Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon...
Saved in:
Cover
Abstract | The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. |
---|---|
AbstractList | The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron-ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs pos-sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo-rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectronics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 °C under ambient air pressure. The resultant FCDs possess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluorescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. |
Author | Dan Wang Zhiyong Wang Qiuqiang Zhan Yuan Pu Jie-xin wang Neil R. Foster Liming Dai |
AuthorAffiliation | Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia |
AuthorAffiliation_xml | – name: Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China%SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia%Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA |
Author_xml | – sequence: 1 givenname: Dan surname: Wang fullname: Wang, Dan organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Zhiyong surname: Wang fullname: Wang, Zhiyong organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 3 givenname: Qiuqiang surname: Zhan fullname: Zhan, Qiuqiang organization: SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China – sequence: 4 givenname: Yuan surname: Pu fullname: Pu, Yuan organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 5 givenname: Jie-Xin surname: Wang fullname: Wang, Jie-Xin organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 6 givenname: Neil R. surname: Foster fullname: Foster, Neil R. organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 7 givenname: Liming surname: Dai fullname: Dai, Liming organization: Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA |
BookMark | eNp9kU9v1DAQxXMoEqX0A_QWIXHc4D9xnIhTtXRLq0IrQU8crPFkvLgK9mJni_j2eHcLBw692PJofu_5zbyqjkIMVFVnnDWc8e7ddXPx-bIRjOuGyYbx9qg6FmxQi54Nw8vqNGdvmeCdYEyI4-rbCtBPVEMY6y8IE9jyuEu0gQSzj6GOrl5N25goI4W5XkKypfohzrl2MdWfttPs3Tbgrhmm-nyzmTzu0fy6euFgynT6dJ9U96uLr8uPi5vby6vl-c0C207OCxxQCddLGloNVoDlTklHXOM4Ui9wkJ3kxFrBnYXWkbJMCSCmqO9wVE6eVFcH3THCg9kk_wPSbxPBm30hprWBNHucyPCBM90rPqCwrdCjpXZUCi2zxdtpKlpvD1q_IDgIa_MQt6kEy2aNhnZjZbIcpY8f-jDFnBO5f76cmd0izLUpizA7wjBpyiIKo_9j0M_7Uc0J_PQs-f5AUhnjo6dkMnoKSKNPhHPJ6Z-l3zz5fo9h_dOXVH8_22mhWd9rKf8AFL2wrg |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_110025 crossref_primary_10_1039_C8NJ03654C crossref_primary_10_1002_cjce_23217 crossref_primary_10_1007_s00604_019_3270_7 crossref_primary_10_1016_j_carbon_2019_01_105 crossref_primary_10_1021_acs_iecr_7b04836 crossref_primary_10_1002_aic_16016 crossref_primary_10_1016_j_cjche_2018_03_005 crossref_primary_10_1016_j_powtec_2017_08_038 crossref_primary_10_1021_acsabm_4c00148 crossref_primary_10_1016_j_jphotobiol_2022_112412 crossref_primary_10_1016_j_heliyon_2023_e22341 crossref_primary_10_3390_jfb13040219 crossref_primary_10_1016_j_matlet_2020_127595 crossref_primary_10_1016_j_jcis_2022_02_124 crossref_primary_10_1021_acs_macromol_1c01766 crossref_primary_10_1016_j_snb_2023_133957 crossref_primary_10_1016_j_apsusc_2021_150618 crossref_primary_10_1021_acs_iecr_9b02720 crossref_primary_10_1016_j_nanoen_2019_05_024 crossref_primary_10_1016_j_microc_2020_105604 crossref_primary_10_1016_j_chemosphere_2022_136003 crossref_primary_10_1021_acsanm_1c01880 crossref_primary_10_1016_j_eng_2021_08_001 crossref_primary_10_1016_j_apcatb_2019_118361 crossref_primary_10_1016_j_carbon_2022_03_021 crossref_primary_10_1016_j_optcom_2018_07_044 crossref_primary_10_3390_toxics9120330 crossref_primary_10_1016_j_matchemphys_2018_12_012 crossref_primary_10_3390_coatings13010031 crossref_primary_10_1038_s41377_023_01327_8 crossref_primary_10_1016_j_carbon_2020_11_017 crossref_primary_10_1039_D0TC02196B crossref_primary_10_1016_j_mseb_2025_118090 crossref_primary_10_1016_j_cep_2019_04_013 crossref_primary_10_1016_j_mseb_2022_115792 crossref_primary_10_1002_elan_202100381 crossref_primary_10_1007_s10853_019_03497_6 crossref_primary_10_1007_s13399_019_00503_4 crossref_primary_10_1021_acs_iecr_9b05412 crossref_primary_10_1016_j_jcis_2022_10_010 crossref_primary_10_1007_s42823_020_00162_w crossref_primary_10_1016_j_cartre_2021_100032 crossref_primary_10_1016_j_molliq_2019_111817 crossref_primary_10_1021_acsanm_8b00799 crossref_primary_10_1016_j_ijhydene_2019_06_173 crossref_primary_10_1016_j_cclet_2018_08_019 crossref_primary_10_1007_s10895_024_04065_1 crossref_primary_10_1007_s10853_018_3125_3 crossref_primary_10_1021_acs_jced_9b00432 crossref_primary_10_1039_C8QM00151K crossref_primary_10_1016_j_jece_2023_111721 crossref_primary_10_1021_acs_bioconjchem_1c00544 crossref_primary_10_1016_j_ces_2018_11_036 crossref_primary_10_1016_j_memsci_2022_121086 crossref_primary_10_1080_21691401_2017_1377725 crossref_primary_10_1016_j_jcis_2020_05_005 crossref_primary_10_1016_j_diamond_2023_110411 crossref_primary_10_1002_er_7039 crossref_primary_10_1088_1361_6528_ab7535 crossref_primary_10_1016_j_snr_2023_100165 crossref_primary_10_1007_s11705_018_1722_y crossref_primary_10_1039_D1RA04351J crossref_primary_10_1016_j_matchemphys_2020_122984 crossref_primary_10_1016_j_aca_2021_338309 crossref_primary_10_1186_s11671_018_2657_4 crossref_primary_10_3390_jfb14010027 crossref_primary_10_3390_nano11040967 crossref_primary_10_1021_acs_iecr_1c04137 crossref_primary_10_1016_j_talanta_2022_123791 crossref_primary_10_1016_j_cclet_2018_11_021 crossref_primary_10_1016_j_cep_2018_03_028 crossref_primary_10_1002_aic_18181 crossref_primary_10_1016_j_apsusc_2019_06_187 crossref_primary_10_1016_j_jechem_2018_12_006 crossref_primary_10_1039_D0TA07252D crossref_primary_10_1002_adhm_202000607 crossref_primary_10_1039_D4RA03752A crossref_primary_10_3390_s24123945 crossref_primary_10_1039_C8RE00265G crossref_primary_10_1002_adhm_201800532 crossref_primary_10_1007_s10853_018_2765_7 crossref_primary_10_1016_j_crgsc_2021_100077 crossref_primary_10_1016_j_jece_2019_103187 crossref_primary_10_1007_s40010_024_00901_y crossref_primary_10_1016_j_powtec_2018_01_066 crossref_primary_10_1016_j_colsurfa_2024_133394 crossref_primary_10_1002_aic_16714 crossref_primary_10_1007_s00339_019_3189_1 crossref_primary_10_1016_j_cej_2019_123478 crossref_primary_10_1016_j_cep_2018_12_012 crossref_primary_10_1039_D2BM02139K crossref_primary_10_1016_j_colsurfa_2022_128573 crossref_primary_10_1063_5_0187310 crossref_primary_10_1021_acs_iecr_7b03217 crossref_primary_10_1016_S1872_2067_18_63133_X crossref_primary_10_1016_j_cjche_2018_09_013 crossref_primary_10_1016_j_powtec_2018_09_035 crossref_primary_10_1021_acsanm_2c02219 crossref_primary_10_1016_j_cartre_2021_100074 crossref_primary_10_1016_j_eng_2020_05_016 crossref_primary_10_1016_j_jcis_2017_10_017 crossref_primary_10_1021_acsmedchemlett_4c00194 crossref_primary_10_1016_j_snb_2022_131376 crossref_primary_10_1039_D1QM00019E crossref_primary_10_1007_s11705_019_1895_z |
Cites_doi | 10.1016/j.carbon.2014.07.079 10.1021/ja0669070 10.1039/C4TC02394C 10.1039/C1JM14112K 10.1007/s12274-014-0644-3 10.1021/cr200359p 10.1039/C5NR01734C 10.1073/pnas.0504926102 10.1002/ppsc.201400106 10.1002/anie.200906623 10.1039/c3tb20418a 10.1039/C6RA06120F 10.1002/anie.201206107 10.1038/srep04279 10.1021/ja904843x 10.1126/science.aaa3145 10.1126/science.281.5385.2013 10.2217/17435889.4.2.207 10.1002/aenm.201100642 10.1016/j.biomaterials.2011.04.080 10.1021/cr400425h 10.1016/S0142-9612(03)00566-0 10.1039/C5NR00783F 10.1021/nn402581q 10.1002/anie.201604781 10.1002/anie.201501193 10.1002/ppsc.201400219 10.1021/ja206030c 10.1038/nmeth.1248 10.1088/0957-4484/23/24/245701 10.1016/j.carbon.2012.06.002 10.1038/srep05294 10.1016/j.nanoen.2013.07.010 |
ContentType | Journal Article |
Copyright | 2017 THE AUTHORS Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2017 THE AUTHORS – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ DOA |
DOI | 10.1016/J.ENG.2017.03.014 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications |
EndPage | 408 |
ExternalDocumentID | oai_doaj_org_article_191078519c2b427dbe4d55cb0b47af7e gc_e201703017 10_1016_J_ENG_2017_03_014 S2095809917304320 672708873 |
GrantInformation_xml | – fundername: the National Natural Science Foun-dation of China; the National Key Research and Development Program of China(2016YFA0201701/2016YFA0201700); the Fundamental Research Funds for the Central Universities; the "111" Project of China funderid: (51641201, 21620102007, 61675071, and 61405062); the National Key Research and Development Program of China(2016YFA0201701/2016YFA0201700); (BUCTRC201601); (B14004) |
GroupedDBID | 0R~ 0SF 1-T 2RA 5VR 6I. 92H 92I 92L 92R 93N AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACHIH ADBBV AEXQZ AFTJW AFUIB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CEKLB CQIGP EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG ROL SSZ TCJ TGT ~WA -SC -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CAJEC CITATION Q-- U1G U5M 2B. 4A8 PSX |
ID | FETCH-LOGICAL-c463t-c9c52f83e947ab2ab1f53fe17cdde82c93631e0421fba4fe5b052ae05e86cd5f3 |
IEDL.DBID | DOA |
ISSN | 2095-8099 |
IngestDate | Mon Sep 08 19:50:45 EDT 2025 Thu May 29 03:58:44 EDT 2025 Tue Jul 01 02:18:46 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Thu Jul 20 20:05:56 EDT 2023 Wed Feb 14 10:00:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fluorescence lifetime imaging Patterning Carbon dots Scalable Two-photon |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-c9c52f83e947ab2ab1f53fe17cdde82c93631e0421fba4fe5b052ae05e86cd5f3 |
Notes | The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. Scalable;Carbon dots;Two-photon;Fluorescence lifetime imaging;Patterning 10-1244/N |
OpenAccessLink | https://doaj.org/article/191078519c2b427dbe4d55cb0b47af7e |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_191078519c2b427dbe4d55cb0b47af7e wanfang_journals_gc_e201703017 crossref_primary_10_1016_J_ENG_2017_03_014 crossref_citationtrail_10_1016_J_ENG_2017_03_014 elsevier_sciencedirect_doi_10_1016_J_ENG_2017_03_014 chongqing_primary_672708873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Engineering (Beijing, China) |
PublicationTitleAlternate | Engineering |
PublicationTitle_FL | Engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia%Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China%SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia%Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA – name: Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – name: Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China%SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China%Beijing Advanced Innovation Center for Soft Matter Science and Engineering& State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China – name: Elsevier |
References | Resch-Genger, Grabolle, Cavaliere-Jaricot, Nitschke, Nann (bib29) 2008; 5 Wang, Zhu, Chen, Dai (bib30) 2015; 7 Zhou, Booker, Li, Zhou, Sham, Sun (bib26) 2007; 129 Chen, Qiu, Prasad, Chen (bib8) 2014; 114 Chen, Ding, Wang, Shao (bib4) 2004; 25 Wang, Qian, He, Park, Lee, Han (bib5) 2011; 32 Qian, Wang, Cai, Xi, Peng, Zhu (bib31) 2012; 51 Zhu, Song, Zhao, Shao, Zhang, Yang (bib13) 2015; 8 Qu, Zheng, Zhang, Zhao, Xie, Jing (bib22) 2014; 4 Xing, Dai (bib10) 2009; 4 Bruchez, Moronne, Gin, Weiss, Alivisatos (bib2) 1998; 281 Wang, Chen, Dai (bib11) 2015; 32 Mirtchev, Henderson, Soheilnia, Yip, Ozin (bib20) 2012; 22 Wang, Qian, Cai, He, Han, Mu (bib3) 2012; 23 Liu, Liu, Liu, Han, Zhang, Huang (bib19) 2015; 347 Liu, Zhu, Yu, Yan (bib16) 2014; 79 Li, Zhao, Cheng, Hu, Shi, Dai (bib27) 2012; 134 Devaraju, Honma (bib23) 2012; 2 Sun, Zhang, Zhang, Liu, Liang, Lv (bib33) 2015; 32 Jiang, Sun, Zhang, Lu, Wu, Cai (bib18) 2015; 54 Yang, Cao, Luo, Lu, Wang, Wang (bib15) 2009; 131 Bharali, Klejbor, Stachowiak, Dutta, Roy, Kaur (bib7) 2005; 102 Wang, Qian, Qin, Qin, Tang, He (bib6) 2014; 4 Zhang, Huang, Hu, Huang, Wei, Zhang (bib14) 2015; 3 Dong, Shao, Chen, Li, Wang, Chi (bib28) 2012; 50 Baker, Baker (bib12) 2010; 49 Wang, Zhu, Mccleese, Bruda, Chen, Dai (bib25) 2016; 6 Wu, Zhang, Gao, Liu, Wang, Leng (bib21) 2013; 1 Wang, Zhu, Chen, Dai (bib9) 2016; 55 Yao, Yang, Duan (bib1) 2014; 114 Anastas, Warner (bib24) 1998 Shi, Li, Li, Wen, Zhang, Yang (bib32) 2015; 7 Zhang, Ma, Zhang, Chen, Huang (bib17) 2013; 2 Orte, Alvarez-Pez, Ruedas-Rama (bib34) 2013; 7 Zhang (10.1016/J.ENG.2017.03.014_bib17) 2013; 2 Dong (10.1016/J.ENG.2017.03.014_bib28) 2012; 50 Resch-Genger (10.1016/J.ENG.2017.03.014_bib29) 2008; 5 Bruchez (10.1016/J.ENG.2017.03.014_bib2) 1998; 281 Wang (10.1016/J.ENG.2017.03.014_bib9) 2016; 55 Zhang (10.1016/J.ENG.2017.03.014_bib14) 2015; 3 Chen (10.1016/J.ENG.2017.03.014_bib4) 2004; 25 Devaraju (10.1016/J.ENG.2017.03.014_bib23) 2012; 2 Li (10.1016/J.ENG.2017.03.014_bib27) 2012; 134 Liu (10.1016/J.ENG.2017.03.014_bib16) 2014; 79 Orte (10.1016/J.ENG.2017.03.014_bib34) 2013; 7 Mirtchev (10.1016/J.ENG.2017.03.014_bib20) 2012; 22 Zhou (10.1016/J.ENG.2017.03.014_bib26) 2007; 129 Wang (10.1016/J.ENG.2017.03.014_bib5) 2011; 32 Liu (10.1016/J.ENG.2017.03.014_bib19) 2015; 347 Qu (10.1016/J.ENG.2017.03.014_bib22) 2014; 4 Anastas (10.1016/J.ENG.2017.03.014_bib24) 1998 Wang (10.1016/J.ENG.2017.03.014_bib11) 2015; 32 Yang (10.1016/J.ENG.2017.03.014_bib15) 2009; 131 Baker (10.1016/J.ENG.2017.03.014_bib12) 2010; 49 Wu (10.1016/J.ENG.2017.03.014_bib21) 2013; 1 Wang (10.1016/J.ENG.2017.03.014_bib30) 2015; 7 Jiang (10.1016/J.ENG.2017.03.014_bib18) 2015; 54 Bharali (10.1016/J.ENG.2017.03.014_bib7) 2005; 102 Zhu (10.1016/J.ENG.2017.03.014_bib13) 2015; 8 Wang (10.1016/J.ENG.2017.03.014_bib6) 2014; 4 Wang (10.1016/J.ENG.2017.03.014_bib3) 2012; 23 Sun (10.1016/J.ENG.2017.03.014_bib33) 2015; 32 Qian (10.1016/J.ENG.2017.03.014_bib31) 2012; 51 Chen (10.1016/J.ENG.2017.03.014_bib8) 2014; 114 Xing (10.1016/J.ENG.2017.03.014_bib10) 2009; 4 Shi (10.1016/J.ENG.2017.03.014_bib32) 2015; 7 Wang (10.1016/J.ENG.2017.03.014_bib25) 2016; 6 Yao (10.1016/J.ENG.2017.03.014_bib1) 2014; 114 |
References_xml | – volume: 4 start-page: 4279 year: 2014 ident: bib6 article-title: Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging publication-title: Sci Rep – volume: 8 start-page: 355 year: 2015 end-page: 381 ident: bib13 article-title: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective publication-title: Nano Res – volume: 2 start-page: 284 year: 2012 end-page: 297 ident: bib23 article-title: Hydrothermal and solvothermal process towards development of LiMPO publication-title: Adv Energy Mater – volume: 7 start-page: 9894 year: 2015 end-page: 9901 ident: bib30 article-title: Can graphene quantum dots cause DNA damage in cells? publication-title: Nanoscale – volume: 114 start-page: 6130 year: 2014 end-page: 6178 ident: bib1 article-title: Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy publication-title: Chem Rev – start-page: 30 year: 1998 ident: bib24 article-title: Principles of green chemistry publication-title: Green chemistry: Theory and practice – volume: 4 start-page: 207 year: 2009 end-page: 218 ident: bib10 article-title: Nanodiamonds for nanomedicine publication-title: Nanomedicine – volume: 54 start-page: 5360 year: 2015 end-page: 5363 ident: bib18 article-title: Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging publication-title: Angew Chem Int Ed – volume: 6 start-page: 41516 year: 2016 end-page: 41521 ident: bib25 article-title: Fluorescent carbon dots from milk by microwave cooking publication-title: RSC Advances – volume: 3 start-page: 2093 year: 2015 end-page: 2100 ident: bib14 article-title: Fluorescent probes for “off-on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets publication-title: J Mater Chem C – volume: 25 start-page: 723 year: 2004 end-page: 727 ident: bib4 article-title: Preparation and characterization of porous hollow silica nanoparticles for drug delivery application publication-title: Biomaterials – volume: 134 start-page: 15 year: 2012 end-page: 18 ident: bib27 article-title: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups publication-title: J Am Chem Soc – volume: 281 start-page: 2013 year: 1998 end-page: 2016 ident: bib2 article-title: Semiconductor nanocrystals as fluorescent biological labels publication-title: Science – volume: 79 start-page: 369 year: 2014 end-page: 379 ident: bib16 article-title: Three dimensional carbogenic dots/TiO publication-title: Carbon – volume: 49 start-page: 6726 year: 2010 end-page: 6744 ident: bib12 article-title: Luminescent carbon nanodots: Emergent nanolights publication-title: Angew Chem Int Ed – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: bib19 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science – volume: 7 start-page: 7394 year: 2015 end-page: 7401 ident: bib32 article-title: Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining publication-title: Nanoscale – volume: 23 start-page: 245701 year: 2012 ident: bib3 article-title: ‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: Ultrastable and biocompatible optical probes for in vivo animal imaging publication-title: Nanotechnology – volume: 32 start-page: 5880 year: 2011 end-page: 5888 ident: bib5 article-title: Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging publication-title: Biomaterials – volume: 102 start-page: 11539 year: 2005 end-page: 11544 ident: bib7 article-title: Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain publication-title: Proc Natl Acad Sci – volume: 2 start-page: 545 year: 2013 end-page: 552 ident: bib17 article-title: N-doped carbon quantum dots for TiO publication-title: Nano Energy – volume: 32 start-page: 48 year: 2015 end-page: 53 ident: bib33 article-title: Development of two-channel phosphorescent core-shell nanoprobe for ratiometric and time-resolved luminescence imaging of intracellular oxygen levels publication-title: Part Part Syst Charact – volume: 51 start-page: 10570 year: 2012 end-page: 10575 ident: bib31 article-title: Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging publication-title: Angew Chem Int Ed – volume: 32 start-page: 515 year: 2015 end-page: 523 ident: bib11 article-title: Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals publication-title: Part Part Syst Charact – volume: 131 start-page: 11308 year: 2009 end-page: 11309 ident: bib15 article-title: Carbon dots for optical imaging in vivo publication-title: J Am Chem Soc – volume: 4 start-page: 5294 year: 2014 ident: bib22 article-title: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots publication-title: Sci Rep – volume: 129 start-page: 744 year: 2007 end-page: 745 ident: bib26 article-title: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) publication-title: J Am Chem Soc – volume: 50 start-page: 4738 year: 2012 end-page: 4743 ident: bib28 article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid publication-title: Carbon – volume: 114 start-page: 5161 year: 2014 end-page: 5214 ident: bib8 article-title: Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics publication-title: Chem Rev – volume: 22 start-page: 1265 year: 2012 end-page: 1269 ident: bib20 article-title: Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO publication-title: J Mater Chem – volume: 1 start-page: 2868 year: 2013 end-page: 2873 ident: bib21 article-title: One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins publication-title: J Mater Chem B – volume: 7 start-page: 6387 year: 2013 end-page: 6395 ident: bib34 article-title: Fluorescence lifetime imaging micro scopy for the detection of intracellular pH with quantum dot nanosensors publication-title: ACS Nano – volume: 5 start-page: 763 year: 2008 end-page: 775 ident: bib29 article-title: Quantum dots versus organic dyes as fluorescent labels publication-title: Nat Methods – volume: 55 start-page: 10795 year: 2016 end-page: 10799 ident: bib9 article-title: Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy publication-title: Angew Chem Int Ed – volume: 79 start-page: 369 issue: 1 year: 2014 ident: 10.1016/J.ENG.2017.03.014_bib16 article-title: Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity publication-title: Carbon doi: 10.1016/j.carbon.2014.07.079 – volume: 129 start-page: 744 issue: 4 year: 2007 ident: 10.1016/J.ENG.2017.03.014_bib26 article-title: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) publication-title: J Am Chem Soc doi: 10.1021/ja0669070 – volume: 3 start-page: 2093 issue: 9 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib14 article-title: Fluorescent probes for “off-on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets publication-title: J Mater Chem C doi: 10.1039/C4TC02394C – volume: 22 start-page: 1265 issue: 4 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib20 article-title: Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells publication-title: J Mater Chem doi: 10.1039/C1JM14112K – volume: 8 start-page: 355 issue: 2 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib13 article-title: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective publication-title: Nano Res doi: 10.1007/s12274-014-0644-3 – volume: 114 start-page: 6130 issue: 12 year: 2014 ident: 10.1016/J.ENG.2017.03.014_bib1 article-title: Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy publication-title: Chem Rev doi: 10.1021/cr200359p – volume: 7 start-page: 9894 issue: 21 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib30 article-title: Can graphene quantum dots cause DNA damage in cells? publication-title: Nanoscale doi: 10.1039/C5NR01734C – volume: 102 start-page: 11539 issue: 32 year: 2005 ident: 10.1016/J.ENG.2017.03.014_bib7 article-title: Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0504926102 – volume: 32 start-page: 48 issue: 1 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib33 article-title: Development of two-channel phosphorescent core-shell nanoprobe for ratiometric and time-resolved luminescence imaging of intracellular oxygen levels publication-title: Part Part Syst Charact doi: 10.1002/ppsc.201400106 – volume: 49 start-page: 6726 issue: 38 year: 2010 ident: 10.1016/J.ENG.2017.03.014_bib12 article-title: Luminescent carbon nanodots: Emergent nanolights publication-title: Angew Chem Int Ed doi: 10.1002/anie.200906623 – volume: 1 start-page: 2868 issue: 22 year: 2013 ident: 10.1016/J.ENG.2017.03.014_bib21 article-title: One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins publication-title: J Mater Chem B doi: 10.1039/c3tb20418a – volume: 6 start-page: 41516 issue: 47 year: 2016 ident: 10.1016/J.ENG.2017.03.014_bib25 article-title: Fluorescent carbon dots from milk by microwave cooking publication-title: RSC Advances doi: 10.1039/C6RA06120F – volume: 51 start-page: 10570 issue: 42 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib31 article-title: Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging publication-title: Angew Chem Int Ed doi: 10.1002/anie.201206107 – start-page: 30 year: 1998 ident: 10.1016/J.ENG.2017.03.014_bib24 article-title: Principles of green chemistry – volume: 4 start-page: 4279 issue: 3 year: 2014 ident: 10.1016/J.ENG.2017.03.014_bib6 article-title: Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging publication-title: Sci Rep doi: 10.1038/srep04279 – volume: 131 start-page: 11308 issue: 32 year: 2009 ident: 10.1016/J.ENG.2017.03.014_bib15 article-title: Carbon dots for optical imaging in vivo publication-title: J Am Chem Soc doi: 10.1021/ja904843x – volume: 347 start-page: 970 issue: 6225 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib19 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science doi: 10.1126/science.aaa3145 – volume: 281 start-page: 2013 issue: 5385 year: 1998 ident: 10.1016/J.ENG.2017.03.014_bib2 article-title: Semiconductor nanocrystals as fluorescent biological labels publication-title: Science doi: 10.1126/science.281.5385.2013 – volume: 4 start-page: 207 issue: 2 year: 2009 ident: 10.1016/J.ENG.2017.03.014_bib10 article-title: Nanodiamonds for nanomedicine publication-title: Nanomedicine doi: 10.2217/17435889.4.2.207 – volume: 2 start-page: 284 issue: 3 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib23 article-title: Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201100642 – volume: 32 start-page: 5880 issue: 25 year: 2011 ident: 10.1016/J.ENG.2017.03.014_bib5 article-title: Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.080 – volume: 114 start-page: 5161 issue: 10 year: 2014 ident: 10.1016/J.ENG.2017.03.014_bib8 article-title: Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics publication-title: Chem Rev doi: 10.1021/cr400425h – volume: 25 start-page: 723 issue: 4 year: 2004 ident: 10.1016/J.ENG.2017.03.014_bib4 article-title: Preparation and characterization of porous hollow silica nanoparticles for drug delivery application publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00566-0 – volume: 7 start-page: 7394 issue: 16 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib32 article-title: Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining publication-title: Nanoscale doi: 10.1039/C5NR00783F – volume: 7 start-page: 6387 issue: 7 year: 2013 ident: 10.1016/J.ENG.2017.03.014_bib34 article-title: Fluorescence lifetime imaging micro scopy for the detection of intracellular pH with quantum dot nanosensors publication-title: ACS Nano doi: 10.1021/nn402581q – volume: 55 start-page: 10795 issue: 36 year: 2016 ident: 10.1016/J.ENG.2017.03.014_bib9 article-title: Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy publication-title: Angew Chem Int Ed doi: 10.1002/anie.201604781 – volume: 54 start-page: 5360 issue: 18 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib18 article-title: Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging publication-title: Angew Chem Int Ed doi: 10.1002/anie.201501193 – volume: 32 start-page: 515 issue: 5 year: 2015 ident: 10.1016/J.ENG.2017.03.014_bib11 article-title: Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals publication-title: Part Part Syst Charact doi: 10.1002/ppsc.201400219 – volume: 134 start-page: 15 issue: 1 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib27 article-title: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups publication-title: J Am Chem Soc doi: 10.1021/ja206030c – volume: 5 start-page: 763 issue: 9 year: 2008 ident: 10.1016/J.ENG.2017.03.014_bib29 article-title: Quantum dots versus organic dyes as fluorescent labels publication-title: Nat Methods doi: 10.1038/nmeth.1248 – volume: 23 start-page: 245701 issue: 24 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib3 article-title: ‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: Ultrastable and biocompatible optical probes for in vivo animal imaging publication-title: Nanotechnology doi: 10.1088/0957-4484/23/24/245701 – volume: 50 start-page: 4738 issue: 12 year: 2012 ident: 10.1016/J.ENG.2017.03.014_bib28 article-title: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid publication-title: Carbon doi: 10.1016/j.carbon.2012.06.002 – volume: 4 start-page: 5294 issue: 9 year: 2014 ident: 10.1016/J.ENG.2017.03.014_bib22 article-title: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots publication-title: Sci Rep doi: 10.1038/srep05294 – volume: 2 start-page: 545 issue: 5 year: 2013 ident: 10.1016/J.ENG.2017.03.014_bib17 article-title: N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.010 |
SSID | ssib021620022 ssib027973106 ssib048395109 ssib051367610 ssib044735895 ssib027512489 ssj0001510708 |
Score | 2.4070156 |
Snippet | The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications,... |
SourceID | doaj wanfang crossref elsevier chongqing |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 402 |
SubjectTerms | Carbon dots Fluorescence lifetime imaging Patterning Scalable Two-photon |
Title | Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications |
URI | http://lib.cqvip.com/qk/87553B/201703/672708873.html https://dx.doi.org/10.1016/J.ENG.2017.03.014 https://d.wanfangdata.com.cn/periodical/gc-e201703017 https://doaj.org/article/191078519c2b427dbe4d55cb0b47af7e |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIOpBfOIaDX3wJIyZ6cfM9jHGXcNCgqCBgIemH9WLEGZ0syG3_HarpmeWySVevMyh6RdV1VXV01VfMfbBeKlEVKGIyUCBHngqnISmEEpHUcU6KkfZyKdn9cm5Wl3oi0mpL4oJy_DAmXCHeJ8oqYC8CcIr0UQPKmodfOlV41IDpH1LU04uUzk_GEflcnToQ6AaNmZ80qzqw9WnxdlXCutqeoBTyuB5hMqmXf9Bc3HHQPU4_nfs1MMb1ybXridWaPmMPR3cR36Ut_2cPYD2BXsyARV8yX4uXcCjzl0b-XfkAOVG8W8byCDfXcu7xJeX190mAznxY7fx2Pql215x9GB5n5JL5i7_JeRHkyfuV-x8ufhxfFIMJRSKoGq5LYIJWqS5BIPU8sL5KmmZoGoCqrW5CEbWsgI8uFXyTiXQvtTCQalhXoeok3zN9tquhTeMz1XyMlVgDHog2gSTEi5hYhKEEQbNjO3vaGh_Z6gMS--8pMfkjJUjVW0Y0MepCMalHcPMVhaZYokptpQWmTJjH3dDxvnu6fyZWLXrSKjZfQPKkh1kyf5LlmZMjYy2gwOSHQuc6td9ax8MQmEHBXBl18ECdaEbZ_P2f2xunz2mCXOY2ju2t91cw3t0iLb-oJd9_J7eLv4CTCAFRw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+Scalable+Preparation+of+Fluorescent+Carbon+Dots+for+Multifunctional+Applications&rft.jtitle=%E5%B7%A5%E7%A8%8B%EF%BC%88%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=Dan+Wang+Zhiyong+Wang+Qiuqiang+Zhan+Yuan+Pu+Jie-xin+wang+Neil+R.+Foster+Liming+Dai&rft.date=2017-06-01&rft.issn=2095-8099&rft.volume=3&rft.issue=3&rft.spage=402&rft.epage=408&rft_id=info:doi/10.1016%2FJ.ENG.2017.03.014&rft.externalDocID=672708873 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87553B%2F87553B.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg |