Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields

We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of t...

Full description

Saved in:
Bibliographic Details
Published inBernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 24; no. 4B; p. 3422
Main Authors Cheng, Dan, Schwartzman, Armin
Format Journal Article
LanguageEnglish
Published England 01.11.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions.
AbstractList We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions.
Author Cheng, Dan
Schwartzman, Armin
Author_xml – sequence: 1
  givenname: Dan
  surname: Cheng
  fullname: Cheng, Dan
  organization: Texas Tech University
– sequence: 2
  givenname: Armin
  surname: Schwartzman
  fullname: Schwartzman, Armin
  organization: University of California, San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31511762$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRrMYcS668AUkL1BNmjRtl1o7FxlUvKyHNPnjRNqmJCno21tRVx8cDge-JZr1rgeELii5YjQj1zRPbuv7UvAZWlCWkSRPRTZHyxA-CKFcCHKK5pNJaS7SBYL6cwAVQeOHsWvAY9lrvAX7foz4zobobTNG63rsDK68jVbJFj8528fwg1465-IR74KL3g1W4Y0cQ7Cyx89TyHV4baHV4QydGNkGOP_bFXpb16_VNtk_bnbVzT5RXLCYKF2aTBYmF6bUglNDCDGZZgwULxTRDHTBOC0pKNE0wCefEwJCpw0rM5WnK3T52x3GpgN9GLztpP86_P9NvwEklFdn
CitedBy_id crossref_primary_10_1007_s41468_023_00113_0
crossref_primary_10_1088_1751_8121_aae74f
crossref_primary_10_1214_20_EJP470
crossref_primary_10_3150_18_BEJ1068
crossref_primary_10_1007_s00440_020_00984_9
crossref_primary_10_1016_j_spl_2019_108672
crossref_primary_10_1016_j_spl_2020_108698
crossref_primary_10_1214_20_EJS1751
crossref_primary_10_3150_24_BEJ1719
crossref_primary_10_1017_apr_2023_2
crossref_primary_10_1016_j_spa_2022_04_013
crossref_primary_10_1016_j_spl_2024_110116
crossref_primary_10_1051_0004_6361_201937001
crossref_primary_10_1093_mnras_stz541
crossref_primary_10_1016_j_spa_2024_104560
crossref_primary_10_1007_s00220_023_04739_0
crossref_primary_10_1007_s10955_020_02522_2
crossref_primary_10_1051_0004_6361_201834854
crossref_primary_10_1016_j_neuroimage_2019_04_041
crossref_primary_10_1214_23_AAP2033
crossref_primary_10_2140_pmp_2022_3_105
ContentType Journal Article
DBID NPM
DOI 10.3150/17-BEJ964
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 31511762
Genre Journal Article
GroupedDBID 23N
2AX
2WC
5GY
6J9
AAFWJ
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ACDIW
ACHJO
ACMTB
ACTMH
ADNWM
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CAG
COF
CS3
DQDLB
DSRWC
DU5
E3Z
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HGD
HQ6
HVGLF
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
PUASD
RBU
RNS
RPE
SA0
TN5
WS9
ID FETCH-LOGICAL-c463t-cd9f5a8f76f9d641f000f5d33ec48c0d3ed834191ec6bbe4cd9400e6d2b395c72
ISSN 1350-7265
IngestDate Thu Apr 03 07:02:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4B
Keywords GOI
Critical points
60G60
Gaussian random fields
Boundary
15B52
Sphere
Height density
Random matrices
Kac-Rice formula
Isotropic
GOE
60G15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-cd9f5a8f76f9d641f000f5d33ec48c0d3ed834191ec6bbe4cd9400e6d2b395c72
OpenAccessLink https://projecteuclid.org/journals/bernoulli/volume-24/issue-4B/Expected-number-and-height-distribution-of-critical-points-of-smooth/10.3150/17-BEJ964.pdf
PMID 31511762
ParticipantIDs pubmed_primary_31511762
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
PublicationTitleAlternate Bernoulli (Andover)
PublicationYear 2018
SSID ssj0014660
Score 2.3822153
Snippet We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean...
SourceID pubmed
SourceType Index Database
StartPage 3422
Title Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields
URI https://www.ncbi.nlm.nih.gov/pubmed/31511762
Volume 24
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZSkFA4IChQyks-cIsM2bX34SMpLaFSq4qkUm_VrtdWc8hulIcq5c_0r3bG9j6IKAIuq8h2Vht_X2bt8cw3hHwaKoMr0SFLhcyYECJkUuYZyyMdBCbMTGrrp5ydx-NLcXoVXfV6d52opc06_6y2v80r-R9UoQ1wxSzZf0C2uSk0wGfAF66AMFz_CmPUKVa4ZDy3dT3sQcDY-jpRVbOpZWVDLuqSBhfVzEe-TOYVwDT4sarWy2oxU4Pv2WZlcyp_wo2q-eAEo9tWvxz76mVZ4fHRg_ITNt6gGdWNCT1rBGJRgAQjAFqJ6IslmBUbptt4-I9utDND31r-TtTNLUzD1nttkaRl120RpD5_r7W0PBqyJHSFImpT7NKpPeXEqGNYuXDpy7sWn8OCFp0PCRsdn0oniN5BfjG30MOoIPBm_8-9O-Lbddce2YNtCNZVRWeQP6QSsU9C97_ECVfhE31pnqdPntT32Nm42AXM9Dl55nce9Kuj0QvS0-U-edqiston_RaWl0TX7KKOXRSAoo5dtMsuWhlas4s6dmGTYxdt2EVrdlHHLurY9YpcnhxPj8bMF-VgSsR8zVQhTZSlJomNLGIRGHinmqjgXCuRqmHBdZGiRmCgVZznWsB4eE3ouAhzLiOVhK_Jo7Iq9RtCBez9gyRTMtUZHq_D17nkKS90EidcZIfkwE3Y9cIpr1zXU_n2wZ53pN-y7T15bOCvrj_AunGdf7To3QPqJG-6
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expected+Number+and+Height+Distribution+of+Critical+Points+of+Smooth+Isotropic+Gaussian+Random+Fields&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Cheng%2C+Dan&rft.au=Schwartzman%2C+Armin&rft.date=2018-11-01&rft.issn=1350-7265&rft.volume=24&rft.issue=4B&rft.spage=3422&rft_id=info:doi/10.3150%2F17-BEJ964&rft_id=info%3Apmid%2F31511762&rft_id=info%3Apmid%2F31511762&rft.externalDocID=31511762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon