A graph convolutional neural network for classification of building patterns using spatial vector data

Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 150; pp. 259 - 273
Main Authors Yan, Xiongfeng, Ai, Tinghua, Yang, Min, Yin, Hongmei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2019.02.010

Cover

Loading…
Abstract Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such data are not underlying grid-like or array structures but can only be modeled as graph structures. The present study introduces a novel graph convolution by converting it from the vertex domain into a point-wise product in the Fourier domain using the graph Fourier transform and convolution theorem. In addition, the graph convolutional neural network (GCNN) architecture is proposed to analyze graph-structured spatial vector data. The focus of this study is the classical task of building pattern classification, which remains limited by the use of design rules and manually extracted features for specific patterns. The spatial vector data representing grouped buildings are modeled as graphs, and indices for the characteristics of individual buildings are investigated to collect the input variables. The pattern features of these graphs are directly extracted by training labeled data. Experiments confirmed that the GCNN produces satisfactory results in terms of identifying regular and irregular patterns, and thus achieves a significant improvement over existing methods. In summary, the GCNN has considerable potential for the analysis of graph-structured spatial vector data as well as scope for further improvement.
AbstractList Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such data are not underlying grid-like or array structures but can only be modeled as graph structures. The present study introduces a novel graph convolution by converting it from the vertex domain into a point-wise product in the Fourier domain using the graph Fourier transform and convolution theorem. In addition, the graph convolutional neural network (GCNN) architecture is proposed to analyze graph-structured spatial vector data. The focus of this study is the classical task of building pattern classification, which remains limited by the use of design rules and manually extracted features for specific patterns. The spatial vector data representing grouped buildings are modeled as graphs, and indices for the characteristics of individual buildings are investigated to collect the input variables. The pattern features of these graphs are directly extracted by training labeled data. Experiments confirmed that the GCNN produces satisfactory results in terms of identifying regular and irregular patterns, and thus achieves a significant improvement over existing methods. In summary, the GCNN has considerable potential for the analysis of graph-structured spatial vector data as well as scope for further improvement.
Author Ai, Tinghua
Yang, Min
Yan, Xiongfeng
Yin, Hongmei
Author_xml – sequence: 1
  givenname: Xiongfeng
  orcidid: 0000-0003-4748-464X
  surname: Yan
  fullname: Yan, Xiongfeng
  email: xiongfeng.yan@whu.edu.cn
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 2
  givenname: Tinghua
  surname: Ai
  fullname: Ai, Tinghua
  email: tinghuaai@whu.edu.cn
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 3
  givenname: Min
  surname: Yang
  fullname: Yang, Min
  email: yangmin2003@whu.edu.cn
  organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
– sequence: 4
  givenname: Hongmei
  surname: Yin
  fullname: Yin, Hongmei
  email: mayyin@whu.edu.cn
  organization: Chinese Academy of Surveying and Mapping, Beijing 100830, China
BookMark eNqNkD1PwzAURS0EEqXwG_DIkvCeQ1JnYKgQXxISC8yW49jFJdjBdor49yQtYmCB4enqSffc4RyRfeedJuQUIUfA6nyd29iHuB4vZ4B1DiwHhD0yQ75gGWdFuU9mULOLjC2wOiRHMa4BAMuKz4hZ0lWQ_QtV3m18NyTrneyo00PYRvrw4ZUaH6jqZIzWWCWnDvWGNoPtWutWtJcp6eAiHeL0xvG3I73RKo1gK5M8JgdGdlGffOecPN9cP13dZQ-Pt_dXy4dMXVRFyhSvueIcFqXBBmrdMlBGNxVU0GCNiIXRpuFY8rKSHFrDkDNUTc3KVpWFKebkbLfbB_8-6JjEm41Kd5102g9RMMZGaVBAMVYXu6oKPsagjeiDfZPhUyCIyaxYix-zYjIrgIkJnpPLX6SyaWslBWm7f_DLHa9HExurg4jKaqd0a8OoTLTe_rnxBZLVn7M
CitedBy_id crossref_primary_10_1080_13658816_2022_2123488
crossref_primary_10_1016_j_eswa_2024_124029
crossref_primary_10_1109_JSTARS_2021_3100400
crossref_primary_10_1016_j_asej_2021_04_020
crossref_primary_10_1016_j_oceaneng_2024_117921
crossref_primary_10_1080_17538947_2023_2259868
crossref_primary_10_1080_15230406_2023_2273397
crossref_primary_10_1016_j_jag_2023_103486
crossref_primary_10_1016_j_eswa_2022_116881
crossref_primary_10_1111_tgis_12731
crossref_primary_10_1177_2399808320921208
crossref_primary_10_1016_j_compenvurbsys_2024_102129
crossref_primary_10_1080_10106049_2024_2364682
crossref_primary_10_3390_ijgi13120433
crossref_primary_10_1007_s12145_024_01463_8
crossref_primary_10_1007_s11063_020_10246_3
crossref_primary_10_1016_j_heliyon_2024_e31730
crossref_primary_10_3390_ijgi11100523
crossref_primary_10_1016_j_jag_2024_103810
crossref_primary_10_1016_j_lfs_2024_122634
crossref_primary_10_3390_app10238441
crossref_primary_10_3390_ijgi11100527
crossref_primary_10_3390_ijgi14020064
crossref_primary_10_3390_ijgi9040231
crossref_primary_10_1016_j_isprsjprs_2025_01_023
crossref_primary_10_3390_data7040045
crossref_primary_10_1007_s12530_024_09596_3
crossref_primary_10_1080_23729333_2023_2215960
crossref_primary_10_1080_00087041_2023_2182372
crossref_primary_10_3390_rs13152965
crossref_primary_10_3390_rs15041041
crossref_primary_10_1080_10106049_2020_1856195
crossref_primary_10_1080_15481603_2023_2220525
crossref_primary_10_3390_agriculture15030331
crossref_primary_10_3390_ijgi10080555
crossref_primary_10_3390_ijgi12100392
crossref_primary_10_3390_ijgi11050287
crossref_primary_10_1177_23998083231204606
crossref_primary_10_1016_j_isprsjprs_2022_11_021
crossref_primary_10_1016_j_isprsjprs_2023_06_004
crossref_primary_10_1007_s12046_020_01548_2
crossref_primary_10_3390_ijgi12080336
crossref_primary_10_1080_13658816_2025_2455075
crossref_primary_10_1002_pssb_202000600
crossref_primary_10_3390_ijgi13060178
crossref_primary_10_1016_j_isprsjprs_2022_07_020
crossref_primary_10_1088_1755_1315_1195_1_012056
crossref_primary_10_1080_13658816_2022_2040510
crossref_primary_10_3390_ijgi11090461
crossref_primary_10_1016_j_compenvurbsys_2025_102267
crossref_primary_10_3390_ijgi11040268
crossref_primary_10_1007_s41870_024_02149_6
crossref_primary_10_1371_journal_pone_0247535
crossref_primary_10_3390_app12199900
crossref_primary_10_1177_23998083231175680
crossref_primary_10_3390_ijgi10100687
crossref_primary_10_3390_sym15061212
crossref_primary_10_1080_17538947_2024_2356123
crossref_primary_10_1016_j_jag_2024_104236
crossref_primary_10_1007_s12273_021_0872_x
crossref_primary_10_1109_TWC_2023_3239311
crossref_primary_10_1007_s10707_022_00481_2
crossref_primary_10_1080_10106049_2025_2471914
crossref_primary_10_1111_tgis_13201
crossref_primary_10_1016_j_compenvurbsys_2021_101619
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_1111_tgis_70002
crossref_primary_10_1111_tgis_13041
crossref_primary_10_1080_10106049_2025_2471087
crossref_primary_10_3390_ijgi14020084
crossref_primary_10_1080_13658816_2024_2321229
crossref_primary_10_1016_j_autcon_2023_104984
crossref_primary_10_1016_j_jag_2024_103794
crossref_primary_10_1016_j_compenvurbsys_2024_102094
crossref_primary_10_1080_23729333_2022_2150379
crossref_primary_10_1016_j_indic_2020_100096
crossref_primary_10_1016_j_compenvurbsys_2022_101807
crossref_primary_10_1016_j_eswa_2022_118639
crossref_primary_10_1007_s12145_021_00659_6
crossref_primary_10_3390_ijgi13060198
crossref_primary_10_1080_15230406_2023_2295948
crossref_primary_10_1080_10106049_2022_2055794
crossref_primary_10_1080_15230406_2023_2295943
crossref_primary_10_1016_j_ins_2021_12_127
crossref_primary_10_1016_j_isprsjprs_2024_10_011
crossref_primary_10_1007_s00521_020_05529_8
crossref_primary_10_1080_15230406_2023_2218106
crossref_primary_10_1080_17538947_2025_2468913
crossref_primary_10_3390_ijgi11060332
crossref_primary_10_1016_j_chemolab_2023_104896
crossref_primary_10_1080_13658816_2020_1768260
crossref_primary_10_1080_10106049_2024_2436906
crossref_primary_10_1016_j_jag_2022_102753
crossref_primary_10_1109_TITS_2020_3003310
crossref_primary_10_1111_tgis_12934
crossref_primary_10_1080_13658816_2023_2268668
crossref_primary_10_1111_tgis_13104
crossref_primary_10_3390_ijgi12090363
crossref_primary_10_1186_s40494_024_01322_1
crossref_primary_10_3390_ijgi14030124
crossref_primary_10_37349_ent_2023_00061
crossref_primary_10_1016_j_asoc_2021_107236
crossref_primary_10_1080_17538947_2023_2172224
crossref_primary_10_1109_ACCESS_2023_3283148
crossref_primary_10_3390_ijgi10090600
crossref_primary_10_1016_j_autcon_2023_105054
crossref_primary_10_1007_s10707_021_00454_x
crossref_primary_10_1007_s11235_024_01148_z
crossref_primary_10_1016_j_aei_2024_102606
crossref_primary_10_1088_2634_4505_acb3f4
crossref_primary_10_1080_13658816_2021_2024195
crossref_primary_10_3390_rs15102562
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1080_13658816_2022_2108036
crossref_primary_10_1007_s11430_019_9584_9
crossref_primary_10_1016_j_cageo_2021_104943
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1016_j_asoc_2025_112703
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1080_17538947_2024_2433647
crossref_primary_10_1080_13658816_2022_2103819
crossref_primary_10_1109_ACCESS_2022_3182497
crossref_primary_10_1080_13658816_2021_1873998
crossref_primary_10_1016_j_jag_2024_103743
crossref_primary_10_1002_adma_202306606
crossref_primary_10_1080_13658816_2023_2257262
crossref_primary_10_3390_s19245518
crossref_primary_10_1007_s12145_020_00482_5
crossref_primary_10_1016_j_jag_2022_102696
crossref_primary_10_1080_08839514_2024_2439611
crossref_primary_10_3390_ijgi12070253
crossref_primary_10_3390_ijgi12070256
crossref_primary_10_1016_j_chaos_2025_116100
crossref_primary_10_1007_s10853_025_10772_2
crossref_primary_10_1016_j_isprsjprs_2023_06_016
crossref_primary_10_1111_tgis_13246
crossref_primary_10_3390_ijgi11050311
crossref_primary_10_1080_13658816_2022_2143505
crossref_primary_10_1080_13658816_2024_2427853
crossref_primary_10_1016_j_ins_2020_12_068
crossref_primary_10_1080_10106049_2024_2366520
crossref_primary_10_1016_j_compeleceng_2023_109051
crossref_primary_10_47164_ijngc_v13i1_385
crossref_primary_10_3390_app121910001
crossref_primary_10_1155_2021_5161111
crossref_primary_10_3390_rs15194763
crossref_primary_10_3390_app12010302
crossref_primary_10_3390_ijgi9050338
crossref_primary_10_1080_17538947_2024_2443468
crossref_primary_10_1080_10095020_2023_2264337
crossref_primary_10_29128_geomatik_947334
crossref_primary_10_3390_ijgi8060258
crossref_primary_10_1109_ACCESS_2022_3198730
crossref_primary_10_1080_15230406_2023_2187886
crossref_primary_10_1007_s42488_020_00037_9
crossref_primary_10_1080_15230406_2023_2264758
crossref_primary_10_1080_15230406_2023_2264757
crossref_primary_10_1080_17538947_2024_2310749
crossref_primary_10_1080_15230406_2023_2264756
crossref_primary_10_1109_ACCESS_2024_3390156
crossref_primary_10_3390_ijgi10050279
crossref_primary_10_1111_tgis_13113
crossref_primary_10_1080_10106049_2024_2306265
Cites_doi 10.1080/09613210903159833
10.1109/JSTARS.2015.2465131
10.1080/15230406.2018.1433068
10.1016/j.acha.2010.04.005
10.1016/j.rse.2018.04.050
10.1080/13658816.2012.700518
10.1109/34.75509
10.1016/j.isprsjprs.2018.03.018
10.1080/15230406.2017.1302821
10.1016/j.compenvurbsys.2018.01.004
10.1080/10106049.2014.925002
10.2307/143141
10.1016/j.cag.2017.07.030
10.1007/s10707-011-0146-3
10.1109/TSP.2014.2321121
10.1016/j.isprsjprs.2017.12.001
10.1080/15230406.2014.919540
10.1080/13658816.2017.1346257
10.3390/ijgi6080250
10.1080/23729333.2015.1055644
10.1080/13658816.2012.752093
10.1016/j.isprsjprs.2018.09.007
10.1109/5.726791
10.1016/j.isprsjprs.2018.10.007
10.1109/TASLP.2014.2339736
10.1016/j.compenvurbsys.2009.07.005
10.1016/j.isprsjprs.2016.10.001
10.1080/10106049.2018.1458253
10.1080/13658816.2017.1384830
10.1111/tgis.12124
10.1038/nature24270
10.1016/j.isprsjprs.2018.01.023
10.1080/13658810410001702021
10.1016/j.landurbplan.2017.05.023
10.1080/13658816.2015.1108421
10.1080/10106049.2016.1240718
10.1007/s10707-011-0131-x
10.1109/TPAMI.2007.1115
10.1016/j.isprsjprs.2017.05.001
10.1016/j.isprsjprs.2018.05.005
10.1016/j.isprsjprs.2017.11.021
10.1111/j.1541-0064.2009.00304.x
10.1109/JSTSP.2017.2726981
10.1126/science.1151419
10.1111/j.1538-4632.1995.tb00338.x
10.1109/MSP.2012.2235192
10.1016/j.neuroimage.2017.12.052
10.1111/j.1467-9671.2008.01085.x
10.1109/TSP.2013.2238935
10.1016/j.isprsjprs.2018.11.006
10.1016/j.acha.2015.02.005
10.1007/s10980-006-9016-z
10.1109/MSP.2017.2693418
10.1007/s10707-007-0020-5
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2019.02.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 273
ExternalDocumentID 10_1016_j_isprsjprs_2019_02_010
S0924271619300437
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c463t-c898c88075f1b09ed20cfeb6060b191113fefb815856a80df21821cb925dc53f3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 03:22:59 EDT 2025
Tue Jul 01 03:46:41 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graph Fourier transform
Deep learning
Spatial vector data
Graph convolutional neural network
Building pattern classification
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-c898c88075f1b09ed20cfeb6060b191113fefb815856a80df21821cb925dc53f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4748-464X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271619300437
PQID 2221010303
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2221010303
crossref_primary_10_1016_j_isprsjprs_2019_02_010
crossref_citationtrail_10_1016_j_isprsjprs_2019_02_010
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Wu (b0145) 2018; 33
Cetinkaya, Basaraner, Burghardt (b0080) 2015; 30
Vanderhaegen, Canters (b0355) 2017; 167
Ktena, Parisot, Ferrante, Rajchl, Lee, Gloker, Rueckert (b0225) 2018; 169
Lombardo (b0255) 2014; 41
Yu, Ai, Liu, Cheng (b0420) 2017; 31
Bertin (b0060) 1983
Batty, Longley (b0050) 1994
Hecht, Meinel, Buchroithner (b0170) 2015; 1
Zhang, Deng, Chen, Wang (b0430) 2013; 27
Yousefhussien, Kelbe, Ientilucci, Salvaggio (b0410) 2018; 143
Jochem, Bird, Tatem (b0205) 2018; 69
Shuman, Narang, Frossard, Ortega, Vandergheynst (b0325) 2013; 30
He, Zhang, Ren, Sun (b0160) 2016
Zhu, Michael (b0450) 2012
Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein (b0280) 2017
Huang, Kieler, Sester (b0195) 2013
Kipf, Welling (b0215) 2017
Sidike, Asari, Sagan (b0330) 2018; 146
Peura, M., Iivarinen, J., 1997. Efficiency of simple shape descriptors. In: Proceedings of the Third International Workshop on Visual Form, pp. 443–451.
Chung (b0090) 1997
Such, Sah, Dominguez, Pillai, Zhang, Michael, Cahill, Ptucha (b0345) 2017; 11
Zhang, X., Ai, T., Stoter, J., 2008. The evaluation of spatial distribution density in map generalization. In: The XXI Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2008), pp. 181–188.
Arkin, Chew, Huttenlocher, Kedem, Mitchell (b0035) 1991; 13
Angel, Parent, Civco (b0020) 2010; 54
Dhillon, Guan, Kulis (b0105) 2007; 29
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, Chen (b0335) 2017; 550
Jain, Zamir, Savarese, Saxena (b0200) 2016
Burghardt, Steiniger (b0075) 2005
Kumar, Pandey, Lohani, Misra (b0230) 2019; 147
LeCun, Bottou, Bengio, Haffner (b0235) 1998; 86
Wang, Du, Guo, Luo (b0365) 2015; 19
Christophe, Ruas (b0085) 2002
Huang, Zhao, Song (b0185) 2018; 214
Wang, Gan, Shui, Yu, Zhang, Chen, Sun (b0360) 2018; 70
Zhang, Ai, Stoter, Kraak, Molenaar (b0440) 2013; 17
He, Zhang, Xin (b0165) 2018; 136
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b0065) 2017; 34
Batty (b0045) 2008; 319
Deng, Tang, Liu, Wu (b0100) 2018; 45
Gonzalez-Abraham, Radeloff, Hammer, Hawbaker, Stewart, Clayton (b0150) 2007; 22
Wei, Guo, Wang, Yan (b0370) 2018; 45
Zeiler, Fergus (b0425) 2014
Henaff, M., Bruna, J., LeCun, Y., 2015. Deep Convolutional Networks on Graph-Structured Data. Available from: arXiv preprint arXiv:1506.05163.
Rahimi, Cohn, Baldwin (b0305) 2018
Anwer, Khan, van de Weijer, Molinier, Laaksonen (b0030) 2018; 138
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b0135) 2017
Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: Proceedings of International Conference on Learning Representations (ICLR).
Wurm, Schmitt, Taubenböck (b0385) 2016; 9
Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (b0130) 2015
Du, Luo, Cao (b0115) 2016; 122
Basaraner, Cetinkaya (b0040) 2017; 31
Steiniger, Burghardt, Lange, Weibel (b0340) 2008; 12
Hammond, Vandergheynst, Gribonval (b0155) 2011; 30
Krizhevsky, Sutskever, Hinton (b0220) 2012
Sandryhaila, Mouraj (b0310) 2013; 61
Niepert, Ahmed, Kutzkov (b0285) 2016
Zhu, Liu (b0445) 2018
Ai, Guo (b0010) 2007; 36
Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trévisan, J., Holzapfel, F., 2003. Quantitative and qualitative description of building orientation. In: Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalisation.
Meinel, Hecht, Herold (b0275) 2009; 37
Beck, Long, Boyd, Rosser, Morley, Duffield, Sanderson, Robinson (b0055) 2018
Du, Shu, Feng (b0120) 2016; 30
Yan, Ai, Zhang (b0400) 2017; 6
Anselin (b0025) 1995; 27
Yang (b0405) 2008
Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (b0005) 2014; 22
Paoletti, Haut, Plaza, Plaza (b0290) 2018; 145
Shuman, Ricaud, Vandergheynst (b0320) 2016; 40
Huang, Liu, Van Der Maaten, Weinberger (b0190) 2017
Yan, Ai (b0395) 2018
Anders (b0015) 2006
Defferrard, Bresson, Vandergheynst (b0095) 2016
Gong, Yang, Zhang (b0140) 2017; 129
Li, Yan, Ai, Chen (b0250) 2004; 18
Yan, Weibel, Yang (b0390) 2008; 12
Tobler (b0350) 1970; 46
Long, Shelhamer, Darrell (b0260) 2015
Yu, Yin, Zhu (b0415) 2018
Lüscher, Weibel, Burghardt (b0265) 2009; 33
Wu, Yu, Wu, Chen, Yao, Huang, Wu (b0380) 2018; 32
Kim (b0210) 2014
Henn, Römerm, Gröger, Plömer (b0180) 2012; 16
Pilehforooshha, Karimi (b0300) 2018
Sandryhaila, Mouraj (b0315) 2014; 62
Ding, Zhang, Deng, Jia, Kuijper (b0110) 2018; 141
Li, Goodchild, Church (b0240) 2013; 27
Wen, Sun, Li, Wang, Guo, Habib (b0375) 2019; 147
Masci, Boscaini, Bronstein, Vandergheynst (b0270) 2015
Li, Zemel, Brockschmidt, Tarlow (b0245) 2016
Kumar (10.1016/j.isprsjprs.2019.02.010_b0230) 2019; 147
Masci (10.1016/j.isprsjprs.2019.02.010_b0270) 2015
Zhu (10.1016/j.isprsjprs.2019.02.010_b0445) 2018
He (10.1016/j.isprsjprs.2019.02.010_b0160) 2016
Huang (10.1016/j.isprsjprs.2019.02.010_b0185) 2018; 214
Burghardt (10.1016/j.isprsjprs.2019.02.010_b0075) 2005
Gong (10.1016/j.isprsjprs.2019.02.010_b0145) 2018; 33
Anders (10.1016/j.isprsjprs.2019.02.010_b0015) 2006
Ai (10.1016/j.isprsjprs.2019.02.010_b0010) 2007; 36
Chung (10.1016/j.isprsjprs.2019.02.010_b0090) 1997
Deng (10.1016/j.isprsjprs.2019.02.010_b0100) 2018; 45
Batty (10.1016/j.isprsjprs.2019.02.010_b0045) 2008; 319
Wang (10.1016/j.isprsjprs.2019.02.010_b0360) 2018; 70
Sandryhaila (10.1016/j.isprsjprs.2019.02.010_b0315) 2014; 62
Niepert (10.1016/j.isprsjprs.2019.02.010_b0285) 2016
Steiniger (10.1016/j.isprsjprs.2019.02.010_b0340) 2008; 12
Sidike (10.1016/j.isprsjprs.2019.02.010_b0330) 2018; 146
Zhang (10.1016/j.isprsjprs.2019.02.010_b0430) 2013; 27
Christophe (10.1016/j.isprsjprs.2019.02.010_b0085) 2002
Yang (10.1016/j.isprsjprs.2019.02.010_b0405) 2008
Bronstein (10.1016/j.isprsjprs.2019.02.010_b0065) 2017; 34
Anwer (10.1016/j.isprsjprs.2019.02.010_b0030) 2018; 138
Duvenaud (10.1016/j.isprsjprs.2019.02.010_b0130) 2015
Gonzalez-Abraham (10.1016/j.isprsjprs.2019.02.010_b0150) 2007; 22
Bertin (10.1016/j.isprsjprs.2019.02.010_b0060) 1983
Kipf (10.1016/j.isprsjprs.2019.02.010_b0215) 2017
10.1016/j.isprsjprs.2019.02.010_b0070
Yousefhussien (10.1016/j.isprsjprs.2019.02.010_b0410) 2018; 143
Li (10.1016/j.isprsjprs.2019.02.010_b0240) 2013; 27
Shuman (10.1016/j.isprsjprs.2019.02.010_b0325) 2013; 30
Yu (10.1016/j.isprsjprs.2019.02.010_b0420) 2017; 31
Du (10.1016/j.isprsjprs.2019.02.010_b0115) 2016; 122
LeCun (10.1016/j.isprsjprs.2019.02.010_b0235) 1998; 86
Jochem (10.1016/j.isprsjprs.2019.02.010_b0205) 2018; 69
Hammond (10.1016/j.isprsjprs.2019.02.010_b0155) 2011; 30
Wurm (10.1016/j.isprsjprs.2019.02.010_b0385) 2016; 9
Zeiler (10.1016/j.isprsjprs.2019.02.010_b0425) 2014
Pilehforooshha (10.1016/j.isprsjprs.2019.02.010_b0300) 2018
He (10.1016/j.isprsjprs.2019.02.010_b0165) 2018; 136
Huang (10.1016/j.isprsjprs.2019.02.010_b0190) 2017
10.1016/j.isprsjprs.2019.02.010_b0435
Li (10.1016/j.isprsjprs.2019.02.010_b0245) 2016
Wei (10.1016/j.isprsjprs.2019.02.010_b0370) 2018; 45
Rahimi (10.1016/j.isprsjprs.2019.02.010_b0305) 2018
Gong (10.1016/j.isprsjprs.2019.02.010_b0140) 2017; 129
Ktena (10.1016/j.isprsjprs.2019.02.010_b0225) 2018; 169
Shuman (10.1016/j.isprsjprs.2019.02.010_b0320) 2016; 40
Beck (10.1016/j.isprsjprs.2019.02.010_b0055) 2018
Tobler (10.1016/j.isprsjprs.2019.02.010_b0350) 1970; 46
Du (10.1016/j.isprsjprs.2019.02.010_b0120) 2016; 30
Angel (10.1016/j.isprsjprs.2019.02.010_b0020) 2010; 54
Dhillon (10.1016/j.isprsjprs.2019.02.010_b0105) 2007; 29
Henn (10.1016/j.isprsjprs.2019.02.010_b0180) 2012; 16
Ding (10.1016/j.isprsjprs.2019.02.010_b0110) 2018; 141
Yan (10.1016/j.isprsjprs.2019.02.010_b0390) 2008; 12
Vanderhaegen (10.1016/j.isprsjprs.2019.02.010_b0355) 2017; 167
Arkin (10.1016/j.isprsjprs.2019.02.010_b0035) 1991; 13
Cetinkaya (10.1016/j.isprsjprs.2019.02.010_b0080) 2015; 30
Silver (10.1016/j.isprsjprs.2019.02.010_b0335) 2017; 550
Wu (10.1016/j.isprsjprs.2019.02.010_b0380) 2018; 32
Defferrard (10.1016/j.isprsjprs.2019.02.010_b0095) 2016
Long (10.1016/j.isprsjprs.2019.02.010_b0260) 2015
Yu (10.1016/j.isprsjprs.2019.02.010_b0415) 2018
Basaraner (10.1016/j.isprsjprs.2019.02.010_b0040) 2017; 31
10.1016/j.isprsjprs.2019.02.010_b0125
Monti (10.1016/j.isprsjprs.2019.02.010_b0280) 2017
Batty (10.1016/j.isprsjprs.2019.02.010_b0050) 1994
Anselin (10.1016/j.isprsjprs.2019.02.010_b0025) 1995; 27
Wen (10.1016/j.isprsjprs.2019.02.010_b0375) 2019; 147
Such (10.1016/j.isprsjprs.2019.02.010_b0345) 2017; 11
Kim (10.1016/j.isprsjprs.2019.02.010_b0210) 2014
10.1016/j.isprsjprs.2019.02.010_b0175
Yan (10.1016/j.isprsjprs.2019.02.010_b0395) 2018
Zhang (10.1016/j.isprsjprs.2019.02.010_b0440) 2013; 17
10.1016/j.isprsjprs.2019.02.010_b0295
Li (10.1016/j.isprsjprs.2019.02.010_b0250) 2004; 18
Paoletti (10.1016/j.isprsjprs.2019.02.010_b0290) 2018; 145
Zhu (10.1016/j.isprsjprs.2019.02.010_b0450) 2012
Hecht (10.1016/j.isprsjprs.2019.02.010_b0170) 2015; 1
Krizhevsky (10.1016/j.isprsjprs.2019.02.010_b0220) 2012
Gilmer (10.1016/j.isprsjprs.2019.02.010_b0135) 2017
Wang (10.1016/j.isprsjprs.2019.02.010_b0365) 2015; 19
Yan (10.1016/j.isprsjprs.2019.02.010_b0400) 2017; 6
Jain (10.1016/j.isprsjprs.2019.02.010_b0200) 2016
Lüscher (10.1016/j.isprsjprs.2019.02.010_b0265) 2009; 33
Meinel (10.1016/j.isprsjprs.2019.02.010_b0275) 2009; 37
Abdel-Hamid (10.1016/j.isprsjprs.2019.02.010_b0005) 2014; 22
Lombardo (10.1016/j.isprsjprs.2019.02.010_b0255) 2014; 41
Sandryhaila (10.1016/j.isprsjprs.2019.02.010_b0310) 2013; 61
Huang (10.1016/j.isprsjprs.2019.02.010_b0195) 2013
References_xml – volume: 11
  start-page: 884
  year: 2017
  end-page: 896
  ident: b0345
  article-title: Robust spatial filtering with graph convolutional neural networks
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 550
  start-page: 354
  year: 2017
  end-page: 359
  ident: b0335
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
– start-page: 419
  year: 2002
  end-page: 432
  ident: b0085
  article-title: Detecting building alignments for generalization purposes
  publication-title: Advances in Spatial Data Handling
– volume: 33
  start-page: 189
  year: 2018
  end-page: 207
  ident: b0145
  article-title: A typification method for linear pattern in urban building generalization
  publication-title: Geocarto Int.
– start-page: 5425
  year: 2017
  end-page: 5434
  ident: b0280
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0235
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 12
  start-page: 73
  year: 2008
  end-page: 89
  ident: b0390
  article-title: A multi-parameter approach to automated building grouping and generalization
  publication-title: Geoinformatica
– reference: Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: Proceedings of International Conference on Learning Representations (ICLR).
– start-page: 832
  year: 2015
  end-page: 840
  ident: b0270
  article-title: Geodesic convolutional neural networks on riemannian manifolds
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW)
– volume: 62
  start-page: 3042
  year: 2014
  end-page: 3054
  ident: b0315
  article-title: Discrete signal processing on graphs: frequency analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 716
  year: 2015
  end-page: 736
  ident: b0365
  article-title: Polygonal clustering analysis using multilevel graph-partition
  publication-title: Trans. GIS
– volume: 33
  start-page: 363
  year: 2009
  end-page: 374
  ident: b0265
  article-title: Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data
  publication-title: Comput. Environ. Urban Syst.
– volume: 146
  start-page: 161
  year: 2018
  end-page: 181
  ident: b0330
  article-title: Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: a new neural network paradigm for remote sensing image analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 37
  start-page: 468
  year: 2009
  end-page: 482
  ident: b0275
  article-title: Analyzing building stock using topographic maps and GIS
  publication-title: Build. Res. Inf.
– start-page: 391
  year: 2008
  end-page: 398
  ident: b0405
  article-title: Identify building patterns
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: b0415
  article-title: Spatial-temporal graph convolutional networks: a deep learning framework for traffic forecasting
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 129
  start-page: 212
  year: 2017
  end-page: 225
  ident: b0140
  article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Henaff, M., Bruna, J., LeCun, Y., 2015. Deep Convolutional Networks on Graph-Structured Data. Available from: arXiv preprint arXiv:1506.05163.
– volume: 141
  start-page: 208
  year: 2018
  end-page: 218
  ident: b0110
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 1
  start-page: 18
  year: 2015
  end-page: 31
  ident: b0170
  article-title: Automatic identification of building types based on topographic databases – a comparison of different data sources
  publication-title: Int. J. Cartogr.
– volume: 147
  start-page: 80
  year: 2019
  end-page: 89
  ident: b0230
  article-title: A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 6
  start-page: 250
  year: 2017
  ident: b0400
  article-title: Template matching and simplification method for building features based on shape cognition
  publication-title: ISPRS Int. J. Geo-Inf.
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: b0135
  article-title: Neural message passing for quantum chemistry
  publication-title: Proceedings of the 34th International Conference on Machine Learning (ICML)
– volume: 13
  start-page: 209
  year: 1991
  end-page: 216
  ident: b0035
  article-title: An efficiently computable metric for comparing polygonal shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 1901
  year: 2016
  end-page: 1912
  ident: b0385
  article-title: Building types classification using shape-based features and linear discriminant functions
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 29
  start-page: 1944
  year: 2007
  end-page: 1957
  ident: b0105
  article-title: Weighted graph cuts without eigenvectors: a multilevel approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 633
  year: 2006
  end-page: 642
  ident: b0015
  article-title: Grid typification
  publication-title: Progress in Spatial Data Handling
– volume: 36
  start-page: 302
  year: 2007
  end-page: 308
  ident: b0010
  article-title: Polygon cluster pattern mining based on Gestalt principles
  publication-title: Acta Geod. Cartogr. Sin.
– start-page: 5308
  year: 2016
  end-page: 5317
  ident: b0200
  article-title: Structural-RNN: deep learning on spatio-temporal graphs
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 40
  start-page: 260
  year: 2016
  end-page: 291
  ident: b0320
  article-title: Vertex-frequency analysis on graphs
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 12
  start-page: 31
  year: 2008
  end-page: 59
  ident: b0340
  article-title: An approach for the classification of urban building structures based on discriminant analysis techniques
  publication-title: Trans. GIS
– volume: 45
  start-page: 187
  year: 2018
  end-page: 204
  ident: b0100
  article-title: Recognizing building groups for generalization: a comparative study
  publication-title: Cartogr. Geogr. Inf. Sci.
– start-page: 2014
  year: 2016
  end-page: 2023
  ident: b0285
  article-title: Learning convolutional neural networks for graphs
  publication-title: Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML)
– volume: 61
  start-page: 1644
  year: 2013
  end-page: 1656
  ident: b0310
  article-title: Discrete signal processing on graphs
  publication-title: IEEE Trans. Signal Process.
– volume: 143
  start-page: 191
  year: 2018
  end-page: 204
  ident: b0410
  article-title: A multi-scale fully convolutional network for semantic labeling of 3D point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: b0190
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 147
  start-page: 178
  year: 2019
  end-page: 192
  ident: b0375
  article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 27
  start-page: 721
  year: 2013
  end-page: 740
  ident: b0430
  article-title: A spatial cognition-based urban building clustering approach and its applications
  publication-title: Int. J. Geogr. Inf. Sci.
– start-page: 1746
  year: 2014
  end-page: 1751
  ident: b0210
  article-title: Convolutional neural networks for sentence classification
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 122
  start-page: 81
  year: 2016
  end-page: 96
  ident: b0115
  article-title: Extracting building patterns with multilevel graph partition and building grouping
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 145
  start-page: 120
  year: 2018
  end-page: 147
  ident: b0290
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 618
  year: 2015
  end-page: 632
  ident: b0080
  article-title: Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms
  publication-title: Geocarto Int.
– volume: 45
  start-page: 539
  year: 2018
  end-page: 555
  ident: b0370
  article-title: On the spatial distribution of buildings for map generalization
  publication-title: Cartography Geogr. Inf. Sci.
– volume: 16
  start-page: 281
  year: 2012
  end-page: 306
  ident: b0180
  article-title: Automatic classification of building types in 3D city models
  publication-title: Geoinformatica
– year: 2018
  ident: b0055
  article-title: Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms
  publication-title: Environ. Plan. B: Urban Anal. City Sci.
– volume: 136
  start-page: 26
  year: 2018
  end-page: 40
  ident: b0165
  article-title: Recognition of building group patterns in topographic maps based on graph partitioning and random forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 32
  start-page: 450
  year: 2018
  end-page: 475
  ident: b0380
  article-title: An extended minimum spanning tree method for characterizing local urban patterns
  publication-title: Int. J. Geogr. Inform. Sci.
– start-page: 1
  year: 2018
  end-page: 22
  ident: b0300
  article-title: An integrated framework for linear pattern extraction in the building group generalization process
  publication-title: Geocarto Int.
– year: 2017
  ident: b0215
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– year: 2016
  ident: b0245
  article-title: Gated graph sequence neural networks
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– volume: 18
  start-page: 513
  year: 2004
  end-page: 534
  ident: b0250
  article-title: Automated building generalization based on urban morphology and Gestalt theory
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 319
  start-page: 769
  year: 2008
  end-page: 771
  ident: b0045
  article-title: The size, scale, and shape of cities
  publication-title: Science
– year: 2018
  ident: b0445
  article-title: Modelling spatial patterns using graph convolutional networks
  publication-title: 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Dagstuhl, Germany
– start-page: 3921
  year: 2012
  end-page: 3924
  ident: b0450
  article-title: Approximating Signals Supported on Graphs
  publication-title: Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b0065
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 30
  start-page: 1161
  year: 2016
  end-page: 1186
  ident: b0120
  article-title: Representation and discovery of building patterns: a three-level relational approach
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 27
  start-page: 1227
  year: 2013
  end-page: 1250
  ident: b0240
  article-title: An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: b0185
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Rem. Sens. Environ.
– volume: 31
  start-page: 1079
  year: 2017
  end-page: 1100
  ident: b0420
  article-title: The analysis and measurement of building patterns using texton co-occurrence matrices
  publication-title: Int. J. Geogr. Inf. Sci.
– start-page: 818
  year: 2014
  end-page: 833
  ident: b0425
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– reference: Zhang, X., Ai, T., Stoter, J., 2008. The evaluation of spatial distribution density in map generalization. In: The XXI Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2008), pp. 181–188.
– year: 2018
  ident: b0395
  article-title: Analysis of irregular spatial data with machine learning: classification of building patterns with a graph convolutional neural network
  publication-title: 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Dagstuhl
– volume: 69
  start-page: 104
  year: 2018
  end-page: 113
  ident: b0205
  article-title: Identifying residential neighbourhood types from settlement points in a machine learning approach
  publication-title: Comput. Environ. Urban Syst.
– volume: 54
  start-page: 441
  year: 2010
  end-page: 461
  ident: b0020
  article-title: Ten compactness properties of circles: measuring shape in geography
  publication-title: Can. Geogr.//Le Géographe Can.
– reference: Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trévisan, J., Holzapfel, F., 2003. Quantitative and qualitative description of building orientation. In: Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalisation.
– start-page: 2009
  year: 2018
  end-page: 2019
  ident: b0305
  article-title: Semi-supervised user geolocation via graph convolutional networks
  publication-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL)
– volume: 41
  start-page: 340
  year: 2014
  end-page: 347
  ident: b0255
  article-title: Quantitative morphometric analysis of lakes using GIS: rectangularity R, ellipticity E, orientation O, and the rectangularity vs. ellipticity index, REi
  publication-title: Cartogr. Geogr. Inf. Sci.
– reference: Peura, M., Iivarinen, J., 1997. Efficiency of simple shape descriptors. In: Proceedings of the Third International Workshop on Visual Form, pp. 443–451.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: b0350
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
– volume: 22
  start-page: 1533
  year: 2014
  end-page: 1545
  ident: b0005
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Language Process.
– start-page: 9
  year: 2005
  end-page: 16
  ident: b0075
  article-title: Usage of principal component analysis in the process of automated generalisation
  publication-title: Proceedings of the 22th International Cartographic Conference (ICC)
– start-page: 2224
  year: 2015
  end-page: 2232
  ident: b0130
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– year: 1983
  ident: b0060
  article-title: Semiology of Graphics: Diagrams, Networks, Maps
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: b0260
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 1997
  ident: b0090
  article-title: Spectral Graph Theory
– volume: 27
  start-page: 93
  year: 1995
  end-page: 115
  ident: b0025
  article-title: Local indicators of spatial association—LISA
  publication-title: Geogr. Anal.
– volume: 31
  start-page: 1952
  year: 2017
  end-page: 1977
  ident: b0040
  article-title: Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS
  publication-title: Int. J. Geogr. Inf. Sci.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0220
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: b0225
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
– volume: 167
  start-page: 399
  year: 2017
  end-page: 409
  ident: b0355
  article-title: Mapping urban form and function at city block level using spatial metrics
  publication-title: Landscape Urban Plan.
– volume: 70
  start-page: 128
  year: 2018
  end-page: 139
  ident: b0360
  article-title: 3d shape segmentation via shape fully convolutional networks
  publication-title: Comput. Graph.
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: b0095
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 17
  start-page: 1
  year: 2013
  end-page: 33
  ident: b0440
  article-title: Building pattern recognition in topographic data: examples on collinear and curvilinear alignments
  publication-title: Geoinformatica
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b0325
  article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– volume: 22
  start-page: 217
  year: 2007
  end-page: 230
  ident: b0150
  article-title: Building patterns and landscape fragmentation in northern Wisconsin, USA
  publication-title: Landscape Ecol.
– year: 2013
  ident: b0195
  article-title: Urban building usage labeling by geometric and context analyses of the footprint data
  publication-title: Proceedings of the 26th International Cartographic Conference (ICC)
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0160
  article-title: Deep residual learning for image recognition
  publication-title: Processing of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 138
  start-page: 74
  year: 2018
  end-page: 85
  ident: b0030
  article-title: Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 1994
  ident: b0050
  article-title: Fractal Cities: A Geometry of Form and Function
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: b0155
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
– ident: 10.1016/j.isprsjprs.2019.02.010_b0295
– start-page: 818
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.02.010_b0425
  article-title: Visualizing and understanding convolutional networks
– volume: 37
  start-page: 468
  issue: 5–6
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.02.010_b0275
  article-title: Analyzing building stock using topographic maps and GIS
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613210903159833
– volume: 9
  start-page: 1901
  issue: 5
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0385
  article-title: Building types classification using shape-based features and linear discriminant functions
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2465131
– volume: 45
  start-page: 539
  issue: 6
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0370
  article-title: On the spatial distribution of buildings for map generalization
  publication-title: Cartography Geogr. Inf. Sci.
  doi: 10.1080/15230406.2018.1433068
– start-page: 3844
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0095
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.02.010_b0155
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– volume: 214
  start-page: 73
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0185
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/j.rse.2018.04.050
– volume: 27
  start-page: 721
  issue: 4
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0430
  article-title: A spatial cognition-based urban building clustering approach and its applications
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2012.700518
– year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0445
  article-title: Modelling spatial patterns using graph convolutional networks
– volume: 13
  start-page: 209
  year: 1991
  ident: 10.1016/j.isprsjprs.2019.02.010_b0035
  article-title: An efficiently computable metric for comparing polygonal shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.75509
– start-page: 5308
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0200
  article-title: Structural-RNN: deep learning on spatio-temporal graphs
– volume: 143
  start-page: 191
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0410
  article-title: A multi-scale fully convolutional network for semantic labeling of 3D point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.018
– year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0055
  article-title: Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms
  publication-title: Environ. Plan. B: Urban Anal. City Sci.
– volume: 45
  start-page: 187
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0100
  article-title: Recognizing building groups for generalization: a comparative study
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2017.1302821
– ident: 10.1016/j.isprsjprs.2019.02.010_b0125
– volume: 69
  start-page: 104
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0205
  article-title: Identifying residential neighbourhood types from settlement points in a machine learning approach
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.01.004
– start-page: 3634
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0415
  article-title: Spatial-temporal graph convolutional networks: a deep learning framework for traffic forecasting
– volume: 30
  start-page: 618
  issue: 6
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0080
  article-title: Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2014.925002
– volume: 46
  start-page: 234
  year: 1970
  ident: 10.1016/j.isprsjprs.2019.02.010_b0350
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 70
  start-page: 128
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0360
  article-title: 3d shape segmentation via shape fully convolutional networks
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2017.07.030
– volume: 17
  start-page: 1
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0440
  article-title: Building pattern recognition in topographic data: examples on collinear and curvilinear alignments
  publication-title: Geoinformatica
  doi: 10.1007/s10707-011-0146-3
– year: 1994
  ident: 10.1016/j.isprsjprs.2019.02.010_b0050
– start-page: 1097
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.02.010_b0220
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 62
  start-page: 3042
  issue: 12
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.02.010_b0315
  article-title: Discrete signal processing on graphs: frequency analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2321121
– volume: 136
  start-page: 26
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0165
  article-title: Recognition of building group patterns in topographic maps based on graph partitioning and random forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.12.001
– volume: 41
  start-page: 340
  issue: 4
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.02.010_b0255
  article-title: Quantitative morphometric analysis of lakes using GIS: rectangularity R, ellipticity E, orientation O, and the rectangularity vs. ellipticity index, REi
  publication-title: Cartogr. Geogr. Inf. Sci.
  doi: 10.1080/15230406.2014.919540
– volume: 31
  start-page: 1952
  issue: 10
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0040
  article-title: Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1346257
– year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0215
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 6
  start-page: 250
  issue: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0400
  article-title: Template matching and simplification method for building features based on shape cognition
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6080250
– start-page: 633
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.02.010_b0015
  article-title: Grid typification
– start-page: 2224
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0130
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: 1
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0170
  article-title: Automatic identification of building types based on topographic databases – a comparison of different data sources
  publication-title: Int. J. Cartogr.
  doi: 10.1080/23729333.2015.1055644
– start-page: 832
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0270
  article-title: Geodesic convolutional neural networks on riemannian manifolds
– volume: 27
  start-page: 1227
  issue: 6
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0240
  article-title: An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2012.752093
– volume: 146
  start-page: 161
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0330
  article-title: Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: a new neural network paradigm for remote sensing image analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.007
– year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0195
  article-title: Urban building usage labeling by geometric and context analyses of the footprint data
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.isprsjprs.2019.02.010_b0235
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 147
  start-page: 178
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.02.010_b0375
  article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.10.007
– volume: 22
  start-page: 1533
  issue: 10
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.02.010_b0005
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Trans. Audio, Speech, Language Process.
  doi: 10.1109/TASLP.2014.2339736
– volume: 33
  start-page: 363
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.02.010_b0265
  article-title: Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2009.07.005
– volume: 122
  start-page: 81
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0115
  article-title: Extracting building patterns with multilevel graph partition and building grouping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.10.001
– start-page: 4700
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0190
  article-title: Densely connected convolutional networks
– start-page: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0300
  article-title: An integrated framework for linear pattern extraction in the building group generalization process
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2018.1458253
– volume: 32
  start-page: 450
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0380
  article-title: An extended minimum spanning tree method for characterizing local urban patterns
  publication-title: Int. J. Geogr. Inform. Sci.
  doi: 10.1080/13658816.2017.1384830
– volume: 19
  start-page: 716
  issue: 5
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0365
  article-title: Polygonal clustering analysis using multilevel graph-partition
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12124
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0335
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 138
  start-page: 74
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0030
  article-title: Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.023
– year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0395
  article-title: Analysis of irregular spatial data with machine learning: classification of building patterns with a graph convolutional neural network
– volume: 18
  start-page: 513
  issue: 5
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.02.010_b0250
  article-title: Automated building generalization based on urban morphology and Gestalt theory
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810410001702021
– volume: 167
  start-page: 399
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0355
  article-title: Mapping urban form and function at city block level using spatial metrics
  publication-title: Landscape Urban Plan.
  doi: 10.1016/j.landurbplan.2017.05.023
– volume: 30
  start-page: 1161
  issue: 6
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0120
  article-title: Representation and discovery of building patterns: a three-level relational approach
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2015.1108421
– volume: 33
  start-page: 189
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0145
  article-title: A typification method for linear pattern in urban building generalization
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2016.1240718
– volume: 31
  start-page: 1079
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0420
  article-title: The analysis and measurement of building patterns using texton co-occurrence matrices
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 16
  start-page: 281
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.02.010_b0180
  article-title: Automatic classification of building types in 3D city models
  publication-title: Geoinformatica
  doi: 10.1007/s10707-011-0131-x
– volume: 29
  start-page: 1944
  issue: 11
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.02.010_b0105
  article-title: Weighted graph cuts without eigenvectors: a multilevel approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1115
– ident: 10.1016/j.isprsjprs.2019.02.010_b0175
– year: 1983
  ident: 10.1016/j.isprsjprs.2019.02.010_b0060
– volume: 129
  start-page: 212
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0140
  article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.05.001
– volume: 141
  start-page: 208
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0110
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.005
– volume: 145
  start-page: 120
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0290
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.021
– start-page: 3431
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.02.010_b0260
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 391
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.02.010_b0405
  article-title: Identify building patterns
– start-page: 2009
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0305
  article-title: Semi-supervised user geolocation via graph convolutional networks
– ident: 10.1016/j.isprsjprs.2019.02.010_b0435
– year: 1997
  ident: 10.1016/j.isprsjprs.2019.02.010_b0090
– start-page: 2014
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0285
  article-title: Learning convolutional neural networks for graphs
– volume: 54
  start-page: 441
  issue: 4
  year: 2010
  ident: 10.1016/j.isprsjprs.2019.02.010_b0020
  article-title: Ten compactness properties of circles: measuring shape in geography
  publication-title: Can. Geogr.//Le Géographe Can.
  doi: 10.1111/j.1541-0064.2009.00304.x
– volume: 11
  start-page: 884
  issue: 6
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0345
  article-title: Robust spatial filtering with graph convolutional neural networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2726981
– volume: 319
  start-page: 769
  issue: 5864
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.02.010_b0045
  article-title: The size, scale, and shape of cities
  publication-title: Science
  doi: 10.1126/science.1151419
– start-page: 3921
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.02.010_b0450
  article-title: Approximating Signals Supported on Graphs
– ident: 10.1016/j.isprsjprs.2019.02.010_b0070
– start-page: 419
  year: 2002
  ident: 10.1016/j.isprsjprs.2019.02.010_b0085
  article-title: Detecting building alignments for generalization purposes
– year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0245
  article-title: Gated graph sequence neural networks
– start-page: 5425
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0280
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
– start-page: 9
  year: 2005
  ident: 10.1016/j.isprsjprs.2019.02.010_b0075
  article-title: Usage of principal component analysis in the process of automated generalisation
– volume: 27
  start-page: 93
  issue: 2
  year: 1995
  ident: 10.1016/j.isprsjprs.2019.02.010_b0025
  article-title: Local indicators of spatial association—LISA
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1995.tb00338.x
– start-page: 1746
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.02.010_b0210
  article-title: Convolutional neural networks for sentence classification
– start-page: 1263
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0135
  article-title: Neural message passing for quantum chemistry
– start-page: 770
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0160
  article-title: Deep residual learning for image recognition
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0325
  article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– volume: 169
  start-page: 431
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.02.010_b0225
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– volume: 12
  start-page: 31
  issue: 1
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.02.010_b0340
  article-title: An approach for the classification of urban building structures based on discriminant analysis techniques
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2008.01085.x
– volume: 61
  start-page: 1644
  issue: 7
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.02.010_b0310
  article-title: Discrete signal processing on graphs
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2238935
– volume: 147
  start-page: 80
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.02.010_b0230
  article-title: A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.006
– volume: 36
  start-page: 302
  issue: 3
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.02.010_b0010
  article-title: Polygon cluster pattern mining based on Gestalt principles
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 40
  start-page: 260
  issue: 2
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.02.010_b0320
  article-title: Vertex-frequency analysis on graphs
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.02.005
– volume: 22
  start-page: 217
  issue: 2
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.02.010_b0150
  article-title: Building patterns and landscape fragmentation in northern Wisconsin, USA
  publication-title: Landscape Ecol.
  doi: 10.1007/s10980-006-9016-z
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.02.010_b0065
  article-title: Geometric deep learning: going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 12
  start-page: 73
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.02.010_b0390
  article-title: A multi-parameter approach to automated building grouping and generalization
  publication-title: Geoinformatica
  doi: 10.1007/s10707-007-0020-5
SSID ssj0001568
Score 2.610421
Snippet Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms artificial intelligence
Building pattern classification
buildings
Deep learning
Graph convolutional neural network
Graph Fourier transform
graphs
Machine learning
neural networks
Spatial vector data
vector data
Title A graph convolutional neural network for classification of building patterns using spatial vector data
URI https://dx.doi.org/10.1016/j.isprsjprs.2019.02.010
https://www.proquest.com/docview/2221010303
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPvG5RPBaN236yHpbFpdVwYsu7C00aaIr0l22q-DF3-5MmvpC2IOH0geZtmQmk5n2yzeEnInQ2ixJeMBheg5indsgDyMTJKIwoSpYnCnH9nmbDobx9SgZLZFesxYGYZXe99c-3Xlrf6Xte7M9HY_bdwxShwjCfQhBHEMPrmCPM7Ty8_cvmEdYL4fDxgG2_oHxGlfTWfUEG2K8Oo68E5fS_j1D_fLVbgLqb5INHznSbv1yW2TJlNtk_Ruf4DZZ9SXNH992iO1Sd0gRV-7tC8SRv9LtHPqbQshKNQbQiBhySqITS5WvlU2njn2zrCjC4x9ohfBrkH51n_opokt3ybB_ed8bBL6oQqDjlM8DLTpCC6QgtqFiHVNETFujII9hKkTPx62xSoSQRqS5YIVFivdQq06UFDrhlu-R5XJSmn1CM1twZjkTKuGxKGAs55GO4kRZncE98gOSNh0ptWccx8IXz7KBlj3JTw1I1IBkkQQNHBD2KTitSTcWi1w0mpI_7EfC1LBY-LTRrYTRhb9M8tJMXqBRBCkxVmLjh_95wBFZw7Ma8XNMluezF3MCwcxctZy1tshK9-pmcPsBRkP4Hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB51y4HlsNotrHjsw0hcozpx3LrcKrSobLu9ABI3K3ZsthVKK1qQ-PfMOE4FaCUOe4gSJZ4k8tjzSD5_A3CiUu_7UopEoHtOclv4pEgzl0hVutSUPO-bwPY57Y2u89838qYFZ81aGIJVRttf2_RgreOZbuzN7nI2615yTB0yDPcxBAkMPR9gi9ipZBu2hhfj0XRjkNN6RRy1T0jgFcxrtlrer-a4EcxrEPg7aTXtv53UG3MdfND5Z_gUg0c2rN_vC7Rc1YGdF5SCHdiOVc3_Pu2CH7JwyAhaHocYihOFZdgFADjDqJVZiqEJNBT0xBaemVgumy0DAWe1YoSQv2UrQmCj9GP42s8IYLoH1-e_rs5GSayrkNi8J9aJVQNlFbEQ-9TwgSszbr0zmMpwk5LxE955o1LMJHqF4qUnlvfUmkEmSyuFF1-hXS0qtw-s70vBveDKSJGrEqdzkdksl8bbPt6jOIBe05HaRtJxqn1xpxt02VxvNKBJA5pnGjVwAHwjuKx5N94XOW00pV8NIY3e4X3h40a3GicY_TUpKrd4wEYZZsVUjE0c_s8DfsL26OrPRE8upuMj-EhXagDQN2iv7x_cd4xt1uZHHLvPu1P60A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+convolutional+neural+network+for+classification+of+building+patterns+using+spatial+vector+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Yan%2C+Xiongfeng&rft.au=Ai%2C+Tinghua&rft.au=Yang%2C+Min&rft.au=Yin%2C+Hongmei&rft.date=2019-04-01&rft.issn=0924-2716&rft.volume=150+p.259-273&rft.spage=259&rft.epage=273&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.02.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon