What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?

Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poor...

Full description

Saved in:
Bibliographic Details
Published inHearing research Vol. 359; pp. 50 - 63
Main Authors Hughes, Michelle L., Choi, Sangsook, Glickman, Erin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2018
Subjects
Online AccessGet full text
ISSN0378-5955
1878-5891
1878-5891
DOI10.1016/j.heares.2017.12.015

Cover

Abstract Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans. •Stimulus polarity primarily has supra-threshold effects on the eCAP.•Anodic-leading pulses yield larger amplitudes and steeper slopes than cathodic.•Longer interphase gaps yield lower thresholds and larger amplitudes.•Interphase gap and polarity effects are generally not correlated.
AbstractList Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans.Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans.
Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans.
Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans. •Stimulus polarity primarily has supra-threshold effects on the eCAP.•Anodic-leading pulses yield larger amplitudes and steeper slopes than cathodic.•Longer interphase gaps yield lower thresholds and larger amplitudes.•Interphase gap and polarity effects are generally not correlated.
Author Hughes, Michelle L.
Glickman, Erin
Choi, Sangsook
Author_xml – sequence: 1
  givenname: Michelle L.
  surname: Hughes
  fullname: Hughes, Michelle L.
  email: michelle.hughes@boystown.org
– sequence: 2
  givenname: Sangsook
  surname: Choi
  fullname: Choi, Sangsook
– sequence: 3
  givenname: Erin
  surname: Glickman
  fullname: Glickman, Erin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29307495$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuKFDEUDTLi9LT-gUiWbqpMqlKPuFBk8AUDLhRchjxuTaWpSsok1dB_b4puB3Whq5twz-Nyzg26ct4BQs8pKSmh7atDOYIMEMuK0K6kVUlo8wjtaN_1RdNzeoV2pN7evGmu0U2MB5IRNaueoOuK16RjvNmh-H2UCWvpcEx2Xqc14sVPMth0wtIZbF2CsIwyAr6XC04wTThjpPJrwnI1Nvlwwg7CEfCwOp2sd5mEtdfjlO8r7LxM0iUcQNvFgkvx7VP0eJBThGeXuUdfP7z_dvupuPvy8fPtu7tCs7ZOhSGsr6HuWKMGrY1hVOsaDFOad2boSWWUUi0lRnHe5b9q66FXwzY4g3qP3pxVl1XNYHS2DnISS7CzDCfhpRV_bpwdxb0_iqYnvGJdFnh5EQj-xwoxidlGnQOQDvwaBeU9b1rWtSxDX_zu9WDyK-cMYGeADj7GAMMDhBKx1SkO4lyn2OoUtBJbWXv0-i-atkluGeeL7fQ_8iUAyBkfLQQRdS5Ag7G5jCSMt_8W-AnNUsKU
CitedBy_id crossref_primary_10_1097_AUD_0000000000000744
crossref_primary_10_1097_AUD_0000000000001559
crossref_primary_10_1007_s10162_019_00718_2
crossref_primary_10_1097_AUD_0000000000000827
crossref_primary_10_1007_s10162_020_00742_7
crossref_primary_10_1007_s10162_020_00749_0
crossref_primary_10_3389_fnins_2021_751599
crossref_primary_10_3389_fpsyg_2020_611517
crossref_primary_10_1016_j_heares_2021_108375
crossref_primary_10_1016_j_cophys_2020_08_001
crossref_primary_10_3389_fnins_2019_00999
crossref_primary_10_1007_s10162_022_00876_w
crossref_primary_10_1016_j_heares_2024_109027
crossref_primary_10_1097_AUD_0000000000001084
crossref_primary_10_1016_j_heares_2021_108413
crossref_primary_10_1016_j_joto_2020_07_003
crossref_primary_10_1121_10_0009383
crossref_primary_10_1016_j_heares_2021_108319
crossref_primary_10_1007_s10162_023_00924_z
crossref_primary_10_1177_23312165211007367
crossref_primary_10_1097_AUD_0000000000000854
crossref_primary_10_1097_AUD_0000000000000876
crossref_primary_10_1007_s10162_020_00773_0
crossref_primary_10_1097_AUD_0000000000000815
crossref_primary_10_1007_s10162_019_00724_4
crossref_primary_10_1088_1741_2552_ac028a
crossref_primary_10_1016_j_heares_2020_108057
crossref_primary_10_1007_s10162_020_00774_z
crossref_primary_10_1007_s10162_022_00882_y
crossref_primary_10_1016_j_heares_2022_108643
crossref_primary_10_1016_j_heares_2023_108764
crossref_primary_10_1109_TBME_2021_3063029
crossref_primary_10_1007_s10162_018_00712_0
crossref_primary_10_3389_fnins_2020_599868
crossref_primary_10_3389_fnint_2023_1125712
crossref_primary_10_1007_s10162_021_00824_0
crossref_primary_10_1097_AUD_0000000000001035
crossref_primary_10_1097_AUD_0000000000000782
crossref_primary_10_1007_s10162_022_00864_0
crossref_primary_10_1177_2331216519862987
crossref_primary_10_1097_AUD_0000000000001556
Cites_doi 10.1016/S0378-5955(99)00011-8
10.1109/10.951508
10.1111/j.1749-6632.1983.tb31625.x
10.1016/S0378-5955(03)00177-1
10.1097/00003446-200112000-00004
10.1007/s10162-016-0614-4
10.1016/j.heares.2010.06.017
10.1007/s10162-006-0040-0
10.1007/s10162-013-0377-0
10.1016/j.heares.2016.08.002
10.1016/j.heares.2006.03.006
10.1177/1084713806296386
10.1016/S0378-5955(00)00257-4
10.1097/00003446-199902000-00005
10.1097/AUD.0000000000000392
10.1016/j.heares.2004.07.005
10.1097/01.mlg.0000227176.09500.28
10.1097/MAO.0b013e3181ec1d92
10.1007/s10162-013-0440-x
10.1007/BF02363130
10.1007/s10162-008-0112-4
10.1016/S0194-5998(97)70178-5
10.1177/000348940111000914
10.1016/S0378-5955(00)00256-2
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.heares.2017.12.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5891
EndPage 63
ExternalDocumentID PMC5809247
29307495
10_1016_j_heares_2017_12_015
S0378595517304781
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC009595
– fundername: NIDCD NIH HHS
  grantid: T35 DC008757
– fundername: NIDCD NIH HHS
  grantid: P30 DC004662
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TEORI
TN5
UNMZH
WUQ
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-d0483e3745bfccdd41cc3ed4bc97df802dbbb610db997f80b63f8bfb63f94e3
IEDL.DBID AIKHN
ISSN 0378-5955
1878-5891
IngestDate Thu Aug 21 13:59:45 EDT 2025
Thu Sep 04 20:45:17 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Thu Apr 24 23:02:43 EDT 2025
Tue Jul 01 04:15:41 EDT 2025
Fri Feb 23 02:14:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AGF
AB
IPG
eCAP
Electrically evoked compound action potential
CI
MPI
Interphase gap
CL
PSP
NRT
BEDCS
Cochlear implant
Polarity
CPI II
RM ANOVA
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-d0483e3745bfccdd41cc3ed4bc97df802dbbb610db997f80b63f8bfb63f94e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5809247
PMID 29307495
PQID 1989564764
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5809247
proquest_miscellaneous_1989564764
pubmed_primary_29307495
crossref_primary_10_1016_j_heares_2017_12_015
crossref_citationtrail_10_1016_j_heares_2017_12_015
elsevier_sciencedirect_doi_10_1016_j_heares_2017_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Hearing research
PublicationTitleAlternate Hear Res
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nadol (bib13) 1997; 117
Macherey, van Wieringen, Carlyon, Deeks, Wouters (bib10) 2006; 7
Hughes, Goehring, Baudhuin (bib3) 2017; 38
Hughes, Vander Werff, Brown, Abbas, Kelsay, Teagle, Lowder (bib4) 2001; 22
Loeb, White, Jenkins (bib6) 1983; 405
Undurraga, van Wieringen, Carlyon, Macherey, Wouters (bib24) 2010; 269
McKay, Henshall (bib11) 2003; 181
Ramekers, Versnel, Strahl, Smeets, Klis, Grolman (bib17) 2014; 15
Kim, Abbas, Brown, Etler, O'Brien, Kim (bib5) 2010; 31
Shepherd, Javel (bib22) 1999; 130
Undurraga, Carlyon, Wouters, van Wieringen (bib23) 2013; 14
Prado-Guitierrez, Fewster, Heasman, McKay, Shepherd (bib16) 2006; 215
Fayad, Linthicum (bib2) 2006; 116
Schvartz-Leyzac, Pfingst (bib21) 2016; 341
Rubinstein, Miller, Mino, Abbas (bib20) 2001; 48
Macherey, Carlyon, van Wieringen, Deeks, Wouters (bib8) 2008; 9
van den Honert, Mortimer (bib25) 1979; 7
Macherey, Cazals (bib9) 2016; vol. 894
Rattay, Leao, Felix (bib19) 2001; 153
Macherey, Carlyon, Chatron, Roman (bib7) 2017; 18
Miller, Abbas, Hay-McCutcheon, Robinson, Nourski, Jeng (bib12) 2004; 198
Abbas, Brown, Shallop, Firszt, Hughes (bib1) 1999; 20
Nadol, Shiao, Burgess, Ketten, Eddington (bib14) 2001; 110
Patrick, Busby, Gibson (bib15) 2006; 10
Rattay, Lutter, Felix (bib18) 2001; 153
Ramekers (10.1016/j.heares.2017.12.015_bib17) 2014; 15
Prado-Guitierrez (10.1016/j.heares.2017.12.015_bib16) 2006; 215
Undurraga (10.1016/j.heares.2017.12.015_bib23) 2013; 14
Macherey (10.1016/j.heares.2017.12.015_bib7) 2017; 18
Macherey (10.1016/j.heares.2017.12.015_bib10) 2006; 7
Rattay (10.1016/j.heares.2017.12.015_bib18) 2001; 153
McKay (10.1016/j.heares.2017.12.015_bib11) 2003; 181
Fayad (10.1016/j.heares.2017.12.015_bib2) 2006; 116
Miller (10.1016/j.heares.2017.12.015_bib12) 2004; 198
Hughes (10.1016/j.heares.2017.12.015_bib4) 2001; 22
Nadol (10.1016/j.heares.2017.12.015_bib14) 2001; 110
Abbas (10.1016/j.heares.2017.12.015_bib1) 1999; 20
Kim (10.1016/j.heares.2017.12.015_bib5) 2010; 31
Macherey (10.1016/j.heares.2017.12.015_bib8) 2008; 9
Undurraga (10.1016/j.heares.2017.12.015_bib24) 2010; 269
Patrick (10.1016/j.heares.2017.12.015_bib15) 2006; 10
Nadol (10.1016/j.heares.2017.12.015_bib13) 1997; 117
Rattay (10.1016/j.heares.2017.12.015_bib19) 2001; 153
Rubinstein (10.1016/j.heares.2017.12.015_bib20) 2001; 48
Schvartz-Leyzac (10.1016/j.heares.2017.12.015_bib21) 2016; 341
Macherey (10.1016/j.heares.2017.12.015_bib9) 2016; vol. 894
Loeb (10.1016/j.heares.2017.12.015_bib6) 1983; 405
van den Honert (10.1016/j.heares.2017.12.015_bib25) 1979; 7
Hughes (10.1016/j.heares.2017.12.015_bib3) 2017; 38
Shepherd (10.1016/j.heares.2017.12.015_bib22) 1999; 130
References_xml – volume: 198
  start-page: 75
  year: 2004
  end-page: 86
  ident: bib12
  article-title: Intracochlear and extracochlear eCAPs suggest antidromic action potentials
  publication-title: Hear. Res.
– volume: vol. 894
  start-page: 133
  year: 2016
  end-page: 142
  ident: bib9
  article-title: Effects of pulse shape and polarity on sensitivity to cochlear implant stimulation: a chronic study in Guinea pigs
  publication-title: Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing
– volume: 18
  start-page: 513
  year: 2017
  end-page: 527
  ident: bib7
  article-title: Effect of pulse polarity on thresholds and on non-monotonic loudness growth in cochlear implant users
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 153
  start-page: 64
  year: 2001
  end-page: 79
  ident: bib19
  article-title: A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability
  publication-title: Hear. Res.
– volume: 20
  start-page: 45
  year: 1999
  end-page: 59
  ident: bib1
  article-title: Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential
  publication-title: Ear Hear.
– volume: 14
  start-page: 359
  year: 2013
  end-page: 377
  ident: bib23
  article-title: The polarity sensitivity of the electrically stimulated human auditory nerve measured at the level of the brainstem
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 110
  start-page: 883
  year: 2001
  end-page: 891
  ident: bib14
  article-title: Histopathology of cochlear implants in humans
  publication-title: Ann. Otol. Rhinol. Laryngol.
– volume: 22
  start-page: 471
  year: 2001
  end-page: 486
  ident: bib4
  article-title: A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in Nucleus 24 cochlear implant users
  publication-title: Ear Hear.
– volume: 48
  start-page: 1065
  year: 2001
  end-page: 1070
  ident: bib20
  article-title: Analysis of monophasic and biphasic electrical stimulation of nerve
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 7
  year: 1979
  ident: bib25
  article-title: The response of the myelinated nerve fiber to short duration biphasic stimulating currents
  publication-title: Ann. Biomed. Eng.
– volume: 31
  start-page: 1041
  year: 2010
  end-page: 1048
  ident: bib5
  article-title: The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array
  publication-title: Otol. Neurotol.
– volume: 10
  start-page: 175
  year: 2006
  end-page: 200
  ident: bib15
  article-title: The development of the Nucleus Freedom cochlear implant system
  publication-title: Trends Amplif.
– volume: 38
  start-page: 332
  year: 2017
  end-page: 343
  ident: bib3
  article-title: Effects of stimulus polarity and artifact reduction method on the electrically evoked compound action potential
  publication-title: Ear Hear.
– volume: 153
  start-page: 43
  year: 2001
  end-page: 63
  ident: bib18
  article-title: A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes
  publication-title: Hear. Res.
– volume: 341
  start-page: 50
  year: 2016
  end-page: 65
  ident: bib21
  article-title: Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap
  publication-title: Hear. Res.
– volume: 215
  start-page: 47
  year: 2006
  end-page: 55
  ident: bib16
  article-title: Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival
  publication-title: Hear. Res.
– volume: 269
  start-page: 146
  year: 2010
  end-page: 161
  ident: bib24
  article-title: Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites
  publication-title: Hear. Res.
– volume: 181
  start-page: 94
  year: 2003
  end-page: 99
  ident: bib11
  article-title: The perceptual effects of interphase gap duration in cochlear implant stimulation
  publication-title: Hear. Res.
– volume: 15
  start-page: 187
  year: 2014
  end-page: 202
  ident: bib17
  article-title: Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 130
  start-page: 171
  year: 1999
  end-page: 188
  ident: bib22
  article-title: Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties
  publication-title: Hear. Res.
– volume: 116
  start-page: 1310
  year: 2006
  end-page: 1320
  ident: bib2
  article-title: Multichannel cochlear implants: relation of histopathology to performance
  publication-title: Laryngoscope
– volume: 117
  start-page: 220
  year: 1997
  end-page: 228
  ident: bib13
  article-title: Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation
  publication-title: Otolaryngol. Head Neck Surg.
– volume: 7
  start-page: 253
  year: 2006
  end-page: 266
  ident: bib10
  article-title: Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 9
  start-page: 241
  year: 2008
  end-page: 251
  ident: bib8
  article-title: Higher sensitivity of human auditory nerve fibers to positive electrical currents
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 405
  start-page: 123
  year: 1983
  end-page: 136
  ident: bib6
  article-title: Biophysical considerations in electrical stimulation of the auditory nervous system
  publication-title: Ann. NY Acad. Sci.
– volume: 130
  start-page: 171
  year: 1999
  ident: 10.1016/j.heares.2017.12.015_bib22
  article-title: Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(99)00011-8
– volume: vol. 894
  start-page: 133
  year: 2016
  ident: 10.1016/j.heares.2017.12.015_bib9
  article-title: Effects of pulse shape and polarity on sensitivity to cochlear implant stimulation: a chronic study in Guinea pigs
– volume: 48
  start-page: 1065
  issue: 10
  year: 2001
  ident: 10.1016/j.heares.2017.12.015_bib20
  article-title: Analysis of monophasic and biphasic electrical stimulation of nerve
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.951508
– volume: 405
  start-page: 123
  year: 1983
  ident: 10.1016/j.heares.2017.12.015_bib6
  article-title: Biophysical considerations in electrical stimulation of the auditory nervous system
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/j.1749-6632.1983.tb31625.x
– volume: 181
  start-page: 94
  year: 2003
  ident: 10.1016/j.heares.2017.12.015_bib11
  article-title: The perceptual effects of interphase gap duration in cochlear implant stimulation
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(03)00177-1
– volume: 22
  start-page: 471
  year: 2001
  ident: 10.1016/j.heares.2017.12.015_bib4
  article-title: A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in Nucleus 24 cochlear implant users
  publication-title: Ear Hear.
  doi: 10.1097/00003446-200112000-00004
– volume: 18
  start-page: 513
  issue: 3
  year: 2017
  ident: 10.1016/j.heares.2017.12.015_bib7
  article-title: Effect of pulse polarity on thresholds and on non-monotonic loudness growth in cochlear implant users
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-016-0614-4
– volume: 269
  start-page: 146
  year: 2010
  ident: 10.1016/j.heares.2017.12.015_bib24
  article-title: Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2010.06.017
– volume: 7
  start-page: 253
  year: 2006
  ident: 10.1016/j.heares.2017.12.015_bib10
  article-title: Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-006-0040-0
– volume: 14
  start-page: 359
  year: 2013
  ident: 10.1016/j.heares.2017.12.015_bib23
  article-title: The polarity sensitivity of the electrically stimulated human auditory nerve measured at the level of the brainstem
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-013-0377-0
– volume: 341
  start-page: 50
  year: 2016
  ident: 10.1016/j.heares.2017.12.015_bib21
  article-title: Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2016.08.002
– volume: 215
  start-page: 47
  year: 2006
  ident: 10.1016/j.heares.2017.12.015_bib16
  article-title: Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2006.03.006
– volume: 10
  start-page: 175
  year: 2006
  ident: 10.1016/j.heares.2017.12.015_bib15
  article-title: The development of the Nucleus Freedom cochlear implant system
  publication-title: Trends Amplif.
  doi: 10.1177/1084713806296386
– volume: 153
  start-page: 64
  year: 2001
  ident: 10.1016/j.heares.2017.12.015_bib19
  article-title: A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00257-4
– volume: 20
  start-page: 45
  year: 1999
  ident: 10.1016/j.heares.2017.12.015_bib1
  article-title: Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential
  publication-title: Ear Hear.
  doi: 10.1097/00003446-199902000-00005
– volume: 38
  start-page: 332
  issue: 3
  year: 2017
  ident: 10.1016/j.heares.2017.12.015_bib3
  article-title: Effects of stimulus polarity and artifact reduction method on the electrically evoked compound action potential
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0000000000000392
– volume: 198
  start-page: 75
  year: 2004
  ident: 10.1016/j.heares.2017.12.015_bib12
  article-title: Intracochlear and extracochlear eCAPs suggest antidromic action potentials
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2004.07.005
– volume: 116
  start-page: 1310
  year: 2006
  ident: 10.1016/j.heares.2017.12.015_bib2
  article-title: Multichannel cochlear implants: relation of histopathology to performance
  publication-title: Laryngoscope
  doi: 10.1097/01.mlg.0000227176.09500.28
– volume: 31
  start-page: 1041
  issue: 7
  year: 2010
  ident: 10.1016/j.heares.2017.12.015_bib5
  article-title: The relationship between electrically evoked compound action potential and speech perception: a study in cochlear implant users with short electrode array
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0b013e3181ec1d92
– volume: 15
  start-page: 187
  year: 2014
  ident: 10.1016/j.heares.2017.12.015_bib17
  article-title: Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-013-0440-x
– volume: 7
  year: 1979
  ident: 10.1016/j.heares.2017.12.015_bib25
  article-title: The response of the myelinated nerve fiber to short duration biphasic stimulating currents
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02363130
– volume: 9
  start-page: 241
  year: 2008
  ident: 10.1016/j.heares.2017.12.015_bib8
  article-title: Higher sensitivity of human auditory nerve fibers to positive electrical currents
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-008-0112-4
– volume: 117
  start-page: 220
  year: 1997
  ident: 10.1016/j.heares.2017.12.015_bib13
  article-title: Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation
  publication-title: Otolaryngol. Head Neck Surg.
  doi: 10.1016/S0194-5998(97)70178-5
– volume: 110
  start-page: 883
  issue: 9
  year: 2001
  ident: 10.1016/j.heares.2017.12.015_bib14
  article-title: Histopathology of cochlear implants in humans
  publication-title: Ann. Otol. Rhinol. Laryngol.
  doi: 10.1177/000348940111000914
– volume: 153
  start-page: 43
  year: 2001
  ident: 10.1016/j.heares.2017.12.015_bib18
  article-title: A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00256-2
SSID ssj0015342
Score 2.4082775
Snippet Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Acoustic Stimulation - methods
Adolescent
Adult
Aged
Auditory Perception
Auditory Threshold
Child
Child, Preschool
Cochlear implant
Cochlear Implantation - instrumentation
Cochlear Implants
Cochlear Nerve - physiopathology
Deafness - diagnosis
Deafness - physiopathology
Deafness - psychology
Deafness - rehabilitation
Electric Stimulation
Electrically evoked compound action potential
Evoked Potentials, Auditory
Female
Humans
Infant
Interphase gap
Male
Middle Aged
Persons With Hearing Impairments - psychology
Persons With Hearing Impairments - rehabilitation
Polarity
Time Factors
Young Adult
Title What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?
URI https://dx.doi.org/10.1016/j.heares.2017.12.015
https://www.ncbi.nlm.nih.gov/pubmed/29307495
https://www.proquest.com/docview/1989564764
https://pubmed.ncbi.nlm.nih.gov/PMC5809247
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbpBkovpU362D6CCqU3dW1LsqxTWULDtiW5pIXchPVw12XXa7K7h1zy2zMj20u3LQR6MrIlLDSSZqT55htC3nPOhdW6YqCaPBMydcxKVTJZOZ6FjNsypuk8v8hnP8TXK3l1QE6HWBiEVfZ7f7enx926fzPpR3PS1vXkMuEKyblkqtB1hOHXhxnXuRyRw-mXb7OLnTNBctE5E-DAhA2GCLoI84p5o5G3O1XxXhDz4_5bQ_1tgf4JpPxNM509IY97k5JOu14_JQehOSLH0waO08sb-oFGkGe8PT8iD897X_oxWSNrN4WRpbDKl9vFdk1bPOeCWU7LxtM6whHnoOXoz7KlGG1CoU5EMtMSgzlW1ze0QcQkRe2IEoZGFHbYOeaiYPWyXYDcKPJntBh2uf70jFyeff5-OmN9CgbmRM43zCPjfOBKSFs5571InePBC-u08lWRZN5aCxaYB3krKNucV4Wt8KFF4M_JqFk14SWhqaty7VXiEl4I68tSO6ErX6ggQqqdHhM-DLpxPTs5JslYmAGG9st0ojIoKpNmBkQ1JmzXqu3YOe6prwZ5mr1ZZkCB3NPy3SB-AwsQvSplE1bbtUHQmcyFysWYvOimw64vYEuBiabxv3sTZVcByb33vzT1PJJ8yyKBo7F69d89fk0eQano8HJvyGhzvQ1vwYDa2BPy4ONtetIvkzsmAx-Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhgbaXkiZ9bNKHCqU3de2VZFmnEkLDts3mkhRyE9bDXZddr8nuHnLJb8-MbC_dthDoydiSsNBImhnpm28I-cA5F1brkoFq8kzI1DErVcFk6fgojLgtYprOyUU2_iG-XcvrHXLax8IgrLLb-9s9Pe7W3ZdhN5rDpqqGlwlXSM4lU4VXRxh-vSckV4jr-3S3wXnAihbtVQK4S1i9j5-LIK-YNRpZu1MVTwUxO-6_9dPf9uefMMrf9NLZPnnaGZT0pO3zM7IT6gNyeFKDMz2_pR9phHjGs_MD8mjS3aQfkiVydlMYVwprfL6erZe0QS8XjHJa1J5WEYw4BR1HfxYNxVgTCnUijpkWGMqxuLmlNeIlKepGlC80orC_TjETBavmzQykRpE9o8Ggy-Xn5-Ty7MvV6Zh1CRiYExlfMY9884ErIW3pnPcidY4HL6zTypd5MvLWWrC_PEhbwbvNeJnbEh9aBP6C7NaLOrwiNHVlpr1KXMJzYX1RaCd06XMVREi10wPC-0E3ruMmxxQZM9OD0H6ZVlQGRWXSkQFRDQjbtGpabo4H6qtenmZrjhlQHw-0fN-L38DywzuVog6L9dIg5ExmQmViQF6202HTF7CkwEDT-N-tibKpgNTe2yV1NY0U3zJPwDFWR__d43fk8fhqcm7Ov158PyZPoCRvkXOvye7qZh3egCm1sm_jUrkHo6MgYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+can+stimulus+polarity+and+interphase+gap+tell+us+about+auditory+nerve+function+in+cochlear-implant+recipients%3F&rft.jtitle=Hearing+research&rft.au=Hughes%2C+Michelle+L.&rft.au=Choi%2C+Sangsook&rft.au=Glickman%2C+Erin&rft.date=2018-03-01&rft.pub=Elsevier+B.V&rft.issn=0378-5955&rft.eissn=1878-5891&rft.volume=359&rft.spage=50&rft.epage=63&rft_id=info:doi/10.1016%2Fj.heares.2017.12.015&rft.externalDocID=S0378595517304781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon