Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte

Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation,...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 42; no. 36; pp. 13112 - 13117
Main Authors Kim, Sangryun, Hirayama, Masaaki, Taminato, Sou, Kanno, Ryoji
Format Journal Article
LanguageEnglish
Published England 28.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) and (111) films were 2.5 × 10(-6) and 1.0 × 10(-5) S cm(-1) at 298 K, respectively, which were lower than those of polycrystalline LLZO of over 10(-4) S cm(-1). X-ray reflectometry and inductively coupled plasma mass spectrometry revealed a large amount of Al(3+) of over 0.6 moles substituted for Li(+). These results indicate that the Al(3+) substitution in the LLZO lattice decreases the number of movable lithium ions and blocks the three-dimensional lithium migration pathway. The lattice mismatch between the film and the substrate induced the lattice distortion of the LLZO, resulting in different conductivities between the (001) and (111) films. The epitaxial-film model system directly clarified a substantial impact of the Al substitution and the lattice distortion on the lithium ion conductivity in the LLZO.
AbstractList Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) and (111) films were 2.5 × 10(-6) and 1.0 × 10(-5) S cm(-1) at 298 K, respectively, which were lower than those of polycrystalline LLZO of over 10(-4) S cm(-1). X-ray reflectometry and inductively coupled plasma mass spectrometry revealed a large amount of Al(3+) of over 0.6 moles substituted for Li(+). These results indicate that the Al(3+) substitution in the LLZO lattice decreases the number of movable lithium ions and blocks the three-dimensional lithium migration pathway. The lattice mismatch between the film and the substrate induced the lattice distortion of the LLZO, resulting in different conductivities between the (001) and (111) films. The epitaxial-film model system directly clarified a substantial impact of the Al substitution and the lattice distortion on the lithium ion conductivity in the LLZO.
Epitaxial thin films of Al-doped Li sub(7)La sub(3)Zr sub(2)O sub(12) (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd sub(3)Ga sub(5)O sub(12) (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) and (111) films were 2.5 10 super(-6) and 1.0 10 super(-5) S cm super(-1) at 298 K, respectively, which were lower than those of polycrystalline LLZO of over 10 super(-4) S cm super(-1). X-ray reflectometry and inductively coupled plasma mass spectrometry revealed a large amount of Al super(3+) of over 0.6 moles substituted for Li super(+). These results indicate that the Al super(3+) substitution in the LLZO lattice decreases the number of movable lithium ions and blocks the three-dimensional lithium migration pathway. The lattice mismatch between the film and the substrate induced the lattice distortion of the LLZO, resulting in different conductivities between the (001) and (111) films. The epitaxial-film model system directly clarified a substantial impact of the Al substitution and the lattice distortion on the lithium ion conductivity in the LLZO.
Author Taminato, Sou
Kim, Sangryun
Hirayama, Masaaki
Kanno, Ryoji
Author_xml – sequence: 1
  givenname: Sangryun
  surname: Kim
  fullname: Kim, Sangryun
  email: hirayama@echem.titech.ac.jp
  organization: Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 225-8502, Japan. hirayama@echem.titech.ac.jp
– sequence: 2
  givenname: Masaaki
  surname: Hirayama
  fullname: Hirayama, Masaaki
– sequence: 3
  givenname: Sou
  surname: Taminato
  fullname: Taminato, Sou
– sequence: 4
  givenname: Ryoji
  surname: Kanno
  fullname: Kanno, Ryoji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23877300$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKBDEQRYMoPkY3foBkKUJrHp3O9FLEFwhudN1UJxWNZjpjklbn7x111KWrKqpOXW5xd8j6EAckZJ-zY85ke2KkLYrrVj2vkW1ea121Qtbrv71otshOzk-MCcGU2CRbQk61loxtk_n53Bd49xDoQ4pv5ZHCYGnw5dGPM-rjQE0c7GiKf_VlQaP72VXx3VukD5AGLNTFtDykEALNMXhb5QIFaQ-lYFpQDGhKimFRcJdsOAgZ91Z1Qu4vzu_Orqqb28vrs9ObytSNLJVVgjUA_dSgdQLMdDmVRhg-BdMwabTtoW_RcS2RSWilMz00jVNKGeN4LSfk8Ft3nuLLiLl0M58NhgADxjF3_PP_Viup_kdVo1lTc8b-R2uhGdP1l4Gjb9SkmHNC182Tn0FadJx1n7l1f7kt4YOV7tjP0P6iP0HJD-bjlzs
CitedBy_id crossref_primary_10_1149_1945_7111_ac0944
crossref_primary_10_1149_2_1571707jes
crossref_primary_10_1016_j_jallcom_2020_154915
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1016_j_pnsc_2017_06_002
crossref_primary_10_3390_electrochem2030026
crossref_primary_10_1002_advs_202002044
crossref_primary_10_1016_j_pmatsci_2017_04_007
crossref_primary_10_1116_6_0000430
crossref_primary_10_1021_acsanm_7b00133
crossref_primary_10_1021_acs_chemrev_9b00405
crossref_primary_10_1002_eem2_12613
crossref_primary_10_1002_aenm_202303128
crossref_primary_10_1111_jace_14579
crossref_primary_10_1016_j_jpowsour_2020_228803
crossref_primary_10_1016_j_jssc_2017_01_017
crossref_primary_10_1016_j_est_2024_111996
crossref_primary_10_2207_jjws_87_97
crossref_primary_10_1002_anie_202104106
crossref_primary_10_1039_C8TA08967A
crossref_primary_10_1016_j_jallcom_2024_173554
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1002_ente_202100211
crossref_primary_10_1016_j_jiec_2018_12_001
crossref_primary_10_1021_acsami_8b03163
crossref_primary_10_1007_s11581_018_2594_3
crossref_primary_10_1016_j_ceramint_2017_05_201
crossref_primary_10_1016_j_ceramint_2015_05_062
crossref_primary_10_1039_C6RA08769H
crossref_primary_10_1038_s41598_017_18250_9
crossref_primary_10_1016_j_jpowsour_2014_09_164
crossref_primary_10_1039_C3CE42003E
crossref_primary_10_1002_hlca_202000203
crossref_primary_10_1021_acsami_0c18030
crossref_primary_10_1557_mrs_2018_211
crossref_primary_10_1038_s41467_019_09061_9
crossref_primary_10_1016_j_ensm_2022_04_026
crossref_primary_10_1021_acs_chemrev_9b00427
crossref_primary_10_1002_bte2_20230010
crossref_primary_10_1039_C6DT03521C
crossref_primary_10_1002_cssc_202100526
crossref_primary_10_3390_cryst11040330
crossref_primary_10_1007_s40145_021_0489_7
crossref_primary_10_1002_aesr_202100203
crossref_primary_10_1039_C8MH01593G
crossref_primary_10_1021_acsenergylett_1c00401
crossref_primary_10_1557_s43578_021_00355_7
crossref_primary_10_1002_adma_201705702
crossref_primary_10_1021_acsami_7b11530
crossref_primary_10_1021_acsaem_1c01710
crossref_primary_10_1016_j_jpowsour_2018_04_019
crossref_primary_10_1016_j_jpowsour_2014_08_110
crossref_primary_10_1149_2_0411501jes
crossref_primary_10_3390_app10144727
crossref_primary_10_1002_batt_202000273
crossref_primary_10_3390_ma10091072
crossref_primary_10_1021_acsenergylett_2c00003
crossref_primary_10_1080_10408436_2016_1244657
crossref_primary_10_1088_1755_1315_218_1_012138
crossref_primary_10_1002_aenm_202003939
crossref_primary_10_1039_C9EE01548E
crossref_primary_10_1016_j_oceram_2023_100497
crossref_primary_10_1016_j_susmat_2022_e00491
crossref_primary_10_1016_j_jpowsour_2017_08_020
crossref_primary_10_5796_denkikagaku_18_TE0002
crossref_primary_10_1016_j_ceja_2023_100532
crossref_primary_10_1016_j_mtchem_2020_100368
crossref_primary_10_1038_ncomms13598
crossref_primary_10_3390_batteries9090430
crossref_primary_10_1016_j_ssi_2016_04_014
crossref_primary_10_1103_PhysRevB_109_045305
crossref_primary_10_1016_j_cossms_2020_100875
crossref_primary_10_3390_coatings9060386
crossref_primary_10_1016_j_mtener_2018_05_004
crossref_primary_10_1016_j_tsf_2014_11_094
crossref_primary_10_1016_j_matpr_2017_09_025
crossref_primary_10_1149_2_0621706jes
crossref_primary_10_1021_acsaelm_9b00350
crossref_primary_10_1002_nano_202100110
crossref_primary_10_1021_acsaem_9b01387
crossref_primary_10_1002_adma_202200538
crossref_primary_10_1039_C4TA02289K
crossref_primary_10_1016_j_jeurceramsoc_2018_02_032
crossref_primary_10_5796_electrochemistry_83_701
crossref_primary_10_1016_j_ssi_2014_01_046
crossref_primary_10_1016_j_elecom_2014_09_006
crossref_primary_10_1002_ange_202104106
crossref_primary_10_1016_j_tsf_2014_11_019
crossref_primary_10_1039_D0DT01497D
crossref_primary_10_1002_aenm_201702265
crossref_primary_10_1149_2_0201701jes
crossref_primary_10_1021_am508111r
crossref_primary_10_1016_j_sse_2024_108894
crossref_primary_10_1007_s11581_017_2353_x
crossref_primary_10_1021_acs_jpcc_8b06275
crossref_primary_10_1007_s12034_021_02501_7
crossref_primary_10_1016_j_jpowsour_2015_12_054
crossref_primary_10_1016_j_ssi_2017_11_005
crossref_primary_10_1063_5_0047625
crossref_primary_10_1038_s41560_020_00759_5
crossref_primary_10_1016_j_est_2023_107693
crossref_primary_10_1039_C6NR04162K
crossref_primary_10_1038_s41560_019_0384_4
crossref_primary_10_1016_j_jpowsour_2020_229362
Cites_doi 10.1016/0167-2738(92)90442-R
10.1149/1.2086597
10.1021/ic101914e
10.1039/C1JM14588F
10.1016/j.ssi.2011.10.022
10.1149/1.2096693
10.1002/anie.200701144
10.1246/cl.2011.60
10.1149/1.2055043
10.1007/s10008-010-1214-6
10.1016/j.jssc.2009.05.020
10.1039/b900148d
10.1149/1.1837443
10.1103/PhysRev.95.359
10.1016/j.jpowsour.2012.01.131
10.1016/0167-2738(90)90442-T
10.1016/S0167-2738(00)00722-0
10.1016/0038-1098(93)90841-A
10.1021/cm201671k
10.1016/S0167-2738(97)00206-3
10.1016/j.ssi.2012.09.011
10.1063/1.1565702
10.1149/1.3109645
10.1021/cm901452z
10.1016/j.ssi.2010.12.010
10.1016/j.jpowsour.2010.11.089
10.1016/j.ssi.2011.10.023
10.1016/j.ssi.2004.09.034
10.1016/0167-2738(90)90440-3
10.1016/j.elecom.2011.02.035
10.1149/2.013206ssl
10.1016/j.jpowsour.2011.05.065
10.1016/0167-2738(83)90101-7
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7SP
7SR
7TB
7U5
8FD
FR3
JG9
L7M
8BQ
DOI 10.1039/c3dt51795k
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 13117
ExternalDocumentID 10_1039_c3dt51795k
23877300
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
2WC
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
NPM
O9-
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
XOL
0UZ
186
3EH
6TJ
705
71~
9M8
AAYXX
ACHDF
AHGXI
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
F20
FEDTE
HVGLF
H~9
IDY
L-8
NDZJH
R56
RCLXC
XJT
ZCG
7X8
7SP
7SR
7TB
7U5
8FD
FR3
JG9
L7M
8BQ
ID FETCH-LOGICAL-c463t-d5206aab8cedf2ac84633c2c18ac603c7dbab9ef173e03a93fcba66f555ccf143
ISSN 1477-9226
IngestDate Fri Oct 25 06:14:02 EDT 2024
Fri Oct 25 03:49:39 EDT 2024
Fri Aug 16 21:26:34 EDT 2024
Fri Aug 23 03:37:13 EDT 2024
Sat Sep 28 07:54:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-d5206aab8cedf2ac84633c2c18ac603c7dbab9ef173e03a93fcba66f555ccf143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23877300
PQID 1427007414
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1730097535
proquest_miscellaneous_1567064100
proquest_miscellaneous_1427007414
crossref_primary_10_1039_c3dt51795k
