Maternally Expressed Gene 3 (MEG3) Enhances PC12 Cell Hypoxia Injury by Targeting MiR-147
Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cell...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 43; no. 6; pp. 2457 - 2469 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2017
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. Methods: The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Results: Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3’-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Conclusion: Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression. |
---|---|
AbstractList | Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. Methods: The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Results: Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3’-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Conclusion: Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression. Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells. The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes. Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells. Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression. Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells.BACKGROUND/AIMSCerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the hypoxic damage in neural cells. This study aimed to investigate the role of MEG3 in the hypoxia-induced injuries of PC12 cells.The PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes.METHODSThe PC12 cells were seeded and cultured under hypoxia and normoxia culture conditions. The cell viability determined by trypan blue exclusion, apoptosis using propidium iodide (PI) and fluorescein isothiocynate (FITC)-conjugated Annexin V staining, cell-migration using a modified two-chamber migration assay with a pore size of 8 µM and invasion using 24-well Millicell Hanging Cell Culture inserts with 8 µM PET membranes.Cell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells.RESULTSCell viability, relative migration and relative invasion decreased significantly in PC12 cells injured due to hypoxia as compared to control cells. An increase in apoptosis was also observed. The expression of MEG3 was up-regulated in hypoxia-injured PC12 cells. MEG3 overexpression enhanced hypoxia injuries, while MEG3 suppression attenuated the injuries. Meanwhile, MEG3 negatively regulated miR-147 expression. In addition, we found that the expression of Sox2 was increased in PC12 cells after hypoxia and miR-147 negatively regulated Sox2 expression through targets its 3'-UTR. Interesting, Sox2 activated NF-κB pathway and Wnt/β-catenin pathway in PC12 cells.Considering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression.CONCLUSIONConsidering the observations in our study, we can conclude that MEG3 aggravated the hypoxial injury in PC12 cells by down-regulating miR-147 gene and miR-147 further negatively regulated Sox2 expression. |
Author | Dong, Zhiling Xie, Fei Wang, Ning Han, Lili Liu, Ningning |
Author_xml | – sequence: 1 givenname: Lili surname: Han fullname: Han, Lili email: hanlili151@126.com – sequence: 2 givenname: Zhiling surname: Dong fullname: Dong, Zhiling – sequence: 3 givenname: Ningning surname: Liu fullname: Liu, Ningning – sequence: 4 givenname: Fei surname: Xie fullname: Xie, Fei – sequence: 5 givenname: Ning surname: Wang fullname: Wang, Ning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29130945$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v0zAYhy20iX3AgTtClrhshzB_xvYRotJVWsWExoGT5SRvikvqBDuVlv-edO16mHbyh5730c_-XaCT0AVA6AMlXyiV5oYQIrQQkr1B51Qwmhml9Mm0J1Rm2mh1hi5SWpPpqAx7i86YoZwYIc_R76UbIAbXtiOePfYRUoIazyEA5vhqOZvzazwLf1yoIOH7gjJcQNvi27HvHr3Di7DexhGXI35wcQWDDyu89D8zKtQ7dNq4NsH7w3qJfn2fPRS32d2P-aL4epdVIudDBjnRIFwueUm4ErnOS1qD0aCdImWlJDdOqtoJJptacaVYI8vGgWFQV41R_BIt9t66c2vbR79xcbSd8_bpoosr6-LgqxZs0-RGGFbzEhohNHFAuTSVyTVRJdNscl3tXX3s_m0hDXbjUzU92AXotslSk3ORSyPohH5-ga677e4jk2WUKioJ57twnw7UttxAfYz3XMAE3OyBKnYpRWhs5Qc3-C4M0fnWUmJ3FdtjxdPE9YuJZ-lr7CHk31078UgW99_2hO3rZqI-vkodJP8BrV20oA |
CitedBy_id | crossref_primary_10_1016_j_ejphar_2020_173618 crossref_primary_10_1038_s42255_019_0052_9 crossref_primary_10_1016_j_intimp_2023_109896 crossref_primary_10_1016_j_bbagrm_2019_06_007 crossref_primary_10_1038_s41419_020_02824_z crossref_primary_10_3892_ijmm_2022_5147 crossref_primary_10_1002_bab_2578 crossref_primary_10_1515_hsz_2019_0230 crossref_primary_10_1038_s41419_019_1631_0 crossref_primary_10_1186_s10020_021_00346_8 crossref_primary_10_1242_jeb_215905 crossref_primary_10_1007_s13760_024_02513_0 crossref_primary_10_1016_j_expneurol_2018_09_003 crossref_primary_10_1016_j_ijbiomac_2018_11_002 crossref_primary_10_18632_aging_102105 crossref_primary_10_3390_biom13111622 crossref_primary_10_1002_jcp_29085 crossref_primary_10_1186_s12871_018_0660_z crossref_primary_10_1016_j_brainres_2024_149346 crossref_primary_10_1016_j_expneurol_2019_113139 crossref_primary_10_1080_15384101_2018_1560202 crossref_primary_10_2174_2211536610666210707113605 crossref_primary_10_1007_s10571_021_01176_2 crossref_primary_10_1038_s41419_021_03466_5 crossref_primary_10_1016_j_ebiom_2018_07_013 crossref_primary_10_1016_j_gendis_2021_10_009 crossref_primary_10_1007_s11033_019_04827_2 crossref_primary_10_1080_21691401_2020_1725535 crossref_primary_10_1007_s11064_021_03227_y crossref_primary_10_1016_j_omtn_2019_07_013 crossref_primary_10_1007_s12035_022_02727_4 crossref_primary_10_1016_j_lfs_2018_07_024 |
ContentType | Journal Article |
Copyright | 2017 The Author(s). Published by S. Karger AG, Basel 2017 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2017 The Author(s). Published by S. Karger AG, Basel – notice: 2017 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1159/000484452 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 2469 |
ExternalDocumentID | oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282 29130945 10_1159_000484452 484452 |
Genre | Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PQQKQ PROAC PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO CAG CITATION COF ITC PHGZM PHGZT RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c463t-e608e4a653b0374686b1de98e8a70bc7539a57da425fd73772f5bfae92edcf973 |
IEDL.DBID | DOA |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:21:01 EDT 2025 Fri Jul 11 12:37:51 EDT 2025 Fri Jul 25 08:16:46 EDT 2025 Wed Feb 19 02:34:33 EST 2025 Tue Jul 01 05:03:41 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Thu Sep 05 17:57:51 EDT 2024 Thu Aug 29 12:04:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Meg3 Sox2 Cerebral ischemia MiR-147 Hypoxia PC-12 cells Long non-coding RNA |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2017 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-e608e4a653b0374686b1de98e8a70bc7539a57da425fd73772f5bfae92edcf973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/ff69492d3bef4480ae1359c96807b282 |
PMID | 29130945 |
PQID | 2117150337 |
PQPubID | 2047990 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_29130945 crossref_citationtrail_10_1159_000484452 crossref_primary_10_1159_000484452 proquest_journals_2117150337 doaj_primary_oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282 proquest_miscellaneous_1963465941 karger_primary_484452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2017 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y: MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis. PLoS One 2011; 6:e16617.2130460410.1371/journal.pone.0016617 Barrett KM, Lal BK, Meschia JF: Stroke: Advances in Medical Therapy and Acute Stroke Intervention. Curr Cardiol Rep 2015; 17: 1-6.2627736410.1007/s11886-015-0637-1 Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W, Ji A: LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation. Mol Neurobiol 2016. Doi: 10.1007/s12035-016-0246-z2784427910.1007/s12035-016-0246-z Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.2375618810.1016/j.brainresbull.2013.06.001 Mehta SL, Kim T, Vemuganti R: Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. J Neurosci 2015; 35: 16443-16449.2667486910.1523/JNEUROSCI.2943-15.2015 Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88: 5119-5126.1460273710.1210/jc.2003-030222 Khot S, Tirschwell DL: Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol 2006; 26: 422-431.1696974310.1055/s-2006-948323 Yee T, Gronner A, Knight RT: CT findings of hypoxic basal ganglia damage. South Med J 1994; 87: 624-626.8202772 Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M: Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19: 166-187.2848087710.5853/jos.2016.01368 Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005; 337: 224-231.1617680210.1016/j.bbrc.2005.09.040 Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D: microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS One 2014; 9:e99283.2491161010.1371/journal.pone.0099283 Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan C-Y: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2006; 169: 566-583.16877357 10.2353/ajpath.2006.051066 Ding Z, Tong WC, Lu XX, Peng HP: Hyperbaric Oxygen Therapy in Acute Ischemic Stroke: A Review. Interv Neurol 2014; 2: 201-211.2533708910.1159/000362677 Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD: Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36: 980-985.1579095010.1161/01.STR.0000160751.79241.a3 Charlotte D, Frédéric C, Paul M, Hébert SS: Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011; 6: 70.2198216010.1186/1750-1326-6-70 Pevny LH, Nicolis SK: Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010; 42: 421-424.1973325410.1016/j.biocel.2009.08.018 Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE, Yin KJ: Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 2015; 277: 162-170.2674698510.1016/j.expneurol.2015.12.014 Pevny L, Placzek M: SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005; 15: 7-13.1572173810.1016/j.conb.2005.01.016 Wei R, Zhang R, Xie Y, Shen L, Chen F: Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress. Cell Physiol Biochem 2015; 36: 585-598.2599772210.1159/000430122 Zhang L, Zhang ZG, Chopp M: The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33: 415-422.2259549410.1016/j.tips.2012.04.006 Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J, Li T: Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction. Cell Physiol Biochem 2015; 35: 2383-2401.2589660210.1159/000374040 Benetatos L, Vartholomatos G, Hatzimichael E: MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-779.2140050310.1002/ijc.26052 Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70: 2350-2358.2017919010.1158/0008-5472.CAN-09-3885 Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J Cereb Blood Flow Metab 2009; 29: 675-687.1914219210.1038/jcbfm.2008.157 Fan J, Liu Y, Yin J, Li Q, Li Y, Gu J, Cai W, Yin G: Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2. Cell Physiol Biochem 2016; 38: 1063-1074.2693820810.1159/000443057 Brongholi K, Souza DG, Bainy AC, Dafre AL, Tasca CI: Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res 2006; 1083: 211-218.2888719810.1016/j.bbr.2017.09.010 Zhou RM, Wang XQ, Yao J, Shen Y, Chen SN, Yang H, Jiang Q, Yan B: Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun 2015; 465: 324-330.2624167410.1016/j.bbrc.2015.07.120 Dharap A, Pokrzywa C, Vemuganti R: Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 2013; 5: 283-289.2406352710.1042/AN20130029 Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 2005; 28: 583-588.1613937210.1016/j.tins.2005.08.008 Z L, X Y, J S, MT C, WK W: MicroRNA in intervertebral disc degeneration. Cell Prolif 2015; 48: 278-283.2573687110.1111/cpr.12180 Saugstad JA: Non-Coding RNAs in Stroke and Neuroprotection. Front Neurol 2015; 6: 50.2582144410.3389/fneur.2015.00050 Hunsberger JG, Fessler EB, Chibane FL, Yan L, Maric D, Elkahloun AG, Chuang DM: Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5: 450-464.23724168 Baron JC: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11: 2-8.1124419410.1159/000049119 Ly JV, Zavala JA, Donnan GA: Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. Expert Opin Pharmacother 2006; 7: 1571-1581.1687226010.1517/14656566.7.12.1571 Yan H, Yuan J, Gao L, Rao J, Hu J: Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 2016; 337: 191-199.2765115110.1016/j.neuroscience.2016.09.017 Zhou GY, Zhou SN, Lou ZY, Zhu CS, Zheng XP, Hu XQ: Translocation and neuroprotective properties of transactivator-of-transcription protein-transduction domain–neuroglobin fusion protein in primary cultured cortical neurons. Biotechnol Appl Biochem 2008; 49: 25-33.1757619910.1042/BA20070061 Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2015; 169: 566-583.1687735710.2353/ajpath.2006.051066 |
References_xml | – reference: Zhang L, Zhang ZG, Chopp M: The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33: 415-422.2259549410.1016/j.tips.2012.04.006 – reference: Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.2375618810.1016/j.brainresbull.2013.06.001 – reference: Khot S, Tirschwell DL: Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol 2006; 26: 422-431.1696974310.1055/s-2006-948323 – reference: Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70: 2350-2358.2017919010.1158/0008-5472.CAN-09-3885 – reference: Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D: microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS One 2014; 9:e99283.2491161010.1371/journal.pone.0099283 – reference: Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005; 337: 224-231.1617680210.1016/j.bbrc.2005.09.040 – reference: Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y: MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis. PLoS One 2011; 6:e16617.2130460410.1371/journal.pone.0016617 – reference: Brongholi K, Souza DG, Bainy AC, Dafre AL, Tasca CI: Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res 2006; 1083: 211-218.2888719810.1016/j.bbr.2017.09.010 – reference: Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A: A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88: 5119-5126.1460273710.1210/jc.2003-030222 – reference: Dharap A, Bowen K, Place R, Li LC, Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J Cereb Blood Flow Metab 2009; 29: 675-687.1914219210.1038/jcbfm.2008.157 – reference: Fan J, Liu Y, Yin J, Li Q, Li Y, Gu J, Cai W, Yin G: Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2. Cell Physiol Biochem 2016; 38: 1063-1074.2693820810.1159/000443057 – reference: Ly JV, Zavala JA, Donnan GA: Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. Expert Opin Pharmacother 2006; 7: 1571-1581.1687226010.1517/14656566.7.12.1571 – reference: Hunsberger JG, Fessler EB, Chibane FL, Yan L, Maric D, Elkahloun AG, Chuang DM: Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5: 450-464.23724168 – reference: Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2015; 169: 566-583.1687735710.2353/ajpath.2006.051066 – reference: Baron JC: Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11: 2-8.1124419410.1159/000049119 – reference: Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE, Yin KJ: Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 2015; 277: 162-170.2674698510.1016/j.expneurol.2015.12.014 – reference: Dharap A, Pokrzywa C, Vemuganti R: Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 2013; 5: 283-289.2406352710.1042/AN20130029 – reference: Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J, Li T: Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction. Cell Physiol Biochem 2015; 35: 2383-2401.2589660210.1159/000374040 – reference: Z L, X Y, J S, MT C, WK W: MicroRNA in intervertebral disc degeneration. Cell Prolif 2015; 48: 278-283.2573687110.1111/cpr.12180 – reference: Zhou RM, Wang XQ, Yao J, Shen Y, Chen SN, Yang H, Jiang Q, Yan B: Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun 2015; 465: 324-330.2624167410.1016/j.bbrc.2015.07.120 – reference: Zhou GY, Zhou SN, Lou ZY, Zhu CS, Zheng XP, Hu XQ: Translocation and neuroprotective properties of transactivator-of-transcription protein-transduction domain–neuroglobin fusion protein in primary cultured cortical neurons. Biotechnol Appl Biochem 2008; 49: 25-33.1757619910.1042/BA20070061 – reference: Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan C-Y: Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2006; 169: 566-583.16877357 10.2353/ajpath.2006.051066 – reference: Benetatos L, Vartholomatos G, Hatzimichael E: MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-779.2140050310.1002/ijc.26052 – reference: Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 2005; 28: 583-588.1613937210.1016/j.tins.2005.08.008 – reference: Pevny L, Placzek M: SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005; 15: 7-13.1572173810.1016/j.conb.2005.01.016 – reference: Barrett KM, Lal BK, Meschia JF: Stroke: Advances in Medical Therapy and Acute Stroke Intervention. Curr Cardiol Rep 2015; 17: 1-6.2627736410.1007/s11886-015-0637-1 – reference: Wei R, Zhang R, Xie Y, Shen L, Chen F: Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress. Cell Physiol Biochem 2015; 36: 585-598.2599772210.1159/000430122 – reference: Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W, Ji A: LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation. Mol Neurobiol 2016. Doi: 10.1007/s12035-016-0246-z2784427910.1007/s12035-016-0246-z – reference: Yan H, Yuan J, Gao L, Rao J, Hu J: Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 2016; 337: 191-199.2765115110.1016/j.neuroscience.2016.09.017 – reference: Saugstad JA: Non-Coding RNAs in Stroke and Neuroprotection. Front Neurol 2015; 6: 50.2582144410.3389/fneur.2015.00050 – reference: Charlotte D, Frédéric C, Paul M, Hébert SS: Alzheimer-specific variants in the 3’UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 2011; 6: 70.2198216010.1186/1750-1326-6-70 – reference: Mehta SL, Kim T, Vemuganti R: Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. J Neurosci 2015; 35: 16443-16449.2667486910.1523/JNEUROSCI.2943-15.2015 – reference: Pevny LH, Nicolis SK: Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010; 42: 421-424.1973325410.1016/j.biocel.2009.08.018 – reference: Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M: Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. J Stroke 2017; 19: 166-187.2848087710.5853/jos.2016.01368 – reference: Yee T, Gronner A, Knight RT: CT findings of hypoxic basal ganglia damage. South Med J 1994; 87: 624-626.8202772 – reference: Ding Z, Tong WC, Lu XX, Peng HP: Hyperbaric Oxygen Therapy in Acute Ischemic Stroke: A Review. Interv Neurol 2014; 2: 201-211.2533708910.1159/000362677 – reference: Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, Heiss WD: Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36: 980-985.1579095010.1161/01.STR.0000160751.79241.a3 |
SSID | ssj0015792 |
Score | 2.3282385 |
Snippet | Background/Aims: Cerebral ischemia often leads to breakdown of blood–brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is... Cerebral ischemia often leads to breakdown of blood-brain barrier (BBB) and vasogenic edema. It remains to be established whether MEG3 is responsible for the... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2457 |
SubjectTerms | 3' Untranslated Regions Animals Antagomirs - metabolism Apoptosis bcl-2-Associated X Protein - metabolism Caspase 3 - metabolism Caspase 9 - metabolism Cell cycle Cell Hypoxia Cell Movement Cell Proliferation Cell Survival Cerebral ischemia Disease Down-Regulation Gene expression Hypoxia Injuries Ischemia Long non-coding RNA Meg3 Metabolism MicroRNAs MicroRNAs - antagonists & inhibitors MicroRNAs - genetics MicroRNAs - metabolism MiR-147 Neurosciences Original Paper Oxidative stress PC-12 cells PC12 Cells Proteins Rats RNA Interference RNA, Long Noncoding - antagonists & inhibitors RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Small Interfering - metabolism Signal Transduction Sox2 SOXB1 Transcription Factors - metabolism Stem cells |
SummonAdditionalLinks | – databaseName: Karger Open Access Journals dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dbxQhECemxuiL0Vp19dqg8aE-EJcFluWx3Vw9Tc40pk3q04ZloVYve5feNen9986wH1HTvgILLMMwM8zwG0I-IGKIqgOGDXrHJHecWZEGlimnDcKluCZGW3zLZ-fy64W66O878C3Mb4x_jtCoI7YACNxP8e2zlAoO24fQg0CU_Dljo79AadP5NbliBZjRPYbQP58i7q-BI9vg06W_hFDE6gcB1A19v6YZJc7JM_K0VxXpUUfb5-SBb3fJoy555HaXPC6HXG0vyI-57cCcF1s6vY2xrb6hCClNBT2cTz-Lj3Ta_kQKr-lpyTNa-sWCzrar5e2VpV_aX7C0tN7SsxgYDuKMzq--My71Hjk_mZ6VM9YnTWBO5mLDfJ4WXtpciRqhZfIir3njTeELq9PagXVirNKNBV4NjRagXAeglfUm840LRouXZKddtv41ocDa2imbgo3TyMIEBLez0FqHIlU2Cwk5HFaxcj2iOCa2WFTRslCmGtc-Ie_HpqsORuOuRsdIirEBIl_HguX1ZdUzUhVCbqTJGlH7AKZlaj0XyjiTw2RrsB8TstcRcuxm6HzyX3l5etxVVasG_mUykL3quXhdgXGsOfp5dULejdVAWnSq2NYvb9YVnmAyV0byhLzqtss4wrDd3twzp7fkSYZaQrzRmZCdzfWN3wcdZ1MfxO39B1bM7MU priority: 102 providerName: Karger AG – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQSkQWJBBHMohapzYcXxCNNqyIC2qUCstp8jxoxRWybK7lbr_nhnngUDA1bacxOPxzOeZfEPIa2QMEbXHtEFnYs4Mi3WW-DgVRiqkSzE2ZFt8ymfn_ONCLPoLt02fVjmcieGgtq3BO_IjACqSYcxNvl39iLFqFEZX-xIaN8ktpC7DlC65GAEXE1J10U4m4gLAdc8sBBb8KPxMzblIf7NHgbYfbNF3zMJe_9vpDMbn5D6513uN9F0n5gfkhmv2ye2ujuRun9wph7JtD8mXue54nZc7Or0Oaa7OUmSXphk9nE_fZ2_otPmKwt7Q05KltHTLJZ3tVu31paYfmm-wyrTe0bOQIw6Wjc4vP8eMywNyfjI9K2dxXz8hNjzPtrHLk8JxnYusRpaZvMhrZp0qXKFlUhsAKkoLaTWorbcyAz_bg9i0U6mzxiuZPSJ7Tdu4J4SClksjdAJwx_JCeeS50zBa-iIROvURORxWsTI9uTjWuFhWAWQIVY0LHpFX49BVx6jxt0HHKIpxAJJgh4Z2fVH1OlV5nyuuUpvVzgPKTLRjmVBG5fCyNUDJiBx0ghynGSaf_NFenh53XdXKwrdMBrFXvUJvql_bLyIvx24QLcZXdOPaq02FhxnPheIsIo-77TI-IVXgLCgunv5_8mfkbop-Q7jjmZC97frKPQevZ1u_CFv7J_OU-Cg priority: 102 providerName: ProQuest |
Title | Maternally Expressed Gene 3 (MEG3) Enhances PC12 Cell Hypoxia Injury by Targeting MiR-147 |
URI | https://karger.com/doi/10.1159/000484452 https://www.ncbi.nlm.nih.gov/pubmed/29130945 https://www.proquest.com/docview/2117150337 https://www.proquest.com/docview/1963465941 https://doaj.org/article/ff69492d3bef4480ae1359c96807b282 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEIIXBGNAoVQG8TAerOXDjuNHGmUUpE7VtEnlKXIcWwyqtFo7af3vOdtJBAjECy95cE5OfHf23eUuvwN45xBDeG1d2aDRlMU6piqNLE24FtLBpejGV1ucZbNL9nnJlz-1-nI1YQEeODDuxNpMMpk0aW0shhKRMnHKpZZZHoka4wV3-qLN64OpLn_AhQx5zpjTHMPqDlMIbfeJ_42aMZ78Yok8YD9aoe-u_vr67-6mNzunj-FR5y-SD-E9n8Ad0x7C_dBBcn8ID4q-YdtT-DJXAdF5tSflrS9wNQ1xuNIkJcfz8mP6npTtVyfmLVkUcUIKs1qR2X6zvr1S5FP7DflL6j258NXhaNPI_OqcxkwcweVpeVHMaNc5gWqWpTtqsig3TGU8rR2-TJZnddwYmZtciajWGKJIxUWjcMPaRqToYVsUmDIyMY22UqTP4KBdt-YFENzfQnMVYaDTsFxah3CnkFrYPOIqsSM47rlY6Q5W3HW3WFU-vOCyGhg-grcD6SZgafyJaOpEMRA4-Gs_gEpRdUpR_UspRnAUBDlM008-_m28WEzDrWrT4FrGvdirbitvK4yQReySvWIEb4bbKFqXWVGtWd9sK3eMsYxLFo_geVCX4QmJRDdBMv7yfyzsFTxMnF_hvwGN4WB3fWNeo1e0qydwVyzFBO5Ny7PF-cRvB7zOKf0BTQ0Dkw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTmi8IBgDCgUMAmk8RMuHHccPCNHS0bK1qqZOGk_BcWwYVElpO7H8U_yNnPOFQMDbXm3rEvvO5zvf-XcAzy1iCEuMTRvUyqGe8hwZuMbxmeLCwqWotMy2mIajU_r-jJ1twY_mLYxNq2x0Yqmo01zZO_IDdFS4Z2Nu_PXym2OrRtnoalNCoxKLI118R5dt_Wr8Fvn7wvcPh_PByKmrCjiKhsHG0aEbaSpDFiQWeyWMwsRLtYh0JLmbKDTfhWQ8lSjMJuUBWp8GJyO18HWqjOAB0r0G2zRAV6YD2_3hdHbSxi0YF1V81WNOhO58jWWENsNB-XybUub_dgKWhQLw9Ptq875X_zZzy-Pu8BbcrO1U8qYSrNuwpbNduF5Vrix2YWfQFIq7Ax8mskKSXhRkeFkm1uqUWDxrEpD9yfBd8JIMs89WvNZkNvB8MtCLBRkVy_zyXJJx9gX5SpKCzMusdDxLyeT8xPEo34PTK1nbu9DJ8kzfB4J6hSsmXXSwUhoJY5H1JI7mJnKZ9E0X9ptVjFUNZ26raizi0q1hIm4XvAvP2qHLCsPjb4P6lhXtAAu7XTbkq09xvYtjY0JBhZ8GiTbo17pSewETSoT4swk6r13YqxjZkmmI9_5oH8z6VVe8THEuvYbtca1C1vEvge_C07YbWWsjOjLT-cU6tuqThkxQrwv3KnFpv-ALNE8EZQ_-T_wJ7Izmk-P4eDw9egg3fGu1lDdMPehsVhf6Edpcm-RxLegEPl713voJcuE23g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBGNAoIBBII2HqHFix_EDQixraRmdKrRJ5Sk4jg2DKi1tJ5a_xq_j2LkgEPC2V9tyYp-7ffwdhJ5ZxBCWG5s2qJVPiSK-jALjh0xxYeFSVOGyLY7i0Ql9O2OzLfSjfQtj0ypbnegUdbFQ9oy8D4EKJ_bOjfdNkxYxPRi-Wn7zbQUpe9PaltOoWeRQV98hfFu_HB8ArZ-H4XBwnI78psKAr2gcbXwdB4mmMmZRbnFY4iTOSaFFohPJg1yBKy8k44UExjYFj8ATNbAwqUWoC2UEj2DeS-gyjxixMsZnXbBHGBf1TSthfgKBfYNqBN5D3z3kppSFv9lCVzIA7OBXmwG--rfD6wzf8Ca60Xis-HXNYrfQli530JW6hmW1g66lbcm42-jDRNaY0vMKD85diq0usEW2xhHemwzeRC_woPxsGW2NpykJcarnczyqlovzU4nH5RegMM4rfOzy08Gq4snpe59QvotOLmRn76DtclHqewiDhuGKyQBCrYImwliMPQmjuUkCJkPjob12FzPVAJvb-hrzzAU4TGTdhnvoaTd0WaN5_G3QviVFN8ACcLuGxepT1shzZkwsqAiLKNcGItxAahIxoUQMP5tDGOuh3ZqQ3TTt5L0_2tPpft2VLQtYS68le9Yok3X2i_U99KTrBtLaux1Z6sXZOrOKlMZMUOKhuzW7dF8IBTgqgrL7_5_8MboKEpW9Gx8dPkDXQ-u-uKOmHtrerM70Q3C-Nvkjx-UYfbxosfoJ2Wc5rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternally+Expressed+Gene+3+%28MEG3%29+Enhances+PC12+Cell+Hypoxia+Injury+by+Targeting+MiR-147&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Lili+Han&rft.au=Zhiling+Dong&rft.au=Ningning+Liu&rft.au=Fei+Xie&rft.date=2017-01-01&rft.pub=Cell+Physiol+Biochem+Press+GmbH+%26+Co+KG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=43&rft.issue=6&rft.spage=2457&rft.epage=2469&rft_id=info:doi/10.1159%2F000484452&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff69492d3bef4480ae1359c96807b282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |