Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields
We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of t...
Saved in:
Published in | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability Vol. 24; no. 4B; p. 3422 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.11.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions. |
---|---|
AbstractList | We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions. |
Author | Cheng, Dan Schwartzman, Armin |
Author_xml | – sequence: 1 givenname: Dan surname: Cheng fullname: Cheng, Dan organization: Texas Tech University – sequence: 2 givenname: Armin surname: Schwartzman fullname: Schwartzman, Armin organization: University of California, San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31511762$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRrMYcS668AUkL1BNmjRtl1o7FxlUvKyHNPnjRNqmJCno21tRVx8cDge-JZr1rgeELii5YjQj1zRPbuv7UvAZWlCWkSRPRTZHyxA-CKFcCHKK5pNJaS7SBYL6cwAVQeOHsWvAY9lrvAX7foz4zobobTNG63rsDK68jVbJFj8528fwg1465-IR74KL3g1W4Y0cQ7Cyx89TyHV4baHV4QydGNkGOP_bFXpb16_VNtk_bnbVzT5RXLCYKF2aTBYmF6bUglNDCDGZZgwULxTRDHTBOC0pKNE0wCefEwJCpw0rM5WnK3T52x3GpgN9GLztpP86_P9NvwEklFdn |
CitedBy_id | crossref_primary_10_1007_s41468_023_00113_0 crossref_primary_10_1088_1751_8121_aae74f crossref_primary_10_1214_20_EJP470 crossref_primary_10_3150_18_BEJ1068 crossref_primary_10_1007_s00440_020_00984_9 crossref_primary_10_1016_j_spl_2019_108672 crossref_primary_10_1016_j_spl_2020_108698 crossref_primary_10_1214_20_EJS1751 crossref_primary_10_3150_24_BEJ1719 crossref_primary_10_1017_apr_2023_2 crossref_primary_10_1016_j_spa_2022_04_013 crossref_primary_10_1016_j_spl_2024_110116 crossref_primary_10_1051_0004_6361_201937001 crossref_primary_10_1093_mnras_stz541 crossref_primary_10_1016_j_spa_2024_104560 crossref_primary_10_1007_s00220_023_04739_0 crossref_primary_10_1007_s10955_020_02522_2 crossref_primary_10_1051_0004_6361_201834854 crossref_primary_10_1016_j_neuroimage_2019_04_041 crossref_primary_10_1214_23_AAP2033 crossref_primary_10_2140_pmp_2022_3_105 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.3150/17-BEJ964 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 31511762 |
Genre | Journal Article |
GroupedDBID | 23N 2AX 2WC 5GY 6J9 AAFWJ AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ACDIW ACHJO ACMTB ACTMH ADNWM ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CAG COF CS3 DQDLB DSRWC DU5 E3Z EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HGD HQ6 HVGLF IPSME JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 PUASD RBU RNS RPE SA0 TN5 WS9 |
ID | FETCH-LOGICAL-c463t-cd9f5a8f76f9d641f000f5d33ec48c0d3ed834191ec6bbe4cd9400e6d2b395c72 |
ISSN | 1350-7265 |
IngestDate | Thu Apr 03 07:02:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4B |
Keywords | GOI Critical points 60G60 Gaussian random fields Boundary 15B52 Sphere Height density Random matrices Kac-Rice formula Isotropic GOE 60G15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c463t-cd9f5a8f76f9d641f000f5d33ec48c0d3ed834191ec6bbe4cd9400e6d2b395c72 |
OpenAccessLink | https://projecteuclid.org/journals/bernoulli/volume-24/issue-4B/Expected-number-and-height-distribution-of-critical-points-of-smooth/10.3150/17-BEJ964.pdf |
PMID | 31511762 |
ParticipantIDs | pubmed_primary_31511762 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
PublicationTitleAlternate | Bernoulli (Andover) |
PublicationYear | 2018 |
SSID | ssj0014660 |
Score | 2.3822153 |
Snippet | We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3422 |
Title | Expected Number and Height Distribution of Critical Points of Smooth Isotropic Gaussian Random Fields |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31511762 |
Volume | 24 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZSkFA4IChQyks-cIsM2bX34SMpLaFSq4qkUm_VrtdWc8hulIcq5c_0r3bG9j6IKAIuq8h2Vht_X2bt8cw3hHwaKoMr0SFLhcyYECJkUuYZyyMdBCbMTGrrp5ydx-NLcXoVXfV6d52opc06_6y2v80r-R9UoQ1wxSzZf0C2uSk0wGfAF66AMFz_CmPUKVa4ZDy3dT3sQcDY-jpRVbOpZWVDLuqSBhfVzEe-TOYVwDT4sarWy2oxU4Pv2WZlcyp_wo2q-eAEo9tWvxz76mVZ4fHRg_ITNt6gGdWNCT1rBGJRgAQjAFqJ6IslmBUbptt4-I9utDND31r-TtTNLUzD1nttkaRl120RpD5_r7W0PBqyJHSFImpT7NKpPeXEqGNYuXDpy7sWn8OCFp0PCRsdn0oniN5BfjG30MOoIPBm_8-9O-Lbddce2YNtCNZVRWeQP6QSsU9C97_ECVfhE31pnqdPntT32Nm42AXM9Dl55nce9Kuj0QvS0-U-edqiston_RaWl0TX7KKOXRSAoo5dtMsuWhlas4s6dmGTYxdt2EVrdlHHLurY9YpcnhxPj8bMF-VgSsR8zVQhTZSlJomNLGIRGHinmqjgXCuRqmHBdZGiRmCgVZznWsB4eE3ouAhzLiOVhK_Jo7Iq9RtCBez9gyRTMtUZHq_D17nkKS90EidcZIfkwE3Y9cIpr1zXU_n2wZ53pN-y7T15bOCvrj_AunGdf7To3QPqJG-6 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expected+Number+and+Height+Distribution+of+Critical+Points+of+Smooth+Isotropic+Gaussian+Random+Fields&rft.jtitle=Bernoulli+%3A+official+journal+of+the+Bernoulli+Society+for+Mathematical+Statistics+and+Probability&rft.au=Cheng%2C+Dan&rft.au=Schwartzman%2C+Armin&rft.date=2018-11-01&rft.issn=1350-7265&rft.volume=24&rft.issue=4B&rft.spage=3422&rft_id=info:doi/10.3150%2F17-BEJ964&rft_id=info%3Apmid%2F31511762&rft_id=info%3Apmid%2F31511762&rft.externalDocID=31511762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-7265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-7265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-7265&client=summon |