pubmed_primary_23877300
PublicationCentury 2000
PublicationDate 2013-09-28
PublicationDateYYYYMMDD 2013-09-28
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2013
References Kumazaki (c3dt51795k-(cit19)/*[position()=1]) 2011; 13
Xie (c3dt51795k-(cit16)/*[position()=1]) 2011; 23
Tan (c3dt51795k-(cit27)/*[position()=1]) 2012; 1
Edwards (c3dt51795k-(cit29)/*[position()=1]) 1997; 99
Awaka (c3dt51795k-(cit24)/*[position()=1]) 2011
Aono (c3dt51795k-(cit11)/*[position()=1]) 1990; 137
Awaka (c3dt51795k-(cit15)/*[position()=1]) 2009; 182
Parratt (c3dt51795k-(cit25)/*[position()=1]) 1954; 95
Aono (c3dt51795k-(cit10)/*[position()=1]) 1989; 136
Geiger (c3dt51795k-(cit14)/*[position()=1]) 2011; 50
Adams (c3dt51795k-(cit21)/*[position()=1]) 2012; 22
Pronin (c3dt51795k-(cit5)/*[position()=1]) 1990; 38
Bates (c3dt51795k-(cit7)/*[position()=1]) 1992; 53
Kawai (c3dt51795k-(cit9)/*[position()=1]) 1994; 141
Yu (c3dt51795k-(cit6)/*[position()=1]) 1997; 144
Murugan (c3dt51795k-(cit12)/*[position()=1]) 2007; 46
Dyvoire (c3dt51795k-(cit3)/*[position()=1]) 1983; 9–10
Allen (c3dt51795k-(cit22)/*[position()=1]) 2012; 206
Logéat (c3dt51795k-(cit20)/*[position()=1]) 2012; 206
Chen (c3dt51795k-(cit30)/*[position()=1]) 2003; 82
Chen (c3dt51795k-(cit31)/*[position()=1]) 2004; 175
Ohta (c3dt51795k-(cit28)/*[position()=1]) 2011; 196
Kaeriyama (c3dt51795k-(cit13)/*[position()=1]) 2009; 16
Bykov (c3dt51795k-(cit4)/*[position()=1]) 1990; 38
Goodenough (c3dt51795k-(cit2)/*[position()=1]) 2010; 22
Schichtel (c3dt51795k-(cit32)/*[position()=1]) 2009; 11
Santiso (c3dt51795k-(cit33)/*[position()=1]) 2010; 15
Jin (c3dt51795k-(cit18)/*[position()=1]) 2011; 196
Shimonishi (c3dt51795k-(cit23)/*[position()=1]) 2011; 183
Inaguma (c3dt51795k-(cit8)/*[position()=1]) 1993; 86
Rangasamy (c3dt51795k-(cit17)/*[position()=1]) 2012; 206
Dell (c3dt51795k-(cit1)/*[position()=1]) 2000; 134
Kalita (c3dt51795k-(cit26)/*[position()=1]) 2012; 229
References_xml – volume: 53
  start-page: 647
  year: 1992
  ident: c3dt51795k-(cit7)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(92)90442-R
  contributor:
    fullname: Bates
– volume: 137
  start-page: 1023
  year: 1990
  ident: c3dt51795k-(cit11)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086597
  contributor:
    fullname: Aono
– volume: 50
  start-page: 1089
  year: 2011
  ident: c3dt51795k-(cit14)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101914e
  contributor:
    fullname: Geiger
– volume: 22
  start-page: 1426
  year: 2012
  ident: c3dt51795k-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14588F
  contributor:
    fullname: Adams
– volume: 206
  start-page: 28
  year: 2012
  ident: c3dt51795k-(cit17)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.10.022
  contributor:
    fullname: Rangasamy
– volume: 136
  start-page: 590
  year: 1989
  ident: c3dt51795k-(cit10)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096693
  contributor:
    fullname: Aono
– volume: 46
  start-page: 7778
  year: 2007
  ident: c3dt51795k-(cit12)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701144
  contributor:
    fullname: Murugan
– start-page: 60
  year: 2011
  ident: c3dt51795k-(cit24)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2011.60
  contributor:
    fullname: Awaka
– volume: 141
  start-page: L78
  year: 1994
  ident: c3dt51795k-(cit9)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2055043
  contributor:
    fullname: Kawai
– volume: 15
  start-page: 985
  year: 2010
  ident: c3dt51795k-(cit33)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-010-1214-6
  contributor:
    fullname: Santiso
– volume: 182
  start-page: 2046
  year: 2009
  ident: c3dt51795k-(cit15)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.05.020
  contributor:
    fullname: Awaka
– volume: 11
  start-page: 3043
  year: 2009
  ident: c3dt51795k-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b900148d
  contributor:
    fullname: Schichtel
– volume: 144
  start-page: 524
  year: 1997
  ident: c3dt51795k-(cit6)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837443
  contributor:
    fullname: Yu
– volume: 95
  start-page: 359
  year: 1954
  ident: c3dt51795k-(cit25)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.95.359
  contributor:
    fullname: Parratt
– volume: 206
  start-page: 315
  year: 2012
  ident: c3dt51795k-(cit22)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.131
  contributor:
    fullname: Allen
– volume: 38
  start-page: 31
  year: 1990
  ident: c3dt51795k-(cit4)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90442-T
  contributor:
    fullname: Bykov
– volume: 134
  start-page: 139
  year: 2000
  ident: c3dt51795k-(cit1)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00722-0
  contributor:
    fullname: Dell
– volume: 86
  start-page: 689
  year: 1993
  ident: c3dt51795k-(cit8)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(93)90841-A
  contributor:
    fullname: Inaguma
– volume: 23
  start-page: 3587
  year: 2011
  ident: c3dt51795k-(cit16)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm201671k
  contributor:
    fullname: Xie
– volume: 99
  start-page: 85
  year: 1997
  ident: c3dt51795k-(cit29)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(97)00206-3
  contributor:
    fullname: Edwards
– volume: 229
  start-page: 14
  year: 2012
  ident: c3dt51795k-(cit26)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.09.011
  contributor:
    fullname: Kalita
– volume: 82
  start-page: 2317
  year: 2003
  ident: c3dt51795k-(cit30)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1565702
  contributor:
    fullname: Chen
– volume: 16
  start-page: 175
  year: 2009
  ident: c3dt51795k-(cit13)/*[position()=1]
  publication-title: ECS Trans.
  doi: 10.1149/1.3109645
  contributor:
    fullname: Kaeriyama
– volume: 22
  start-page: 587
  year: 2010
  ident: c3dt51795k-(cit2)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
  contributor:
    fullname: Goodenough
– volume: 183
  start-page: 48
  year: 2011
  ident: c3dt51795k-(cit23)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.12.010
  contributor:
    fullname: Shimonishi
– volume: 196
  start-page: 3342
  year: 2011
  ident: c3dt51795k-(cit28)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.089
  contributor:
    fullname: Ohta
– volume: 206
  start-page: 33
  year: 2012
  ident: c3dt51795k-(cit20)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.10.023
  contributor:
    fullname: Logéat
– volume: 175
  start-page: 103
  year: 2004
  ident: c3dt51795k-(cit31)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.09.034
  contributor:
    fullname: Chen
– volume: 38
  start-page: 9
  year: 1990
  ident: c3dt51795k-(cit5)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(90)90440-3
  contributor:
    fullname: Pronin
– volume: 13
  start-page: 509
  year: 2011
  ident: c3dt51795k-(cit19)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.02.035
  contributor:
    fullname: Kumazaki
– volume: 1
  start-page: Q57
  year: 2012
  ident: c3dt51795k-(cit27)/*[position()=1]
  publication-title: ECS Solid-State Lett.
  doi: 10.1149/2.013206ssl
  contributor:
    fullname: Tan
– volume: 196
  start-page: 8683
  year: 2011
  ident: c3dt51795k-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.05.065
  contributor:
    fullname: Jin
– volume: 9–10
  start-page: 851
  year: 1983
  ident: c3dt51795k-(cit3)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(83)90101-7
  contributor:
    fullname: Dyvoire
SSID ssj0022052
Score 2.4681985
Snippet Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to...
Epitaxial thin films of Al-doped Li sub(7)La sub(3)Zr sub(2)O sub(12) (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 13112
SubjectTerms Aluminum
Distortion
Epitaxy
Grains
Lattices
Lithium
Orientation
Three dimensional
Title Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte
URI https://www.ncbi.nlm.nih.gov/pubmed/23877300
https://search.proquest.com/docview/1427007414
https://search.proquest.com/docview/1567064100
https://search.proquest.com/docview/1730097535
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuK950ecgIblEg9SNNjqulq4LKIkEr9RbZjtMN0GTVJtKWn8SvZJw4j0rLauEStU7qWJ6v9sx4Zj6E3goBSuso1q4OY-KyUCs3CBh3PelxDepJwio6oM_n_nTBPi35cjD43YtaKgv5Tv26Nq_kf6QKbSBXkyX7D5JtO4UG-AzyhStIGK63kvHEUH5cGZ_3Cqxpm6QGevVFWq4dI1cwdk0915ogIk-ae25-lcbaWYlNpgsbR-mYM2oYbhq7VZKRI6vKmzvHEuX83BV7UUMfhOGjNhQTDd_4tnIviKwqQdF5GfdqU9QkUspRDc9cFwOwrh3U2WqzK1vETtON2Im1qNOKtgL03c7XYKJ4KhYo51teth2JrGITd77u8u9p36lhCCbCJkm8XoeZOVkmxFbJ7rdZ36ddvBnpgZT2l2JTR4j09nXzfXztpuFRU3NV0bgw9cr4j25rbMIBzr9EZ4vZLJpPlvM76JDAogar6eHJZP5x1pr3xKv4ndqhN8Vwafi-63tf_fmLTVPpNvP76MgaJfikRtgDNNDZQ3T3tJHRI3TZIg3XSMOANGzRhEHOuI80nCd4D2m4RhoGpMEPMSAN95CGLdJwD2mP0eJsMj-duparw1XMp4Ubc-L5QshA6TghQoFaS6kiahQI5XtUjWMpZKiT0Zhqj4qQJkoK308450oloLQ_QQdZnulnCBujV1CwpBknDFYQyZgMaaBlQvxAajJEb5opjC7rkixRFUpBw6ib6CF63cxuBJNljsFEpvNyC8auCbYATZrd8Az3x6CsjzzvhmcM1YPJS-dD9LQWXzseUITH5vbxLd7wHN3r_gIv0EGxKfVL0HQL-cpC7A97nbN_
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitaxial+growth+and+lithium+ion+conductivity+of+lithium-oxide+garnet+for+an+all+solid-state+battery+electrolyte&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Kim%2C+Sangryun&rft.au=Hirayama%2C+Masaaki&rft.au=Taminato%2C+Sou&rft.au=Kanno%2C+Ryoji&rft.date=2013-09-28&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=42&rft.issue=36&rft.spage=13112&rft.epage=13117&rft_id=info:doi/10.1039%2Fc3dt51795k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon