Maternally Expressed Gene 3 (MEG3) Enhances PC12 Cell Hypoxia Injury by Targeting MiR-147

Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cell...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 43; no. 6; pp. 2457 - 2469
Main Authors Han, Lili, Dong, Zhiling, Liu, Ningning, Xie, Fei, Wang, Ning
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2017
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. Methods: The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Results: Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3’-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Conclusion: Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.
AbstractList Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. Methods: The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Results: Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3’-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Conclusion: Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.
Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.
Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells.BACKGROUND/AIMSCerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells.The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes.METHODSThe PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes.Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells.RESULTSCell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells.Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.CONCLUSIONConsidering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.
Author Dong, Zhiling
Xie, Fei
Wang, Ning
Han, Lili
Liu, Ningning
Author_xml – sequence: 1
  givenname: Lili
  surname: Han
  fullname: Han, Lili
  email: hanlili151@126.com
– sequence: 2
  givenname: Zhiling
  surname: Dong
  fullname: Dong, Zhiling
– sequence: 3
  givenname: Ningning
  surname: Liu
  fullname: Liu, Ningning
– sequence: 4
  givenname: Fei
  surname: Xie
  fullname: Xie, Fei
– sequence: 5
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29130945$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v0zAYhy20iX3AgTtClrhshzB_xvYRotJVWsWExoGT5SRvikvqBDuVlv-edO16mHbyh5730c_-XaCT0AVA6AMlXyiV5oYQIrQQkr1B51Qwmhml9Mm0J1Rm2mh1hi5SWpPpqAx7i86YoZwYIc_R76UbIAbXtiOePfYRUoIazyEA5vhqOZvzazwLf1yoIOH7gjJcQNvi27HvHr3Di7DexhGXI35wcQWDDyu89D8zKtQ7dNq4NsH7w3qJfn2fPRS32d2P-aL4epdVIudDBjnRIFwueUm4ErnOS1qD0aCdImWlJDdOqtoJJptacaVYI8vGgWFQV41R_BIt9t66c2vbR79xcbSd8_bpoosr6-LgqxZs0-RGGFbzEhohNHFAuTSVyTVRJdNscl3tXX3s_m0hDXbjUzU92AXotslSk3ORSyPohH5-ga677e4jk2WUKioJ57twnw7UttxAfYz3XMAE3OyBKnYpRWhs5Qc3-C4M0fnWUmJ3FdtjxdPE9YuJZ-lr7CHk31078UgW99_2hO3rZqI-vkodJP8BrV20oA
CitedBy_id crossref_primary_10_1016_j_ejphar_2020_173618
crossref_primary_10_1038_s42255_019_0052_9
crossref_primary_10_1016_j_intimp_2023_109896
crossref_primary_10_1016_j_bbagrm_2019_06_007
crossref_primary_10_1038_s41419_020_02824_z
crossref_primary_10_3892_ijmm_2022_5147
crossref_primary_10_1002_bab_2578
crossref_primary_10_1515_hsz_2019_0230
crossref_primary_10_1038_s41419_019_1631_0
crossref_primary_10_1186_s10020_021_00346_8
crossref_primary_10_1242_jeb_215905
crossref_primary_10_1007_s13760_024_02513_0
crossref_primary_10_1016_j_expneurol_2018_09_003
crossref_primary_10_1016_j_ijbiomac_2018_11_002
crossref_primary_10_18632_aging_102105
crossref_primary_10_3390_biom13111622
crossref_primary_10_1002_jcp_29085
crossref_primary_10_1186_s12871_018_0660_z
crossref_primary_10_1016_j_brainres_2024_149346
crossref_primary_10_1016_j_expneurol_2019_113139
crossref_primary_10_1080_15384101_2018_1560202
crossref_primary_10_2174_2211536610666210707113605
crossref_primary_10_1007_s10571_021_01176_2
crossref_primary_10_1038_s41419_021_03466_5
crossref_primary_10_1016_j_ebiom_2018_07_013
crossref_primary_10_1016_j_gendis_2021_10_009
crossref_primary_10_1007_s11033_019_04827_2
crossref_primary_10_1080_21691401_2020_1725535
crossref_primary_10_1007_s11064_021_03227_y
crossref_primary_10_1016_j_omtn_2019_07_013
crossref_primary_10_1007_s12035_022_02727_4
crossref_primary_10_1016_j_lfs_2018_07_024
ContentType Journal Article
Copyright 2017 The Author(s). Published by S. Karger AG, Basel
2017 The Author(s). Published by S. Karger AG, Basel.
Copyright_xml – notice: 2017 The Author(s). Published by S. Karger AG, Basel
– notice: 2017 The Author(s). Published by S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1159/000484452
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 2469
ExternalDocumentID oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282
29130945
10_1159_000484452
484452
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
0R~
0~B
29B
326
36B
3O.
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
8UI
AAFWJ
AAYIC
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GROUPED_DOAJ
HMCUK
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
M1P
ML-
N9A
O1H
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
RIG
RKO
RNS
SV3
UJ6
UKHRP
30W
AAYXX
ABBTS
ABWCG
ACQXL
ADAGL
AFSIO
AHFRZ
AIOBO
CAG
CITATION
COF
ITC
PHGZM
PHGZT
RXVBD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c463t-e608e4a653b0374686b1de98e8a70bc7539a57da425fd73772f5bfae92edcf973
IEDL.DBID DOA
ISSN 1015-8987
1421-9778
IngestDate Wed Aug 27 01:21:01 EDT 2025
Fri Jul 11 12:37:51 EDT 2025
Fri Jul 25 08:16:46 EDT 2025
Wed Feb 19 02:34:33 EST 2025
Tue Jul 01 05:03:41 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Thu Sep 05 17:57:51 EDT 2024
Thu Aug 29 12:04:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Meg3
Sox2
Cerebral ischemia
MiR-147
Hypoxia
PC-12 cells
Long non-coding RNA
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
https://creativecommons.org/licenses/by-nc-nd/4.0
2017 The Author(s). Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-e608e4a653b0374686b1de98e8a70bc7539a57da425fd73772f5bfae92edcf973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ff69492d3bef4480ae1359c96807b282
PMID 29130945
PQID 2117150337
PQPubID 2047990
PageCount 13
ParticipantIDs pubmed_primary_29130945
crossref_citationtrail_10_1159_000484452
crossref_primary_10_1159_000484452
proquest_journals_2117150337
doaj_primary_oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282
proquest_miscellaneous_1963465941
karger_primary_484452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
– name: Basel
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2017
Publisher S. Karger AG
Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: S. Karger AG
– name: Cell Physiol Biochem Press GmbH & Co KG
References Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y: MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis. PLoS One 2011; 6:e16617.2130460410.1371/journal.pone.0016617
Barrett KM, Lal BK, Meschia JF: Stroke: Advances in Medical Therapy and Acute Stroke Intervention. Curr Cardiol Rep 2015; 17: 1-6.2627736410.1007/s11886-015-0637-1
Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W, Ji A: LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation. Mol Neurobiol 2016. Doi: 10.1007/s12035-016-0246-z2784427910.1007/s12035-016-0246-z
Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.2375618810.1016/j.brainresbull.2013.06.001
Mehta SL, Kim T, Vemuganti R: Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. J Neurosci 2015; 35: 16443-16449.2667486910.1523/JNEUROSCI.2943-15.2015
Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88: 5119-5126.1460273710.1210/jc.2003-030222
Khot S, Tirschwell DL: Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol 2006; 26: 422-431.1696974310.1055/s-2006-948323
Yee T, Gronner A, Knight RT: CT findings of hypoxic basal ganglia damage. South Med J 1994; 87: 624-626.8202772
Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M: Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19: 166-187.2848087710.5853/jos.2016.01368
Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005; 337: 224-231.1617680210.1016/j.bbrc.2005.09.040
Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D: microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS One 2014; 9:e99283.2491161010.1371/journal.pone.0099283
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan C-Y: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2006; 169: 566-583.16877357 10.2353/ajpath.2006.051066
Ding Z, Tong WC, Lu XX, Peng HP: Hyperbaric Oxygen Therapy in Acute Ischemic Stroke: A Review. Interv Neurol 2014; 2: 201-211.2533708910.1159/000362677
Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD: Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36: 980-985.1579095010.1161/01.STR.0000160751.79241.a3
Charlotte D, Frédéric C, Paul M, Hébert SS: Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011; 6: 70.2198216010.1186/1750-1326-6-70
Pevny LH, Nicolis SK: Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010; 42: 421-424.1973325410.1016/j.biocel.2009.08.018
Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE, Yin KJ: Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 2015; 277: 162-170.2674698510.1016/j.expneurol.2015.12.014
Pevny L, Placzek M: SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005; 15: 7-13.1572173810.1016/j.conb.2005.01.016
Wei R, Zhang R, Xie Y, Shen L, Chen F: Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress. Cell Physiol Biochem 2015; 36: 585-598.2599772210.1159/000430122
Zhang L, Zhang ZG, Chopp M: The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33: 415-422.2259549410.1016/j.tips.2012.04.006
Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J, Li T: Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction. Cell Physiol Biochem 2015; 35: 2383-2401.2589660210.1159/000374040
Benetatos L, Vartholomatos G, Hatzimichael E: MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-779.2140050310.1002/ijc.26052
Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70: 2350-2358.2017919010.1158/0008-5472.CAN-09-3885
Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J Cereb Blood Flow Metab 2009; 29: 675-687.1914219210.1038/jcbfm.2008.157
Fan J, Liu Y, Yin J, Li Q, Li Y, Gu J, Cai W, Yin G: Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2. Cell Physiol Biochem 2016; 38: 1063-1074.2693820810.1159/000443057
Brongholi K, Souza DG, Bainy AC, Dafre AL, Tasca CI: Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res 2006; 1083: 211-218.2888719810.1016/j.bbr.2017.09.010
Zhou RM, Wang XQ, Yao J, Shen Y, Chen SN, Yang H, Jiang Q, Yan B: Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun 2015; 465: 324-330.2624167410.1016/j.bbrc.2015.07.120
Dharap A, Pokrzywa C, Vemuganti R: Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 2013; 5: 283-289.2406352710.1042/AN20130029
Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 2005; 28: 583-588.1613937210.1016/j.tins.2005.08.008
Z L, X Y, J S, MT C, WK W: MicroRNA in intervertebral disc degeneration. Cell Prolif 2015; 48: 278-283.2573687110.1111/cpr.12180
Saugstad JA: Non-Coding RNAs in Stroke and Neuroprotection. Front Neurol 2015; 6: 50.2582144410.3389/fneur.2015.00050
Hunsberger JG, Fessler EB, Chibane FL, Yan L, Maric D, Elkahloun AG, Chuang DM: Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5: 450-464.23724168
Baron JC: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11: 2-8.1124419410.1159/000049119
Ly JV, Zavala JA, Donnan GA: Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. Expert Opin Pharmacother 2006; 7: 1571-1581.1687226010.1517/14656566.7.12.1571
Yan H, Yuan J, Gao L, Rao J, Hu J: Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 2016; 337: 191-199.2765115110.1016/j.neuroscience.2016.09.017
Zhou GY, Zhou SN, Lou ZY, Zhu CS, Zheng XP, Hu XQ: Translocation and neuroprotective properties of transactivator-of-transcription protein-transduction domain–neuroglobin fusion protein in primary cultured cortical neurons. Biotechnol Appl Biochem 2008; 49: 25-33.1757619910.1042/BA20070061
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2015; 169: 566-583.1687735710.2353/ajpath.2006.051066
References_xml – reference: Zhang L, Zhang ZG, Chopp M: The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33: 415-422.2259549410.1016/j.tips.2012.04.006
– reference: Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.2375618810.1016/j.brainresbull.2013.06.001
– reference: Khot S, Tirschwell DL: Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol 2006; 26: 422-431.1696974310.1055/s-2006-948323
– reference: Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70: 2350-2358.2017919010.1158/0008-5472.CAN-09-3885
– reference: Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D: microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS One 2014; 9:e99283.2491161010.1371/journal.pone.0099283
– reference: Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005; 337: 224-231.1617680210.1016/j.bbrc.2005.09.040
– reference: Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y: MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis. PLoS One 2011; 6:e16617.2130460410.1371/journal.pone.0016617
– reference: Brongholi K, Souza DG, Bainy AC, Dafre AL, Tasca CI: Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res 2006; 1083: 211-218.2888719810.1016/j.bbr.2017.09.010
– reference: Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88: 5119-5126.1460273710.1210/jc.2003-030222
– reference: Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J Cereb Blood Flow Metab 2009; 29: 675-687.1914219210.1038/jcbfm.2008.157
– reference: Fan J, Liu Y, Yin J, Li Q, Li Y, Gu J, Cai W, Yin G: Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2. Cell Physiol Biochem 2016; 38: 1063-1074.2693820810.1159/000443057
– reference: Ly JV, Zavala JA, Donnan GA: Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. Expert Opin Pharmacother 2006; 7: 1571-1581.1687226010.1517/14656566.7.12.1571
– reference: Hunsberger JG, Fessler EB, Chibane FL, Yan L, Maric D, Elkahloun AG, Chuang DM: Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5: 450-464.23724168
– reference: Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2015; 169: 566-583.1687735710.2353/ajpath.2006.051066
– reference: Baron JC: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11: 2-8.1124419410.1159/000049119
– reference: Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE, Yin KJ: Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 2015; 277: 162-170.2674698510.1016/j.expneurol.2015.12.014
– reference: Dharap A, Pokrzywa C, Vemuganti R: Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 2013; 5: 283-289.2406352710.1042/AN20130029
– reference: Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J, Li T: Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction. Cell Physiol Biochem 2015; 35: 2383-2401.2589660210.1159/000374040
– reference: Z L, X Y, J S, MT C, WK W: MicroRNA in intervertebral disc degeneration. Cell Prolif 2015; 48: 278-283.2573687110.1111/cpr.12180
– reference: Zhou RM, Wang XQ, Yao J, Shen Y, Chen SN, Yang H, Jiang Q, Yan B: Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun 2015; 465: 324-330.2624167410.1016/j.bbrc.2015.07.120
– reference: Zhou GY, Zhou SN, Lou ZY, Zhu CS, Zheng XP, Hu XQ: Translocation and neuroprotective properties of transactivator-of-transcription protein-transduction domain–neuroglobin fusion protein in primary cultured cortical neurons. Biotechnol Appl Biochem 2008; 49: 25-33.1757619910.1042/BA20070061
– reference: Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan C-Y: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2006; 169: 566-583.16877357 10.2353/ajpath.2006.051066
– reference: Benetatos L, Vartholomatos G, Hatzimichael E: MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-779.2140050310.1002/ijc.26052
– reference: Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 2005; 28: 583-588.1613937210.1016/j.tins.2005.08.008
– reference: Pevny L, Placzek M: SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005; 15: 7-13.1572173810.1016/j.conb.2005.01.016
– reference: Barrett KM, Lal BK, Meschia JF: Stroke: Advances in Medical Therapy and Acute Stroke Intervention. Curr Cardiol Rep 2015; 17: 1-6.2627736410.1007/s11886-015-0637-1
– reference: Wei R, Zhang R, Xie Y, Shen L, Chen F: Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress. Cell Physiol Biochem 2015; 36: 585-598.2599772210.1159/000430122
– reference: Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W, Ji A: LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation. Mol Neurobiol 2016. Doi: 10.1007/s12035-016-0246-z2784427910.1007/s12035-016-0246-z
– reference: Yan H, Yuan J, Gao L, Rao J, Hu J: Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 2016; 337: 191-199.2765115110.1016/j.neuroscience.2016.09.017
– reference: Saugstad JA: Non-Coding RNAs in Stroke and Neuroprotection. Front Neurol 2015; 6: 50.2582144410.3389/fneur.2015.00050
– reference: Charlotte D, Frédéric C, Paul M, Hébert SS: Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011; 6: 70.2198216010.1186/1750-1326-6-70
– reference: Mehta SL, Kim T, Vemuganti R: Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. J Neurosci 2015; 35: 16443-16449.2667486910.1523/JNEUROSCI.2943-15.2015
– reference: Pevny LH, Nicolis SK: Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010; 42: 421-424.1973325410.1016/j.biocel.2009.08.018
– reference: Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M: Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19: 166-187.2848087710.5853/jos.2016.01368
– reference: Yee T, Gronner A, Knight RT: CT findings of hypoxic basal ganglia damage. South Med J 1994; 87: 624-626.8202772
– reference: Ding Z, Tong WC, Lu XX, Peng HP: Hyperbaric Oxygen Therapy in Acute Ischemic Stroke: A Review. Interv Neurol 2014; 2: 201-211.2533708910.1159/000362677
– reference: Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD: Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36: 980-985.1579095010.1161/01.STR.0000160751.79241.a3
SSID ssj0015792
Score 2.3282385
Snippet Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is...
Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the...
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2457
SubjectTerms 3' Untranslated Regions
Animals
Antagomirs - metabolism
Apoptosis
bcl-2-Associated X Protein - metabolism
Caspase 3 - metabolism
Caspase 9 - metabolism
Cell cycle
Cell Hypoxia
Cell Movement
Cell Proliferation
Cell Survival
Cerebral ischemia
Disease
Down-Regulation
Gene expression
Hypoxia
Injuries
Ischemia
Long non-coding RNA
Meg3
Metabolism
MicroRNAs
MicroRNAs - antagonists & inhibitors
MicroRNAs - genetics
MicroRNAs - metabolism
MiR-147
Neurosciences
Original Paper
Oxidative stress
PC-12 cells
PC12 Cells
Proteins
Rats
RNA Interference
RNA, Long Noncoding - antagonists & inhibitors
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Small Interfering - metabolism
Signal Transduction
Sox2
SOXB1 Transcription Factors - metabolism
Stem cells
SummonAdditionalLinks – databaseName: Karger Open Access Journals
  dbid: M--
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dbxQhECemxuiL0Vp19dqg8aE-EJcFluWx3Vw9Tc40pk3q04ZloVYve5feNen9986wH1HTvgILLMMwM8zwG0I-IGKIqgOGDXrHJHecWZEGlimnDcKluCZGW3zLZ-fy64W66O878C3Mb4x_jtCoI7YACNxP8e2zlAoO24fQg0CU_Dljo79AadP5NbliBZjRPYbQP58i7q-BI9vg06W_hFDE6gcB1A19v6YZJc7JM_K0VxXpUUfb5-SBb3fJoy555HaXPC6HXG0vyI-57cCcF1s6vY2xrb6hCClNBT2cTz-Lj3Ta_kQKr-lpyTNa-sWCzrar5e2VpV_aX7C0tN7SsxgYDuKMzq--My71Hjk_mZ6VM9YnTWBO5mLDfJ4WXtpciRqhZfIir3njTeELq9PagXVirNKNBV4NjRagXAeglfUm840LRouXZKddtv41ocDa2imbgo3TyMIEBLez0FqHIlU2Cwk5HFaxcj2iOCa2WFTRslCmGtc-Ie_HpqsORuOuRsdIirEBIl_HguX1ZdUzUhVCbqTJGlH7AKZlaj0XyjiTw2RrsB8TstcRcuxm6HzyX3l5etxVVasG_mUykL3quXhdgXGsOfp5dULejdVAWnSq2NYvb9YVnmAyV0byhLzqtss4wrDd3twzp7fkSYZaQrzRmZCdzfWN3wcdZ1MfxO39B1bM7MU
  priority: 102
  providerName: Karger AG
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQSkQWJBBHMohapzYcXxCNNqyIC2qUCstp8jxoxRWybK7lbr_nhnngUDA1bacxOPxzOeZfEPIa2QMEbXHtEFnYs4Mi3WW-DgVRiqkSzE2ZFt8ymfn_ONCLPoLt02fVjmcieGgtq3BO_IjACqSYcxNvl39iLFqFEZX-xIaN8ktpC7DlC65GAEXE1J10U4m4gLAdc8sBBb8KPxMzblIf7NHgbYfbNF3zMJe_9vpDMbn5D6513uN9F0n5gfkhmv2ye2ujuRun9wph7JtD8mXue54nZc7Or0Oaa7OUmSXphk9nE_fZ2_otPmKwt7Q05KltHTLJZ3tVu31paYfmm-wyrTe0bOQIw6Wjc4vP8eMywNyfjI9K2dxXz8hNjzPtrHLk8JxnYusRpaZvMhrZp0qXKFlUhsAKkoLaTWorbcyAz_bg9i0U6mzxiuZPSJ7Tdu4J4SClksjdAJwx_JCeeS50zBa-iIROvURORxWsTI9uTjWuFhWAWQIVY0LHpFX49BVx6jxt0HHKIpxAJJgh4Z2fVH1OlV5nyuuUpvVzgPKTLRjmVBG5fCyNUDJiBx0ghynGSaf_NFenh53XdXKwrdMBrFXvUJvql_bLyIvx24QLcZXdOPaq02FhxnPheIsIo-77TI-IVXgLCgunv5_8mfkbop-Q7jjmZC97frKPQevZ1u_CFv7J_OU-Cg
  priority: 102
  providerName: ProQuest
Title Maternally Expressed Gene 3 (MEG3) Enhances PC12 Cell Hypoxia Injury by Targeting MiR-147
URI https://karger.com/doi/10.1159/000484452
https://www.ncbi.nlm.nih.gov/pubmed/29130945
https://www.proquest.com/docview/2117150337
https://www.proquest.com/docview/1963465941
https://doaj.org/article/ff69492d3bef4480ae1359c96807b282
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEIIXBGNAoVQG8TAerOXDjuNHGmUUpE7VtEnlKXIcWwyqtFo7af3vOdtJBAjECy95cE5OfHf23eUuvwN45xBDeG1d2aDRlMU6piqNLE24FtLBpejGV1ucZbNL9nnJlz-1-nI1YQEeODDuxNpMMpk0aW0shhKRMnHKpZZZHoka4wV3-qLN64OpLn_AhQx5zpjTHMPqDlMIbfeJ_42aMZ78Yok8YD9aoe-u_vr67-6mNzunj-FR5y-SD-E9n8Ad0x7C_dBBcn8ID4q-YdtT-DJXAdF5tSflrS9wNQ1xuNIkJcfz8mP6npTtVyfmLVkUcUIKs1qR2X6zvr1S5FP7DflL6j258NXhaNPI_OqcxkwcweVpeVHMaNc5gWqWpTtqsig3TGU8rR2-TJZnddwYmZtciajWGKJIxUWjcMPaRqToYVsUmDIyMY22UqTP4KBdt-YFENzfQnMVYaDTsFxah3CnkFrYPOIqsSM47rlY6Q5W3HW3WFU-vOCyGhg-grcD6SZgafyJaOpEMRA4-Gs_gEpRdUpR_UspRnAUBDlM008-_m28WEzDrWrT4FrGvdirbitvK4yQReySvWIEb4bbKFqXWVGtWd9sK3eMsYxLFo_geVCX4QmJRDdBMv7yfyzsFTxMnF_hvwGN4WB3fWNeo1e0qydwVyzFBO5Ny7PF-cRvB7zOKf0BTQ0Dkw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTmi8IBgDCgUMAmk8RMuHHccPCNHS0bK1qqZOGk_BcWwYVElpO7H8U_yNnPOFQMDbXm3rEvvO5zvf-XcAzy1iCEuMTRvUyqGe8hwZuMbxmeLCwqWotMy2mIajU_r-jJ1twY_mLYxNq2x0Yqmo01zZO_IDdFS4Z2Nu_PXym2OrRtnoalNCoxKLI118R5dt_Wr8Fvn7wvcPh_PByKmrCjiKhsHG0aEbaSpDFiQWeyWMwsRLtYh0JLmbKDTfhWQ8lSjMJuUBWp8GJyO18HWqjOAB0r0G2zRAV6YD2_3hdHbSxi0YF1V81WNOhO58jWWENsNB-XybUub_dgKWhQLw9Ptq875X_zZzy-Pu8BbcrO1U8qYSrNuwpbNduF5Vrix2YWfQFIq7Ax8mskKSXhRkeFkm1uqUWDxrEpD9yfBd8JIMs89WvNZkNvB8MtCLBRkVy_zyXJJx9gX5SpKCzMusdDxLyeT8xPEo34PTK1nbu9DJ8kzfB4J6hSsmXXSwUhoJY5H1JI7mJnKZ9E0X9ptVjFUNZ26raizi0q1hIm4XvAvP2qHLCsPjb4P6lhXtAAu7XTbkq09xvYtjY0JBhZ8GiTbo17pSewETSoT4swk6r13YqxjZkmmI9_5oH8z6VVe8THEuvYbtca1C1vEvge_C07YbWWsjOjLT-cU6tuqThkxQrwv3KnFpv-ALNE8EZQ_-T_wJ7Izmk-P4eDw9egg3fGu1lDdMPehsVhf6Edpcm-RxLegEPl713voJcuE23g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBGNAoIBBII2HqHFix_EDQixraRmdKrRJ5Sk4jg2DKi1tJ5a_xq_j2LkgEPC2V9tyYp-7ffwdhJ5ZxBCWG5s2qJVPiSK-jALjh0xxYeFSVOGyLY7i0Ql9O2OzLfSjfQtj0ypbnegUdbFQ9oy8D4EKJ_bOjfdNkxYxPRi-Wn7zbQUpe9PaltOoWeRQV98hfFu_HB8ArZ-H4XBwnI78psKAr2gcbXwdB4mmMmZRbnFY4iTOSaFFohPJg1yBKy8k44UExjYFj8ATNbAwqUWoC2UEj2DeS-gyjxixMsZnXbBHGBf1TSthfgKBfYNqBN5D3z3kppSFv9lCVzIA7OBXmwG--rfD6wzf8Ca60Xis-HXNYrfQli530JW6hmW1g66lbcm42-jDRNaY0vMKD85diq0usEW2xhHemwzeRC_woPxsGW2NpykJcarnczyqlovzU4nH5RegMM4rfOzy08Gq4snpe59QvotOLmRn76DtclHqewiDhuGKyQBCrYImwliMPQmjuUkCJkPjob12FzPVAJvb-hrzzAU4TGTdhnvoaTd0WaN5_G3QviVFN8ACcLuGxepT1shzZkwsqAiLKNcGItxAahIxoUQMP5tDGOuh3ZqQ3TTt5L0_2tPpft2VLQtYS68le9Yok3X2i_U99KTrBtLaux1Z6sXZOrOKlMZMUOKhuzW7dF8IBTgqgrL7_5_8MboKEpW9Gx8dPkDXQ-u-uKOmHtrerM70Q3C-Nvkjx-UYfbxosfoJ2Wc5rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternally+Expressed+Gene+3+%28MEG3%29+Enhances+PC12+Cell+Hypoxia+Injury+by+Targeting+MiR-147&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Lili+Han&rft.au=Zhiling+Dong&rft.au=Ningning+Liu&rft.au=Fei+Xie&rft.date=2017-01-01&rft.pub=Cell+Physiol+Biochem+Press+GmbH+%26+Co+KG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=43&rft.issue=6&rft.spage=2457&rft.epage=2469&rft_id=info:doi/10.1159%2F000484452&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon