NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C

Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), los...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell Vol. 56; no. 3; pp. 260 - 276.e7
Main Authors Davis, Oliver B., Shin, Hijai R., Lim, Chun-Yan, Wu, Emma Y., Kukurugya, Matthew, Maher, Claire F., Perera, Rushika M., Ordonez, M. Paulina, Zoncu, Roberto
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.02.2021
Subjects
Online AccessGet full text
ISSN1534-5807
1878-1551
1878-1551
DOI10.1016/j.devcel.2020.11.016

Cover

Loading…
Abstract Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. [Display omitted] •Proteomic profiling of NPC lysosomes reveals both proteolytic and structural defects•Loss of cholesterol transport activity by NPC1 causes aberrant mTORC1 signaling•mTORC1 inhibition restores lysosomal and mitochondrial function in NPC cells Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al. identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells.
AbstractList Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function and neurodegeneration. The compositional and functional alterations in NPC lysosomes, and how aberrant cholesterol-mTORC1 signaling contributes to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells.
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC. [Display omitted] •Proteomic profiling of NPC lysosomes reveals both proteolytic and structural defects•Loss of cholesterol transport activity by NPC1 causes aberrant mTORC1 signaling•mTORC1 inhibition restores lysosomal and mitochondrial function in NPC cells Niemann-Pick type C is a devastating neurodegenerative disease caused by cholesterol buildup in lysosomes. Through organelle proteomics, Davis et al. identify degradative and structural defects of NPC lysosomes. Aberrant mTORC1 signaling drives lysosomal dysfunction downstream of cholesterol accumulation, and chemical and genetic mTORC1 inhibition restores organelle homeostasis in NPC cells.
Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.
Author Davis, Oliver B.
Maher, Claire F.
Shin, Hijai R.
Perera, Rushika M.
Kukurugya, Matthew
Lim, Chun-Yan
Wu, Emma Y.
Zoncu, Roberto
Ordonez, M. Paulina
AuthorAffiliation 2 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
3 Department of Anatomy and Helen Diller Family Comprehensive Cancer center, University of California, San Francisco, San Francisco, CA 94143, USA
4 Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
6 Lead Contact
1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
5 Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA
AuthorAffiliation_xml – name: 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– name: 3 Department of Anatomy and Helen Diller Family Comprehensive Cancer center, University of California, San Francisco, San Francisco, CA 94143, USA
– name: 6 Lead Contact
– name: 2 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
– name: 4 Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
– name: 5 Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California, San Diego, La Jolla, CA 92037, USA
Author_xml – sequence: 1
  givenname: Oliver B.
  surname: Davis
  fullname: Davis, Oliver B.
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Hijai R.
  surname: Shin
  fullname: Shin, Hijai R.
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Chun-Yan
  surname: Lim
  fullname: Lim, Chun-Yan
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 4
  givenname: Emma Y.
  surname: Wu
  fullname: Wu, Emma Y.
  organization: Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
– sequence: 5
  givenname: Matthew
  surname: Kukurugya
  fullname: Kukurugya, Matthew
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 6
  givenname: Claire F.
  surname: Maher
  fullname: Maher, Claire F.
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
– sequence: 7
  givenname: Rushika M.
  surname: Perera
  fullname: Perera, Rushika M.
  organization: Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
– sequence: 8
  givenname: M. Paulina
  surname: Ordonez
  fullname: Ordonez, M. Paulina
  email: pordonez@health.ucsd.edu
  organization: Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
– sequence: 9
  givenname: Roberto
  surname: Zoncu
  fullname: Zoncu, Roberto
  email: rzoncu@berkeley.edu
  organization: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33308480$$D View this record in MEDLINE/PubMed
BookMark eNqFUUuP0zAQjtAi9gH_ACEfuaR4EqdOOCChCHZXWm0rtpwtx56mLo5d7LSoB_77umoXAQc4jTXfS_7mMjtz3mGWvQY6AQrTd-uJxp1COylokVYwSctn2QXUvM6hquAsvauS5VVN-Xl2GeOaJgbU9EV2XpYlrVlNL7Kf9_MW8mEx-9ICeTC9k9a4nrR-u7EYSbvyaYwYvCUP6OIBGz2ZhV46tBbJjR_Qx1FGE4l0mtymQRYy9DjKLuFzOa5-yD0xjtwbHKRz-dyob2Sx3yBpX2bPl9JGfHWaV9nXz58W7U1-N7u-bT_e5YpNyzFXqtRFA6oCyhlrKlBcS10wLbsKCs2nRSeL9FmU0CzZklcd41jUoCTHCpUsr7IPR9_NthtQK3RjkFZsghlk2AsvjfgTcWYler8TdQNNwyEZvD0ZBP99mxoRg4mpfJtq8NsoCsYpLfmUlYn65vesXyFPnSfC-yNBBR9jwKVQZpSj8YdoYwVQcTiwWIvjgcXhwAJApGUSs7_ET_7_kZ0KwNTyzmAQURl0CrUJqEahvfm3wSNlHsKB
CitedBy_id crossref_primary_10_1053_j_gastro_2021_11_014
crossref_primary_10_1038_s41556_024_01459_y
crossref_primary_10_1016_j_jare_2024_11_020
crossref_primary_10_1016_j_bbamcr_2025_119896
crossref_primary_10_3390_ijms23084459
crossref_primary_10_1038_s41598_023_32971_0
crossref_primary_10_1002_bies_202400023
crossref_primary_10_1038_s41422_022_00740_9
crossref_primary_10_1038_s41467_024_46007_2
crossref_primary_10_1242_jcs_261402
crossref_primary_10_1016_j_celrep_2023_113631
crossref_primary_10_1016_j_bbalip_2023_159365
crossref_primary_10_1016_j_jmb_2023_168140
crossref_primary_10_1371_journal_pone_0294312
crossref_primary_10_1515_hsz_2022_0287
crossref_primary_10_26508_lsa_202402584
crossref_primary_10_3390_ijms242115642
crossref_primary_10_1016_j_ymgme_2023_107729
crossref_primary_10_1016_j_bbadis_2023_166993
crossref_primary_10_2174_1389450123666220111115528
crossref_primary_10_1016_j_freeradbiomed_2024_09_028
crossref_primary_10_1002_ctm2_852
crossref_primary_10_1038_s41467_023_39261_3
crossref_primary_10_1038_s44318_024_00177_3
crossref_primary_10_1016_j_celrep_2023_113183
crossref_primary_10_1016_j_addr_2022_114532
crossref_primary_10_1042_BST20220519
crossref_primary_10_1016_j_cell_2024_11_028
crossref_primary_10_1016_j_bbadis_2023_166980
crossref_primary_10_3390_cells11030326
crossref_primary_10_3389_fnins_2023_1152503
crossref_primary_10_3390_antiox12122021
crossref_primary_10_1016_j_tins_2021_12_004
crossref_primary_10_1038_s41388_023_02771_x
crossref_primary_10_1016_j_cell_2024_09_048
crossref_primary_10_1016_j_devcel_2024_03_030
crossref_primary_10_1038_s41467_024_50076_8
crossref_primary_10_1126_science_abg6621
crossref_primary_10_1126_sciadv_abo2510
crossref_primary_10_3390_ijms22168858
crossref_primary_10_7554_eLife_86194_3
crossref_primary_10_1007_s00109_024_02512_x
crossref_primary_10_1172_jci_insight_160308
crossref_primary_10_1126_sciadv_adr7325
crossref_primary_10_1016_j_molcel_2022_03_023
crossref_primary_10_1016_j_fsi_2023_108864
crossref_primary_10_1016_j_bbadis_2022_166399
crossref_primary_10_1038_s41467_025_58087_9
crossref_primary_10_1101_gad_346759_120
crossref_primary_10_1111_nan_12738
crossref_primary_10_1091_mbc_E21_11_0595_T
crossref_primary_10_1038_s41580_022_00529_z
crossref_primary_10_1080_15548627_2024_2435238
crossref_primary_10_1016_j_tcb_2024_04_008
crossref_primary_10_1186_s13046_024_03172_y
crossref_primary_10_1016_j_tcb_2021_12_009
crossref_primary_10_7554_eLife_72328
crossref_primary_10_1038_s41467_022_33933_2
crossref_primary_10_1016_j_canlet_2023_216208
crossref_primary_10_1016_j_lfs_2024_122722
crossref_primary_10_1002_jimd_12833
crossref_primary_10_1080_15548627_2021_1975914
crossref_primary_10_3390_cells11030507
crossref_primary_10_1002_eji_202350501
crossref_primary_10_3390_ijms242417513
crossref_primary_10_3390_biom12050616
crossref_primary_10_1073_pnas_2111506119
crossref_primary_10_1038_s41419_024_06770_y
crossref_primary_10_1038_s41556_023_01198_6
crossref_primary_10_1177_26331055241252772
crossref_primary_10_4103_NRR_NRR_D_23_01462
crossref_primary_10_1016_j_ymgme_2022_07_014
crossref_primary_10_1098_rstb_2022_0388
crossref_primary_10_3390_biomedicines11041067
crossref_primary_10_1038_s41598_021_04584_y
crossref_primary_10_3390_ijms23137206
crossref_primary_10_1016_j_coisb_2022_100416
crossref_primary_10_1172_jci_insight_179525
crossref_primary_10_3389_fcell_2021_790568
crossref_primary_10_3390_antiox14020125
crossref_primary_10_1080_15548627_2023_2270378
crossref_primary_10_1111_cas_16331
crossref_primary_10_3390_ijms24076221
crossref_primary_10_1080_15548627_2021_2020979
crossref_primary_10_1126_sciadv_adu5787
crossref_primary_10_1083_jcb_202105060
crossref_primary_10_3389_fragi_2021_707372
crossref_primary_10_1016_j_chemosphere_2023_138071
crossref_primary_10_1038_s41581_022_00648_y
crossref_primary_10_1038_s41594_024_01470_9
crossref_primary_10_1007_s12311_021_01347_3
crossref_primary_10_1016_j_bbadis_2024_167478
crossref_primary_10_1016_j_isci_2022_104941
crossref_primary_10_1080_15384047_2023_2170669
crossref_primary_10_1038_s41467_023_36298_2
crossref_primary_10_3389_fphys_2024_1431030
crossref_primary_10_1038_s41467_024_54355_2
crossref_primary_10_1152_physiol_00026_2024
crossref_primary_10_1016_j_jbc_2024_107403
crossref_primary_10_1038_s41556_022_00926_8
crossref_primary_10_1038_s41467_023_38501_w
crossref_primary_10_7554_eLife_86194
crossref_primary_10_1016_j_devcel_2021_01_007
crossref_primary_10_3390_cancers14143543
crossref_primary_10_1038_s41582_024_00999_z
crossref_primary_10_1038_s41580_023_00676_x
crossref_primary_10_1016_j_molmet_2022_101481
crossref_primary_10_1113_EP090518
crossref_primary_10_1128_jvi_00646_22
crossref_primary_10_3389_fcell_2021_658995
crossref_primary_10_1016_j_coisb_2021_100408
crossref_primary_10_3389_fimmu_2024_1414301
crossref_primary_10_34133_research_0343
crossref_primary_10_1016_j_jbc_2024_107911
crossref_primary_10_26508_lsa_202101239
crossref_primary_10_1016_j_plipres_2023_101225
Cites_doi 10.1146/annurev-cellbio-111315-125125
10.1016/j.cell.2010.02.024
10.1038/s41467-018-06115-2
10.1016/j.cell.2015.10.017
10.1126/science.aar5078
10.1038/emboj.2013.171
10.1093/nar/gkv1003
10.1172/JCI94130
10.1016/j.devcel.2019.10.025
10.1038/nature17963
10.1126/science.1257132
10.1016/j.cell.2017.09.046
10.1101/pdb.prot087106
10.1093/hmg/dds324
10.15252/embj.201899753
10.1681/ASN.2014090937
10.1038/s41467-018-03035-z
10.1038/s41594-020-0404-x
10.1126/science.aan6298
10.1074/jbc.M114.559914
10.1016/j.cell.2008.06.016
10.1016/j.cell.2011.06.034
10.1016/j.cell.2013.04.023
10.1038/s41556-019-0391-5
10.1073/pnas.0914798107
10.7554/eLife.51031
10.1038/s41467-019-14009-0
10.1126/science.1207056
10.1016/j.bbamcr.2008.12.001
10.1093/hmg/ddw025
10.1083/jcb.201008084
10.1126/science.aay0166
10.1038/s41589-019-0308-4
10.7554/eLife.25466
10.1074/mcp.M112.026179
10.7554/eLife.12177
10.1007/s10545-016-9919-z
10.1038/nature14893
10.1074/jbc.272.10.6245
10.1083/jcb.201301039
10.1074/jbc.M115.689646
10.1016/j.cell.2012.07.032
10.1093/hmg/dds090
10.1038/nchembio.625
10.1038/10084
10.1126/science.aao1583
10.1073/pnas.1611956113
10.1038/s41572-018-0025-4
10.1126/science.1174447
10.1172/jci.insight.136676
10.1016/j.molcel.2017.10.016
10.1194/jlr.RA119000571
10.1126/science.aag1417
10.1126/science.277.5323.232
10.1016/j.cell.2009.03.049
10.1038/s41556-018-0244-7
10.1042/BJ20140334
10.1016/j.cell.2016.06.037
10.1074/jbc.M414024200
10.1073/pnas.262669399
10.1016/j.cell.2013.11.049
10.1242/dmm.038596
10.1038/s41467-019-11174-0
10.7554/eLife.25960
10.1074/jbc.M412898200
10.1038/emboj.2012.32
10.1016/j.cell.2013.09.056
10.1126/science.aad0489
10.1016/j.celrep.2013.10.042
10.1038/nrm.2016.121
10.1093/hmg/ddy076
10.1074/jbc.M117.783894
10.4161/auto.20668
10.1038/nrm2745
10.1016/j.cmet.2013.10.001
10.1126/science.1215135
10.1016/j.tcb.2015.08.010
10.1016/j.cell.2019.08.038
10.1083/jcb.201402104
10.1038/s41580-019-0199-y
10.1016/j.molcel.2017.08.013
10.1038/ncb2152
10.1016/j.bbalip.2004.08.011
10.1038/cddis.2017.23
10.1016/j.cmet.2008.10.002
10.1126/science.aax3939
10.1016/j.molcel.2010.06.022
10.1016/j.molcel.2020.01.003
10.1016/j.celrep.2016.09.054
10.1371/journal.pone.0017540
10.1038/nature06322
10.1016/j.cell.2016.05.022
10.1038/nature14879
10.1073/pnas.0807328105
10.1074/jbc.M900301200
10.7554/eLife.39598
10.1074/jbc.TM118.004165
10.1038/nature10821
10.4161/auto.19653
10.1242/jcs.164715
10.1126/scisignal.2002790
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.devcel.2020.11.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
EndPage 276.e7
ExternalDocumentID PMC8919971
33308480
10_1016_j_devcel_2020_11_016
S1534580720309254
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM130995
– fundername: NIGMS NIH HHS
  grantid: R01 GM127763
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
5GY
62-
7-5
AACTN
AAEDT
AAEDW
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
ROL
RPZ
SDG
SES
SSZ
TR2
29F
53G
5VS
AAIKJ
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
RIG
UHS
0SF
AAFTH
ABVKL
CGR
CUY
CVF
ECM
EIF
NPM
RCE
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-cc3d291c510744951c7dad24dab512d762ba2153ea19f4f75b47e281ca7e5eca3
IEDL.DBID IXB
ISSN 1534-5807
1878-1551
IngestDate Thu Aug 21 18:16:45 EDT 2025
Mon Jul 21 10:29:35 EDT 2025
Wed Feb 19 02:25:55 EST 2025
Tue Jul 01 00:48:12 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Sun Apr 06 06:53:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords autophagy
NPC1
ESCRT
proteomics
mitochondria
cholesterol
mTORC1
lysosome
proteolysis
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-cc3d291c510744951c7dad24dab512d762ba2153ea19f4f75b47e281ca7e5eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
O.B.D, M.P.O., and R.Z. conceived of and designed experiments. O.B.D, H.R.S., C.Y.L., E.Y.W., M.K., C.F.M. and M.P.O. generated key reagents and performed the experiments. O.B.D, H.R.S., R.M.P., M.P.O. and R.Z. analyzed data and interpreted results. O.B.D., M.P.O and R.Z. wrote the manuscript.
Author Contributions
All authors read and edited the manuscript.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8919971
PMID 33308480
PQID 2470037643
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8919971
proquest_miscellaneous_2470037643
pubmed_primary_33308480
crossref_citationtrail_10_1016_j_devcel_2020_11_016
crossref_primary_10_1016_j_devcel_2020_11_016
elsevier_sciencedirect_doi_10_1016_j_devcel_2020_11_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-08
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Brown, Voit, Srikanth, Thayer, Kingsbury, Jacobson, Lipinski, Feldman, Awad (bib9) 2019; 12
Hämälistö, Stahl, Favaro, Yang, Liu, Christoffersen, Loos, Guasch Boldú, Joyce, Reinheckel (bib27) 2020; 11
Lamming, Ye, Katajisto, Goncalves, Saitoh, Stevens, Davis, Salmon, Richardson, Ahima (bib41) 2012; 335
Lu, Liang, Abi-Mosleh, Das, De Brabander, Goldstein, Brown (bib50) 2015; 4
Ben-Sahra, Hoxhaj, Ricoult, Asara, Manning (bib7) 2016; 351
Gao, Zhou, Goldstein, Brown, Radhakrishnan (bib25) 2017; 292
Jia, Claude-Taupin, Gu, Choi, Peters, Bissa, Mudd, Allers, Pallikkuth, Lidke (bib32) 2020; 52
Kim, Kundu, Viollet, Guan (bib38) 2011; 13
Li, Saha, Li, Blobel, Pfeffer (bib45) 2016; 113
Wyant, Abu-Remaileh, Wolfson, Chen, Freinkman, Danai, Vander Heiden, Sabatini (bib95) 2017; 171
Schreiber, Arriola Apelo, Yu, Brinkman, Velarde, Syed, Liao, Baar, Carbajal, Sherman (bib81) 2019; 10
Tsuji, Fujimoto, Tatematsu, Cheng, Orii, Takatori, Fujimoto (bib89) 2017; 6
Liu, Schultz, Mochida, Chung, Paulson, Lieberman (bib47) 2020; 5
de Araujo, Naschberger, Fürnrohr, Stasyk, Dunzendorfer-Matt, Lechner, Welti, Kremser, Shivalingaiah, Offterdinger (bib19) 2017; 358
Morita, Prudent, Basu, Goyon, Katsumura, Hulea, Pearl, Siddiqui, Strack, McGuirk (bib59) 2017; 67
Platt, d’Azzo, Davidson, Neufeld, Tifft (bib67) 2018; 4
Khaminets, Behl, Dikic (bib37) 2016; 26
Sancak, Bar-Peled, Zoncu, Markhard, Nada, Sabatini (bib76) 2010; 141
Chiaruttini, Redondo-Morata, Colom, Humbert, Lenz, Scheuring, Roux (bib13) 2015; 163
Su, Morris, Kim, Fu, Lawrence, Stjepanovic, Zoncu, Hurley (bib86) 2017; 68
Kennedy, Madreiter, Vishnu, Malli, Graier, Karten (bib36) 2014; 289
Toulmay, Prinz (bib88) 2013; 202
Schöneberg, Lee, Iwasa, Hurley (bib80) 2017; 18
Ordonez, Roberts, Kidwell, Yuan, Plaisted, Goldstein (bib62) 2012; 21
Yu, Gong, Ko, Garver, Yanagisawa, Michikawa (bib99) 2005; 280
Yambire, Rostosky, Watanabe, Pacheu-Grau, Torres-Odio, Sanchez-Guerrero, Senderovich, Meyron-Holtz, Milosevic, Frahm (bib98) 2019; 8
Rogala, Gu, Kedir, Abu-Remaileh, Bianchi, Bottino, Dueholm, Niehaus, Overwijn, Fils (bib73) 2019; 366
Elrick, Yu, Chung, Lieberman (bib23) 2012; 21
Yabe, Xia, Adams, Rawson (bib96) 2002; 99
Ebrahimi-Fakhari, Saffari, Wahlster, Di Nardo, Turner, Lewis, Conrad, Rothberg, Lipton, Kölker (bib22) 2016; 17
Sakamachi, Morioka, Mihaly, Takaesu, Foley, Fessler, Ninomiya-Tsuji (bib75) 2017; 8
Feltes, Gale, Moores, Ory, Schaffer (bib24) 2020; 61
Ivanova, van den Heuvel, Elmonem, De Smedt, Missiaen, Pastore, Mekahli, Bultynck, Levtchenko (bib31) 2016; 39
Dong, Saheki, Swarup, Lucast, Harper, De Camilli (bib20) 2016; 166
Yambire, Fernandez-Mosquera, Steinfeld, Mühle, Ikonen, Milosevic, Raimundo (bib97) 2019; 8
Bar-Peled, Schweitzer, Zoncu, Sabatini (bib5) 2012; 150
Ballabio, Gieselmann (bib4) 2009; 1793
Andrzejewska, Nevo, Thomas, Chhuon, Bailleux, Chauvet, Courtoy, Chol, Guerrera, Antignac (bib3) 2016; 27
Israel, Yuan, Bardy, Reyna, Mu, Herrera, Hefferan, Van Gorp, Nazor, Boscolo (bib30) 2012; 482
Anandapadamanaban, Masson, Perisic, Berndt, Kaufman, Johnson, Santhanam, Rogala, Sabatini, Williams (bib2) 2019; 366
Abu-Remaileh, Wyant, Kim, Laqtom, Abbasi, Chan, Freinkman, Sabatini (bib1) 2017; 358
Loftus, Morris, Carstea, Gu, Cummings, Brown, Ellison, Ohno, Rosenfeld, Tagle (bib49) 1997; 277
Radulovic, Schink, Wenzel, Nähse, Bongiovanni, Lafont, Stenmark (bib69) 2018; 37
Infante, Radhakrishnan (bib28) 2017; 6
Cunningham, Rodgers, Arlow, Vazquez, Mootha, Puigserver (bib17) 2007; 450
Gong, Qian, Zhou, Wu, Wan, Cao, Huang, Zhao, Wang, Wang (bib26) 2016; 165
Wauer, Simicek, Schubert, Komander (bib92) 2015; 524
Roczniak-Ferguson, Petit, Froehlich, Qian, Ky, Angarola, Walther, Ferguson (bib71) 2012; 5
Nguyen, Talledge, McCullough, Sharma, Moss, Iwasa, Vershinin, Sundquist, Frost (bib60) 2020; 27
Settembre, Zoncu, Medina, Vetrini, Erdin, Erdin, Huynh, Ferron, Karsenty, Vellard (bib83) 2012; 31
Weber, Yen, Nicholson, Alwaseem, Bayraktar, Alam, Timson, La, Abu-Remaileh, Molina (bib93) 2020; 77
Sleat, Sun, Wiseman, Huang, El-Banna, Zheng, Moore, Lobel (bib85) 2013; 12
Thoreen, Kang, Chang, Liu, Zhang, Gao, Reichling, Sim, Sabatini, Gray (bib87) 2009; 284
Perera, Zoncu (bib64) 2016; 32
Düvel, Yecies, Menon, Raman, Lipovsky, Souza, Triantafellow, Ma, Gorski, Cleaver (bib21) 2010; 39
Lawrence, Zoncu (bib42) 2019; 21
Chung, Puthanveetil, Ory, Lieberman (bib14) 2016; 25
Menon, Dibble, Talbott, Hoxhaj, Valvezan, Takahashi, Cantley, Manning (bib55) 2014; 156
Morita, Gravel, Chénard, Sikström, Zheng, Alain, Gandin, Avizonis, Arguello, Zakaria (bib58) 2013; 18
Mesmin, Bigay, Moser von Filseck, Lacas-Gervais, Drin, Antonny (bib56) 2013; 155
Lim, Davis, Shin, Zhang, Berdan, Jiang, Counihan, Ory, Nomura, Zoncu (bib46) 2019; 21
Zoncu, Bar-Peled, Efeyan, Wang, Sancak, Sabatini (bib101) 2011; 334
Calvo, Clauser, Mootha (bib11) 2016; 44
Maejima, Takahashi, Omori, Kimura, Takabatake, Saitoh, Yamamoto, Hamasaki, Noda, Isaka (bib51) 2013; 32
Peterson, Sengupta, Harris, Carmack, Kang, Balderas, Guertin, Madden, Carpenter, Finck (bib65) 2011; 146
Repnik, Česen, Turk (bib70) 2016; 2016
Pagliarini, Calvo, Chang, Sheth, Vafai, Ong, Walford, Sugiana, Boneh, Chen (bib63) 2008; 134
Danyukova, Ariunbat, Thelen, Brocke-Ahmadinejad, Mole, Storch (bib18) 2018; 27
Bartolomeo, Cinque, De Leonibus, Forrester, Salzano, Monfregola, De Gennaro, Nusco, Azario, Lanzara (bib6) 2017; 127
Kwon, Abi-Mosleh, Wang, Deisenhofer, Goldstein, Brown, Infante (bib40) 2009; 137
Kane, Lazarou, Fogel, Li, Yamano, Sarraf, Banerjee, Youle (bib34) 2014; 205
Skowyra, Schlesinger, Naismith, Hanson (bib84) 2018; 360
Kobayashi, Beuchat, Lindsay, Frias, Palmiter, Sakuraba, Parton, Gruenberg (bib39) 1999; 1
Saftig, Klumperman (bib74) 2009; 10
Martina, Chen, Gucek, Puertollano (bib54) 2012; 8
Wang, Tsun, Wolfson, Shen, Wyant, Plovanich, Yuan, Jones, Chantranupong, Comb (bib91) 2015; 347
Jin, Lazarou, Wang, Kane, Narendra, Youle (bib33) 2010; 191
Castellano, Thelen, Moldavski, Feltes, van der Welle, Mydock-McGrane, Jiang, van Eijkeren, Davis, Louie (bib12) 2017; 355
Puente, Hendrickson, Jiang (bib68) 2016; 291
Burgett, Poulsen, Wangkanont, Anderson, Kikuchi, Shimada, Okubo, Fortner, Mimaki, Kuroda (bib10) 2011; 7
Pfeffer (bib66) 2019; 294
Schedin, Sindelar, Pentchev, Brunk, Dallner (bib79) 1997; 272
Sardiello, Palmieri, di Ronza, Medina, Valenza, Gennarino, Di Malta, Donaudy, Embrione, Polishchuk (bib77) 2009; 325
Infante, Wang, Radhakrishnan, Kwon, Brown, Goldstein (bib29) 2008; 105
Winkler, Kidmose, Szomek, Thaysen, Rawson, Muench, Wüstner, Pedersen (bib94) 2019; 179
Schultz, Krus, Kaushik, Dang, Chopra, Qi, Shakkottai, Cuervo, Lieberman (bib82) 2018; 9
Walkley, Suzuki (bib90) 2004; 1685
Bentzinger, Romanino, Cloëtta, Lin, Mascarenhas, Oliveri, Xia, Casanova, Costa, Brink (bib8) 2008; 8
Sarkar, Carroll, Buganim, Maetzel, Ng, Cassady, Cohen, Chakraborty, Wang, Spooner (bib78) 2013; 5
Csibi, Fendt, Li, Poulogiannis, Choo, Chapski, Jeong, Dempsey, Parkhitko, Morrison (bib16) 2013; 153
Maekawa, Fairn (bib52) 2015; 128
Chung, Shin, Berdan, Ford, Ward, Olzmann, Zoncu, Nomura (bib15) 2019; 15
Yuan, Martin, Elia, Flippin, Paramban, Hefferan, Vidal, Mu, Killian, Israel (bib100) 2011; 6
Li, Brown, Goldstein (bib44) 2010; 107
Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib43) 2015; 524
Kazlauskaite, Kondapalli, Gourlay, Campbell, Ritorto, Hofmann, Alessi, Knebel, Trost, Muqit (bib35) 2014; 460
Millard, Gale, Dudley, Zhang, Schaffer, Ory (bib57) 2005; 280
Mahoney, Narayan, Molz, Berstler, Kang, Vlasuk, Saiah (bib53) 2018; 9
Rodrik-Outmezguine, Okaniwa, Yao, Novotny, McWhirter, Banaji, Won, Wong, Berger, de Stanchina (bib72) 2016; 534
Liu, Sabatini (bib48) 2020; 21
Ordonez (bib61) 2012; 8
Kwon (10.1016/j.devcel.2020.11.016_bib40) 2009; 137
Millard (10.1016/j.devcel.2020.11.016_bib57) 2005; 280
Radulovic (10.1016/j.devcel.2020.11.016_bib69) 2018; 37
Ballabio (10.1016/j.devcel.2020.11.016_bib4) 2009; 1793
Schreiber (10.1016/j.devcel.2020.11.016_bib81) 2019; 10
Walkley (10.1016/j.devcel.2020.11.016_bib90) 2004; 1685
Chung (10.1016/j.devcel.2020.11.016_bib14) 2016; 25
Wauer (10.1016/j.devcel.2020.11.016_bib92) 2015; 524
Roczniak-Ferguson (10.1016/j.devcel.2020.11.016_bib71) 2012; 5
Brown (10.1016/j.devcel.2020.11.016_bib9) 2019; 12
Castellano (10.1016/j.devcel.2020.11.016_bib12) 2017; 355
Kobayashi (10.1016/j.devcel.2020.11.016_bib39) 1999; 1
Danyukova (10.1016/j.devcel.2020.11.016_bib18) 2018; 27
Schöneberg (10.1016/j.devcel.2020.11.016_bib80) 2017; 18
Elrick (10.1016/j.devcel.2020.11.016_bib23) 2012; 21
Sarkar (10.1016/j.devcel.2020.11.016_bib78) 2013; 5
Abu-Remaileh (10.1016/j.devcel.2020.11.016_bib1) 2017; 358
Puente (10.1016/j.devcel.2020.11.016_bib68) 2016; 291
Sleat (10.1016/j.devcel.2020.11.016_bib85) 2013; 12
Settembre (10.1016/j.devcel.2020.11.016_bib83) 2012; 31
Weber (10.1016/j.devcel.2020.11.016_bib93) 2020; 77
Lazarou (10.1016/j.devcel.2020.11.016_bib43) 2015; 524
Zoncu (10.1016/j.devcel.2020.11.016_bib101) 2011; 334
Su (10.1016/j.devcel.2020.11.016_bib86) 2017; 68
Skowyra (10.1016/j.devcel.2020.11.016_bib84) 2018; 360
Platt (10.1016/j.devcel.2020.11.016_bib67) 2018; 4
de Araujo (10.1016/j.devcel.2020.11.016_bib19) 2017; 358
Yambire (10.1016/j.devcel.2020.11.016_bib97) 2019; 8
Morita (10.1016/j.devcel.2020.11.016_bib58) 2013; 18
Düvel (10.1016/j.devcel.2020.11.016_bib21) 2010; 39
Schultz (10.1016/j.devcel.2020.11.016_bib82) 2018; 9
Anandapadamanaban (10.1016/j.devcel.2020.11.016_bib2) 2019; 366
Ebrahimi-Fakhari (10.1016/j.devcel.2020.11.016_bib22) 2016; 17
Infante (10.1016/j.devcel.2020.11.016_bib29) 2008; 105
Yu (10.1016/j.devcel.2020.11.016_bib99) 2005; 280
Chiaruttini (10.1016/j.devcel.2020.11.016_bib13) 2015; 163
Khaminets (10.1016/j.devcel.2020.11.016_bib37) 2016; 26
Mesmin (10.1016/j.devcel.2020.11.016_bib56) 2013; 155
Ivanova (10.1016/j.devcel.2020.11.016_bib31) 2016; 39
Jia (10.1016/j.devcel.2020.11.016_bib32) 2020; 52
Toulmay (10.1016/j.devcel.2020.11.016_bib88) 2013; 202
Csibi (10.1016/j.devcel.2020.11.016_bib16) 2013; 153
Sancak (10.1016/j.devcel.2020.11.016_bib76) 2010; 141
Yuan (10.1016/j.devcel.2020.11.016_bib100) 2011; 6
Kim (10.1016/j.devcel.2020.11.016_bib38) 2011; 13
Liu (10.1016/j.devcel.2020.11.016_bib47) 2020; 5
Dong (10.1016/j.devcel.2020.11.016_bib20) 2016; 166
Lim (10.1016/j.devcel.2020.11.016_bib46) 2019; 21
Gong (10.1016/j.devcel.2020.11.016_bib26) 2016; 165
Yabe (10.1016/j.devcel.2020.11.016_bib96) 2002; 99
Tsuji (10.1016/j.devcel.2020.11.016_bib89) 2017; 6
Pfeffer (10.1016/j.devcel.2020.11.016_bib66) 2019; 294
Maekawa (10.1016/j.devcel.2020.11.016_bib52) 2015; 128
Loftus (10.1016/j.devcel.2020.11.016_bib49) 1997; 277
Infante (10.1016/j.devcel.2020.11.016_bib28) 2017; 6
Morita (10.1016/j.devcel.2020.11.016_bib59) 2017; 67
Mahoney (10.1016/j.devcel.2020.11.016_bib53) 2018; 9
Repnik (10.1016/j.devcel.2020.11.016_bib70) 2016; 2016
Israel (10.1016/j.devcel.2020.11.016_bib30) 2012; 482
Wang (10.1016/j.devcel.2020.11.016_bib91) 2015; 347
Peterson (10.1016/j.devcel.2020.11.016_bib65) 2011; 146
Hämälistö (10.1016/j.devcel.2020.11.016_bib27) 2020; 11
Lawrence (10.1016/j.devcel.2020.11.016_bib42) 2019; 21
Burgett (10.1016/j.devcel.2020.11.016_bib10) 2011; 7
Jin (10.1016/j.devcel.2020.11.016_bib33) 2010; 191
Li (10.1016/j.devcel.2020.11.016_bib44) 2010; 107
Wyant (10.1016/j.devcel.2020.11.016_bib95) 2017; 171
Ordonez (10.1016/j.devcel.2020.11.016_bib61) 2012; 8
Pagliarini (10.1016/j.devcel.2020.11.016_bib63) 2008; 134
Perera (10.1016/j.devcel.2020.11.016_bib64) 2016; 32
Sardiello (10.1016/j.devcel.2020.11.016_bib77) 2009; 325
Maejima (10.1016/j.devcel.2020.11.016_bib51) 2013; 32
Ordonez (10.1016/j.devcel.2020.11.016_bib62) 2012; 21
Nguyen (10.1016/j.devcel.2020.11.016_bib60) 2020; 27
Ben-Sahra (10.1016/j.devcel.2020.11.016_bib7) 2016; 351
Lu (10.1016/j.devcel.2020.11.016_bib50) 2015; 4
Feltes (10.1016/j.devcel.2020.11.016_bib24) 2020; 61
Bentzinger (10.1016/j.devcel.2020.11.016_bib8) 2008; 8
Liu (10.1016/j.devcel.2020.11.016_bib48) 2020; 21
Rodrik-Outmezguine (10.1016/j.devcel.2020.11.016_bib72) 2016; 534
Cunningham (10.1016/j.devcel.2020.11.016_bib17) 2007; 450
Sakamachi (10.1016/j.devcel.2020.11.016_bib75) 2017; 8
Schedin (10.1016/j.devcel.2020.11.016_bib79) 1997; 272
Lamming (10.1016/j.devcel.2020.11.016_bib41) 2012; 335
Winkler (10.1016/j.devcel.2020.11.016_bib94) 2019; 179
Bar-Peled (10.1016/j.devcel.2020.11.016_bib5) 2012; 150
Andrzejewska (10.1016/j.devcel.2020.11.016_bib3) 2016; 27
Gao (10.1016/j.devcel.2020.11.016_bib25) 2017; 292
Calvo (10.1016/j.devcel.2020.11.016_bib11) 2016; 44
Rogala (10.1016/j.devcel.2020.11.016_bib73) 2019; 366
Kane (10.1016/j.devcel.2020.11.016_bib34) 2014; 205
Yambire (10.1016/j.devcel.2020.11.016_bib98) 2019; 8
Kazlauskaite (10.1016/j.devcel.2020.11.016_bib35) 2014; 460
Menon (10.1016/j.devcel.2020.11.016_bib55) 2014; 156
Chung (10.1016/j.devcel.2020.11.016_bib15) 2019; 15
Thoreen (10.1016/j.devcel.2020.11.016_bib87) 2009; 284
Kennedy (10.1016/j.devcel.2020.11.016_bib36) 2014; 289
Li (10.1016/j.devcel.2020.11.016_bib45) 2016; 113
Bartolomeo (10.1016/j.devcel.2020.11.016_bib6) 2017; 127
Martina (10.1016/j.devcel.2020.11.016_bib54) 2012; 8
Saftig (10.1016/j.devcel.2020.11.016_bib74) 2009; 10
33561418 - Dev Cell. 2021 Feb 8;56(3):251-252
References_xml – volume: 150
  start-page: 1196
  year: 2012
  end-page: 1208
  ident: bib5
  article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
  publication-title: Cell
– volume: 366
  start-page: 468
  year: 2019
  end-page: 475
  ident: bib73
  article-title: Structural basis for the docking of mTORC1 on the lysosomal surface
  publication-title: Science
– volume: 26
  start-page: 6
  year: 2016
  end-page: 16
  ident: bib37
  article-title: Ubiquitin-dependent and independent signals in selective autophagy
  publication-title: Trends Cell Biol.
– volume: 355
  start-page: 1306
  year: 2017
  end-page: 1311
  ident: bib12
  article-title: Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex
  publication-title: Science
– volume: 153
  start-page: 840
  year: 2013
  end-page: 854
  ident: bib16
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
– volume: 284
  start-page: 8023
  year: 2009
  end-page: 8032
  ident: bib87
  article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
  publication-title: J. Biol. Chem.
– volume: 482
  start-page: 216
  year: 2012
  end-page: 220
  ident: bib30
  article-title: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells
  publication-title: Nature
– volume: 32
  start-page: 223
  year: 2016
  end-page: 253
  ident: bib64
  article-title: The lysosome as a regulatory hub
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 99
  start-page: 16672
  year: 2002
  end-page: 16677
  ident: bib96
  article-title: Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 4876
  year: 2012
  end-page: 4887
  ident: bib23
  article-title: Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease
  publication-title: Hum. Mol. Genet.
– volume: 358
  start-page: 807
  year: 2017
  end-page: 813
  ident: bib1
  article-title: Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
  publication-title: Science
– volume: 146
  start-page: 408
  year: 2011
  end-page: 420
  ident: bib65
  article-title: mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
  publication-title: Cell
– volume: 289
  start-page: 16278
  year: 2014
  end-page: 16289
  ident: bib36
  article-title: Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 133
  year: 2019
  end-page: 142
  ident: bib42
  article-title: The lysosome as a cellular centre for signalling, metabolism and quality control
  publication-title: Nat. Cell Biol.
– volume: 1685
  start-page: 48
  year: 2004
  end-page: 62
  ident: bib90
  article-title: Consequences of NPC1 and NPC2 loss of function in mammalian neurons
  publication-title: Biochim. Biophys. Acta
– volume: 277
  start-page: 232
  year: 1997
  end-page: 235
  ident: bib49
  article-title: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene
  publication-title: Science
– volume: 358
  start-page: 377
  year: 2017
  end-page: 381
  ident: bib19
  article-title: Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling
  publication-title: Science
– volume: 8
  year: 2019
  ident: bib98
  article-title: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo
  publication-title: eLife
– volume: 524
  start-page: 370
  year: 2015
  end-page: 374
  ident: bib92
  article-title: Mechanism of phospho-ubiquitin-induced Parkin activation
  publication-title: Nature
– volume: 27
  start-page: 1678
  year: 2016
  end-page: 1688
  ident: bib3
  article-title: Cystinosin is a component of the vacuolar H+-ATPase-ragulator-rag complex controlling mammalian target of rapamycin complex 1 signaling
  publication-title: J. Am. Soc. Nephrol.
– volume: 360
  year: 2018
  ident: bib84
  article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair
  publication-title: Science
– volume: 13
  start-page: 132
  year: 2011
  end-page: 141
  ident: bib38
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 639
  year: 2011
  end-page: 647
  ident: bib10
  article-title: Natural products reveal cancer cell dependence on oxysterol-binding proteins
  publication-title: Nat. Chem. Biol.
– volume: 37
  year: 2018
  ident: bib69
  article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival
  publication-title: EMBO J.
– volume: 2016
  year: 2016
  ident: bib70
  article-title: The use of lysosomotropic dyes to exclude lysosomal membrane permeabilization
  publication-title: Cold Spring Harb. Protoc.
– volume: 31
  start-page: 1095
  year: 2012
  end-page: 1108
  ident: bib83
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: EMBO J.
– volume: 6
  start-page: e17540
  year: 2011
  ident: bib100
  article-title: Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells
  publication-title: PLoS One
– volume: 21
  start-page: 1206
  year: 2019
  end-page: 1218
  ident: bib46
  article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C
  publication-title: Nat. Cell Biol.
– volume: 11
  start-page: 229
  year: 2020
  ident: bib27
  article-title: Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation
  publication-title: Nat. Commun.
– volume: 334
  start-page: 678
  year: 2011
  end-page: 683
  ident: bib101
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
– volume: 272
  start-page: 6245
  year: 1997
  end-page: 6251
  ident: bib79
  article-title: Peroxisomal impairment in Niemann-Pick type C disease
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: e12177
  year: 2015
  ident: bib50
  article-title: Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection
  publication-title: eLife
– volume: 67
  start-page: 922
  year: 2017
  end-page: 935.e5
  ident: bib59
  article-title: mTOR controls mitochondrial dynamics and cell survival via MTFP1
  publication-title: Mol. Cell
– volume: 325
  start-page: 473
  year: 2009
  end-page: 477
  ident: bib77
  article-title: A gene network regulating lysosomal biogenesis and function
  publication-title: Science
– volume: 77
  start-page: 645
  year: 2020
  end-page: 655.e7
  ident: bib93
  article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation
  publication-title: Mol. Cell
– volume: 280
  start-page: 11731
  year: 2005
  end-page: 11739
  ident: bib99
  article-title: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function
  publication-title: J. Biol. Chem.
– volume: 534
  start-page: 272
  year: 2016
  end-page: 276
  ident: bib72
  article-title: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
  publication-title: Nature
– volume: 127
  start-page: 3717
  year: 2017
  end-page: 3729
  ident: bib6
  article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy
  publication-title: J. Clin. Invest.
– volume: 39
  start-page: 457
  year: 2016
  end-page: 464
  ident: bib31
  article-title: Altered mTOR signalling in nephropathic cystinosis
  publication-title: J. Inherit. Metab. Dis.
– volume: 25
  start-page: 1434
  year: 2016
  end-page: 1446
  ident: bib14
  article-title: Genetic and pharmacological evidence implicates cathepsins in Niemann-Pick C cerebellar degeneration
  publication-title: Hum. Mol. Genet.
– volume: 27
  start-page: 1711
  year: 2018
  end-page: 1722
  ident: bib18
  article-title: Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation
  publication-title: Hum. Mol. Genet.
– volume: 155
  start-page: 830
  year: 2013
  end-page: 843
  ident: bib56
  article-title: A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP
  publication-title: Cell
– volume: 291
  start-page: 6026
  year: 2016
  end-page: 6035
  ident: bib68
  article-title: Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy
  publication-title: J. Biol. Chem.
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  ident: bib43
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  ident: bib33
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 623
  year: 2009
  end-page: 635
  ident: bib74
  article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 105
  start-page: 15287
  year: 2008
  end-page: 15292
  ident: bib29
  article-title: NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 450
  start-page: 736
  year: 2007
  end-page: 740
  ident: bib17
  article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
  publication-title: Nature
– volume: 280
  start-page: 28581
  year: 2005
  end-page: 28590
  ident: bib57
  article-title: The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol
  publication-title: J. Biol. Chem.
– volume: 12
  year: 2019
  ident: bib9
  article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells
  publication-title: Dis. Model Mech.
– volume: 61
  start-page: 403
  year: 2020
  end-page: 412
  ident: bib24
  article-title: Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment
  publication-title: J. Lipid Res.
– volume: 18
  start-page: 698
  year: 2013
  end-page: 711
  ident: bib58
  article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
  publication-title: Cell Metab.
– volume: 205
  start-page: 143
  year: 2014
  end-page: 153
  ident: bib34
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: J. Cell Biol.
– volume: 107
  start-page: 3441
  year: 2010
  end-page: 3446
  ident: bib44
  article-title: Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 3194
  year: 2019
  ident: bib81
  article-title: A novel rapamycin analog is highly selective for mTORC1 in vivo
  publication-title: Nat. Commun.
– volume: 8
  year: 2019
  ident: bib97
  article-title: Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases
  publication-title: eLife
– volume: 27
  start-page: 392
  year: 2020
  end-page: 399
  ident: bib60
  article-title: Membrane constriction and thinning by sequential ESCRT-III polymerization
  publication-title: Nat. Struct. Mol. Biol.
– volume: 294
  start-page: 1706
  year: 2019
  end-page: 1709
  ident: bib66
  article-title: NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: ra42
  year: 2012
  ident: bib71
  article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
  publication-title: Sci. Signal.
– volume: 12
  start-page: 1806
  year: 2013
  end-page: 1817
  ident: bib85
  article-title: Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice
  publication-title: Mol. Cell. Proteomics
– volume: 335
  start-page: 1638
  year: 2012
  end-page: 1643
  ident: bib41
  article-title: Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
  publication-title: Science
– volume: 5
  year: 2020
  ident: bib47
  article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain
  publication-title: JCI Insight
– volume: 128
  start-page: 1422
  year: 2015
  end-page: 1433
  ident: bib52
  article-title: Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol
  publication-title: J. Cell Sci.
– volume: 163
  start-page: 866
  year: 2015
  end-page: 879
  ident: bib13
  article-title: Relaxation of loaded ESCRT-III spiral springs drives membrane deformation
  publication-title: Cell
– volume: 21
  start-page: 2651
  year: 2012
  end-page: 2662
  ident: bib62
  article-title: Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1
  publication-title: Hum. Mol. Genet.
– volume: 179
  start-page: 485
  year: 2019
  end-page: 497.e18
  ident: bib94
  article-title: Structural insight into eukaryotic sterol transport through Niemann-Pick Type C proteins
  publication-title: Cell
– volume: 113
  start-page: 10079
  year: 2016
  end-page: 10084
  ident: bib45
  article-title: Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 460
  start-page: 127
  year: 2014
  end-page: 139
  ident: bib35
  article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
  publication-title: Biochem. J.
– volume: 1793
  start-page: 684
  year: 2009
  end-page: 696
  ident: bib4
  article-title: Lysosomal disorders: from storage to cellular damage
  publication-title: Biochim. Biophys. Acta
– volume: 21
  start-page: 183
  year: 2020
  end-page: 203
  ident: bib48
  article-title: mTOR at the nexus of nutrition, growth, ageing and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 141
  start-page: 290
  year: 2010
  end-page: 303
  ident: bib76
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
– volume: 171
  start-page: 642
  year: 2017
  end-page: 654.e12
  ident: bib95
  article-title: mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient
  publication-title: Cell
– volume: 4
  start-page: 27
  year: 2018
  ident: bib67
  article-title: Lysosomal storage diseases
  publication-title: Nat. Rev. Dis. Prim.
– volume: 18
  start-page: 5
  year: 2017
  end-page: 17
  ident: bib80
  article-title: Reverse-topology membrane scission by the ESCRT proteins
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  start-page: 3671
  year: 2018
  ident: bib82
  article-title: Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and March6-dependent ERAD
  publication-title: Nat. Commun.
– volume: 292
  start-page: 8729
  year: 2017
  end-page: 8737
  ident: bib25
  article-title: Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis
  publication-title: J. Biol. Chem.
– volume: 166
  start-page: 408
  year: 2016
  end-page: 423
  ident: bib20
  article-title: Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P
  publication-title: Cell
– volume: 137
  start-page: 1213
  year: 2009
  end-page: 1224
  ident: bib40
  article-title: Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol
  publication-title: Cell
– volume: 366
  start-page: 203
  year: 2019
  end-page: 210
  ident: bib2
  article-title: Architecture of human Rag GTPase heterodimers and their complex with mTORC1
  publication-title: Science
– volume: 347
  start-page: 188
  year: 2015
  end-page: 194
  ident: bib91
  article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
  publication-title: Science
– volume: 15
  start-page: 776
  year: 2019
  end-page: 785
  ident: bib15
  article-title: Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition
  publication-title: Nat. Chem. Biol.
– volume: 39
  start-page: 171
  year: 2010
  end-page: 183
  ident: bib21
  article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1
  publication-title: Mol. Cell
– volume: 6
  year: 2017
  ident: bib89
  article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole
  publication-title: eLife
– volume: 6
  start-page: e25466
  year: 2017
  ident: bib28
  article-title: Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol
  publication-title: eLife
– volume: 134
  start-page: 112
  year: 2008
  end-page: 123
  ident: bib63
  article-title: A mitochondrial protein compendium elucidates complex I disease biology
  publication-title: Cell
– volume: 17
  start-page: 1053
  year: 2016
  end-page: 1070
  ident: bib22
  article-title: Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex
  publication-title: Cell Rep.
– volume: 165
  start-page: 1467
  year: 2016
  end-page: 1478
  ident: bib26
  article-title: Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection
  publication-title: Cell
– volume: 1
  start-page: 113
  year: 1999
  end-page: 118
  ident: bib39
  article-title: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport
  publication-title: Nat. Cell Biol.
– volume: 202
  start-page: 35
  year: 2013
  end-page: 44
  ident: bib88
  article-title: Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells
  publication-title: J. Cell Biol.
– volume: 156
  start-page: 771
  year: 2014
  end-page: 785
  ident: bib55
  article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
  publication-title: Cell
– volume: 68
  start-page: 835
  year: 2017
  end-page: 846.e3
  ident: bib86
  article-title: Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex
  publication-title: Mol. Cell
– volume: 8
  start-page: 1157
  year: 2012
  end-page: 1158
  ident: bib61
  article-title: Defective mitophagy in human Niemann-Pick Type C1 neurons is due to abnormal autophagy activation
  publication-title: Autophagy
– volume: 8
  start-page: e2598
  year: 2017
  ident: bib75
  article-title: TAK1 regulates resident macrophages by protecting lysosomal integrity
  publication-title: Cell Death Dis.
– volume: 9
  start-page: 548
  year: 2018
  ident: bib53
  article-title: A small molecule inhibitor of Rheb selectively targets mTORC1 signaling
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1302
  year: 2013
  end-page: 1315
  ident: bib78
  article-title: Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease
  publication-title: Cell Rep.
– volume: 351
  start-page: 728
  year: 2016
  end-page: 733
  ident: bib7
  article-title: mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
  publication-title: Science
– volume: 52
  start-page: 69
  year: 2020
  end-page: 87.e8
  ident: bib32
  article-title: Galectin-3 coordinates a cellular system for lysosomal repair and removal
  publication-title: Dev. Cell
– volume: 8
  start-page: 411
  year: 2008
  end-page: 424
  ident: bib8
  article-title: Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
  publication-title: Cell Metab.
– volume: 44
  start-page: D1251
  year: 2016
  end-page: D1257
  ident: bib11
  article-title: MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 903
  year: 2012
  end-page: 914
  ident: bib54
  article-title: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
  publication-title: Autophagy
– volume: 32
  start-page: 2336
  year: 2013
  end-page: 2347
  ident: bib51
  article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
  publication-title: EMBO J.
– volume: 32
  start-page: 223
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib64
  article-title: The lysosome as a regulatory hub
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-111315-125125
– volume: 141
  start-page: 290
  year: 2010
  ident: 10.1016/j.devcel.2020.11.016_bib76
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
– volume: 9
  start-page: 3671
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib82
  article-title: Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and March6-dependent ERAD
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06115-2
– volume: 163
  start-page: 866
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib13
  article-title: Relaxation of loaded ESCRT-III spiral springs drives membrane deformation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.017
– volume: 360
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib84
  article-title: Triggered recruitment of ESCRT machinery promotes endolysosomal repair
  publication-title: Science
  doi: 10.1126/science.aar5078
– volume: 32
  start-page: 2336
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib51
  article-title: Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.171
– volume: 44
  start-page: D1251
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib11
  article-title: MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1003
– volume: 127
  start-page: 3717
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib6
  article-title: mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94130
– volume: 52
  start-page: 69
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib32
  article-title: Galectin-3 coordinates a cellular system for lysosomal repair and removal
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.10.025
– volume: 534
  start-page: 272
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib72
  article-title: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
  publication-title: Nature
  doi: 10.1038/nature17963
– volume: 347
  start-page: 188
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib91
  article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
  publication-title: Science
  doi: 10.1126/science.1257132
– volume: 171
  start-page: 642
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib95
  article-title: mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.046
– volume: 2016
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib70
  article-title: The use of lysosomotropic dyes to exclude lysosomal membrane permeabilization
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot087106
– volume: 21
  start-page: 4876
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib23
  article-title: Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds324
– volume: 37
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib69
  article-title: ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival
  publication-title: EMBO J.
  doi: 10.15252/embj.201899753
– volume: 27
  start-page: 1678
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib3
  article-title: Cystinosin is a component of the vacuolar H+-ATPase-ragulator-rag complex controlling mammalian target of rapamycin complex 1 signaling
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2014090937
– volume: 9
  start-page: 548
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib53
  article-title: A small molecule inhibitor of Rheb selectively targets mTORC1 signaling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03035-z
– volume: 27
  start-page: 392
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib60
  article-title: Membrane constriction and thinning by sequential ESCRT-III polymerization
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0404-x
– volume: 358
  start-page: 807
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib1
  article-title: Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
  publication-title: Science
  doi: 10.1126/science.aan6298
– volume: 289
  start-page: 16278
  year: 2014
  ident: 10.1016/j.devcel.2020.11.016_bib36
  article-title: Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.559914
– volume: 134
  start-page: 112
  year: 2008
  ident: 10.1016/j.devcel.2020.11.016_bib63
  article-title: A mitochondrial protein compendium elucidates complex I disease biology
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.016
– volume: 146
  start-page: 408
  year: 2011
  ident: 10.1016/j.devcel.2020.11.016_bib65
  article-title: mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.034
– volume: 153
  start-page: 840
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib16
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.023
– volume: 21
  start-page: 1206
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib46
  article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0391-5
– volume: 107
  start-page: 3441
  year: 2010
  ident: 10.1016/j.devcel.2020.11.016_bib44
  article-title: Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914798107
– volume: 8
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib98
  article-title: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo
  publication-title: eLife
  doi: 10.7554/eLife.51031
– volume: 11
  start-page: 229
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib27
  article-title: Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14009-0
– volume: 334
  start-page: 678
  year: 2011
  ident: 10.1016/j.devcel.2020.11.016_bib101
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
  doi: 10.1126/science.1207056
– volume: 1793
  start-page: 684
  year: 2009
  ident: 10.1016/j.devcel.2020.11.016_bib4
  article-title: Lysosomal disorders: from storage to cellular damage
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.12.001
– volume: 25
  start-page: 1434
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib14
  article-title: Genetic and pharmacological evidence implicates cathepsins in Niemann-Pick C cerebellar degeneration
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw025
– volume: 191
  start-page: 933
  year: 2010
  ident: 10.1016/j.devcel.2020.11.016_bib33
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008084
– volume: 366
  start-page: 468
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib73
  article-title: Structural basis for the docking of mTORC1 on the lysosomal surface
  publication-title: Science
  doi: 10.1126/science.aay0166
– volume: 15
  start-page: 776
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib15
  article-title: Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0308-4
– volume: 6
  start-page: e25466
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib28
  article-title: Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol
  publication-title: eLife
  doi: 10.7554/eLife.25466
– volume: 12
  start-page: 1806
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib85
  article-title: Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M112.026179
– volume: 4
  start-page: e12177
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib50
  article-title: Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection
  publication-title: eLife
  doi: 10.7554/eLife.12177
– volume: 39
  start-page: 457
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib31
  article-title: Altered mTOR signalling in nephropathic cystinosis
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-016-9919-z
– volume: 524
  start-page: 309
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib43
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
– volume: 272
  start-page: 6245
  year: 1997
  ident: 10.1016/j.devcel.2020.11.016_bib79
  article-title: Peroxisomal impairment in Niemann-Pick type C disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.10.6245
– volume: 202
  start-page: 35
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib88
  article-title: Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201301039
– volume: 291
  start-page: 6026
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib68
  article-title: Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.689646
– volume: 150
  start-page: 1196
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib5
  article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.032
– volume: 21
  start-page: 2651
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib62
  article-title: Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds090
– volume: 7
  start-page: 639
  year: 2011
  ident: 10.1016/j.devcel.2020.11.016_bib10
  article-title: Natural products reveal cancer cell dependence on oxysterol-binding proteins
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.625
– volume: 1
  start-page: 113
  year: 1999
  ident: 10.1016/j.devcel.2020.11.016_bib39
  article-title: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport
  publication-title: Nat. Cell Biol.
  doi: 10.1038/10084
– volume: 358
  start-page: 377
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib19
  article-title: Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling
  publication-title: Science
  doi: 10.1126/science.aao1583
– volume: 113
  start-page: 10079
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib45
  article-title: Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611956113
– volume: 4
  start-page: 27
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib67
  article-title: Lysosomal storage diseases
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-018-0025-4
– volume: 325
  start-page: 473
  year: 2009
  ident: 10.1016/j.devcel.2020.11.016_bib77
  article-title: A gene network regulating lysosomal biogenesis and function
  publication-title: Science
  doi: 10.1126/science.1174447
– volume: 5
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib47
  article-title: Fbxo2 mediates clearance of damaged lysosomes and modifies neurodegeneration in the Niemann-Pick C brain
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.136676
– volume: 68
  start-page: 835
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib86
  article-title: Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.10.016
– volume: 61
  start-page: 403
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib24
  article-title: Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000571
– volume: 355
  start-page: 1306
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib12
  article-title: Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex
  publication-title: Science
  doi: 10.1126/science.aag1417
– volume: 277
  start-page: 232
  year: 1997
  ident: 10.1016/j.devcel.2020.11.016_bib49
  article-title: Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene
  publication-title: Science
  doi: 10.1126/science.277.5323.232
– volume: 137
  start-page: 1213
  year: 2009
  ident: 10.1016/j.devcel.2020.11.016_bib40
  article-title: Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.049
– volume: 21
  start-page: 133
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib42
  article-title: The lysosome as a cellular centre for signalling, metabolism and quality control
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0244-7
– volume: 460
  start-page: 127
  year: 2014
  ident: 10.1016/j.devcel.2020.11.016_bib35
  article-title: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
  publication-title: Biochem. J.
  doi: 10.1042/BJ20140334
– volume: 166
  start-page: 408
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib20
  article-title: Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.037
– volume: 280
  start-page: 28581
  year: 2005
  ident: 10.1016/j.devcel.2020.11.016_bib57
  article-title: The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414024200
– volume: 99
  start-page: 16672
  year: 2002
  ident: 10.1016/j.devcel.2020.11.016_bib96
  article-title: Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.262669399
– volume: 156
  start-page: 771
  year: 2014
  ident: 10.1016/j.devcel.2020.11.016_bib55
  article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.049
– volume: 12
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib9
  article-title: mTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells
  publication-title: Dis. Model Mech.
  doi: 10.1242/dmm.038596
– volume: 10
  start-page: 3194
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib81
  article-title: A novel rapamycin analog is highly selective for mTORC1 in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11174-0
– volume: 6
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib89
  article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole
  publication-title: eLife
  doi: 10.7554/eLife.25960
– volume: 280
  start-page: 11731
  year: 2005
  ident: 10.1016/j.devcel.2020.11.016_bib99
  article-title: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412898200
– volume: 31
  start-page: 1095
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib83
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.32
– volume: 155
  start-page: 830
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib56
  article-title: A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.056
– volume: 351
  start-page: 728
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib7
  article-title: mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
  publication-title: Science
  doi: 10.1126/science.aad0489
– volume: 5
  start-page: 1302
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib78
  article-title: Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.10.042
– volume: 18
  start-page: 5
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib80
  article-title: Reverse-topology membrane scission by the ESCRT proteins
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.121
– volume: 27
  start-page: 1711
  year: 2018
  ident: 10.1016/j.devcel.2020.11.016_bib18
  article-title: Loss of CLN7 results in depletion of soluble lysosomal proteins and impaired mTOR reactivation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy076
– volume: 292
  start-page: 8729
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib25
  article-title: Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.783894
– volume: 8
  start-page: 1157
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib61
  article-title: Defective mitophagy in human Niemann-Pick Type C1 neurons is due to abnormal autophagy activation
  publication-title: Autophagy
  doi: 10.4161/auto.20668
– volume: 10
  start-page: 623
  year: 2009
  ident: 10.1016/j.devcel.2020.11.016_bib74
  article-title: Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2745
– volume: 18
  start-page: 698
  year: 2013
  ident: 10.1016/j.devcel.2020.11.016_bib58
  article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.10.001
– volume: 335
  start-page: 1638
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib41
  article-title: Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
  publication-title: Science
  doi: 10.1126/science.1215135
– volume: 26
  start-page: 6
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib37
  article-title: Ubiquitin-dependent and independent signals in selective autophagy
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.08.010
– volume: 179
  start-page: 485
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib94
  article-title: Structural insight into eukaryotic sterol transport through Niemann-Pick Type C proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.038
– volume: 205
  start-page: 143
  year: 2014
  ident: 10.1016/j.devcel.2020.11.016_bib34
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201402104
– volume: 21
  start-page: 183
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib48
  article-title: mTOR at the nexus of nutrition, growth, ageing and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0199-y
– volume: 67
  start-page: 922
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib59
  article-title: mTOR controls mitochondrial dynamics and cell survival via MTFP1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.013
– volume: 13
  start-page: 132
  year: 2011
  ident: 10.1016/j.devcel.2020.11.016_bib38
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2152
– volume: 1685
  start-page: 48
  year: 2004
  ident: 10.1016/j.devcel.2020.11.016_bib90
  article-title: Consequences of NPC1 and NPC2 loss of function in mammalian neurons
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2004.08.011
– volume: 8
  start-page: e2598
  year: 2017
  ident: 10.1016/j.devcel.2020.11.016_bib75
  article-title: TAK1 regulates resident macrophages by protecting lysosomal integrity
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.23
– volume: 8
  start-page: 411
  year: 2008
  ident: 10.1016/j.devcel.2020.11.016_bib8
  article-title: Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.10.002
– volume: 366
  start-page: 203
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib2
  article-title: Architecture of human Rag GTPase heterodimers and their complex with mTORC1
  publication-title: Science
  doi: 10.1126/science.aax3939
– volume: 39
  start-page: 171
  year: 2010
  ident: 10.1016/j.devcel.2020.11.016_bib21
  article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.06.022
– volume: 77
  start-page: 645
  year: 2020
  ident: 10.1016/j.devcel.2020.11.016_bib93
  article-title: Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.01.003
– volume: 17
  start-page: 1053
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib22
  article-title: Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.054
– volume: 6
  start-page: e17540
  year: 2011
  ident: 10.1016/j.devcel.2020.11.016_bib100
  article-title: Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017540
– volume: 450
  start-page: 736
  year: 2007
  ident: 10.1016/j.devcel.2020.11.016_bib17
  article-title: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
  publication-title: Nature
  doi: 10.1038/nature06322
– volume: 165
  start-page: 1467
  year: 2016
  ident: 10.1016/j.devcel.2020.11.016_bib26
  article-title: Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.022
– volume: 524
  start-page: 370
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib92
  article-title: Mechanism of phospho-ubiquitin-induced Parkin activation
  publication-title: Nature
  doi: 10.1038/nature14879
– volume: 105
  start-page: 15287
  year: 2008
  ident: 10.1016/j.devcel.2020.11.016_bib29
  article-title: NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807328105
– volume: 284
  start-page: 8023
  year: 2009
  ident: 10.1016/j.devcel.2020.11.016_bib87
  article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M900301200
– volume: 8
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib97
  article-title: Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases
  publication-title: eLife
  doi: 10.7554/eLife.39598
– volume: 294
  start-page: 1706
  year: 2019
  ident: 10.1016/j.devcel.2020.11.016_bib66
  article-title: NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.TM118.004165
– volume: 482
  start-page: 216
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib30
  article-title: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature10821
– volume: 8
  start-page: 903
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib54
  article-title: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
  publication-title: Autophagy
  doi: 10.4161/auto.19653
– volume: 128
  start-page: 1422
  year: 2015
  ident: 10.1016/j.devcel.2020.11.016_bib52
  article-title: Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.164715
– volume: 5
  start-page: ra42
  year: 2012
  ident: 10.1016/j.devcel.2020.11.016_bib71
  article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002790
– reference: 33561418 - Dev Cell. 2021 Feb 8;56(3):251-252
SSID ssj0016180
Score 2.6334264
Snippet Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 260
SubjectTerms Adult
Animals
autophagy
Cells, Cultured
cholesterol
Cholesterol - metabolism
ESCRT
HEK293 Cells
Homeostasis
Humans
Induced Pluripotent Stem Cells - metabolism
Intracellular Membranes - metabolism
Intracellular Signaling Peptides and Proteins - metabolism
lysosome
Lysosomes - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
mitochondria
Mitochondria - metabolism
Models, Biological
mTORC1
Neurons - metabolism
Niemann-Pick C1 Protein
Niemann-Pick Disease, Type C - metabolism
NPC1
Organelles - metabolism
Proteolysis
proteomics
Signal Transduction
Title NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C
URI https://dx.doi.org/10.1016/j.devcel.2020.11.016
https://www.ncbi.nlm.nih.gov/pubmed/33308480
https://www.proquest.com/docview/2470037643
https://pubmed.ncbi.nlm.nih.gov/PMC8919971
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhUMilNH26SYsKvaperbSvY7o0pIU6JnbAN6GX020dranthBz63zuzD1O3hUBOC9IICT1G36y-mSHk_RyDmM9dwowHFSjhjmBGm5S5JBc-T7PIWHQU_jpKzy7ll1ky2yNl7wuDtMpO97c6vdHWXcmwm83hsqqGEzirMoGeYnwlADsH9LCQeePEN_u4fUlIeZM9DYUZSvfucw3Hy_kb6_EBIkbd8SHCrOf_v57-hZ9_syj_uJZOn5DHHZ6kJ-2QD8meD0_JozbD5N0z8ms0Ljm7np5flJxOqiuE3eGKlvVmufArWmJ2XAyVUC_oBKnsULeuaeOgiX_0KWZRrwFArqoV1cHRz_Ch04Y9jj5XdAwA8lbf0SrQUeWvdQhsXNkfFM1bWj4nl6efpuUZ6zIuMCtTsWbWChcX3CZI0wTTidvMaRdLpw0AAweK02jACMJrXszlPEuMzHycc6szn3irxQuyH-rgXxGaa1dYX5hCmEgaMPK4y6yPuAO8mIIFPyCin2hlu3DkmBVjoXre2XfVLo_C5QFLRUHhgLBtq2UbjuMe-axfQ7WzrRTcGPe0fNcvuYITh88oMPP1ZqVimWHUHoByA_Ky3QLbsQghMEFBBP3ubI6tAEbz3q0J1bcmqndeIOeHv37wiI_IQYyEG6SU58dkf_1z498AYlqbt82R-A35UhV0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYIL4lkCBYzE1WS99r6OdEWVQBsikkq5WX6lLKS7EUlAPfS_d2YfEQGkSpxWWntly4_xN-tv5iPk7RyTmM9dxIwHEyjhjGBGm5i5KBU-jZPAWAwUPh3FgzP5cRbN9kjexcIgrbK1_Y1Nr611-6bfjmZ_WRT9CexVGUFLId4SgJ9zi9wGNJCgfsNwdrS9Soh5LZ-GtRlW7-LnapKX8z-txxuIEI3HuwBlz_99Pv2NP_-kUf52Lh0_IPdbQEnfN31-SPZ8-YjcaSQmLx-Tq9E45-xi-vlLzumkOEfcXZ7TvNosF35Fc5THxVwJ1YJOkMsOZeuK1hGa-Eufoox6BQhyVayoLh0dwoNOa_o4Bl3RMSDIX_qSFiUdFf5ClyUbF_Y7Rf-W5k_I2fGHaT5greQCszIWa2atcGHGbYQ8TfCduE2cdqF02gAycGA5jQaQILzm2VzOk8jIxIcptzrxkbdaPCX7ZVX6Z4Sm2mXWZyYTJpAGvDzuEusD7gAwxuDC94joBlrZNh85ymIsVEc8-6aa6VE4PeCqKHjZI2z71bLJx3FD_aSbQ7WzrhQcGTd8-aabcgVbDu9RYOSrzUqFMsG0PYDleuSgWQLbvgghUKEggHZ3Fse2Aqbz3i0pi691Wu80Q9IPf_7fPX5N7g6mpyfqZDj69ILcC5F9g_zy9JDsr39s_EuAT2vzqt4e1-aEGJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NPC1-mTORC1+Signaling+Couples+Cholesterol+Sensing+to+Organelle+Homeostasis+and+Is+a+Targetable+Pathway+in+Niemann-Pick+Type+C&rft.jtitle=Developmental+cell&rft.au=Davis%2C+Oliver+B&rft.au=Shin%2C+Hijai+R&rft.au=Lim%2C+Chun-Yan&rft.au=Wu%2C+Emma+Y&rft.date=2021-02-08&rft.issn=1878-1551&rft.eissn=1878-1551&rft.volume=56&rft.issue=3&rft.spage=260&rft_id=info:doi/10.1016%2Fj.devcel.2020.11.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon