 9 Lauring, Jones, Andino (bib37) 2010; 28 Nobre, Nightingale, Ravenhill, Antrobus, Soday, Nichols, Davies, Seirafian, Wang, Davison (bib49) 2019; 8 Ziegler, Allon, Nyquist, Mbano, Miao, Tzouanas, Cao, Yousif, Bals, Hauser (bib83) 2020; 181 Gingold, Tehler, Christoffersen, Nielsen, Asmar, Kooistra, Christophersen, Christensen, Borre, Sørensen (bib25) 2014; 158 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib33) 2020; 181 Quinlan, Hall (bib57) 2010; 26 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib54) 2011; 12 Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, Mesirov (bib65) 2005; 102 Pavon-Eternod, David, Dittmar, Berglund, Pan, Bennink, Yewdell (bib52) 2013; 41 Hoffmann, Fallmann, Vilardo, Mörl, Stadler, Amman (bib32) 2018; 34 Stark, Arnold, Spector, Yeo (bib63) 2012; 86 Dunn (bib20) 1974; 4 Wong, Smith, Rabadan, Peiris, Poon (bib72) 2010; 10 Carbone (bib12) 2008; 66 Luo, Tian, Gan, Chen, Shen, Pan, Irwin, Chen, Shen (bib43) 2020; 81 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib38) 2009; 25 Walker, Siddell, Lefkowitz, Mushegian, Dempsey, Dutilh, Harrach, Harrison, Hendrickson, Junglen (bib69) 2019; 164 Zhang, Ye, Gong, Ruan, Liu, Xiang, Cai, Guo, Ling, Diao (bib76) 2018; 1 Drosten, Günther, Preiser, van der Werf, Brodt, Becker, Rabenau, Panning, Kolesnikova, Fouchier (bib19) 2003; 348 (bib73) 2020 Hernandez-Alias, Benisty, Schaefer, Serrano (bib30) 2020; 16 Zhao, Fränti (bib78) 2014; 92 Ahlgren, Ren, Lu, Fuhrman, Sun (bib1) 2017; 45 Baig, Khaleeq, Ali, Syeda (bib7) 2020; 11 Plotkin, Kudla (bib55) 2011; 12 Miller, Hippen, Wright, Morris, Ridge (bib46) 2017; 2 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib74) 2020; 579 Frumkin, Lajoie, Gregg, Hornung, Church, Pilpel (bib23) 2018; 115 Zhao, Gu, Fang, Saunders, Frazer (bib79) 2005; 25 Zhou, Liu, Peng, Sun, Frazer (bib80) 1999; 73 Chan, Lowe (bib14) 2019; 1962 Chen, Wu, Deng, Zhang, Hou, Hu, Zhang, Chen, Yang (bib16) 2020; 4 Jenkins, Holmes (bib35) 2003; 92 Ren, Ahlgren, Lu, Fuhrman, Sun (bib59) 2017; 5 Golumbeanu, Desfarges, Hernandez, Quadroni, Rato, Mohammadi, Telenti, Beerenwinkel, Ciuffi (bib27) 2019; 9 Pouyet, Mouchiroud, Duret, Sémon (bib56) 2017; 6 Bahir, Fromer, Prat, Linial (bib6) 2009; 5 Zhang (10.1016/j.celrep.2021.108872_bib77) 2020; 69 Zaki (10.1016/j.celrep.2021.108872_bib75) 2012; 367 Broszeit (10.1016/j.celrep.2021.108872_bib11) 2019; 27 Lucks (10.1016/j.celrep.2021.108872_bib42) 2008; 4 Al- Zoubi (10.1016/j.celrep.2021.108872_bib3) 2008; 4 Chen (10.1016/j.celrep.2021.108872_bib16) 2020; 4 Mioduser (10.1016/j.celrep.2021.108872_bib47) 2017; 18 Baig (10.1016/j.celrep.2021.108872_bib7) 2020; 11 Bergman (10.1016/j.celrep.2021.108872_bib10) 2020; 17 Jenkins (10.1016/j.celrep.2021.108872_bib35) 2003; 92 Pouyet (10.1016/j.celrep.2021.108872_bib56) 2017; 6 Gingold (10.1016/j.celrep.2021.108872_bib25) 2014; 158 Bekaert (10.1016/j.celrep.2021.108872_bib8) 2010; 38 Carbone (10.1016/j.celrep.2021.108872_bib12) 2008; 66 Dunn (10.1016/j.celrep.2021.108872_bib20) 1974; 4 Alexaki (10.1016/j.celrep.2021.108872_bib4) 2019; 431 Ahlgren (10.1016/j.celrep.2021.108872_bib1) 2017; 45 Plotkin (10.1016/j.celrep.2021.108872_bib55) 2011; 12 Pechmann (10.1016/j.celrep.2021.108872_bib53) 2013; 20 Subramanian (10.1016/j.celrep.2021.108872_bib65) 2005; 102 Hernandez-Alias (10.1016/j.celrep.2021.108872_bib30) 2020; 16 Hoffmann (10.1016/j.celrep.2021.108872_bib33) 2020; 181 Quinlan (10.1016/j.celrep.2021.108872_bib57) 2010; 26 Zhang (10.1016/j.celrep.2021.108872_bib76) 2018; 1 Gogakos (10.1016/j.celrep.2021.108872_bib26) 2017; 20 Weekes (10.1016/j.celrep.2021.108872_bib71) 2014; 157 (10.1016/j.celrep.2021.108872_bib73) 2020 dos Reis (10.1016/j.celrep.2021.108872_bib17) 2003; 31 Sungnak (10.1016/j.celrep.2021.108872_bib66) 2020; 26 Nobre (10.1016/j.celrep.2021.108872_bib49) 2019; 8 Zhou (10.1016/j.celrep.2021.108872_bib81) 2020; 579 Zhou (10.1016/j.celrep.2021.108872_bib80) 1999; 73 Chan (10.1016/j.celrep.2021.108872_bib14) 2019; 1962 Morgado (10.1016/j.celrep.2021.108872_bib48) 2019; 11 Pedregosa (10.1016/j.celrep.2021.108872_bib54) 2011; 12 Theis (10.1016/j.celrep.2021.108872_bib67) 2008; 36 Li (10.1016/j.celrep.2021.108872_bib40) 2020; 92 van Weringh (10.1016/j.celrep.2021.108872_bib68) 2011; 28 Pan (10.1016/j.celrep.2021.108872_bib51) 2020; 115 Walker (10.1016/j.celrep.2021.108872_bib69) 2019; 164 Ouwendijk (10.1016/j.celrep.2021.108872_bib50) 2020; 11 Wu (10.1016/j.celrep.2021.108872_bib74) 2020; 579 Zhao (10.1016/j.celrep.2021.108872_bib79) 2005; 25 Mao (10.1016/j.celrep.2021.108872_bib44) 2020; 77 Goz (10.1016/j.celrep.2021.108872_bib28) 2017; 24 McKenna (10.1016/j.celrep.2021.108872_bib45) 2010; 20 Lauring (10.1016/j.celrep.2021.108872_bib37) 2010; 28 Shackelton (10.1016/j.celrep.2021.108872_bib60) 2006; 62 Raj (10.1016/j.celrep.2021.108872_bib58) 2013; 495 Hulo (10.1016/j.celrep.2021.108872_bib34) 2011; 39 Stothard (10.1016/j.celrep.2021.108872_bib64) 2000; 28 Frumkin (10.1016/j.celrep.2021.108872_bib23) 2018; 115 Wang (10.1016/j.celrep.2021.108872_bib70) 2020 Zhao (10.1016/j.celrep.2021.108872_bib78) 2014; 92 Chang (10.1016/j.celrep.2021.108872_bib15) 2013; 4 Ren (10.1016/j.celrep.2021.108872_bib59) 2017; 5 Golumbeanu (10.1016/j.celrep.2021.108872_bib27) 2019; 9 Fielding (10.1016/j.celrep.2021.108872_bib21) 2017; 6 Li (10.1016/j.celrep.2021.108872_bib38) 2009; 25 Aiewsakun (10.1016/j.celrep.2021.108872_bib2) 2018; 6 Belalov (10.1016/j.celrep.2021.108872_bib9) 2013; 8 Luo (10.1016/j.celrep.2021.108872_bib43) 2020; 81 Gingold (10.1016/j.celrep.2021.108872_bib24) 2012; 40 Grantham (10.1016/j.celrep.2021.108872_bib29) 1981; 9 Pavon-Eternod (10.1016/j.celrep.2021.108872_bib52) 2013; 41 Knipe (10.1016/j.celrep.2021.108872_bib36) 2013 Ziegler (10.1016/j.celrep.2021.108872_bib83) 2020; 181 Shi (10.1016/j.celrep.2021.108872_bib62) 2018; 47 Hoffmann (10.1016/j.celrep.2021.108872_bib32) 2018; 34 Zhou (10.1016/j.celrep.2021.108872_bib82) 2020; 158 Franzo (10.1016/j.celrep.2021.108872_bib22) 2017; 114 Sharp (10.1016/j.celrep.2021.108872_bib61) 1993; 21 Athey (10.1016/j.celrep.2021.108872_bib5) 2017; 18 Bahir (10.1016/j.celrep.2021.108872_bib6) 2009; 5 Lorenz (10.1016/j.celrep.2021.108872_bib41) 2011; 6 Hoffmann (10.1016/j.celrep.2021.108872_bib31) 2009; 5 Stark (10.1016/j.celrep.2021.108872_bib63) 2012; 86 Li (10.1016/j.celrep.2021.108872_bib39) 2012; 491 Chan (10.1016/j.celrep.2021.108872_bib13) 2016; 44 Drosten (10.1016/j.celrep.2021.108872_bib19) 2003; 348 Miller (10.1016/j.celrep.2021.108872_bib46) 2017; 2 Wong (10.1016/j.celrep.2021.108872_bib72) 2010; 10 dos Reis (10.1016/j.celrep.2021.108872_bib18) 2004; 32 |
References_xml | – volume: 34 start-page: 1116 year: 2018 end-page: 1124 ident: bib32 article-title: Accurate mapping of tRNA reads publication-title: Bioinformatics – year: 2013 ident: bib36 article-title: Fields Virology – volume: 5 start-page: e1000502 year: 2009 ident: bib31 article-title: Fast mapping of short sequences with mismatches, insertions and deletions using index structures publication-title: PLoS Comput. Biol. – volume: 9 start-page: r43 year: 1981 end-page: r74 ident: bib29 article-title: Codon catalog usage is a genome strategy modulated for gene expressivity publication-title: Nucleic Acids Res. – volume: 6 start-page: e22206 year: 2017 ident: bib21 article-title: Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation publication-title: eLife – volume: 164 start-page: 2417 year: 2019 end-page: 2429 ident: bib69 article-title: Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019) publication-title: Arch. Virol. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib38 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 32 start-page: 5036 year: 2004 end-page: 5044 ident: bib18 article-title: Solving the riddle of codon usage preferences: a test for translational selection publication-title: Nucleic Acids Res. – volume: 25 start-page: 8643 year: 2005 end-page: 8655 ident: bib79 article-title: Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo publication-title: Mol. Cell. Biol. – volume: 17 start-page: 031002 year: 2020 ident: bib10 article-title: Widespread non-modular overlapping codes in the coding regions publication-title: Phys. Biol. – volume: 21 start-page: 835 year: 1993 end-page: 841 ident: bib61 article-title: Codon usage: mutational bias, translational selection, or both? publication-title: Biochem. Soc. Trans. – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bib74 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 6 start-page: 26 year: 2011 ident: bib41 article-title: ViennaRNA Package 2.0 publication-title: Algorithms Mol. Biol. – volume: 348 start-page: 1967 year: 2003 end-page: 1976 ident: bib19 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 157 start-page: 1460 year: 2014 end-page: 1472 ident: bib71 article-title: Quantitative temporal viromics: an approach to investigate host-pathogen interaction publication-title: Cell – volume: 81 start-page: 104181 year: 2020 ident: bib43 article-title: The fit of codon usage of human-isolated avian influenza A viruses to human publication-title: Infect. Genet. Evol. – volume: 4 start-page: 252 year: 2008 end-page: 255 ident: bib3 article-title: An Efficient Approach for Computing Silhouette Coefficients publication-title: J. Comput. Sci. – volume: 41 start-page: 1914 year: 2013 end-page: 1921 ident: bib52 article-title: Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation publication-title: Nucleic Acids Res. – volume: 73 start-page: 4972 year: 1999 end-page: 4982 ident: bib80 article-title: Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability publication-title: J. Virol. – volume: 10 start-page: 253 year: 2010 ident: bib72 article-title: Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus publication-title: BMC Evol. Biol. – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: bib58 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature – volume: 92 start-page: 1 year: 2003 end-page: 7 ident: bib35 article-title: The extent of codon usage bias in human RNA viruses and its evolutionary origin publication-title: Virus Res. – volume: 2 year: 2017 ident: bib46 article-title: Human viruses have codon usage biases that match highly expressed proteins in the tissues they infect publication-title: Biomed. Genet. Genomics – volume: 36 start-page: 6013 year: 2008 end-page: 6020 ident: bib67 article-title: KnotInFrame: prediction of -1 ribosomal frameshift events publication-title: Nucleic Acids Res. – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib33 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell – volume: 39 start-page: D576 year: 2011 end-page: D582 ident: bib34 article-title: ViralZone: a knowledge resource to understand virus diversity publication-title: Nucleic Acids Res. – volume: 45 start-page: 39 year: 2017 end-page: 53 ident: bib1 article-title: Alignment-free publication-title: Nucleic Acids Res. – volume: 431 start-page: 2434 year: 2019 end-page: 2441 ident: bib4 article-title: Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design publication-title: J. Mol. Biol. – volume: 44 start-page: D184 year: 2016 end-page: D189 ident: bib13 article-title: GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes publication-title: Nucleic Acids Res. – volume: 4 year: 2013 ident: bib15 article-title: Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection publication-title: mBio – volume: 115 start-page: 766 year: 2020 end-page: 773 ident: bib51 article-title: Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study publication-title: Am. J. Gastroenterol. – volume: 6 start-page: e27344 year: 2017 ident: bib56 article-title: Recombination, meiotic expression and human codon usage publication-title: eLife – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: bib75 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – volume: 11 start-page: 180 year: 2019 ident: bib48 article-title: Global publication-title: Viruses – volume: 66 start-page: 210 year: 2008 end-page: 223 ident: bib12 article-title: Codon bias is a major factor explaining phage evolution in translationally biased hosts publication-title: J. Mol. Evol. – volume: 158 start-page: 2294 year: 2020 end-page: 2297 ident: bib82 article-title: Effect of gastrointestinal symptoms on patients infected with COVID-19 publication-title: Gastroenterology – volume: 11 start-page: 1179 year: 2020 ident: bib50 article-title: Analysis of Virus and Host Proteomes During Productive HSV-1 and VZV Infection in Human Epithelial Cells publication-title: Front. Microbiol. – volume: 12 start-page: 32 year: 2011 end-page: 42 ident: bib55 article-title: Synonymous but not the same: the causes and consequences of codon bias publication-title: Nat. Rev. Genet. – volume: 491 start-page: 125 year: 2012 end-page: 128 ident: bib39 article-title: Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11 publication-title: Nature – volume: 92 start-page: 77 year: 2014 end-page: 89 ident: bib78 article-title: WB-index: A sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib65 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 333 year: 2017 end-page: 342 ident: bib28 article-title: Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda publication-title: DNA Res. – volume: 18 start-page: 391 year: 2017 ident: bib5 article-title: A new and updated resource for codon usage tables publication-title: BMC Bioinformatics – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bib45 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 8 start-page: e49894 year: 2019 ident: bib49 article-title: Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions publication-title: eLife – volume: 11 start-page: 995 year: 2020 end-page: 998 ident: bib7 article-title: Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms publication-title: ACS Chem. Neurosci. – volume: 8 start-page: e56642 year: 2013 ident: bib9 article-title: Causes and implications of codon usage bias in RNA viruses publication-title: PLoS One – volume: 86 start-page: 226 year: 2012 end-page: 235 ident: bib63 article-title: High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection publication-title: J. Virol. – volume: 1 start-page: 234 year: 2018 ident: bib76 article-title: Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers publication-title: Commun. Biol. – year: 2020 ident: bib70 article-title: SARS-CoV-2 invades host cells via a novel route: CD147-spike protein publication-title: bioRxiv – volume: 1962 start-page: 1 year: 2019 end-page: 14 ident: bib14 article-title: tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences publication-title: Methods Mol. Biol. – volume: 4 start-page: 589 year: 2020 end-page: 600 ident: bib16 article-title: Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection publication-title: Nat. Ecol. Evol. – volume: 114 start-page: 82 year: 2017 end-page: 92 ident: bib22 article-title: Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump publication-title: Mol. Phylogenet. Evol. – volume: 77 start-page: 683 year: 2020 end-page: 690 ident: bib44 article-title: Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China publication-title: JAMA Neurol. – volume: 62 start-page: 551 year: 2006 end-page: 563 ident: bib60 article-title: Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses publication-title: J. Mol. Evol. – volume: 69 start-page: 1010 year: 2020 end-page: 1018 ident: bib77 article-title: Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process publication-title: Gut – volume: 38 start-page: D69 year: 2010 end-page: D74 ident: bib8 article-title: Recode-2: new design, new search tools, and many more genes publication-title: Nucleic Acids Res. – volume: 31 start-page: 6976 year: 2003 end-page: 6985 ident: bib17 article-title: Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome publication-title: Nucleic Acids Res. – volume: 40 start-page: 10053 year: 2012 end-page: 10063 ident: bib24 article-title: Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome publication-title: Nucleic Acids Res. – volume: 158 start-page: 1281 year: 2014 end-page: 1292 ident: bib25 article-title: A dual program for translation regulation in cellular proliferation and differentiation publication-title: Cell – volume: 28 start-page: 1827 year: 2011 end-page: 1834 ident: bib68 article-title: HIV-1 modulates the tRNA pool to improve translation efficiency publication-title: Mol. Biol. Evol. – volume: 9 start-page: 213 year: 2019 ident: bib27 article-title: Proteo-Transcriptomic Dynamics of Cellular Response to HIV-1 Infection publication-title: Sci. Rep. – volume: 92 start-page: 552 year: 2020 end-page: 555 ident: bib40 article-title: The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients publication-title: J. Med. Virol. – volume: 26 start-page: 681 year: 2020 end-page: 687 ident: bib66 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. – volume: 27 start-page: 3284 year: 2019 end-page: 3294.e6 ident: bib11 article-title: N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses publication-title: Cell Rep. – volume: 18 start-page: 866 year: 2017 ident: bib47 article-title: Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis publication-title: BMC Genomics – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: bib57 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 47 start-page: 2031 year: 2018 end-page: 2045 ident: bib62 article-title: Deep RNA Sequencing Reveals a Repertoire of Human Fibroblast Circular RNAs Associated with Cellular Responses to Herpes Simplex Virus 1 Infection publication-title: Cell. Physiol. Biochem. – volume: 4 start-page: 95 year: 1974 end-page: 104 ident: bib20 article-title: Well-Separated Clusters and Optimal Fuzzy Partitions publication-title: J. Cybern. – volume: 5 start-page: 69 year: 2017 ident: bib59 article-title: VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data publication-title: Microbiome – volume: 20 start-page: 237 year: 2013 end-page: 243 ident: bib53 article-title: Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding publication-title: Nat. Struct. Mol. Biol. – volume: 28 start-page: 1102 year: 2000 end-page: 1104 ident: bib64 article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences publication-title: BioTechniques – year: 2020 ident: bib73 article-title: Novel Coronavirus (2019-nCoV) situation reports – volume: 20 start-page: 1463 year: 2017 end-page: 1475 ident: bib26 article-title: Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP publication-title: Cell Rep. – volume: 5 start-page: 311 year: 2009 ident: bib6 article-title: Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences publication-title: Mol. Syst. Biol. – volume: 28 start-page: 573 year: 2010 end-page: 579 ident: bib37 article-title: Rationalizing the development of live attenuated virus vaccines publication-title: Nat. Biotechnol. – volume: 16 start-page: e9275 year: 2020 ident: bib30 article-title: Translational efficiency across healthy and tumor tissues is proliferation-related publication-title: Mol. Syst. Biol. – volume: 4 start-page: e1000001 year: 2008 ident: bib42 article-title: Genome landscapes and bacteriophage codon usage publication-title: PLoS Comput. Biol. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib54 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 38 year: 2018 ident: bib2 article-title: The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification publication-title: Microbiome – volume: 181 start-page: 1016 year: 2020 end-page: 1035.e19 ident: bib83 article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues publication-title: Cell – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib81 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 115 start-page: E4940 year: 2018 end-page: E4949 ident: bib23 article-title: Codon usage of highly expressed genes affects proteome-wide translation efficiency publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 866 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib47 article-title: Significant differences in terms of codon usage bias between bacteriophage early and late genes: a comparative genomics analysis publication-title: BMC Genomics doi: 10.1186/s12864-017-4248-7 – volume: 12 start-page: 32 year: 2011 ident: 10.1016/j.celrep.2021.108872_bib55 article-title: Synonymous but not the same: the causes and consequences of codon bias publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2899 – volume: 39 start-page: D576 year: 2011 ident: 10.1016/j.celrep.2021.108872_bib34 article-title: ViralZone: a knowledge resource to understand virus diversity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq901 – volume: 491 start-page: 125 year: 2012 ident: 10.1016/j.celrep.2021.108872_bib39 article-title: Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11 publication-title: Nature doi: 10.1038/nature11433 – volume: 181 start-page: 1016 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib83 article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.celrep.2021.108872_bib75 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 17 start-page: 031002 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib10 article-title: Widespread non-modular overlapping codes in the coding regions publication-title: Phys. Biol. doi: 10.1088/1478-3975/ab7083 – year: 2020 ident: 10.1016/j.celrep.2021.108872_bib70 article-title: SARS-CoV-2 invades host cells via a novel route: CD147-spike protein publication-title: bioRxiv – volume: 32 start-page: 5036 year: 2004 ident: 10.1016/j.celrep.2021.108872_bib18 article-title: Solving the riddle of codon usage preferences: a test for translational selection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh834 – volume: 26 start-page: 841 year: 2010 ident: 10.1016/j.celrep.2021.108872_bib57 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 62 start-page: 551 year: 2006 ident: 10.1016/j.celrep.2021.108872_bib60 article-title: Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses publication-title: J. Mol. Evol. doi: 10.1007/s00239-005-0221-1 – volume: 66 start-page: 210 year: 2008 ident: 10.1016/j.celrep.2021.108872_bib12 article-title: Codon bias is a major factor explaining phage evolution in translationally biased hosts publication-title: J. Mol. Evol. doi: 10.1007/s00239-008-9068-6 – volume: 26 start-page: 681 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib66 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. doi: 10.1038/s41591-020-0868-6 – volume: 36 start-page: 6013 year: 2008 ident: 10.1016/j.celrep.2021.108872_bib67 article-title: KnotInFrame: prediction of -1 ribosomal frameshift events publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn578 – volume: 6 start-page: e22206 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib21 article-title: Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation publication-title: eLife doi: 10.7554/eLife.22206 – volume: 164 start-page: 2417 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib69 article-title: Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019) publication-title: Arch. Virol. doi: 10.1007/s00705-019-04306-w – volume: 40 start-page: 10053 year: 2012 ident: 10.1016/j.celrep.2021.108872_bib24 article-title: Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks772 – volume: 9 start-page: 213 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib27 article-title: Proteo-Transcriptomic Dynamics of Cellular Response to HIV-1 Infection publication-title: Sci. Rep. doi: 10.1038/s41598-018-36135-3 – volume: 1962 start-page: 1 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib14 article-title: tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9173-0_1 – volume: 1 start-page: 234 year: 2018 ident: 10.1016/j.celrep.2021.108872_bib76 article-title: Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers publication-title: Commun. Biol. doi: 10.1038/s42003-018-0239-8 – volume: 11 start-page: 180 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib48 article-title: Global In-Silico Scenario of tRNA Genes and Their Organization in Virus Genomes publication-title: Viruses doi: 10.3390/v11020180 – volume: 4 start-page: 589 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib16 article-title: Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-1124-7 – volume: 4 start-page: e1000001 year: 2008 ident: 10.1016/j.celrep.2021.108872_bib42 article-title: Genome landscapes and bacteriophage codon usage publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000001 – volume: 6 start-page: 38 year: 2018 ident: 10.1016/j.celrep.2021.108872_bib2 article-title: The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification publication-title: Microbiome doi: 10.1186/s40168-018-0422-7 – volume: 9 start-page: r43 year: 1981 ident: 10.1016/j.celrep.2021.108872_bib29 article-title: Codon catalog usage is a genome strategy modulated for gene expressivity publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.1.213-b – volume: 38 start-page: D69 year: 2010 ident: 10.1016/j.celrep.2021.108872_bib8 article-title: Recode-2: new design, new search tools, and many more genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp788 – year: 2020 ident: 10.1016/j.celrep.2021.108872_bib73 – volume: 92 start-page: 77 year: 2014 ident: 10.1016/j.celrep.2021.108872_bib78 article-title: WB-index: A sum-of-squares based index for cluster validity publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2014.07.008 – volume: 5 start-page: 311 year: 2009 ident: 10.1016/j.celrep.2021.108872_bib6 article-title: Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2009.71 – volume: 11 start-page: 995 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib7 article-title: Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.0c00122 – volume: 45 start-page: 39 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib1 article-title: Alignment-free d2∗ oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1002 – volume: 158 start-page: 2294 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib82 article-title: Effect of gastrointestinal symptoms on patients infected with COVID-19 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.03.020 – volume: 21 start-page: 835 year: 1993 ident: 10.1016/j.celrep.2021.108872_bib61 article-title: Codon usage: mutational bias, translational selection, or both? publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0210835 – volume: 6 start-page: 26 year: 2011 ident: 10.1016/j.celrep.2021.108872_bib41 article-title: ViennaRNA Package 2.0 publication-title: Algorithms Mol. Biol. doi: 10.1186/1748-7188-6-26 – volume: 157 start-page: 1460 year: 2014 ident: 10.1016/j.celrep.2021.108872_bib71 article-title: Quantitative temporal viromics: an approach to investigate host-pathogen interaction publication-title: Cell doi: 10.1016/j.cell.2014.04.028 – volume: 31 start-page: 6976 year: 2003 ident: 10.1016/j.celrep.2021.108872_bib17 article-title: Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg897 – volume: 81 start-page: 104181 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib43 article-title: The fit of codon usage of human-isolated avian influenza A viruses to human publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2020.104181 – volume: 24 start-page: 333 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib28 article-title: Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda publication-title: DNA Res. doi: 10.1093/dnares/dsx005 – volume: 69 start-page: 1010 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib77 article-title: Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process publication-title: Gut doi: 10.1136/gutjnl-2020-320953 – volume: 4 start-page: 252 year: 2008 ident: 10.1016/j.celrep.2021.108872_bib3 article-title: An Efficient Approach for Computing Silhouette Coefficients publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2008.252.255 – volume: 4 year: 2013 ident: 10.1016/j.celrep.2021.108872_bib15 article-title: Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection publication-title: mBio doi: 10.1128/mBio.00549-12 – volume: 16 start-page: e9275 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib30 article-title: Translational efficiency across healthy and tumor tissues is proliferation-related publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20199275 – volume: 92 start-page: 1 year: 2003 ident: 10.1016/j.celrep.2021.108872_bib35 article-title: The extent of codon usage bias in human RNA viruses and its evolutionary origin publication-title: Virus Res. doi: 10.1016/S0168-1702(02)00309-X – volume: 2 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib46 article-title: Human viruses have codon usage biases that match highly expressed proteins in the tissues they infect publication-title: Biomed. Genet. Genomics doi: 10.15761/BGG.1000134 – volume: 73 start-page: 4972 year: 1999 ident: 10.1016/j.celrep.2021.108872_bib80 article-title: Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability publication-title: J. Virol. doi: 10.1128/JVI.73.6.4972-4982.1999 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib33 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 41 start-page: 1914 year: 2013 ident: 10.1016/j.celrep.2021.108872_bib52 article-title: Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks986 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.celrep.2021.108872_bib54 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 102 start-page: 15545 year: 2005 ident: 10.1016/j.celrep.2021.108872_bib65 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 10 start-page: 253 year: 2010 ident: 10.1016/j.celrep.2021.108872_bib72 article-title: Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-10-253 – volume: 44 start-page: D184 year: 2016 ident: 10.1016/j.celrep.2021.108872_bib13 article-title: GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1309 – volume: 5 start-page: e1000502 year: 2009 ident: 10.1016/j.celrep.2021.108872_bib31 article-title: Fast mapping of short sequences with mismatches, insertions and deletions using index structures publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000502 – volume: 4 start-page: 95 year: 1974 ident: 10.1016/j.celrep.2021.108872_bib20 article-title: Well-Separated Clusters and Optimal Fuzzy Partitions publication-title: J. Cybern. doi: 10.1080/01969727408546059 – volume: 27 start-page: 3284 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib11 article-title: N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.048 – volume: 5 start-page: 69 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib59 article-title: VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data publication-title: Microbiome doi: 10.1186/s40168-017-0283-5 – volume: 20 start-page: 1463 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib26 article-title: Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.029 – volume: 86 start-page: 226 year: 2012 ident: 10.1016/j.celrep.2021.108872_bib63 article-title: High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection publication-title: J. Virol. doi: 10.1128/JVI.05903-11 – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib74 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 77 start-page: 683 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib44 article-title: Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2020.1127 – volume: 47 start-page: 2031 year: 2018 ident: 10.1016/j.celrep.2021.108872_bib62 article-title: Deep RNA Sequencing Reveals a Repertoire of Human Fibroblast Circular RNAs Associated with Cellular Responses to Herpes Simplex Virus 1 Infection publication-title: Cell. Physiol. Biochem. doi: 10.1159/000491471 – volume: 158 start-page: 1281 year: 2014 ident: 10.1016/j.celrep.2021.108872_bib25 article-title: A dual program for translation regulation in cellular proliferation and differentiation publication-title: Cell doi: 10.1016/j.cell.2014.08.011 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.celrep.2021.108872_bib38 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 11 start-page: 1179 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib50 article-title: Analysis of Virus and Host Proteomes During Productive HSV-1 and VZV Infection in Human Epithelial Cells publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01179 – volume: 431 start-page: 2434 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib4 article-title: Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.04.021 – volume: 25 start-page: 8643 year: 2005 ident: 10.1016/j.celrep.2021.108872_bib79 article-title: Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.19.8643-8655.2005 – volume: 8 start-page: e49894 year: 2019 ident: 10.1016/j.celrep.2021.108872_bib49 article-title: Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions publication-title: eLife doi: 10.7554/eLife.49894 – volume: 28 start-page: 1102 year: 2000 ident: 10.1016/j.celrep.2021.108872_bib64 article-title: The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences publication-title: BioTechniques doi: 10.2144/00286ir01 – volume: 28 start-page: 573 year: 2010 ident: 10.1016/j.celrep.2021.108872_bib37 article-title: Rationalizing the development of live attenuated virus vaccines publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1635 – volume: 114 start-page: 82 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib22 article-title: Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2017.05.019 – volume: 6 start-page: e27344 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib56 article-title: Recombination, meiotic expression and human codon usage publication-title: eLife doi: 10.7554/eLife.27344 – volume: 348 start-page: 1967 year: 2003 ident: 10.1016/j.celrep.2021.108872_bib19 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030747 – volume: 18 start-page: 391 year: 2017 ident: 10.1016/j.celrep.2021.108872_bib5 article-title: A new and updated resource for codon usage tables publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1793-7 – volume: 92 start-page: 552 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib40 article-title: The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients publication-title: J. Med. Virol. doi: 10.1002/jmv.25728 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.celrep.2021.108872_bib45 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 8 start-page: e56642 year: 2013 ident: 10.1016/j.celrep.2021.108872_bib9 article-title: Causes and implications of codon usage bias in RNA viruses publication-title: PLoS One doi: 10.1371/journal.pone.0056642 – year: 2013 ident: 10.1016/j.celrep.2021.108872_bib36 – volume: 28 start-page: 1827 year: 2011 ident: 10.1016/j.celrep.2021.108872_bib68 article-title: HIV-1 modulates the tRNA pool to improve translation efficiency publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msr005 – volume: 20 start-page: 237 year: 2013 ident: 10.1016/j.celrep.2021.108872_bib53 article-title: Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2466 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib81 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 115 start-page: E4940 year: 2018 ident: 10.1016/j.celrep.2021.108872_bib23 article-title: Codon usage of highly expressed genes affects proteome-wide translation efficiency publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1719375115 – volume: 495 start-page: 251 year: 2013 ident: 10.1016/j.celrep.2021.108872_bib58 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 115 start-page: 766 year: 2020 ident: 10.1016/j.celrep.2021.108872_bib51 article-title: Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study publication-title: Am. J. Gastroenterol. doi: 10.14309/ajg.0000000000000620 – volume: 34 start-page: 1116 year: 2018 ident: 10.1016/j.celrep.2021.108872_bib32 article-title: Accurate mapping of tRNA reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx756 |
SSID | ssj0000601194 |
Score | 2.4122393 |
Snippet | Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108872 |
SubjectTerms | Cell Line Cell Line, Tumor codon usage Codon Usage - genetics Genes, Neoplasm - genetics HCT116 Cells HEK293 Cells HeLa Cells Hep G2 Cells Humans Protein Biosynthesis - genetics Pulmonary Alveoli - virology Respiratory Tract Infections - virology RNA, Transfer - genetics SARS-CoV-2 tissue translation tRNA tropism Tropism - genetics Viral Proteins - genetics Virus Diseases - genetics Virus Diseases - virology Viruses - genetics |
SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbBUMilpG3SuGmCArkK70ta6dg6DabQXpKAb0LalYiDWRt7XfC_z4y0a-KEEshtHxKrnZFmvpHmQchV4lJe55YzVZcJAw1RMwOwlZlCFs4AZDYW9yH__BWT--L3lE8PyLiPhUG3yk72R5kepHX3ZNRRc7SczUa3GdguoJ3AhMHKcgIDfvNChiC-6c_dPgvmG0lDPURsz7BDH0EX3LwqN185TFyZpehvJ8vsfxrqNQJ96Uj5TDPdHJGPHaSkP-KoP5ED13wmH2KRye0Xch3U0bzb9KOmNst4_E4XnoYSffTfbLVZuzVtFxTwIG0DM9Z4vaXRW-uY3N_8uhtPWFc7gVWFyFvmi1p4-FdhVWlKpbwVPk2FgfVpuTWFFUoKoSphlBPcVxxWY6WAV8qDxqplfkIGzaJxp4TmSVJJX2de2aTwUlowa3npZCIw-7tVQ5L39NJVl1gc61vMde9B9qgjlTVSWUcqDwnb9VrGxBpvtC97Vui9CaJB9r_R87LnnIa1gwcipnGLzVoD_Msk2MSKD8nXyMndWPIcZB8P393j8a4B5uXef9PMHkJ-7lKJTHH-7d0jPiOHeIeubqn4TgbtauPOAfu09iJM7idpwQFy priority: 102 providerName: Elsevier |
Title | Translational adaptation of human viruses to the tissues they infect |
URI | https://dx.doi.org/10.1016/j.celrep.2021.108872 https://www.ncbi.nlm.nih.gov/pubmed/33730572 https://www.proquest.com/docview/2502810695 https://pubmed.ncbi.nlm.nih.gov/PMC7962955 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA7iovgiu17HGxF8rfSS68Miu15QQZ8cmLeQtAkqQ0enHXH-_Z407XhbEXwphebQci45X5LT7yB0ENuEFpmhkSx4HEGGKCINsDXSRBCrATJr4_chr67ZeZ9cDuhgDnU9W1sFVv9d2vl-Uv3x8PD5cXoEAf_7pVYrt8Ox9eyTaeKL5gSHSfkH5CbuQ_WqBfxhbvYcZ6T7h-4T4SW0mGXg-pSnn6Wrj3D0fVXlqzR19hMtt_gS_wkO8QvN2XIFLYSOk9NVdNLkpmG7A4h1oR_CWTweOdz068NPd-NJZStcjzCAQ1w3lqn8_RSH0q011D87vTk-j9pGClFOWFZHjhTMpYQzI7nmUjrDXJIwDcFqqNHEMCkYkznT0jLqcgqhmUswnHSQvgqRraP5clTaTYSzOM6FK1InTUycEAbWuJRbETNPBW9kD2WdvlTesoz7ZhdD1ZWT3augcOUVroLCeyiaST0Elo0vxvPOFKpFCgEBKPCLLyT3O8spCCR_OqJLO5pUCrBgKmCBLGkPbQRLzr6l8wZ47xsbzwZ4ku63T8q724asm0uWSkq3vi25jZb89_u6t4TtoPl6PLG7AIRqs9dsIMD1YvB3r_HzfwE1Cjg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx1hfRvedfk2Fvor4S7L0uHYr6db2pS3kTUi2xDKCExKn0P--d5Idlo5R2JuxdFi-k-5-J53uCDlJXMrr3HKm6jJhYCFqZgC2MlPIwhmAzMbiPuTVtRjdFT_GfLxFzvq7MBhW2en-qNODtu7eDDtuDueTyfAmA98FrBO4MFhZTsgX5CWggRLrN1yMT9cbLZhwJA0FEZGAIUV_hS7EeVVuunCYuTJLMeBOltm_TNTfEPRpJOUfpul8l7zpMCX9Gof9lmy55h15FatMPrwn34I9mna7ftTUZh7P3-nM01Cjj95PFqulW9J2RgEQ0jZIY4nPDzSGa30gd-ffb89GrCuewKpC5C3zRS08_KuwqjSlUt4Kn6bCwAK13JrCCiWFUJUwygnuKw7LsVIgLOXBZNUy_0i2m1njPhOaJ0klfZ15ZZPCS2nBr-Wlk4nA9O9WDUje80tXXWZxLHAx1X0I2W8duayRyzpyeUDYmmoeM2s807_sRaE3ZogG5f8M5XEvOQ2LB09ETONmq6UG_JdJcIoVH5BPUZLrseQ5KD8evrsh43UHTMy92dJMfoUE3aUSmeJ8779H_IW8Ht1eXerLi-uf-2QHWzDuLRUHZLtdrNwhAKHWHoWJ_ghbKwSR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translational+adaptation+of+human+viruses+to+the+tissues+they+infect&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Hernandez-Alias%2C+Xavier&rft.au=Benisty%2C+Hannah&rft.au=Schaefer%2C+Martin+H.&rft.au=Serrano%2C+Luis&rft.date=2021-03-16&rft.pub=The+Author%28s%29&rft.eissn=2211-1247&rft.volume=34&rft.issue=11&rft.spage=108872&rft.epage=108872&rft_id=info:doi/10.1016%2Fj.celrep.2021.108872&rft_id=info%3Apmid%2F33730572&rft.externalDocID=PMC7962955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |