NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), los...
Saved in:
Published in | Developmental cell Vol. 56; no. 3; pp. 260 - 276.e7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1534-5807 1878-1551 1878-1551 |
DOI | 10.1016/j.devcel.2020.11.016 |
Cover
Loading…
Abstract | Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.
[Display omitted]
•Proteomic profiling of NPC lysosomes reveals both proteolytic and structural defects•Loss of cholesterol transport activity by NPC1 causes aberrant mTORC1 signaling•mTORC1 inhibition restores lysosomal and mitochondrial function in NPC cells
Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al. identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells. |
---|---|
AbstractList | Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function and neurodegeneration. The compositional and functional alterations in NPC lysosomes, and how aberrant cholesterol-mTORC1 signaling contributes to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells. Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. [Display omitted] •Proteomic profiling of NPC lysosomes reveals both proteolytic and structural defects•Loss of cholesterol transport activity by NPC1 causes aberrant mTORC1 signaling•mTORC1 inhibition restores lysosomal and mitochondrial function in NPC cells Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al. identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells. Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. |
Author | Davis, Oliver B. Maher, Claire F. Shin, Hijai R. Perera, Rushika M. Kukurugya, Matthew Lim, Chun-Yan Wu, Emma Y. Zoncu, Roberto Ordonez, M. Paulina |
AuthorAffiliation | 2 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA 3 Department of Anatomy and Helen Diller Family Comprehensive Cancer center, University of California, San Francisco, San Francisco, CA 94143, USA 4 Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA 6 Lead Contact 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA 5 Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – name: 3 Department of Anatomy and Helen Diller Family Comprehensive Cancer center, University of California, San Francisco, San Francisco, CA 94143, USA – name: 6 Lead Contact – name: 2 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA – name: 4 Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA – name: 5 Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA |
Author_xml | – sequence: 1 givenname: Oliver B. surname: Davis fullname: Davis, Oliver B. organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 2 givenname: Hijai R. surname: Shin fullname: Shin, Hijai R. organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 3 givenname: Chun-Yan surname: Lim fullname: Lim, Chun-Yan organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 4 givenname: Emma Y. surname: Wu fullname: Wu, Emma Y. organization: Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA – sequence: 5 givenname: Matthew surname: Kukurugya fullname: Kukurugya, Matthew organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 6 givenname: Claire F. surname: Maher fullname: Maher, Claire F. organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA – sequence: 7 givenname: Rushika M. surname: Perera fullname: Perera, Rushika M. organization: Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA – sequence: 8 givenname: M. Paulina surname: Ordonez fullname: Ordonez, M. Paulina email: pordonez@health.ucsd.edu organization: Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA – sequence: 9 givenname: Roberto surname: Zoncu fullname: Zoncu, Roberto email: rzoncu@berkeley.edu organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33308480$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUuP0zAQjtAi9gH_ACEfuaR4EqdOOCChCHZXWm0rtpwtx56mLo5d7LSoB_77umoXAQc4jTXfS_7mMjtz3mGWvQY6AQrTd-uJxp1COylokVYwSctn2QXUvM6hquAsvauS5VVN-Xl2GeOaJgbU9EV2XpYlrVlNL7Kf9_MW8mEx-9ICeTC9k9a4nrR-u7EYSbvyaYwYvCUP6OIBGz2ZhV46tBbJjR_Qx1FGE4l0mtymQRYy9DjKLuFzOa5-yD0xjtwbHKRz-dyob2Sx3yBpX2bPl9JGfHWaV9nXz58W7U1-N7u-bT_e5YpNyzFXqtRFA6oCyhlrKlBcS10wLbsKCs2nRSeL9FmU0CzZklcd41jUoCTHCpUsr7IPR9_NthtQK3RjkFZsghlk2AsvjfgTcWYler8TdQNNwyEZvD0ZBP99mxoRg4mpfJtq8NsoCsYpLfmUlYn65vesXyFPnSfC-yNBBR9jwKVQZpSj8YdoYwVQcTiwWIvjgcXhwAJApGUSs7_ET_7_kZ0KwNTyzmAQURl0CrUJqEahvfm3wSNlHsKB |
CitedBy_id | crossref_primary_10_1053_j_gastro_2021_11_014 crossref_primary_10_1038_s41556_024_01459_y crossref_primary_10_1016_j_jare_2024_11_020 crossref_primary_10_1016_j_bbamcr_2025_119896 crossref_primary_10_3390_ijms23084459 crossref_primary_10_1038_s41598_023_32971_0 crossref_primary_10_1002_bies_202400023 crossref_primary_10_1038_s41422_022_00740_9 crossref_primary_10_1038_s41467_024_46007_2 crossref_primary_10_1242_jcs_261402 crossref_primary_10_1016_j_celrep_2023_113631 crossref_primary_10_1016_j_bbalip_2023_159365 crossref_primary_10_1016_j_jmb_2023_168140 crossref_primary_10_1371_journal_pone_0294312 crossref_primary_10_1515_hsz_2022_0287 crossref_primary_10_26508_lsa_202402584 crossref_primary_10_3390_ijms242115642 crossref_primary_10_1016_j_ymgme_2023_107729 crossref_primary_10_1016_j_bbadis_2023_166993 crossref_primary_10_2174_1389450123666220111115528 crossref_primary_10_1016_j_freeradbiomed_2024_09_028 crossref_primary_10_1002_ctm2_852 crossref_primary_10_1038_s41467_023_39261_3 crossref_primary_10_1038_s44318_024_00177_3 crossref_primary_10_1016_j_celrep_2023_113183 crossref_primary_10_1016_j_addr_2022_114532 crossref_primary_10_1042_BST20220519 crossref_primary_10_1016_j_cell_2024_11_028 crossref_primary_10_1016_j_bbadis_2023_166980 crossref_primary_10_3390_cells11030326 crossref_primary_10_3389_fnins_2023_1152503 crossref_primary_10_3390_antiox12122021 crossref_primary_10_1016_j_tins_2021_12_004 crossref_primary_10_1038_s41388_023_02771_x crossref_primary_10_1016_j_cell_2024_09_048 crossref_primary_10_1016_j_devcel_2024_03_030 crossref_primary_10_1038_s41467_024_50076_8 crossref_primary_10_1126_science_abg6621 crossref_primary_10_1126_sciadv_abo2510 crossref_primary_10_3390_ijms22168858 crossref_primary_10_7554_eLife_86194_3 crossref_primary_10_1007_s00109_024_02512_x crossref_primary_10_1172_jci_insight_160308 crossref_primary_10_1126_sciadv_adr7325 crossref_primary_10_1016_j_molcel_2022_03_023 crossref_primary_10_1016_j_fsi_2023_108864 crossref_primary_10_1016_j_bbadis_2022_166399 crossref_primary_10_1038_s41467_025_58087_9 crossref_primary_10_1101_gad_346759_120 crossref_primary_10_1111_nan_12738 crossref_primary_10_1091_mbc_E21_11_0595_T crossref_primary_10_1038_s41580_022_00529_z crossref_primary_10_1080_15548627_2024_2435238 crossref_primary_10_1016_j_tcb_2024_04_008 crossref_primary_10_1186_s13046_024_03172_y crossref_primary_10_1016_j_tcb_2021_12_009 crossref_primary_10_7554_eLife_72328 crossref_primary_10_1038_s41467_022_33933_2 crossref_primary_10_1016_j_canlet_2023_216208 crossref_primary_10_1016_j_lfs_2024_122722 crossref_primary_10_1002_jimd_12833 crossref_primary_10_1080_15548627_2021_1975914 crossref_primary_10_3390_cells11030507 crossref_primary_10_1002_eji_202350501 crossref_primary_10_3390_ijms242417513 crossref_primary_10_3390_biom12050616 crossref_primary_10_1073_pnas_2111506119 crossref_primary_10_1038_s41419_024_06770_y crossref_primary_10_1038_s41556_023_01198_6 crossref_primary_10_1177_26331055241252772 crossref_primary_10_4103_NRR_NRR_D_23_01462 crossref_primary_10_1016_j_ymgme_2022_07_014 crossref_primary_10_1098_rstb_2022_0388 crossref_primary_10_3390_biomedicines11041067 crossref_primary_10_1038_s41598_021_04584_y crossref_primary_10_3390_ijms23137206 crossref_primary_10_1016_j_coisb_2022_100416 crossref_primary_10_1172_jci_insight_179525 crossref_primary_10_3389_fcell_2021_790568 crossref_primary_10_3390_antiox14020125 crossref_primary_10_1080_15548627_2023_2270378 crossref_primary_10_1111_cas_16331 crossref_primary_10_3390_ijms24076221 crossref_primary_10_1080_15548627_2021_2020979 crossref_primary_10_1126_sciadv_adu5787 crossref_primary_10_1083_jcb_202105060 crossref_primary_10_3389_fragi_2021_707372 crossref_primary_10_1016_j_chemosphere_2023_138071 crossref_primary_10_1038_s41581_022_00648_y crossref_primary_10_1038_s41594_024_01470_9 crossref_primary_10_1007_s12311_021_01347_3 crossref_primary_10_1016_j_bbadis_2024_167478 crossref_primary_10_1016_j_isci_2022_104941 crossref_primary_10_1080_15384047_2023_2170669 crossref_primary_10_1038_s41467_023_36298_2 crossref_primary_10_3389_fphys_2024_1431030 crossref_primary_10_1038_s41467_024_54355_2 crossref_primary_10_1152_physiol_00026_2024 crossref_primary_10_1016_j_jbc_2024_107403 crossref_primary_10_1038_s41556_022_00926_8 crossref_primary_10_1038_s41467_023_38501_w crossref_primary_10_7554_eLife_86194 crossref_primary_10_1016_j_devcel_2021_01_007 crossref_primary_10_3390_cancers14143543 crossref_primary_10_1038_s41582_024_00999_z crossref_primary_10_1038_s41580_023_00676_x crossref_primary_10_1016_j_molmet_2022_101481 crossref_primary_10_1113_EP090518 crossref_primary_10_1128_jvi_00646_22 crossref_primary_10_3389_fcell_2021_658995 crossref_primary_10_1016_j_coisb_2021_100408 crossref_primary_10_3389_fimmu_2024_1414301 crossref_primary_10_34133_research_0343 crossref_primary_10_1016_j_jbc_2024_107911 crossref_primary_10_26508_lsa_202101239 crossref_primary_10_1016_j_plipres_2023_101225 |
Cites_doi | 10.1146/annurev-cellbio-111315-125125 10.1016/j.cell.2010.02.024 10.1038/s41467-018-06115-2 10.1016/j.cell.2015.10.017 10.1126/science.aar5078 10.1038/emboj.2013.171 10.1093/nar/gkv1003 10.1172/JCI94130 10.1016/j.devcel.2019.10.025 10.1038/nature17963 10.1126/science.1257132 10.1016/j.cell.2017.09.046 10.1101/pdb.prot087106 10.1093/hmg/dds324 10.15252/embj.201899753 10.1681/ASN.2014090937 10.1038/s41467-018-03035-z 10.1038/s41594-020-0404-x 10.1126/science.aan6298 10.1074/jbc.M114.559914 10.1016/j.cell.2008.06.016 10.1016/j.cell.2011.06.034 10.1016/j.cell.2013.04.023 10.1038/s41556-019-0391-5 10.1073/pnas.0914798107 10.7554/eLife.51031 10.1038/s41467-019-14009-0 10.1126/science.1207056 10.1016/j.bbamcr.2008.12.001 10.1093/hmg/ddw025 10.1083/jcb.201008084 10.1126/science.aay0166 10.1038/s41589-019-0308-4 10.7554/eLife.25466 10.1074/mcp.M112.026179 10.7554/eLife.12177 10.1007/s10545-016-9919-z 10.1038/nature14893 10.1074/jbc.272.10.6245 10.1083/jcb.201301039 10.1074/jbc.M115.689646 10.1016/j.cell.2012.07.032 10.1093/hmg/dds090 10.1038/nchembio.625 10.1038/10084 10.1126/science.aao1583 10.1073/pnas.1611956113 10.1038/s41572-018-0025-4 10.1126/science.1174447 10.1172/jci.insight.136676 10.1016/j.molcel.2017.10.016 10.1194/jlr.RA119000571 10.1126/science.aag1417 10.1126/science.277.5323.232 10.1016/j.cell.2009.03.049 10.1038/s41556-018-0244-7 10.1042/BJ20140334 10.1016/j.cell.2016.06.037 10.1074/jbc.M414024200 10.1073/pnas.262669399 10.1016/j.cell.2013.11.049 10.1242/dmm.038596 10.1038/s41467-019-11174-0 10.7554/eLife.25960 10.1074/jbc.M412898200 10.1038/emboj.2012.32 10.1016/j.cell.2013.09.056 10.1126/science.aad0489 10.1016/j.celrep.2013.10.042 10.1038/nrm.2016.121 10.1093/hmg/ddy076 10.1074/jbc.M117.783894 10.4161/auto.20668 10.1038/nrm2745 10.1016/j.cmet.2013.10.001 10.1126/science.1215135 10.1016/j.tcb.2015.08.010 10.1016/j.cell.2019.08.038 10.1083/jcb.201402104 10.1038/s41580-019-0199-y 10.1016/j.molcel.2017.08.013 10.1038/ncb2152 10.1016/j.bbalip.2004.08.011 10.1038/cddis.2017.23 10.1016/j.cmet.2008.10.002 10.1126/science.aax3939 10.1016/j.molcel.2010.06.022 10.1016/j.molcel.2020.01.003 10.1016/j.celrep.2016.09.054 10.1371/journal.pone.0017540 10.1038/nature06322 10.1016/j.cell.2016.05.022 10.1038/nature14879 10.1073/pnas.0807328105 10.1074/jbc.M900301200 10.7554/eLife.39598 10.1074/jbc.TM118.004165 10.1038/nature10821 10.4161/auto.19653 10.1242/jcs.164715 10.1126/scisignal.2002790 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.devcel.2020.11.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
EndPage | 276.e7 |
ExternalDocumentID | PMC8919971 33308480 10_1016_j_devcel_2020_11_016 S1534580720309254 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM130995 – fundername: NIGMS NIH HHS grantid: R01 GM127763 |
GroupedDBID | --- --K 0R~ 1~5 2WC 4.4 457 4G. 5GY 62- 7-5 AACTN AAEDT AAEDW AAKRW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P ROL RPZ SDG SES SSZ TR2 29F 53G 5VS AAIKJ AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKBMS AKYEP APXCP CITATION FGOYB HZ~ OZT R2- RIG UHS 0SF AAFTH ABVKL CGR CUY CVF ECM EIF NPM RCE 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c463t-cc3d291c510744951c7dad24dab512d762ba2153ea19f4f75b47e281ca7e5eca3 |
IEDL.DBID | IXB |
ISSN | 1534-5807 1878-1551 |
IngestDate | Thu Aug 21 18:16:45 EDT 2025 Mon Jul 21 10:29:35 EDT 2025 Wed Feb 19 02:25:55 EST 2025 Tue Jul 01 00:48:12 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Sun Apr 06 06:53:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | autophagy NPC1 ESCRT proteomics mitochondria cholesterol mTORC1 lysosome proteolysis |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-cc3d291c510744951c7dad24dab512d762ba2153ea19f4f75b47e281ca7e5eca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 O.B.D, M.P.O., and R.Z. conceived of and designed experiments. O.B.D, H.R.S., C.Y.L., E.Y.W., M.K., C.F.M. and M.P.O. generated key reagents and performed the experiments. O.B.D, H.R.S., R.M.P., M.P.O. and R.Z. analyzed data and interpreted results. O.B.D., M.P.O and R.Z. wrote the manuscript. Author Contributions All authors read and edited the manuscript. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8919971 |
PMID | 33308480 |
PQID | 2470037643 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8919971 proquest_miscellaneous_2470037643 pubmed_primary_33308480 crossref_citationtrail_10_1016_j_devcel_2020_11_016 crossref_primary_10_1016_j_devcel_2020_11_016 elsevier_sciencedirect_doi_10_1016_j_devcel_2020_11_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-08 |
PublicationDateYYYYMMDD | 2021-02-08 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Brown, Voit, Srikanth, Thayer, Kingsbury, Jacobson, Lipinski, Feldman, Awad (bib9) 2019; 12 Hämälistö, Stahl, Favaro, Yang, Liu, Christoffersen, Loos, Guasch Boldú, Joyce, Reinheckel (bib27) 2020; 11 Lamming, Ye, Katajisto, Goncalves, Saitoh, Stevens, Davis, Salmon, Richardson, Ahima (bib41) 2012; 335 Lu, Liang, Abi-Mosleh, Das, De Brabander, Goldstein, Brown (bib50) 2015; 4 Ben-Sahra, Hoxhaj, Ricoult, Asara, Manning (bib7) 2016; 351 Gao, Zhou, Goldstein, Brown, Radhakrishnan (bib25) 2017; 292 Jia, Claude-Taupin, Gu, Choi, Peters, Bissa, Mudd, Allers, Pallikkuth, Lidke (bib32) 2020; 52 Kim, Kundu, Viollet, Guan (bib38) 2011; 13 Li, Saha, Li, Blobel, Pfeffer (bib45) 2016; 113 Wyant, Abu-Remaileh, Wolfson, Chen, Freinkman, Danai, Vander Heiden, Sabatini (bib95) 2017; 171 Schreiber, Arriola Apelo, Yu, Brinkman, Velarde, Syed, Liao, Baar, Carbajal, Sherman (bib81) 2019; 10 Tsuji, Fujimoto, Tatematsu, Cheng, Orii, Takatori, Fujimoto (bib89) 2017; 6 Liu, Schultz, Mochida, Chung, Paulson, Lieberman (bib47) 2020; 5 de Araujo, Naschberger, Fürnrohr, Stasyk, Dunzendorfer-Matt, Lechner, Welti, Kremser, Shivalingaiah, Offterdinger (bib19) 2017; 358 Morita, Prudent, Basu, Goyon, Katsumura, Hulea, Pearl, Siddiqui, Strack, McGuirk (bib59) 2017; 67 Platt, d’Azzo, Davidson, Neufeld, Tifft (bib67) 2018; 4 Khaminets, Behl, Dikic (bib37) 2016; 26 Sancak, Bar-Peled, Zoncu, Markhard, Nada, Sabatini (bib76) 2010; 141 Chiaruttini, Redondo-Morata, Colom, Humbert, Lenz, Scheuring, Roux (bib13) 2015; 163 Su, Morris, Kim, Fu, Lawrence, Stjepanovic, Zoncu, Hurley (bib86) 2017; 68 Kennedy, Madreiter, Vishnu, Malli, Graier, Karten (bib36) 2014; 289 Toulmay, Prinz (bib88) 2013; 202 Schöneberg, Lee, Iwasa, Hurley (bib80) 2017; 18 Ordonez, Roberts, Kidwell, Yuan, Plaisted, Goldstein (bib62) 2012; 21 Yu, Gong, Ko, Garver, Yanagisawa, Michikawa (bib99) 2005; 280 Yambire, Rostosky, Watanabe, Pacheu-Grau, Torres-Odio, Sanchez-Guerrero, Senderovich, Meyron-Holtz, Milosevic, Frahm (bib98) 2019; 8 Rogala, Gu, Kedir, Abu-Remaileh, Bianchi, Bottino, Dueholm, Niehaus, Overwijn, Fils (bib73) 2019; 366 Elrick, Yu, Chung, Lieberman (bib23) 2012; 21 Yabe, Xia, Adams, Rawson (bib96) 2002; 99 Ebrahimi-Fakhari, Saffari, Wahlster, Di Nardo, Turner, Lewis, Conrad, Rothberg, Lipton, Kölker (bib22) 2016; 17 Sakamachi, Morioka, Mihaly, Takaesu, Foley, Fessler, Ninomiya-Tsuji (bib75) 2017; 8 Feltes, Gale, Moores, Ory, Schaffer (bib24) 2020; 61 Ivanova, van den Heuvel, Elmonem, De Smedt, Missiaen, Pastore, Mekahli, Bultynck, Levtchenko (bib31) 2016; 39 Dong, Saheki, Swarup, Lucast, Harper, De Camilli (bib20) 2016; 166 Yambire, Fernandez-Mosquera, Steinfeld, Mühle, Ikonen, Milosevic, Raimundo (bib97) 2019; 8 Bar-Peled, Schweitzer, Zoncu, Sabatini (bib5) 2012; 150 Ballabio, Gieselmann (bib4) 2009; 1793 Andrzejewska, Nevo, Thomas, Chhuon, Bailleux, Chauvet, Courtoy, Chol, Guerrera, Antignac (bib3) 2016; 27 Israel, Yuan, Bardy, Reyna, Mu, Herrera, Hefferan, Van Gorp, Nazor, Boscolo (bib30) 2012; 482 Anandapadamanaban, Masson, Perisic, Berndt, Kaufman, Johnson, Santhanam, Rogala, Sabatini, Williams (bib2) 2019; 366 Abu-Remaileh, Wyant, Kim, Laqtom, Abbasi, Chan, Freinkman, Sabatini (bib1) 2017; 358 Loftus, Morris, Carstea, Gu, Cummings, Brown, Ellison, Ohno, Rosenfeld, Tagle (bib49) 1997; 277 Radulovic, Schink, Wenzel, Nähse, Bongiovanni, Lafont, Stenmark (bib69) 2018; 37 Infante, Radhakrishnan (bib28) 2017; 6 Cunningham, Rodgers, Arlow, Vazquez, Mootha, Puigserver (bib17) 2007; 450 Gong, Qian, Zhou, Wu, Wan, Cao, Huang, Zhao, Wang, Wang (bib26) 2016; 165 Wauer, Simicek, Schubert, Komander (bib92) 2015; 524 Roczniak-Ferguson, Petit, Froehlich, Qian, Ky, Angarola, Walther, Ferguson (bib71) 2012; 5 Nguyen, Talledge, McCullough, Sharma, Moss, Iwasa, Vershinin, Sundquist, Frost (bib60) 2020; 27 Settembre, Zoncu, Medina, Vetrini, Erdin, Erdin, Huynh, Ferron, Karsenty, Vellard (bib83) 2012; 31 Weber, Yen, Nicholson, Alwaseem, Bayraktar, Alam, Timson, La, Abu-Remaileh, Molina (bib93) 2020; 77 Sleat, Sun, Wiseman, Huang, El-Banna, Zheng, Moore, Lobel (bib85) 2013; 12 Thoreen, Kang, Chang, Liu, Zhang, Gao, Reichling, Sim, Sabatini, Gray (bib87) 2009; 284 Perera, Zoncu (bib64) 2016; 32 Düvel, Yecies, Menon, Raman, Lipovsky, Souza, Triantafellow, Ma, Gorski, Cleaver (bib21) 2010; 39 Lawrence, Zoncu (bib42) 2019; 21 Chung, Puthanveetil, Ory, Lieberman (bib14) 2016; 25 Menon, Dibble, Talbott, Hoxhaj, Valvezan, Takahashi, Cantley, Manning (bib55) 2014; 156 Morita, Gravel, Chénard, Sikström, Zheng, Alain, Gandin, Avizonis, Arguello, Zakaria (bib58) 2013; 18 Mesmin, Bigay, Moser von Filseck, Lacas-Gervais, Drin, Antonny (bib56) 2013; 155 Lim, Davis, Shin, Zhang, Berdan, Jiang, Counihan, Ory, Nomura, Zoncu (bib46) 2019; 21 Zoncu, Bar-Peled, Efeyan, Wang, Sancak, Sabatini (bib101) 2011; 334 Calvo, Clauser, Mootha (bib11) 2016; 44 Maejima, Takahashi, Omori, Kimura, Takabatake, Saitoh, Yamamoto, Hamasaki, Noda, Isaka (bib51) 2013; 32 Peterson, Sengupta, Harris, Carmack, Kang, Balderas, Guertin, Madden, Carpenter, Finck (bib65) 2011; 146 Repnik, Česen, Turk (bib70) 2016; 2016 Pagliarini, Calvo, Chang, Sheth, Vafai, Ong, Walford, Sugiana, Boneh, Chen (bib63) 2008; 134 Danyukova, Ariunbat, Thelen, Brocke-Ahmadinejad, Mole, Storch (bib18) 2018; 27 Bartolomeo, Cinque, De Leonibus, Forrester, Salzano, Monfregola, De Gennaro, Nusco, Azario, Lanzara (bib6) 2017; 127 Kwon, Abi-Mosleh, Wang, Deisenhofer, Goldstein, Brown, Infante (bib40) 2009; 137 Kane, Lazarou, Fogel, Li, Yamano, Sarraf, Banerjee, Youle (bib34) 2014; 205 Skowyra, Schlesinger, Naismith, Hanson (bib84) 2018; 360 Kobayashi, Beuchat, Lindsay, Frias, Palmiter, Sakuraba, Parton, Gruenberg (bib39) 1999; 1 Saftig, Klumperman (bib74) 2009; 10 Martina, Chen, Gucek, Puertollano (bib54) 2012; 8 Wang, Tsun, Wolfson, Shen, Wyant, Plovanich, Yuan, Jones, Chantranupong, Comb (bib91) 2015; 347 Jin, Lazarou, Wang, Kane, Narendra, Youle (bib33) 2010; 191 Castellano, Thelen, Moldavski, Feltes, van der Welle, Mydock-McGrane, Jiang, van Eijkeren, Davis, Louie (bib12) 2017; 355 Puente, Hendrickson, Jiang (bib68) 2016; 291 Burgett, Poulsen, Wangkanont, Anderson, Kikuchi, Shimada, Okubo, Fortner, Mimaki, Kuroda (bib10) 2011; 7 Pfeffer (bib66) 2019; 294 Schedin, Sindelar, Pentchev, Brunk, Dallner (bib79) 1997; 272 Sardiello, Palmieri, di Ronza, Medina, Valenza, Gennarino, Di Malta, Donaudy, Embrione, Polishchuk (bib77) 2009; 325 Infante, Wang, Radhakrishnan, Kwon, Brown, Goldstein (bib29) 2008; 105 Winkler, Kidmose, Szomek, Thaysen, Rawson, Muench, Wüstner, Pedersen (bib94) 2019; 179 Schultz, Krus, Kaushik, Dang, Chopra, Qi, Shakkottai, Cuervo, Lieberman (bib82) 2018; 9 Walkley, Suzuki (bib90) 2004; 1685 Bentzinger, Romanino, Cloëtta, Lin, Mascarenhas, Oliveri, Xia, Casanova, Costa, Brink (bib8) 2008; 8 Sarkar, Carroll, Buganim, Maetzel, Ng, Cassady, Cohen, Chakraborty, Wang, Spooner (bib78) 2013; 5 Csibi, Fendt, Li, Poulogiannis, Choo, Chapski, Jeong, Dempsey, Parkhitko, Morrison (bib16) 2013; 153 Maekawa, Fairn (bib52) 2015; 128 Chung, Shin, Berdan, Ford, Ward, Olzmann, Zoncu, Nomura (bib15) 2019; 15 Yuan, Martin, Elia, Flippin, Paramban, Hefferan, Vidal, Mu, Killian, Israel (bib100) 2011; 6 Li, Brown, Goldstein (bib44) 2010; 107 Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib43) 2015; 524 Kazlauskaite, Kondapalli, Gourlay, Campbell, Ritorto, Hofmann, Alessi, Knebel, Trost, Muqit (bib35) 2014; 460 Millard, Gale, Dudley, Zhang, Schaffer, Ory (bib57) 2005; 280 Mahoney, Narayan, Molz, Berstler, Kang, Vlasuk, Saiah (bib53) 2018; 9 Rodrik-Outmezguine, Okaniwa, Yao, Novotny, McWhirter, Banaji, Won, Wong, Berger, de Stanchina (bib72) 2016; 534 Liu, Sabatini (bib48) 2020; 21 Ordonez (bib61) 2012; 8 Kwon (10.1016/j.devcel.2020.11.016_bib40) 2009; 137 Millard (10.1016/j.devcel.2020.11.016_bib57) 2005; 280 Radulovic (10.1016/j.devcel.2020.11.016_bib69) 2018; 37 Ballabio (10.1016/j.devcel.2020.11.016_bib4) 2009; 1793 Schreiber (10.1016/j.devcel.2020.11.016_bib81) 2019; 10 Walkley (10.1016/j.devcel.2020.11.016_bib90) 2004; 1685 Chung (10.1016/j.devcel.2020.11.016_bib14) 2016; 25 Wauer (10.1016/j.devcel.2020.11.016_bib92) 2015; 524 Roczniak-Ferguson (10.1016/j.devcel.2020.11.016_bib71) 2012; 5 Brown (10.1016/j.devcel.2020.11.016_bib9) 2019; 12 Castellano (10.1016/j.devcel.2020.11.016_bib12) 2017; 355 Kobayashi (10.1016/j.devcel.2020.11.016_bib39) 1999; 1 Danyukova (10.1016/j.devcel.2020.11.016_bib18) 2018; 27 Schöneberg (10.1016/j.devcel.2020.11.016_bib80) 2017; 18 Elrick (10.1016/j.devcel.2020.11.016_bib23) 2012; 21 Sarkar (10.1016/j.devcel.2020.11.016_bib78) 2013; 5 Abu-Remaileh (10.1016/j.devcel.2020.11.016_bib1) 2017; 358 Puente (10.1016/j.devcel.2020.11.016_bib68) 2016; 291 Sleat (10.1016/j.devcel.2020.11.016_bib85) 2013; 12 Settembre (10.1016/j.devcel.2020.11.016_bib83) 2012; 31 Weber (10.1016/j.devcel.2020.11.016_bib93) 2020; 77 Lazarou (10.1016/j.devcel.2020.11.016_bib43) 2015; 524 Zoncu (10.1016/j.devcel.2020.11.016_bib101) 2011; 334 Su (10.1016/j.devcel.2020.11.016_bib86) 2017; 68 Skowyra (10.1016/j.devcel.2020.11.016_bib84) 2018; 360 Platt (10.1016/j.devcel.2020.11.016_bib67) 2018; 4 de Araujo (10.1016/j.devcel.2020.11.016_bib19) 2017; 358 Yambire (10.1016/j.devcel.2020.11.016_bib97) 2019; 8 Morita (10.1016/j.devcel.2020.11.016_bib58) 2013; 18 Düvel (10.1016/j.devcel.2020.11.016_bib21) 2010; 39 Schultz (10.1016/j.devcel.2020.11.016_bib82) 2018; 9 Anandapadamanaban (10.1016/j.devcel.2020.11.016_bib2) 2019; 366 Ebrahimi-Fakhari (10.1016/j.devcel.2020.11.016_bib22) 2016; 17 Infante (10.1016/j.devcel.2020.11.016_bib29) 2008; 105 Yu (10.1016/j.devcel.2020.11.016_bib99) 2005; 280 Chiaruttini (10.1016/j.devcel.2020.11.016_bib13) 2015; 163 Khaminets (10.1016/j.devcel.2020.11.016_bib37) 2016; 26 Mesmin (10.1016/j.devcel.2020.11.016_bib56) 2013; 155 Ivanova (10.1016/j.devcel.2020.11.016_bib31) 2016; 39 Jia (10.1016/j.devcel.2020.11.016_bib32) 2020; 52 Toulmay (10.1016/j.devcel.2020.11.016_bib88) 2013; 202 Csibi (10.1016/j.devcel.2020.11.016_bib16) 2013; 153 Sancak (10.1016/j.devcel.2020.11.016_bib76) 2010; 141 Yuan (10.1016/j.devcel.2020.11.016_bib100) 2011; 6 Kim (10.1016/j.devcel.2020.11.016_bib38) 2011; 13 Liu (10.1016/j.devcel.2020.11.016_bib47) 2020; 5 Dong (10.1016/j.devcel.2020.11.016_bib20) 2016; 166 Lim (10.1016/j.devcel.2020.11.016_bib46) 2019; 21 Gong (10.1016/j.devcel.2020.11.016_bib26) 2016; 165 Yabe (10.1016/j.devcel.2020.11.016_bib96) 2002; 99 Tsuji (10.1016/j.devcel.2020.11.016_bib89) 2017; 6 Pfeffer (10.1016/j.devcel.2020.11.016_bib66) 2019; 294 Maekawa (10.1016/j.devcel.2020.11.016_bib52) 2015; 128 Loftus (10.1016/j.devcel.2020.11.016_bib49) 1997; 277 Infante (10.1016/j.devcel.2020.11.016_bib28) 2017; 6 Morita (10.1016/j.devcel.2020.11.016_bib59) 2017; 67 Mahoney (10.1016/j.devcel.2020.11.016_bib53) 2018; 9 Repnik (10.1016/j.devcel.2020.11.016_bib70) 2016; 2016 Israel (10.1016/j.devcel.2020.11.016_bib30) 2012; 482 Wang (10.1016/j.devcel.2020.11.016_bib91) 2015; 347 Peterson (10.1016/j.devcel.2020.11.016_bib65) 2011; 146 Hämälistö (10.1016/j.devcel.2020.11.016_bib27) 2020; 11 Lawrence (10.1016/j.devcel.2020.11.016_bib42) 2019; 21 Burgett (10.1016/j.devcel.2020.11.016_bib10) 2011; 7 Jin (10.1016/j.devcel.2020.11.016_bib33) 2010; 191 Li (10.1016/j.devcel.2020.11.016_bib44) 2010; 107 Wyant (10.1016/j.devcel.2020.11.016_bib95) 2017; 171 Ordonez (10.1016/j.devcel.2020.11.016_bib61) 2012; 8 Pagliarini (10.1016/j.devcel.2020.11.016_bib63) 2008; 134 Perera (10.1016/j.devcel.2020.11.016_bib64) 2016; 32 Sardiello (10.1016/j.devcel.2020.11.016_bib77) 2009; 325 Maejima (10.1016/j.devcel.2020.11.016_bib51) 2013; 32 Ordonez (10.1016/j.devcel.2020.11.016_bib62) 2012; 21 Nguyen (10.1016/j.devcel.2020.11.016_bib60) 2020; 27 Ben-Sahra (10.1016/j.devcel.2020.11.016_bib7) 2016; 351 Lu (10.1016/j.devcel.2020.11.016_bib50) 2015; 4 Feltes (10.1016/j.devcel.2020.11.016_bib24) 2020; 61 Bentzinger (10.1016/j.devcel.2020.11.016_bib8) 2008; 8 Liu (10.1016/j.devcel.2020.11.016_bib48) 2020; 21 Rodrik-Outmezguine (10.1016/j.devcel.2020.11.016_bib72) 2016; 534 Cunningham (10.1016/j.devcel.2020.11.016_bib17) 2007; 450 Sakamachi (10.1016/j.devcel.2020.11.016_bib75) 2017; 8 Schedin (10.1016/j.devcel.2020.11.016_bib79) 1997; 272 Lamming (10.1016/j.devcel.2020.11.016_bib41) 2012; 335 Winkler (10.1016/j.devcel.2020.11.016_bib94) 2019; 179 Bar-Peled (10.1016/j.devcel.2020.11.016_bib5) 2012; 150 Andrzejewska (10.1016/j.devcel.2020.11.016_bib3) 2016; 27 Gao (10.1016/j.devcel.2020.11.016_bib25) 2017; 292 Calvo (10.1016/j.devcel.2020.11.016_bib11) 2016; 44 Rogala (10.1016/j.devcel.2020.11.016_bib73) 2019; 366 Kane (10.1016/j.devcel.2020.11.016_bib34) 2014; 205 Yambire (10.1016/j.devcel.2020.11.016_bib98) 2019; 8 Kazlauskaite (10.1016/j.devcel.2020.11.016_bib35) 2014; 460 Menon (10.1016/j.devcel.2020.11.016_bib55) 2014; 156 Chung (10.1016/j.devcel.2020.11.016_bib15) 2019; 15 Thoreen (10.1016/j.devcel.2020.11.016_bib87) 2009; 284 Kennedy (10.1016/j.devcel.2020.11.016_bib36) 2014; 289 Li (10.1016/j.devcel.2020.11.016_bib45) 2016; 113 Bartolomeo (10.1016/j.devcel.2020.11.016_bib6) 2017; 127 Martina (10.1016/j.devcel.2020.11.016_bib54) 2012; 8 Saftig (10.1016/j.devcel.2020.11.016_bib74) 2009; 10 33561418 - Dev Cell. 2021 Feb 8;56(3):251-252 |
References_xml | – volume: 150 start-page: 1196 year: 2012 end-page: 1208 ident: bib5 article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1 publication-title: Cell – volume: 366 start-page: 468 year: 2019 end-page: 475 ident: bib73 article-title: Structural basis for the docking of mTORC1 on the lysosomal surface publication-title: Science – volume: 26 start-page: 6 year: 2016 end-page: 16 ident: bib37 article-title: Ubiquitin-dependent and independent signals in selective autophagy publication-title: Trends Cell Biol. – volume: 355 start-page: 1306 year: 2017 end-page: 1311 ident: bib12 article-title: Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex publication-title: Science – volume: 153 start-page: 840 year: 2013 end-page: 854 ident: bib16 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell – volume: 284 start-page: 8023 year: 2009 end-page: 8032 ident: bib87 article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 publication-title: J. Biol. Chem. – volume: 482 start-page: 216 year: 2012 end-page: 220 ident: bib30 article-title: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells publication-title: Nature – volume: 32 start-page: 223 year: 2016 end-page: 253 ident: bib64 article-title: The lysosome as a regulatory hub publication-title: Annu. Rev. Cell Dev. Biol. – volume: 99 start-page: 16672 year: 2002 end-page: 16677 ident: bib96 article-title: Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 4876 year: 2012 end-page: 4887 ident: bib23 article-title: Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease publication-title: Hum. Mol. Genet. – volume: 358 start-page: 807 year: 2017 end-page: 813 ident: bib1 article-title: Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes publication-title: Science – volume: 146 start-page: 408 year: 2011 end-page: 420 ident: bib65 article-title: mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway publication-title: Cell – volume: 289 start-page: 16278 year: 2014 end-page: 16289 ident: bib36 article-title: Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells publication-title: J. Biol. Chem. – volume: 21 start-page: 133 year: 2019 end-page: 142 ident: bib42 article-title: The lysosome as a cellular centre for signalling, metabolism and quality control publication-title: Nat. Cell Biol. – volume: 1685 start-page: 48 year: 2004 end-page: 62 ident: bib90 article-title: Consequences of NPC1 and NPC2 loss of function in mammalian neurons publication-title: Biochim. Biophys. Acta – volume: 277 start-page: 232 year: 1997 end-page: 235 ident: bib49 article-title: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene publication-title: Science – volume: 358 start-page: 377 year: 2017 end-page: 381 ident: bib19 article-title: Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling publication-title: Science – volume: 8 year: 2019 ident: bib98 article-title: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo publication-title: eLife – volume: 524 start-page: 370 year: 2015 end-page: 374 ident: bib92 article-title: Mechanism of phospho-ubiquitin-induced Parkin activation publication-title: Nature – volume: 27 start-page: 1678 year: 2016 end-page: 1688 ident: bib3 article-title: Cystinosin is a component of the vacuolar H+-ATPase-ragulator-rag complex controlling mammalian target of rapamycin complex 1 signaling publication-title: J. Am. Soc. Nephrol. – volume: 360 year: 2018 ident: bib84 article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair publication-title: Science – volume: 13 start-page: 132 year: 2011 end-page: 141 ident: bib38 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. – volume: 7 start-page: 639 year: 2011 end-page: 647 ident: bib10 article-title: Natural products reveal cancer cell dependence on oxysterol-binding proteins publication-title: Nat. Chem. Biol. – volume: 37 year: 2018 ident: bib69 article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival publication-title: EMBO J. – volume: 2016 year: 2016 ident: bib70 article-title: The use of lysosomotropic dyes to exclude lysosomal membrane permeabilization publication-title: Cold Spring Harb. Protoc. – volume: 31 start-page: 1095 year: 2012 end-page: 1108 ident: bib83 article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB publication-title: EMBO J. – volume: 6 start-page: e17540 year: 2011 ident: bib100 article-title: Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells publication-title: PLoS One – volume: 21 start-page: 1206 year: 2019 end-page: 1218 ident: bib46 article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C publication-title: Nat. Cell Biol. – volume: 11 start-page: 229 year: 2020 ident: bib27 article-title: Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation publication-title: Nat. Commun. – volume: 334 start-page: 678 year: 2011 end-page: 683 ident: bib101 article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase publication-title: Science – volume: 272 start-page: 6245 year: 1997 end-page: 6251 ident: bib79 article-title: Peroxisomal impairment in Niemann-Pick type C disease publication-title: J. Biol. Chem. – volume: 4 start-page: e12177 year: 2015 ident: bib50 article-title: Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection publication-title: eLife – volume: 67 start-page: 922 year: 2017 end-page: 935.e5 ident: bib59 article-title: mTOR controls mitochondrial dynamics and cell survival via MTFP1 publication-title: Mol. Cell – volume: 325 start-page: 473 year: 2009 end-page: 477 ident: bib77 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science – volume: 77 start-page: 645 year: 2020 end-page: 655.e7 ident: bib93 article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation publication-title: Mol. Cell – volume: 280 start-page: 11731 year: 2005 end-page: 11739 ident: bib99 article-title: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function publication-title: J. Biol. Chem. – volume: 534 start-page: 272 year: 2016 end-page: 276 ident: bib72 article-title: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor publication-title: Nature – volume: 127 start-page: 3717 year: 2017 end-page: 3729 ident: bib6 article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy publication-title: J. Clin. Invest. – volume: 39 start-page: 457 year: 2016 end-page: 464 ident: bib31 article-title: Altered mTOR signalling in nephropathic cystinosis publication-title: J. Inherit. Metab. Dis. – volume: 25 start-page: 1434 year: 2016 end-page: 1446 ident: bib14 article-title: Genetic and pharmacological evidence implicates cathepsins in Niemann-Pick C cerebellar degeneration publication-title: Hum. Mol. Genet. – volume: 27 start-page: 1711 year: 2018 end-page: 1722 ident: bib18 article-title: Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation publication-title: Hum. Mol. Genet. – volume: 155 start-page: 830 year: 2013 end-page: 843 ident: bib56 article-title: A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP publication-title: Cell – volume: 291 start-page: 6026 year: 2016 end-page: 6035 ident: bib68 article-title: Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy publication-title: J. Biol. Chem. – volume: 524 start-page: 309 year: 2015 end-page: 314 ident: bib43 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature – volume: 191 start-page: 933 year: 2010 end-page: 942 ident: bib33 article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL publication-title: J. Cell Biol. – volume: 10 start-page: 623 year: 2009 end-page: 635 ident: bib74 article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function publication-title: Nat. Rev. Mol. Cell Biol. – volume: 105 start-page: 15287 year: 2008 end-page: 15292 ident: bib29 article-title: NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 450 start-page: 736 year: 2007 end-page: 740 ident: bib17 article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex publication-title: Nature – volume: 280 start-page: 28581 year: 2005 end-page: 28590 ident: bib57 article-title: The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol publication-title: J. Biol. Chem. – volume: 12 year: 2019 ident: bib9 article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells publication-title: Dis. Model Mech. – volume: 61 start-page: 403 year: 2020 end-page: 412 ident: bib24 article-title: Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment publication-title: J. Lipid Res. – volume: 18 start-page: 698 year: 2013 end-page: 711 ident: bib58 article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation publication-title: Cell Metab. – volume: 205 start-page: 143 year: 2014 end-page: 153 ident: bib34 article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity publication-title: J. Cell Biol. – volume: 107 start-page: 3441 year: 2010 end-page: 3446 ident: bib44 article-title: Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 3194 year: 2019 ident: bib81 article-title: A novel rapamycin analog is highly selective for mTORC1 in vivo publication-title: Nat. Commun. – volume: 8 year: 2019 ident: bib97 article-title: Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases publication-title: eLife – volume: 27 start-page: 392 year: 2020 end-page: 399 ident: bib60 article-title: Membrane constriction and thinning by sequential ESCRT-III polymerization publication-title: Nat. Struct. Mol. Biol. – volume: 294 start-page: 1706 year: 2019 end-page: 1709 ident: bib66 article-title: NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes publication-title: J. Biol. Chem. – volume: 5 start-page: ra42 year: 2012 ident: bib71 article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis publication-title: Sci. Signal. – volume: 12 start-page: 1806 year: 2013 end-page: 1817 ident: bib85 article-title: Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice publication-title: Mol. Cell. Proteomics – volume: 335 start-page: 1638 year: 2012 end-page: 1643 ident: bib41 article-title: Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity publication-title: Science – volume: 5 year: 2020 ident: bib47 article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain publication-title: JCI Insight – volume: 128 start-page: 1422 year: 2015 end-page: 1433 ident: bib52 article-title: Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol publication-title: J. Cell Sci. – volume: 163 start-page: 866 year: 2015 end-page: 879 ident: bib13 article-title: Relaxation of loaded ESCRT-III spiral springs drives membrane deformation publication-title: Cell – volume: 21 start-page: 2651 year: 2012 end-page: 2662 ident: bib62 article-title: Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1 publication-title: Hum. Mol. Genet. – volume: 179 start-page: 485 year: 2019 end-page: 497.e18 ident: bib94 article-title: Structural insight into eukaryotic sterol transport through Niemann-Pick Type C proteins publication-title: Cell – volume: 113 start-page: 10079 year: 2016 end-page: 10084 ident: bib45 article-title: Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 460 start-page: 127 year: 2014 end-page: 139 ident: bib35 article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 publication-title: Biochem. J. – volume: 1793 start-page: 684 year: 2009 end-page: 696 ident: bib4 article-title: Lysosomal disorders: from storage to cellular damage publication-title: Biochim. Biophys. Acta – volume: 21 start-page: 183 year: 2020 end-page: 203 ident: bib48 article-title: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 141 start-page: 290 year: 2010 end-page: 303 ident: bib76 article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell – volume: 171 start-page: 642 year: 2017 end-page: 654.e12 ident: bib95 article-title: mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient publication-title: Cell – volume: 4 start-page: 27 year: 2018 ident: bib67 article-title: Lysosomal storage diseases publication-title: Nat. Rev. Dis. Prim. – volume: 18 start-page: 5 year: 2017 end-page: 17 ident: bib80 article-title: Reverse-topology membrane scission by the ESCRT proteins publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 start-page: 3671 year: 2018 ident: bib82 article-title: Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and March6-dependent ERAD publication-title: Nat. Commun. – volume: 292 start-page: 8729 year: 2017 end-page: 8737 ident: bib25 article-title: Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis publication-title: J. Biol. Chem. – volume: 166 start-page: 408 year: 2016 end-page: 423 ident: bib20 article-title: Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P publication-title: Cell – volume: 137 start-page: 1213 year: 2009 end-page: 1224 ident: bib40 article-title: Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol publication-title: Cell – volume: 366 start-page: 203 year: 2019 end-page: 210 ident: bib2 article-title: Architecture of human Rag GTPase heterodimers and their complex with mTORC1 publication-title: Science – volume: 347 start-page: 188 year: 2015 end-page: 194 ident: bib91 article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 publication-title: Science – volume: 15 start-page: 776 year: 2019 end-page: 785 ident: bib15 article-title: Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition publication-title: Nat. Chem. Biol. – volume: 39 start-page: 171 year: 2010 end-page: 183 ident: bib21 article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1 publication-title: Mol. Cell – volume: 6 year: 2017 ident: bib89 article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole publication-title: eLife – volume: 6 start-page: e25466 year: 2017 ident: bib28 article-title: Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol publication-title: eLife – volume: 134 start-page: 112 year: 2008 end-page: 123 ident: bib63 article-title: A mitochondrial protein compendium elucidates complex I disease biology publication-title: Cell – volume: 17 start-page: 1053 year: 2016 end-page: 1070 ident: bib22 article-title: Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex publication-title: Cell Rep. – volume: 165 start-page: 1467 year: 2016 end-page: 1478 ident: bib26 article-title: Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection publication-title: Cell – volume: 1 start-page: 113 year: 1999 end-page: 118 ident: bib39 article-title: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport publication-title: Nat. Cell Biol. – volume: 202 start-page: 35 year: 2013 end-page: 44 ident: bib88 article-title: Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells publication-title: J. Cell Biol. – volume: 156 start-page: 771 year: 2014 end-page: 785 ident: bib55 article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome publication-title: Cell – volume: 68 start-page: 835 year: 2017 end-page: 846.e3 ident: bib86 article-title: Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex publication-title: Mol. Cell – volume: 8 start-page: 1157 year: 2012 end-page: 1158 ident: bib61 article-title: Defective mitophagy in human Niemann-Pick Type C1 neurons is due to abnormal autophagy activation publication-title: Autophagy – volume: 8 start-page: e2598 year: 2017 ident: bib75 article-title: TAK1 regulates resident macrophages by protecting lysosomal integrity publication-title: Cell Death Dis. – volume: 9 start-page: 548 year: 2018 ident: bib53 article-title: A small molecule inhibitor of Rheb selectively targets mTORC1 signaling publication-title: Nat. Commun. – volume: 5 start-page: 1302 year: 2013 end-page: 1315 ident: bib78 article-title: Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease publication-title: Cell Rep. – volume: 351 start-page: 728 year: 2016 end-page: 733 ident: bib7 article-title: mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle publication-title: Science – volume: 52 start-page: 69 year: 2020 end-page: 87.e8 ident: bib32 article-title: Galectin-3 coordinates a cellular system for lysosomal repair and removal publication-title: Dev. Cell – volume: 8 start-page: 411 year: 2008 end-page: 424 ident: bib8 article-title: Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy publication-title: Cell Metab. – volume: 44 start-page: D1251 year: 2016 end-page: D1257 ident: bib11 article-title: MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins publication-title: Nucleic Acids Res. – volume: 8 start-page: 903 year: 2012 end-page: 914 ident: bib54 article-title: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB publication-title: Autophagy – volume: 32 start-page: 2336 year: 2013 end-page: 2347 ident: bib51 article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury publication-title: EMBO J. – volume: 32 start-page: 223 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib64 article-title: The lysosome as a regulatory hub publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-111315-125125 – volume: 141 start-page: 290 year: 2010 ident: 10.1016/j.devcel.2020.11.016_bib76 article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell doi: 10.1016/j.cell.2010.02.024 – volume: 9 start-page: 3671 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib82 article-title: Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and March6-dependent ERAD publication-title: Nat. Commun. doi: 10.1038/s41467-018-06115-2 – volume: 163 start-page: 866 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib13 article-title: Relaxation of loaded ESCRT-III spiral springs drives membrane deformation publication-title: Cell doi: 10.1016/j.cell.2015.10.017 – volume: 360 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib84 article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair publication-title: Science doi: 10.1126/science.aar5078 – volume: 32 start-page: 2336 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib51 article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury publication-title: EMBO J. doi: 10.1038/emboj.2013.171 – volume: 44 start-page: D1251 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib11 article-title: MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1003 – volume: 127 start-page: 3717 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib6 article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy publication-title: J. Clin. Invest. doi: 10.1172/JCI94130 – volume: 52 start-page: 69 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib32 article-title: Galectin-3 coordinates a cellular system for lysosomal repair and removal publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.10.025 – volume: 534 start-page: 272 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib72 article-title: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor publication-title: Nature doi: 10.1038/nature17963 – volume: 347 start-page: 188 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib91 article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 publication-title: Science doi: 10.1126/science.1257132 – volume: 171 start-page: 642 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib95 article-title: mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient publication-title: Cell doi: 10.1016/j.cell.2017.09.046 – volume: 2016 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib70 article-title: The use of lysosomotropic dyes to exclude lysosomal membrane permeabilization publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot087106 – volume: 21 start-page: 4876 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib23 article-title: Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds324 – volume: 37 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib69 article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival publication-title: EMBO J. doi: 10.15252/embj.201899753 – volume: 27 start-page: 1678 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib3 article-title: Cystinosin is a component of the vacuolar H+-ATPase-ragulator-rag complex controlling mammalian target of rapamycin complex 1 signaling publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2014090937 – volume: 9 start-page: 548 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib53 article-title: A small molecule inhibitor of Rheb selectively targets mTORC1 signaling publication-title: Nat. Commun. doi: 10.1038/s41467-018-03035-z – volume: 27 start-page: 392 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib60 article-title: Membrane constriction and thinning by sequential ESCRT-III polymerization publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0404-x – volume: 358 start-page: 807 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib1 article-title: Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes publication-title: Science doi: 10.1126/science.aan6298 – volume: 289 start-page: 16278 year: 2014 ident: 10.1016/j.devcel.2020.11.016_bib36 article-title: Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.559914 – volume: 134 start-page: 112 year: 2008 ident: 10.1016/j.devcel.2020.11.016_bib63 article-title: A mitochondrial protein compendium elucidates complex I disease biology publication-title: Cell doi: 10.1016/j.cell.2008.06.016 – volume: 146 start-page: 408 year: 2011 ident: 10.1016/j.devcel.2020.11.016_bib65 article-title: mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway publication-title: Cell doi: 10.1016/j.cell.2011.06.034 – volume: 153 start-page: 840 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib16 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell doi: 10.1016/j.cell.2013.04.023 – volume: 21 start-page: 1206 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib46 article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0391-5 – volume: 107 start-page: 3441 year: 2010 ident: 10.1016/j.devcel.2020.11.016_bib44 article-title: Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914798107 – volume: 8 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib98 article-title: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo publication-title: eLife doi: 10.7554/eLife.51031 – volume: 11 start-page: 229 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib27 article-title: Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation publication-title: Nat. Commun. doi: 10.1038/s41467-019-14009-0 – volume: 334 start-page: 678 year: 2011 ident: 10.1016/j.devcel.2020.11.016_bib101 article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase publication-title: Science doi: 10.1126/science.1207056 – volume: 1793 start-page: 684 year: 2009 ident: 10.1016/j.devcel.2020.11.016_bib4 article-title: Lysosomal disorders: from storage to cellular damage publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.12.001 – volume: 25 start-page: 1434 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib14 article-title: Genetic and pharmacological evidence implicates cathepsins in Niemann-Pick C cerebellar degeneration publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw025 – volume: 191 start-page: 933 year: 2010 ident: 10.1016/j.devcel.2020.11.016_bib33 article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL publication-title: J. Cell Biol. doi: 10.1083/jcb.201008084 – volume: 366 start-page: 468 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib73 article-title: Structural basis for the docking of mTORC1 on the lysosomal surface publication-title: Science doi: 10.1126/science.aay0166 – volume: 15 start-page: 776 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib15 article-title: Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0308-4 – volume: 6 start-page: e25466 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib28 article-title: Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol publication-title: eLife doi: 10.7554/eLife.25466 – volume: 12 start-page: 1806 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib85 article-title: Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M112.026179 – volume: 4 start-page: e12177 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib50 article-title: Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection publication-title: eLife doi: 10.7554/eLife.12177 – volume: 39 start-page: 457 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib31 article-title: Altered mTOR signalling in nephropathic cystinosis publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-016-9919-z – volume: 524 start-page: 309 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib43 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 – volume: 272 start-page: 6245 year: 1997 ident: 10.1016/j.devcel.2020.11.016_bib79 article-title: Peroxisomal impairment in Niemann-Pick type C disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.10.6245 – volume: 202 start-page: 35 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib88 article-title: Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201301039 – volume: 291 start-page: 6026 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib68 article-title: Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.689646 – volume: 150 start-page: 1196 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib5 article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1 publication-title: Cell doi: 10.1016/j.cell.2012.07.032 – volume: 21 start-page: 2651 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib62 article-title: Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds090 – volume: 7 start-page: 639 year: 2011 ident: 10.1016/j.devcel.2020.11.016_bib10 article-title: Natural products reveal cancer cell dependence on oxysterol-binding proteins publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.625 – volume: 1 start-page: 113 year: 1999 ident: 10.1016/j.devcel.2020.11.016_bib39 article-title: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport publication-title: Nat. Cell Biol. doi: 10.1038/10084 – volume: 358 start-page: 377 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib19 article-title: Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling publication-title: Science doi: 10.1126/science.aao1583 – volume: 113 start-page: 10079 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib45 article-title: Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611956113 – volume: 4 start-page: 27 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib67 article-title: Lysosomal storage diseases publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-018-0025-4 – volume: 325 start-page: 473 year: 2009 ident: 10.1016/j.devcel.2020.11.016_bib77 article-title: A gene network regulating lysosomal biogenesis and function publication-title: Science doi: 10.1126/science.1174447 – volume: 5 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib47 article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain publication-title: JCI Insight doi: 10.1172/jci.insight.136676 – volume: 68 start-page: 835 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib86 article-title: Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.016 – volume: 61 start-page: 403 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib24 article-title: Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment publication-title: J. Lipid Res. doi: 10.1194/jlr.RA119000571 – volume: 355 start-page: 1306 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib12 article-title: Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex publication-title: Science doi: 10.1126/science.aag1417 – volume: 277 start-page: 232 year: 1997 ident: 10.1016/j.devcel.2020.11.016_bib49 article-title: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene publication-title: Science doi: 10.1126/science.277.5323.232 – volume: 137 start-page: 1213 year: 2009 ident: 10.1016/j.devcel.2020.11.016_bib40 article-title: Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol publication-title: Cell doi: 10.1016/j.cell.2009.03.049 – volume: 21 start-page: 133 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib42 article-title: The lysosome as a cellular centre for signalling, metabolism and quality control publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0244-7 – volume: 460 start-page: 127 year: 2014 ident: 10.1016/j.devcel.2020.11.016_bib35 article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 publication-title: Biochem. J. doi: 10.1042/BJ20140334 – volume: 166 start-page: 408 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib20 article-title: Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P publication-title: Cell doi: 10.1016/j.cell.2016.06.037 – volume: 280 start-page: 28581 year: 2005 ident: 10.1016/j.devcel.2020.11.016_bib57 article-title: The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414024200 – volume: 99 start-page: 16672 year: 2002 ident: 10.1016/j.devcel.2020.11.016_bib96 article-title: Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.262669399 – volume: 156 start-page: 771 year: 2014 ident: 10.1016/j.devcel.2020.11.016_bib55 article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome publication-title: Cell doi: 10.1016/j.cell.2013.11.049 – volume: 12 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib9 article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells publication-title: Dis. Model Mech. doi: 10.1242/dmm.038596 – volume: 10 start-page: 3194 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib81 article-title: A novel rapamycin analog is highly selective for mTORC1 in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-019-11174-0 – volume: 6 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib89 article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole publication-title: eLife doi: 10.7554/eLife.25960 – volume: 280 start-page: 11731 year: 2005 ident: 10.1016/j.devcel.2020.11.016_bib99 article-title: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412898200 – volume: 31 start-page: 1095 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib83 article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB publication-title: EMBO J. doi: 10.1038/emboj.2012.32 – volume: 155 start-page: 830 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib56 article-title: A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP publication-title: Cell doi: 10.1016/j.cell.2013.09.056 – volume: 351 start-page: 728 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib7 article-title: mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle publication-title: Science doi: 10.1126/science.aad0489 – volume: 5 start-page: 1302 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib78 article-title: Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.10.042 – volume: 18 start-page: 5 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib80 article-title: Reverse-topology membrane scission by the ESCRT proteins publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.121 – volume: 27 start-page: 1711 year: 2018 ident: 10.1016/j.devcel.2020.11.016_bib18 article-title: Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy076 – volume: 292 start-page: 8729 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib25 article-title: Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.783894 – volume: 8 start-page: 1157 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib61 article-title: Defective mitophagy in human Niemann-Pick Type C1 neurons is due to abnormal autophagy activation publication-title: Autophagy doi: 10.4161/auto.20668 – volume: 10 start-page: 623 year: 2009 ident: 10.1016/j.devcel.2020.11.016_bib74 article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2745 – volume: 18 start-page: 698 year: 2013 ident: 10.1016/j.devcel.2020.11.016_bib58 article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.10.001 – volume: 335 start-page: 1638 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib41 article-title: Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity publication-title: Science doi: 10.1126/science.1215135 – volume: 26 start-page: 6 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib37 article-title: Ubiquitin-dependent and independent signals in selective autophagy publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.08.010 – volume: 179 start-page: 485 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib94 article-title: Structural insight into eukaryotic sterol transport through Niemann-Pick Type C proteins publication-title: Cell doi: 10.1016/j.cell.2019.08.038 – volume: 205 start-page: 143 year: 2014 ident: 10.1016/j.devcel.2020.11.016_bib34 article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity publication-title: J. Cell Biol. doi: 10.1083/jcb.201402104 – volume: 21 start-page: 183 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib48 article-title: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0199-y – volume: 67 start-page: 922 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib59 article-title: mTOR controls mitochondrial dynamics and cell survival via MTFP1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.013 – volume: 13 start-page: 132 year: 2011 ident: 10.1016/j.devcel.2020.11.016_bib38 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2152 – volume: 1685 start-page: 48 year: 2004 ident: 10.1016/j.devcel.2020.11.016_bib90 article-title: Consequences of NPC1 and NPC2 loss of function in mammalian neurons publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2004.08.011 – volume: 8 start-page: e2598 year: 2017 ident: 10.1016/j.devcel.2020.11.016_bib75 article-title: TAK1 regulates resident macrophages by protecting lysosomal integrity publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.23 – volume: 8 start-page: 411 year: 2008 ident: 10.1016/j.devcel.2020.11.016_bib8 article-title: Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.10.002 – volume: 366 start-page: 203 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib2 article-title: Architecture of human Rag GTPase heterodimers and their complex with mTORC1 publication-title: Science doi: 10.1126/science.aax3939 – volume: 39 start-page: 171 year: 2010 ident: 10.1016/j.devcel.2020.11.016_bib21 article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.06.022 – volume: 77 start-page: 645 year: 2020 ident: 10.1016/j.devcel.2020.11.016_bib93 article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.01.003 – volume: 17 start-page: 1053 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib22 article-title: Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.054 – volume: 6 start-page: e17540 year: 2011 ident: 10.1016/j.devcel.2020.11.016_bib100 article-title: Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells publication-title: PLoS One doi: 10.1371/journal.pone.0017540 – volume: 450 start-page: 736 year: 2007 ident: 10.1016/j.devcel.2020.11.016_bib17 article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex publication-title: Nature doi: 10.1038/nature06322 – volume: 165 start-page: 1467 year: 2016 ident: 10.1016/j.devcel.2020.11.016_bib26 article-title: Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection publication-title: Cell doi: 10.1016/j.cell.2016.05.022 – volume: 524 start-page: 370 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib92 article-title: Mechanism of phospho-ubiquitin-induced Parkin activation publication-title: Nature doi: 10.1038/nature14879 – volume: 105 start-page: 15287 year: 2008 ident: 10.1016/j.devcel.2020.11.016_bib29 article-title: NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807328105 – volume: 284 start-page: 8023 year: 2009 ident: 10.1016/j.devcel.2020.11.016_bib87 article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M900301200 – volume: 8 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib97 article-title: Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases publication-title: eLife doi: 10.7554/eLife.39598 – volume: 294 start-page: 1706 year: 2019 ident: 10.1016/j.devcel.2020.11.016_bib66 article-title: NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.TM118.004165 – volume: 482 start-page: 216 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib30 article-title: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature10821 – volume: 8 start-page: 903 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib54 article-title: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB publication-title: Autophagy doi: 10.4161/auto.19653 – volume: 128 start-page: 1422 year: 2015 ident: 10.1016/j.devcel.2020.11.016_bib52 article-title: Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol publication-title: J. Cell Sci. doi: 10.1242/jcs.164715 – volume: 5 start-page: ra42 year: 2012 ident: 10.1016/j.devcel.2020.11.016_bib71 article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis publication-title: Sci. Signal. doi: 10.1126/scisignal.2002790 – reference: 33561418 - Dev Cell. 2021 Feb 8;56(3):251-252 |
SSID | ssj0016180 |
Score | 2.6334264 |
Snippet | Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 260 |
SubjectTerms | Adult Animals autophagy Cells, Cultured cholesterol Cholesterol - metabolism ESCRT HEK293 Cells Homeostasis Humans Induced Pluripotent Stem Cells - metabolism Intracellular Membranes - metabolism Intracellular Signaling Peptides and Proteins - metabolism lysosome Lysosomes - metabolism Mechanistic Target of Rapamycin Complex 1 - metabolism Mice mitochondria Mitochondria - metabolism Models, Biological mTORC1 Neurons - metabolism Niemann-Pick C1 Protein Niemann-Pick Disease, Type C - metabolism NPC1 Organelles - metabolism Proteolysis proteomics Signal Transduction |
Title | NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C |
URI | https://dx.doi.org/10.1016/j.devcel.2020.11.016 https://www.ncbi.nlm.nih.gov/pubmed/33308480 https://www.proquest.com/docview/2470037643 https://pubmed.ncbi.nlm.nih.gov/PMC8919971 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhUMilNH26SYsKvaperbSvY7o0pIU6JnbAN6GX020dranthBz63zuzD1O3hUBOC9IICT1G36y-mSHk_RyDmM9dwowHFSjhjmBGm5S5JBc-T7PIWHQU_jpKzy7ll1ky2yNl7wuDtMpO97c6vdHWXcmwm83hsqqGEzirMoGeYnwlADsH9LCQeePEN_u4fUlIeZM9DYUZSvfucw3Hy_kb6_EBIkbd8SHCrOf_v57-hZ9_syj_uJZOn5DHHZ6kJ-2QD8meD0_JozbD5N0z8ms0Ljm7np5flJxOqiuE3eGKlvVmufArWmJ2XAyVUC_oBKnsULeuaeOgiX_0KWZRrwFArqoV1cHRz_Ch04Y9jj5XdAwA8lbf0SrQUeWvdQhsXNkfFM1bWj4nl6efpuUZ6zIuMCtTsWbWChcX3CZI0wTTidvMaRdLpw0AAweK02jACMJrXszlPEuMzHycc6szn3irxQuyH-rgXxGaa1dYX5hCmEgaMPK4y6yPuAO8mIIFPyCin2hlu3DkmBVjoXre2XfVLo_C5QFLRUHhgLBtq2UbjuMe-axfQ7WzrRTcGPe0fNcvuYITh88oMPP1ZqVimWHUHoByA_Ky3QLbsQghMEFBBP3ubI6tAEbz3q0J1bcmqndeIOeHv37wiI_IQYyEG6SU58dkf_1z498AYlqbt82R-A35UhV0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4lkCBYzE1WS99r6OdEWVQBsikkq5WX6lLKS7EUlAPfS_d2YfEQGkSpxWWntly4_xN-tv5iPk7RyTmM9dxIwHEyjhjGBGm5i5KBU-jZPAWAwUPh3FgzP5cRbN9kjexcIgrbK1_Y1Nr611-6bfjmZ_WRT9CexVGUFLId4SgJ9zi9wGNJCgfsNwdrS9Soh5LZ-GtRlW7-LnapKX8z-txxuIEI3HuwBlz_99Pv2NP_-kUf52Lh0_IPdbQEnfN31-SPZ8-YjcaSQmLx-Tq9E45-xi-vlLzumkOEfcXZ7TvNosF35Fc5THxVwJ1YJOkMsOZeuK1hGa-Eufoox6BQhyVayoLh0dwoNOa_o4Bl3RMSDIX_qSFiUdFf5ClyUbF_Y7Rf-W5k_I2fGHaT5greQCszIWa2atcGHGbYQ8TfCduE2cdqF02gAycGA5jQaQILzm2VzOk8jIxIcptzrxkbdaPCX7ZVX6Z4Sm2mXWZyYTJpAGvDzuEusD7gAwxuDC94joBlrZNh85ymIsVEc8-6aa6VE4PeCqKHjZI2z71bLJx3FD_aSbQ7WzrhQcGTd8-aabcgVbDu9RYOSrzUqFMsG0PYDleuSgWQLbvgghUKEggHZ3Fse2Aqbz3i0pi691Wu80Q9IPf_7fPX5N7g6mpyfqZDj69ILcC5F9g_zy9JDsr39s_EuAT2vzqt4e1-aEGJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NPC1-mTORC1+Signaling+Couples+Cholesterol+Sensing+to+Organelle+Homeostasis+and+Is+a+Targetable+Pathway+in+Niemann-Pick+Type+C&rft.jtitle=Developmental+cell&rft.au=Davis%2C+Oliver+B&rft.au=Shin%2C+Hijai+R&rft.au=Lim%2C+Chun-Yan&rft.au=Wu%2C+Emma+Y&rft.date=2021-02-08&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=56&rft.issue=3&rft.spage=260&rft_id=info:doi/10.1016%2Fj.devcel.2020.11.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |