A graph convolutional neural network for classification of building patterns using spatial vector data
Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 150; pp. 259 - 273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2019.02.010 |
Cover
Loading…
Abstract | Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such data are not underlying grid-like or array structures but can only be modeled as graph structures. The present study introduces a novel graph convolution by converting it from the vertex domain into a point-wise product in the Fourier domain using the graph Fourier transform and convolution theorem. In addition, the graph convolutional neural network (GCNN) architecture is proposed to analyze graph-structured spatial vector data. The focus of this study is the classical task of building pattern classification, which remains limited by the use of design rules and manually extracted features for specific patterns. The spatial vector data representing grouped buildings are modeled as graphs, and indices for the characteristics of individual buildings are investigated to collect the input variables. The pattern features of these graphs are directly extracted by training labeled data. Experiments confirmed that the GCNN produces satisfactory results in terms of identifying regular and irregular patterns, and thus achieves a significant improvement over existing methods. In summary, the GCNN has considerable potential for the analysis of graph-structured spatial vector data as well as scope for further improvement. |
---|---|
AbstractList | Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines. However, these powerful methods often fail to perform pattern analysis and knowledge mining with spatial vector data because in most cases, such data are not underlying grid-like or array structures but can only be modeled as graph structures. The present study introduces a novel graph convolution by converting it from the vertex domain into a point-wise product in the Fourier domain using the graph Fourier transform and convolution theorem. In addition, the graph convolutional neural network (GCNN) architecture is proposed to analyze graph-structured spatial vector data. The focus of this study is the classical task of building pattern classification, which remains limited by the use of design rules and manually extracted features for specific patterns. The spatial vector data representing grouped buildings are modeled as graphs, and indices for the characteristics of individual buildings are investigated to collect the input variables. The pattern features of these graphs are directly extracted by training labeled data. Experiments confirmed that the GCNN produces satisfactory results in terms of identifying regular and irregular patterns, and thus achieves a significant improvement over existing methods. In summary, the GCNN has considerable potential for the analysis of graph-structured spatial vector data as well as scope for further improvement. |
Author | Ai, Tinghua Yang, Min Yan, Xiongfeng Yin, Hongmei |
Author_xml | – sequence: 1 givenname: Xiongfeng orcidid: 0000-0003-4748-464X surname: Yan fullname: Yan, Xiongfeng email: xiongfeng.yan@whu.edu.cn organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China – sequence: 2 givenname: Tinghua surname: Ai fullname: Ai, Tinghua email: tinghuaai@whu.edu.cn organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China – sequence: 3 givenname: Min surname: Yang fullname: Yang, Min email: yangmin2003@whu.edu.cn organization: School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China – sequence: 4 givenname: Hongmei surname: Yin fullname: Yin, Hongmei email: mayyin@whu.edu.cn organization: Chinese Academy of Surveying and Mapping, Beijing 100830, China |
BookMark | eNqNkD1PwzAURS0EEqXwG_DIkvCeQ1JnYKgQXxISC8yW49jFJdjBdor49yQtYmCB4enqSffc4RyRfeedJuQUIUfA6nyd29iHuB4vZ4B1DiwHhD0yQ75gGWdFuU9mULOLjC2wOiRHMa4BAMuKz4hZ0lWQ_QtV3m18NyTrneyo00PYRvrw4ZUaH6jqZIzWWCWnDvWGNoPtWutWtJcp6eAiHeL0xvG3I73RKo1gK5M8JgdGdlGffOecPN9cP13dZQ-Pt_dXy4dMXVRFyhSvueIcFqXBBmrdMlBGNxVU0GCNiIXRpuFY8rKSHFrDkDNUTc3KVpWFKebkbLfbB_8-6JjEm41Kd5102g9RMMZGaVBAMVYXu6oKPsagjeiDfZPhUyCIyaxYix-zYjIrgIkJnpPLX6SyaWslBWm7f_DLHa9HExurg4jKaqd0a8OoTLTe_rnxBZLVn7M |
CitedBy_id | crossref_primary_10_1080_13658816_2022_2123488 crossref_primary_10_1016_j_eswa_2024_124029 crossref_primary_10_1109_JSTARS_2021_3100400 crossref_primary_10_1016_j_asej_2021_04_020 crossref_primary_10_1016_j_oceaneng_2024_117921 crossref_primary_10_1080_17538947_2023_2259868 crossref_primary_10_1080_15230406_2023_2273397 crossref_primary_10_1016_j_jag_2023_103486 crossref_primary_10_1016_j_eswa_2022_116881 crossref_primary_10_1111_tgis_12731 crossref_primary_10_1177_2399808320921208 crossref_primary_10_1016_j_compenvurbsys_2024_102129 crossref_primary_10_1080_10106049_2024_2364682 crossref_primary_10_3390_ijgi13120433 crossref_primary_10_1007_s12145_024_01463_8 crossref_primary_10_1007_s11063_020_10246_3 crossref_primary_10_1016_j_heliyon_2024_e31730 crossref_primary_10_3390_ijgi11100523 crossref_primary_10_1016_j_jag_2024_103810 crossref_primary_10_1016_j_lfs_2024_122634 crossref_primary_10_3390_app10238441 crossref_primary_10_3390_ijgi11100527 crossref_primary_10_3390_ijgi14020064 crossref_primary_10_3390_ijgi9040231 crossref_primary_10_1016_j_isprsjprs_2025_01_023 crossref_primary_10_3390_data7040045 crossref_primary_10_1007_s12530_024_09596_3 crossref_primary_10_1080_23729333_2023_2215960 crossref_primary_10_1080_00087041_2023_2182372 crossref_primary_10_3390_rs13152965 crossref_primary_10_3390_rs15041041 crossref_primary_10_1080_10106049_2020_1856195 crossref_primary_10_1080_15481603_2023_2220525 crossref_primary_10_3390_agriculture15030331 crossref_primary_10_3390_ijgi10080555 crossref_primary_10_3390_ijgi12100392 crossref_primary_10_3390_ijgi11050287 crossref_primary_10_1177_23998083231204606 crossref_primary_10_1016_j_isprsjprs_2022_11_021 crossref_primary_10_1016_j_isprsjprs_2023_06_004 crossref_primary_10_1007_s12046_020_01548_2 crossref_primary_10_3390_ijgi12080336 crossref_primary_10_1080_13658816_2025_2455075 crossref_primary_10_1002_pssb_202000600 crossref_primary_10_3390_ijgi13060178 crossref_primary_10_1016_j_isprsjprs_2022_07_020 crossref_primary_10_1088_1755_1315_1195_1_012056 crossref_primary_10_1080_13658816_2022_2040510 crossref_primary_10_3390_ijgi11090461 crossref_primary_10_1016_j_compenvurbsys_2025_102267 crossref_primary_10_3390_ijgi11040268 crossref_primary_10_1007_s41870_024_02149_6 crossref_primary_10_1371_journal_pone_0247535 crossref_primary_10_3390_app12199900 crossref_primary_10_1177_23998083231175680 crossref_primary_10_3390_ijgi10100687 crossref_primary_10_3390_sym15061212 crossref_primary_10_1080_17538947_2024_2356123 crossref_primary_10_1016_j_jag_2024_104236 crossref_primary_10_1007_s12273_021_0872_x crossref_primary_10_1109_TWC_2023_3239311 crossref_primary_10_1007_s10707_022_00481_2 crossref_primary_10_1080_10106049_2025_2471914 crossref_primary_10_1111_tgis_13201 crossref_primary_10_1016_j_compenvurbsys_2021_101619 crossref_primary_10_1080_01431161_2022_2161856 crossref_primary_10_1111_tgis_70002 crossref_primary_10_1111_tgis_13041 crossref_primary_10_1080_10106049_2025_2471087 crossref_primary_10_3390_ijgi14020084 crossref_primary_10_1080_13658816_2024_2321229 crossref_primary_10_1016_j_autcon_2023_104984 crossref_primary_10_1016_j_jag_2024_103794 crossref_primary_10_1016_j_compenvurbsys_2024_102094 crossref_primary_10_1080_23729333_2022_2150379 crossref_primary_10_1016_j_indic_2020_100096 crossref_primary_10_1016_j_compenvurbsys_2022_101807 crossref_primary_10_1016_j_eswa_2022_118639 crossref_primary_10_1007_s12145_021_00659_6 crossref_primary_10_3390_ijgi13060198 crossref_primary_10_1080_15230406_2023_2295948 crossref_primary_10_1080_10106049_2022_2055794 crossref_primary_10_1080_15230406_2023_2295943 crossref_primary_10_1016_j_ins_2021_12_127 crossref_primary_10_1016_j_isprsjprs_2024_10_011 crossref_primary_10_1007_s00521_020_05529_8 crossref_primary_10_1080_15230406_2023_2218106 crossref_primary_10_1080_17538947_2025_2468913 crossref_primary_10_3390_ijgi11060332 crossref_primary_10_1016_j_chemolab_2023_104896 crossref_primary_10_1080_13658816_2020_1768260 crossref_primary_10_1080_10106049_2024_2436906 crossref_primary_10_1016_j_jag_2022_102753 crossref_primary_10_1109_TITS_2020_3003310 crossref_primary_10_1111_tgis_12934 crossref_primary_10_1080_13658816_2023_2268668 crossref_primary_10_1111_tgis_13104 crossref_primary_10_3390_ijgi12090363 crossref_primary_10_1186_s40494_024_01322_1 crossref_primary_10_3390_ijgi14030124 crossref_primary_10_37349_ent_2023_00061 crossref_primary_10_1016_j_asoc_2021_107236 crossref_primary_10_1080_17538947_2023_2172224 crossref_primary_10_1109_ACCESS_2023_3283148 crossref_primary_10_3390_ijgi10090600 crossref_primary_10_1016_j_autcon_2023_105054 crossref_primary_10_1007_s10707_021_00454_x crossref_primary_10_1007_s11235_024_01148_z crossref_primary_10_1016_j_aei_2024_102606 crossref_primary_10_1088_2634_4505_acb3f4 crossref_primary_10_1080_13658816_2021_2024195 crossref_primary_10_3390_rs15102562 crossref_primary_10_1016_j_jag_2025_104368 crossref_primary_10_1080_13658816_2022_2108036 crossref_primary_10_1007_s11430_019_9584_9 crossref_primary_10_1016_j_cageo_2021_104943 crossref_primary_10_1016_j_jag_2021_102615 crossref_primary_10_1016_j_asoc_2025_112703 crossref_primary_10_1109_TCSVT_2022_3227172 crossref_primary_10_1080_17538947_2024_2433647 crossref_primary_10_1080_13658816_2022_2103819 crossref_primary_10_1109_ACCESS_2022_3182497 crossref_primary_10_1080_13658816_2021_1873998 crossref_primary_10_1016_j_jag_2024_103743 crossref_primary_10_1002_adma_202306606 crossref_primary_10_1080_13658816_2023_2257262 crossref_primary_10_3390_s19245518 crossref_primary_10_1007_s12145_020_00482_5 crossref_primary_10_1016_j_jag_2022_102696 crossref_primary_10_1080_08839514_2024_2439611 crossref_primary_10_3390_ijgi12070253 crossref_primary_10_3390_ijgi12070256 crossref_primary_10_1016_j_chaos_2025_116100 crossref_primary_10_1007_s10853_025_10772_2 crossref_primary_10_1016_j_isprsjprs_2023_06_016 crossref_primary_10_1111_tgis_13246 crossref_primary_10_3390_ijgi11050311 crossref_primary_10_1080_13658816_2022_2143505 crossref_primary_10_1080_13658816_2024_2427853 crossref_primary_10_1016_j_ins_2020_12_068 crossref_primary_10_1080_10106049_2024_2366520 crossref_primary_10_1016_j_compeleceng_2023_109051 crossref_primary_10_47164_ijngc_v13i1_385 crossref_primary_10_3390_app121910001 crossref_primary_10_1155_2021_5161111 crossref_primary_10_3390_rs15194763 crossref_primary_10_3390_app12010302 crossref_primary_10_3390_ijgi9050338 crossref_primary_10_1080_17538947_2024_2443468 crossref_primary_10_1080_10095020_2023_2264337 crossref_primary_10_29128_geomatik_947334 crossref_primary_10_3390_ijgi8060258 crossref_primary_10_1109_ACCESS_2022_3198730 crossref_primary_10_1080_15230406_2023_2187886 crossref_primary_10_1007_s42488_020_00037_9 crossref_primary_10_1080_15230406_2023_2264758 crossref_primary_10_1080_15230406_2023_2264757 crossref_primary_10_1080_17538947_2024_2310749 crossref_primary_10_1080_15230406_2023_2264756 crossref_primary_10_1109_ACCESS_2024_3390156 crossref_primary_10_3390_ijgi10050279 crossref_primary_10_1111_tgis_13113 crossref_primary_10_1080_10106049_2024_2306265 |
Cites_doi | 10.1080/09613210903159833 10.1109/JSTARS.2015.2465131 10.1080/15230406.2018.1433068 10.1016/j.acha.2010.04.005 10.1016/j.rse.2018.04.050 10.1080/13658816.2012.700518 10.1109/34.75509 10.1016/j.isprsjprs.2018.03.018 10.1080/15230406.2017.1302821 10.1016/j.compenvurbsys.2018.01.004 10.1080/10106049.2014.925002 10.2307/143141 10.1016/j.cag.2017.07.030 10.1007/s10707-011-0146-3 10.1109/TSP.2014.2321121 10.1016/j.isprsjprs.2017.12.001 10.1080/15230406.2014.919540 10.1080/13658816.2017.1346257 10.3390/ijgi6080250 10.1080/23729333.2015.1055644 10.1080/13658816.2012.752093 10.1016/j.isprsjprs.2018.09.007 10.1109/5.726791 10.1016/j.isprsjprs.2018.10.007 10.1109/TASLP.2014.2339736 10.1016/j.compenvurbsys.2009.07.005 10.1016/j.isprsjprs.2016.10.001 10.1080/10106049.2018.1458253 10.1080/13658816.2017.1384830 10.1111/tgis.12124 10.1038/nature24270 10.1016/j.isprsjprs.2018.01.023 10.1080/13658810410001702021 10.1016/j.landurbplan.2017.05.023 10.1080/13658816.2015.1108421 10.1080/10106049.2016.1240718 10.1007/s10707-011-0131-x 10.1109/TPAMI.2007.1115 10.1016/j.isprsjprs.2017.05.001 10.1016/j.isprsjprs.2018.05.005 10.1016/j.isprsjprs.2017.11.021 10.1111/j.1541-0064.2009.00304.x 10.1109/JSTSP.2017.2726981 10.1126/science.1151419 10.1111/j.1538-4632.1995.tb00338.x 10.1109/MSP.2012.2235192 10.1016/j.neuroimage.2017.12.052 10.1111/j.1467-9671.2008.01085.x 10.1109/TSP.2013.2238935 10.1016/j.isprsjprs.2018.11.006 10.1016/j.acha.2015.02.005 10.1007/s10980-006-9016-z 10.1109/MSP.2017.2693418 10.1007/s10707-007-0020-5 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2019.02.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 273 |
ExternalDocumentID | 10_1016_j_isprsjprs_2019_02_010 S0924271619300437 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c463t-c898c88075f1b09ed20cfeb6060b191113fefb815856a80df21821cb925dc53f3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 03:22:59 EDT 2025 Tue Jul 01 03:46:41 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 Fri Feb 23 02:28:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph Fourier transform Deep learning Spatial vector data Graph convolutional neural network Building pattern classification Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-c898c88075f1b09ed20cfeb6060b191113fefb815856a80df21821cb925dc53f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4748-464X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271619300437 |
PQID | 2221010303 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2221010303 crossref_primary_10_1016_j_isprsjprs_2019_02_010 crossref_citationtrail_10_1016_j_isprsjprs_2019_02_010 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_02_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Wu (b0145) 2018; 33 Cetinkaya, Basaraner, Burghardt (b0080) 2015; 30 Vanderhaegen, Canters (b0355) 2017; 167 Ktena, Parisot, Ferrante, Rajchl, Lee, Gloker, Rueckert (b0225) 2018; 169 Lombardo (b0255) 2014; 41 Yu, Ai, Liu, Cheng (b0420) 2017; 31 Bertin (b0060) 1983 Batty, Longley (b0050) 1994 Hecht, Meinel, Buchroithner (b0170) 2015; 1 Zhang, Deng, Chen, Wang (b0430) 2013; 27 Yousefhussien, Kelbe, Ientilucci, Salvaggio (b0410) 2018; 143 Jochem, Bird, Tatem (b0205) 2018; 69 Shuman, Narang, Frossard, Ortega, Vandergheynst (b0325) 2013; 30 He, Zhang, Ren, Sun (b0160) 2016 Zhu, Michael (b0450) 2012 Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein (b0280) 2017 Huang, Kieler, Sester (b0195) 2013 Kipf, Welling (b0215) 2017 Sidike, Asari, Sagan (b0330) 2018; 146 Peura, M., Iivarinen, J., 1997. Efficiency of simple shape descriptors. In: Proceedings of the Third International Workshop on Visual Form, pp. 443–451. Chung (b0090) 1997 Such, Sah, Dominguez, Pillai, Zhang, Michael, Cahill, Ptucha (b0345) 2017; 11 Zhang, X., Ai, T., Stoter, J., 2008. The evaluation of spatial distribution density in map generalization. In: The XXI Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2008), pp. 181–188. Arkin, Chew, Huttenlocher, Kedem, Mitchell (b0035) 1991; 13 Angel, Parent, Civco (b0020) 2010; 54 Dhillon, Guan, Kulis (b0105) 2007; 29 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, Chen (b0335) 2017; 550 Jain, Zamir, Savarese, Saxena (b0200) 2016 Burghardt, Steiniger (b0075) 2005 Kumar, Pandey, Lohani, Misra (b0230) 2019; 147 LeCun, Bottou, Bengio, Haffner (b0235) 1998; 86 Wang, Du, Guo, Luo (b0365) 2015; 19 Christophe, Ruas (b0085) 2002 Huang, Zhao, Song (b0185) 2018; 214 Wang, Gan, Shui, Yu, Zhang, Chen, Sun (b0360) 2018; 70 Zhang, Ai, Stoter, Kraak, Molenaar (b0440) 2013; 17 He, Zhang, Xin (b0165) 2018; 136 Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b0065) 2017; 34 Batty (b0045) 2008; 319 Deng, Tang, Liu, Wu (b0100) 2018; 45 Gonzalez-Abraham, Radeloff, Hammer, Hawbaker, Stewart, Clayton (b0150) 2007; 22 Wei, Guo, Wang, Yan (b0370) 2018; 45 Zeiler, Fergus (b0425) 2014 Henaff, M., Bruna, J., LeCun, Y., 2015. Deep Convolutional Networks on Graph-Structured Data. Available from: arXiv preprint arXiv:1506.05163. Rahimi, Cohn, Baldwin (b0305) 2018 Anwer, Khan, van de Weijer, Molinier, Laaksonen (b0030) 2018; 138 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b0135) 2017 Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: Proceedings of International Conference on Learning Representations (ICLR). Wurm, Schmitt, Taubenböck (b0385) 2016; 9 Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams (b0130) 2015 Du, Luo, Cao (b0115) 2016; 122 Basaraner, Cetinkaya (b0040) 2017; 31 Steiniger, Burghardt, Lange, Weibel (b0340) 2008; 12 Hammond, Vandergheynst, Gribonval (b0155) 2011; 30 Krizhevsky, Sutskever, Hinton (b0220) 2012 Sandryhaila, Mouraj (b0310) 2013; 61 Niepert, Ahmed, Kutzkov (b0285) 2016 Zhu, Liu (b0445) 2018 Ai, Guo (b0010) 2007; 36 Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trévisan, J., Holzapfel, F., 2003. Quantitative and qualitative description of building orientation. In: Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalisation. Meinel, Hecht, Herold (b0275) 2009; 37 Beck, Long, Boyd, Rosser, Morley, Duffield, Sanderson, Robinson (b0055) 2018 Du, Shu, Feng (b0120) 2016; 30 Yan, Ai, Zhang (b0400) 2017; 6 Anselin (b0025) 1995; 27 Yang (b0405) 2008 Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (b0005) 2014; 22 Paoletti, Haut, Plaza, Plaza (b0290) 2018; 145 Shuman, Ricaud, Vandergheynst (b0320) 2016; 40 Huang, Liu, Van Der Maaten, Weinberger (b0190) 2017 Yan, Ai (b0395) 2018 Anders (b0015) 2006 Defferrard, Bresson, Vandergheynst (b0095) 2016 Gong, Yang, Zhang (b0140) 2017; 129 Li, Yan, Ai, Chen (b0250) 2004; 18 Yan, Weibel, Yang (b0390) 2008; 12 Tobler (b0350) 1970; 46 Long, Shelhamer, Darrell (b0260) 2015 Yu, Yin, Zhu (b0415) 2018 Lüscher, Weibel, Burghardt (b0265) 2009; 33 Wu, Yu, Wu, Chen, Yao, Huang, Wu (b0380) 2018; 32 Kim (b0210) 2014 Henn, Römerm, Gröger, Plömer (b0180) 2012; 16 Pilehforooshha, Karimi (b0300) 2018 Sandryhaila, Mouraj (b0315) 2014; 62 Ding, Zhang, Deng, Jia, Kuijper (b0110) 2018; 141 Li, Goodchild, Church (b0240) 2013; 27 Wen, Sun, Li, Wang, Guo, Habib (b0375) 2019; 147 Masci, Boscaini, Bronstein, Vandergheynst (b0270) 2015 Li, Zemel, Brockschmidt, Tarlow (b0245) 2016 Kumar (10.1016/j.isprsjprs.2019.02.010_b0230) 2019; 147 Masci (10.1016/j.isprsjprs.2019.02.010_b0270) 2015 Zhu (10.1016/j.isprsjprs.2019.02.010_b0445) 2018 He (10.1016/j.isprsjprs.2019.02.010_b0160) 2016 Huang (10.1016/j.isprsjprs.2019.02.010_b0185) 2018; 214 Burghardt (10.1016/j.isprsjprs.2019.02.010_b0075) 2005 Gong (10.1016/j.isprsjprs.2019.02.010_b0145) 2018; 33 Anders (10.1016/j.isprsjprs.2019.02.010_b0015) 2006 Ai (10.1016/j.isprsjprs.2019.02.010_b0010) 2007; 36 Chung (10.1016/j.isprsjprs.2019.02.010_b0090) 1997 Deng (10.1016/j.isprsjprs.2019.02.010_b0100) 2018; 45 Batty (10.1016/j.isprsjprs.2019.02.010_b0045) 2008; 319 Wang (10.1016/j.isprsjprs.2019.02.010_b0360) 2018; 70 Sandryhaila (10.1016/j.isprsjprs.2019.02.010_b0315) 2014; 62 Niepert (10.1016/j.isprsjprs.2019.02.010_b0285) 2016 Steiniger (10.1016/j.isprsjprs.2019.02.010_b0340) 2008; 12 Sidike (10.1016/j.isprsjprs.2019.02.010_b0330) 2018; 146 Zhang (10.1016/j.isprsjprs.2019.02.010_b0430) 2013; 27 Christophe (10.1016/j.isprsjprs.2019.02.010_b0085) 2002 Yang (10.1016/j.isprsjprs.2019.02.010_b0405) 2008 Bronstein (10.1016/j.isprsjprs.2019.02.010_b0065) 2017; 34 Anwer (10.1016/j.isprsjprs.2019.02.010_b0030) 2018; 138 Duvenaud (10.1016/j.isprsjprs.2019.02.010_b0130) 2015 Gonzalez-Abraham (10.1016/j.isprsjprs.2019.02.010_b0150) 2007; 22 Bertin (10.1016/j.isprsjprs.2019.02.010_b0060) 1983 Kipf (10.1016/j.isprsjprs.2019.02.010_b0215) 2017 10.1016/j.isprsjprs.2019.02.010_b0070 Yousefhussien (10.1016/j.isprsjprs.2019.02.010_b0410) 2018; 143 Li (10.1016/j.isprsjprs.2019.02.010_b0240) 2013; 27 Shuman (10.1016/j.isprsjprs.2019.02.010_b0325) 2013; 30 Yu (10.1016/j.isprsjprs.2019.02.010_b0420) 2017; 31 Du (10.1016/j.isprsjprs.2019.02.010_b0115) 2016; 122 LeCun (10.1016/j.isprsjprs.2019.02.010_b0235) 1998; 86 Jochem (10.1016/j.isprsjprs.2019.02.010_b0205) 2018; 69 Hammond (10.1016/j.isprsjprs.2019.02.010_b0155) 2011; 30 Wurm (10.1016/j.isprsjprs.2019.02.010_b0385) 2016; 9 Zeiler (10.1016/j.isprsjprs.2019.02.010_b0425) 2014 Pilehforooshha (10.1016/j.isprsjprs.2019.02.010_b0300) 2018 He (10.1016/j.isprsjprs.2019.02.010_b0165) 2018; 136 Huang (10.1016/j.isprsjprs.2019.02.010_b0190) 2017 10.1016/j.isprsjprs.2019.02.010_b0435 Li (10.1016/j.isprsjprs.2019.02.010_b0245) 2016 Wei (10.1016/j.isprsjprs.2019.02.010_b0370) 2018; 45 Rahimi (10.1016/j.isprsjprs.2019.02.010_b0305) 2018 Gong (10.1016/j.isprsjprs.2019.02.010_b0140) 2017; 129 Ktena (10.1016/j.isprsjprs.2019.02.010_b0225) 2018; 169 Shuman (10.1016/j.isprsjprs.2019.02.010_b0320) 2016; 40 Beck (10.1016/j.isprsjprs.2019.02.010_b0055) 2018 Tobler (10.1016/j.isprsjprs.2019.02.010_b0350) 1970; 46 Du (10.1016/j.isprsjprs.2019.02.010_b0120) 2016; 30 Angel (10.1016/j.isprsjprs.2019.02.010_b0020) 2010; 54 Dhillon (10.1016/j.isprsjprs.2019.02.010_b0105) 2007; 29 Henn (10.1016/j.isprsjprs.2019.02.010_b0180) 2012; 16 Ding (10.1016/j.isprsjprs.2019.02.010_b0110) 2018; 141 Yan (10.1016/j.isprsjprs.2019.02.010_b0390) 2008; 12 Vanderhaegen (10.1016/j.isprsjprs.2019.02.010_b0355) 2017; 167 Arkin (10.1016/j.isprsjprs.2019.02.010_b0035) 1991; 13 Cetinkaya (10.1016/j.isprsjprs.2019.02.010_b0080) 2015; 30 Silver (10.1016/j.isprsjprs.2019.02.010_b0335) 2017; 550 Wu (10.1016/j.isprsjprs.2019.02.010_b0380) 2018; 32 Defferrard (10.1016/j.isprsjprs.2019.02.010_b0095) 2016 Long (10.1016/j.isprsjprs.2019.02.010_b0260) 2015 Yu (10.1016/j.isprsjprs.2019.02.010_b0415) 2018 Basaraner (10.1016/j.isprsjprs.2019.02.010_b0040) 2017; 31 10.1016/j.isprsjprs.2019.02.010_b0125 Monti (10.1016/j.isprsjprs.2019.02.010_b0280) 2017 Batty (10.1016/j.isprsjprs.2019.02.010_b0050) 1994 Anselin (10.1016/j.isprsjprs.2019.02.010_b0025) 1995; 27 Wen (10.1016/j.isprsjprs.2019.02.010_b0375) 2019; 147 Such (10.1016/j.isprsjprs.2019.02.010_b0345) 2017; 11 Kim (10.1016/j.isprsjprs.2019.02.010_b0210) 2014 10.1016/j.isprsjprs.2019.02.010_b0175 Yan (10.1016/j.isprsjprs.2019.02.010_b0395) 2018 Zhang (10.1016/j.isprsjprs.2019.02.010_b0440) 2013; 17 10.1016/j.isprsjprs.2019.02.010_b0295 Li (10.1016/j.isprsjprs.2019.02.010_b0250) 2004; 18 Paoletti (10.1016/j.isprsjprs.2019.02.010_b0290) 2018; 145 Zhu (10.1016/j.isprsjprs.2019.02.010_b0450) 2012 Hecht (10.1016/j.isprsjprs.2019.02.010_b0170) 2015; 1 Krizhevsky (10.1016/j.isprsjprs.2019.02.010_b0220) 2012 Gilmer (10.1016/j.isprsjprs.2019.02.010_b0135) 2017 Wang (10.1016/j.isprsjprs.2019.02.010_b0365) 2015; 19 Yan (10.1016/j.isprsjprs.2019.02.010_b0400) 2017; 6 Jain (10.1016/j.isprsjprs.2019.02.010_b0200) 2016 Lüscher (10.1016/j.isprsjprs.2019.02.010_b0265) 2009; 33 Meinel (10.1016/j.isprsjprs.2019.02.010_b0275) 2009; 37 Abdel-Hamid (10.1016/j.isprsjprs.2019.02.010_b0005) 2014; 22 Lombardo (10.1016/j.isprsjprs.2019.02.010_b0255) 2014; 41 Sandryhaila (10.1016/j.isprsjprs.2019.02.010_b0310) 2013; 61 Huang (10.1016/j.isprsjprs.2019.02.010_b0195) 2013 |
References_xml | – volume: 11 start-page: 884 year: 2017 end-page: 896 ident: b0345 article-title: Robust spatial filtering with graph convolutional neural networks publication-title: IEEE J. Sel. Top. Signal Process. – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: b0335 article-title: Mastering the game of Go without human knowledge publication-title: Nature – start-page: 419 year: 2002 end-page: 432 ident: b0085 article-title: Detecting building alignments for generalization purposes publication-title: Advances in Spatial Data Handling – volume: 33 start-page: 189 year: 2018 end-page: 207 ident: b0145 article-title: A typification method for linear pattern in urban building generalization publication-title: Geocarto Int. – start-page: 5425 year: 2017 end-page: 5434 ident: b0280 article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0235 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 12 start-page: 73 year: 2008 end-page: 89 ident: b0390 article-title: A multi-parameter approach to automated building grouping and generalization publication-title: Geoinformatica – reference: Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally connected networks on graphs. In: Proceedings of International Conference on Learning Representations (ICLR). – start-page: 832 year: 2015 end-page: 840 ident: b0270 article-title: Geodesic convolutional neural networks on riemannian manifolds publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW) – volume: 62 start-page: 3042 year: 2014 end-page: 3054 ident: b0315 article-title: Discrete signal processing on graphs: frequency analysis publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 716 year: 2015 end-page: 736 ident: b0365 article-title: Polygonal clustering analysis using multilevel graph-partition publication-title: Trans. GIS – volume: 33 start-page: 363 year: 2009 end-page: 374 ident: b0265 article-title: Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data publication-title: Comput. Environ. Urban Syst. – volume: 146 start-page: 161 year: 2018 end-page: 181 ident: b0330 article-title: Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: a new neural network paradigm for remote sensing image analysis publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 37 start-page: 468 year: 2009 end-page: 482 ident: b0275 article-title: Analyzing building stock using topographic maps and GIS publication-title: Build. Res. Inf. – start-page: 391 year: 2008 end-page: 398 ident: b0405 article-title: Identify building patterns publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – start-page: 3634 year: 2018 end-page: 3640 ident: b0415 article-title: Spatial-temporal graph convolutional networks: a deep learning framework for traffic forecasting publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI) – volume: 129 start-page: 212 year: 2017 end-page: 225 ident: b0140 article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Henaff, M., Bruna, J., LeCun, Y., 2015. Deep Convolutional Networks on Graph-Structured Data. Available from: arXiv preprint arXiv:1506.05163. – volume: 141 start-page: 208 year: 2018 end-page: 218 ident: b0110 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 1 start-page: 18 year: 2015 end-page: 31 ident: b0170 article-title: Automatic identification of building types based on topographic databases – a comparison of different data sources publication-title: Int. J. Cartogr. – volume: 147 start-page: 80 year: 2019 end-page: 89 ident: b0230 article-title: A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 6 start-page: 250 year: 2017 ident: b0400 article-title: Template matching and simplification method for building features based on shape cognition publication-title: ISPRS Int. J. Geo-Inf. – start-page: 1263 year: 2017 end-page: 1272 ident: b0135 article-title: Neural message passing for quantum chemistry publication-title: Proceedings of the 34th International Conference on Machine Learning (ICML) – volume: 13 start-page: 209 year: 1991 end-page: 216 ident: b0035 article-title: An efficiently computable metric for comparing polygonal shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 1901 year: 2016 end-page: 1912 ident: b0385 article-title: Building types classification using shape-based features and linear discriminant functions publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 29 start-page: 1944 year: 2007 end-page: 1957 ident: b0105 article-title: Weighted graph cuts without eigenvectors: a multilevel approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 633 year: 2006 end-page: 642 ident: b0015 article-title: Grid typification publication-title: Progress in Spatial Data Handling – volume: 36 start-page: 302 year: 2007 end-page: 308 ident: b0010 article-title: Polygon cluster pattern mining based on Gestalt principles publication-title: Acta Geod. Cartogr. Sin. – start-page: 5308 year: 2016 end-page: 5317 ident: b0200 article-title: Structural-RNN: deep learning on spatio-temporal graphs publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 40 start-page: 260 year: 2016 end-page: 291 ident: b0320 article-title: Vertex-frequency analysis on graphs publication-title: Appl. Comput. Harmon. Anal. – volume: 12 start-page: 31 year: 2008 end-page: 59 ident: b0340 article-title: An approach for the classification of urban building structures based on discriminant analysis techniques publication-title: Trans. GIS – volume: 45 start-page: 187 year: 2018 end-page: 204 ident: b0100 article-title: Recognizing building groups for generalization: a comparative study publication-title: Cartogr. Geogr. Inf. Sci. – start-page: 2014 year: 2016 end-page: 2023 ident: b0285 article-title: Learning convolutional neural networks for graphs publication-title: Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML) – volume: 61 start-page: 1644 year: 2013 end-page: 1656 ident: b0310 article-title: Discrete signal processing on graphs publication-title: IEEE Trans. Signal Process. – volume: 143 start-page: 191 year: 2018 end-page: 204 ident: b0410 article-title: A multi-scale fully convolutional network for semantic labeling of 3D point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 4700 year: 2017 end-page: 4708 ident: b0190 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 147 start-page: 178 year: 2019 end-page: 192 ident: b0375 article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 27 start-page: 721 year: 2013 end-page: 740 ident: b0430 article-title: A spatial cognition-based urban building clustering approach and its applications publication-title: Int. J. Geogr. Inf. Sci. – start-page: 1746 year: 2014 end-page: 1751 ident: b0210 article-title: Convolutional neural networks for sentence classification publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) – volume: 122 start-page: 81 year: 2016 end-page: 96 ident: b0115 article-title: Extracting building patterns with multilevel graph partition and building grouping publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 145 start-page: 120 year: 2018 end-page: 147 ident: b0290 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 30 start-page: 618 year: 2015 end-page: 632 ident: b0080 article-title: Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms publication-title: Geocarto Int. – volume: 45 start-page: 539 year: 2018 end-page: 555 ident: b0370 article-title: On the spatial distribution of buildings for map generalization publication-title: Cartography Geogr. Inf. Sci. – volume: 16 start-page: 281 year: 2012 end-page: 306 ident: b0180 article-title: Automatic classification of building types in 3D city models publication-title: Geoinformatica – year: 2018 ident: b0055 article-title: Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms publication-title: Environ. Plan. B: Urban Anal. City Sci. – volume: 136 start-page: 26 year: 2018 end-page: 40 ident: b0165 article-title: Recognition of building group patterns in topographic maps based on graph partitioning and random forest publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 32 start-page: 450 year: 2018 end-page: 475 ident: b0380 article-title: An extended minimum spanning tree method for characterizing local urban patterns publication-title: Int. J. Geogr. Inform. Sci. – start-page: 1 year: 2018 end-page: 22 ident: b0300 article-title: An integrated framework for linear pattern extraction in the building group generalization process publication-title: Geocarto Int. – year: 2017 ident: b0215 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proceedings of International Conference on Learning Representations (ICLR) – year: 2016 ident: b0245 article-title: Gated graph sequence neural networks publication-title: Proceedings of International Conference on Learning Representations (ICLR) – volume: 18 start-page: 513 year: 2004 end-page: 534 ident: b0250 article-title: Automated building generalization based on urban morphology and Gestalt theory publication-title: Int. J. Geogr. Inf. Sci. – volume: 319 start-page: 769 year: 2008 end-page: 771 ident: b0045 article-title: The size, scale, and shape of cities publication-title: Science – year: 2018 ident: b0445 article-title: Modelling spatial patterns using graph convolutional networks publication-title: 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Dagstuhl, Germany – start-page: 3921 year: 2012 end-page: 3924 ident: b0450 article-title: Approximating Signals Supported on Graphs publication-title: Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: b0065 article-title: Geometric deep learning: going beyond Euclidean data publication-title: IEEE Signal Process. Mag. – volume: 30 start-page: 1161 year: 2016 end-page: 1186 ident: b0120 article-title: Representation and discovery of building patterns: a three-level relational approach publication-title: Int. J. Geogr. Inf. Sci. – volume: 27 start-page: 1227 year: 2013 end-page: 1250 ident: b0240 article-title: An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems publication-title: Int. J. Geogr. Inf. Sci. – volume: 214 start-page: 73 year: 2018 end-page: 86 ident: b0185 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Rem. Sens. Environ. – volume: 31 start-page: 1079 year: 2017 end-page: 1100 ident: b0420 article-title: The analysis and measurement of building patterns using texton co-occurrence matrices publication-title: Int. J. Geogr. Inf. Sci. – start-page: 818 year: 2014 end-page: 833 ident: b0425 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – reference: Zhang, X., Ai, T., Stoter, J., 2008. The evaluation of spatial distribution density in map generalization. In: The XXI Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS 2008), pp. 181–188. – year: 2018 ident: b0395 article-title: Analysis of irregular spatial data with machine learning: classification of building patterns with a graph convolutional neural network publication-title: 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Dagstuhl – volume: 69 start-page: 104 year: 2018 end-page: 113 ident: b0205 article-title: Identifying residential neighbourhood types from settlement points in a machine learning approach publication-title: Comput. Environ. Urban Syst. – volume: 54 start-page: 441 year: 2010 end-page: 461 ident: b0020 article-title: Ten compactness properties of circles: measuring shape in geography publication-title: Can. Geogr.//Le Géographe Can. – reference: Duchêne, C., Bard, S., Barillot, X., Ruas, A., Trévisan, J., Holzapfel, F., 2003. Quantitative and qualitative description of building orientation. In: Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalisation. – start-page: 2009 year: 2018 end-page: 2019 ident: b0305 article-title: Semi-supervised user geolocation via graph convolutional networks publication-title: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL) – volume: 41 start-page: 340 year: 2014 end-page: 347 ident: b0255 article-title: Quantitative morphometric analysis of lakes using GIS: rectangularity R, ellipticity E, orientation O, and the rectangularity vs. ellipticity index, REi publication-title: Cartogr. Geogr. Inf. Sci. – reference: Peura, M., Iivarinen, J., 1997. Efficiency of simple shape descriptors. In: Proceedings of the Third International Workshop on Visual Form, pp. 443–451. – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: b0350 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. – volume: 22 start-page: 1533 year: 2014 end-page: 1545 ident: b0005 article-title: Convolutional neural networks for speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Language Process. – start-page: 9 year: 2005 end-page: 16 ident: b0075 article-title: Usage of principal component analysis in the process of automated generalisation publication-title: Proceedings of the 22th International Cartographic Conference (ICC) – start-page: 2224 year: 2015 end-page: 2232 ident: b0130 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Advances in Neural Information Processing Systems (NIPS) – year: 1983 ident: b0060 article-title: Semiology of Graphics: Diagrams, Networks, Maps – start-page: 3431 year: 2015 end-page: 3440 ident: b0260 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 1997 ident: b0090 article-title: Spectral Graph Theory – volume: 27 start-page: 93 year: 1995 end-page: 115 ident: b0025 article-title: Local indicators of spatial association—LISA publication-title: Geogr. Anal. – volume: 31 start-page: 1952 year: 2017 end-page: 1977 ident: b0040 article-title: Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS publication-title: Int. J. Geogr. Inf. Sci. – start-page: 1097 year: 2012 end-page: 1105 ident: b0220 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 169 start-page: 431 year: 2018 end-page: 442 ident: b0225 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage – volume: 167 start-page: 399 year: 2017 end-page: 409 ident: b0355 article-title: Mapping urban form and function at city block level using spatial metrics publication-title: Landscape Urban Plan. – volume: 70 start-page: 128 year: 2018 end-page: 139 ident: b0360 article-title: 3d shape segmentation via shape fully convolutional networks publication-title: Comput. Graph. – start-page: 3844 year: 2016 end-page: 3852 ident: b0095 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 17 start-page: 1 year: 2013 end-page: 33 ident: b0440 article-title: Building pattern recognition in topographic data: examples on collinear and curvilinear alignments publication-title: Geoinformatica – volume: 30 start-page: 83 year: 2013 end-page: 98 ident: b0325 article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. – volume: 22 start-page: 217 year: 2007 end-page: 230 ident: b0150 article-title: Building patterns and landscape fragmentation in northern Wisconsin, USA publication-title: Landscape Ecol. – year: 2013 ident: b0195 article-title: Urban building usage labeling by geometric and context analyses of the footprint data publication-title: Proceedings of the 26th International Cartographic Conference (ICC) – start-page: 770 year: 2016 end-page: 778 ident: b0160 article-title: Deep residual learning for image recognition publication-title: Processing of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 138 start-page: 74 year: 2018 end-page: 85 ident: b0030 article-title: Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification publication-title: ISPRS J. Photogramm. Remote Sens. – year: 1994 ident: b0050 article-title: Fractal Cities: A Geometry of Form and Function – volume: 30 start-page: 129 year: 2011 end-page: 150 ident: b0155 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. – ident: 10.1016/j.isprsjprs.2019.02.010_b0295 – start-page: 818 year: 2014 ident: 10.1016/j.isprsjprs.2019.02.010_b0425 article-title: Visualizing and understanding convolutional networks – volume: 37 start-page: 468 issue: 5–6 year: 2009 ident: 10.1016/j.isprsjprs.2019.02.010_b0275 article-title: Analyzing building stock using topographic maps and GIS publication-title: Build. Res. Inf. doi: 10.1080/09613210903159833 – volume: 9 start-page: 1901 issue: 5 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0385 article-title: Building types classification using shape-based features and linear discriminant functions publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2465131 – volume: 45 start-page: 539 issue: 6 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0370 article-title: On the spatial distribution of buildings for map generalization publication-title: Cartography Geogr. Inf. Sci. doi: 10.1080/15230406.2018.1433068 – start-page: 3844 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0095 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – volume: 30 start-page: 129 issue: 2 year: 2011 ident: 10.1016/j.isprsjprs.2019.02.010_b0155 article-title: Wavelets on graphs via spectral graph theory publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.04.005 – volume: 214 start-page: 73 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0185 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2018.04.050 – volume: 27 start-page: 721 issue: 4 year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0430 article-title: A spatial cognition-based urban building clustering approach and its applications publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2012.700518 – year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0445 article-title: Modelling spatial patterns using graph convolutional networks – volume: 13 start-page: 209 year: 1991 ident: 10.1016/j.isprsjprs.2019.02.010_b0035 article-title: An efficiently computable metric for comparing polygonal shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.75509 – start-page: 5308 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0200 article-title: Structural-RNN: deep learning on spatio-temporal graphs – volume: 143 start-page: 191 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0410 article-title: A multi-scale fully convolutional network for semantic labeling of 3D point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.03.018 – year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0055 article-title: Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms publication-title: Environ. Plan. B: Urban Anal. City Sci. – volume: 45 start-page: 187 issue: 3 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0100 article-title: Recognizing building groups for generalization: a comparative study publication-title: Cartogr. Geogr. Inf. Sci. doi: 10.1080/15230406.2017.1302821 – ident: 10.1016/j.isprsjprs.2019.02.010_b0125 – volume: 69 start-page: 104 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0205 article-title: Identifying residential neighbourhood types from settlement points in a machine learning approach publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.01.004 – start-page: 3634 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0415 article-title: Spatial-temporal graph convolutional networks: a deep learning framework for traffic forecasting – volume: 30 start-page: 618 issue: 6 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0080 article-title: Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms publication-title: Geocarto Int. doi: 10.1080/10106049.2014.925002 – volume: 46 start-page: 234 year: 1970 ident: 10.1016/j.isprsjprs.2019.02.010_b0350 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 70 start-page: 128 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0360 article-title: 3d shape segmentation via shape fully convolutional networks publication-title: Comput. Graph. doi: 10.1016/j.cag.2017.07.030 – volume: 17 start-page: 1 year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0440 article-title: Building pattern recognition in topographic data: examples on collinear and curvilinear alignments publication-title: Geoinformatica doi: 10.1007/s10707-011-0146-3 – year: 1994 ident: 10.1016/j.isprsjprs.2019.02.010_b0050 – start-page: 1097 year: 2012 ident: 10.1016/j.isprsjprs.2019.02.010_b0220 article-title: ImageNet classification with deep convolutional neural networks – volume: 62 start-page: 3042 issue: 12 year: 2014 ident: 10.1016/j.isprsjprs.2019.02.010_b0315 article-title: Discrete signal processing on graphs: frequency analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2321121 – volume: 136 start-page: 26 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0165 article-title: Recognition of building group patterns in topographic maps based on graph partitioning and random forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.12.001 – volume: 41 start-page: 340 issue: 4 year: 2014 ident: 10.1016/j.isprsjprs.2019.02.010_b0255 article-title: Quantitative morphometric analysis of lakes using GIS: rectangularity R, ellipticity E, orientation O, and the rectangularity vs. ellipticity index, REi publication-title: Cartogr. Geogr. Inf. Sci. doi: 10.1080/15230406.2014.919540 – volume: 31 start-page: 1952 issue: 10 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0040 article-title: Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2017.1346257 – year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0215 article-title: Semi-supervised classification with graph convolutional networks – volume: 6 start-page: 250 issue: 8 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0400 article-title: Template matching and simplification method for building features based on shape cognition publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi6080250 – start-page: 633 year: 2006 ident: 10.1016/j.isprsjprs.2019.02.010_b0015 article-title: Grid typification – start-page: 2224 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0130 article-title: Convolutional networks on graphs for learning molecular fingerprints – volume: 1 start-page: 18 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0170 article-title: Automatic identification of building types based on topographic databases – a comparison of different data sources publication-title: Int. J. Cartogr. doi: 10.1080/23729333.2015.1055644 – start-page: 832 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0270 article-title: Geodesic convolutional neural networks on riemannian manifolds – volume: 27 start-page: 1227 issue: 6 year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0240 article-title: An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2012.752093 – volume: 146 start-page: 161 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0330 article-title: Progressively Expanded Neural Network (PEN Net) for hyperspectral image classification: a new neural network paradigm for remote sensing image analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.007 – year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0195 article-title: Urban building usage labeling by geometric and context analyses of the footprint data – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.isprsjprs.2019.02.010_b0235 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 147 start-page: 178 year: 2019 ident: 10.1016/j.isprsjprs.2019.02.010_b0375 article-title: A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.10.007 – volume: 22 start-page: 1533 issue: 10 year: 2014 ident: 10.1016/j.isprsjprs.2019.02.010_b0005 article-title: Convolutional neural networks for speech recognition publication-title: IEEE/ACM Trans. Audio, Speech, Language Process. doi: 10.1109/TASLP.2014.2339736 – volume: 33 start-page: 363 year: 2009 ident: 10.1016/j.isprsjprs.2019.02.010_b0265 article-title: Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2009.07.005 – volume: 122 start-page: 81 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0115 article-title: Extracting building patterns with multilevel graph partition and building grouping publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.10.001 – start-page: 4700 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0190 article-title: Densely connected convolutional networks – start-page: 1 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0300 article-title: An integrated framework for linear pattern extraction in the building group generalization process publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1458253 – volume: 32 start-page: 450 issue: 3 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0380 article-title: An extended minimum spanning tree method for characterizing local urban patterns publication-title: Int. J. Geogr. Inform. Sci. doi: 10.1080/13658816.2017.1384830 – volume: 19 start-page: 716 issue: 5 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0365 article-title: Polygonal clustering analysis using multilevel graph-partition publication-title: Trans. GIS doi: 10.1111/tgis.12124 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0335 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 138 start-page: 74 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0030 article-title: Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.023 – year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0395 article-title: Analysis of irregular spatial data with machine learning: classification of building patterns with a graph convolutional neural network – volume: 18 start-page: 513 issue: 5 year: 2004 ident: 10.1016/j.isprsjprs.2019.02.010_b0250 article-title: Automated building generalization based on urban morphology and Gestalt theory publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810410001702021 – volume: 167 start-page: 399 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0355 article-title: Mapping urban form and function at city block level using spatial metrics publication-title: Landscape Urban Plan. doi: 10.1016/j.landurbplan.2017.05.023 – volume: 30 start-page: 1161 issue: 6 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0120 article-title: Representation and discovery of building patterns: a three-level relational approach publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2015.1108421 – volume: 33 start-page: 189 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0145 article-title: A typification method for linear pattern in urban building generalization publication-title: Geocarto Int. doi: 10.1080/10106049.2016.1240718 – volume: 31 start-page: 1079 issue: 6 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0420 article-title: The analysis and measurement of building patterns using texton co-occurrence matrices publication-title: Int. J. Geogr. Inf. Sci. – volume: 16 start-page: 281 year: 2012 ident: 10.1016/j.isprsjprs.2019.02.010_b0180 article-title: Automatic classification of building types in 3D city models publication-title: Geoinformatica doi: 10.1007/s10707-011-0131-x – volume: 29 start-page: 1944 issue: 11 year: 2007 ident: 10.1016/j.isprsjprs.2019.02.010_b0105 article-title: Weighted graph cuts without eigenvectors: a multilevel approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1115 – ident: 10.1016/j.isprsjprs.2019.02.010_b0175 – year: 1983 ident: 10.1016/j.isprsjprs.2019.02.010_b0060 – volume: 129 start-page: 212 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0140 article-title: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.001 – volume: 141 start-page: 208 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0110 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.005 – volume: 145 start-page: 120 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0290 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.021 – start-page: 3431 year: 2015 ident: 10.1016/j.isprsjprs.2019.02.010_b0260 article-title: Fully convolutional networks for semantic segmentation – start-page: 391 year: 2008 ident: 10.1016/j.isprsjprs.2019.02.010_b0405 article-title: Identify building patterns – start-page: 2009 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0305 article-title: Semi-supervised user geolocation via graph convolutional networks – ident: 10.1016/j.isprsjprs.2019.02.010_b0435 – year: 1997 ident: 10.1016/j.isprsjprs.2019.02.010_b0090 – start-page: 2014 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0285 article-title: Learning convolutional neural networks for graphs – volume: 54 start-page: 441 issue: 4 year: 2010 ident: 10.1016/j.isprsjprs.2019.02.010_b0020 article-title: Ten compactness properties of circles: measuring shape in geography publication-title: Can. Geogr.//Le Géographe Can. doi: 10.1111/j.1541-0064.2009.00304.x – volume: 11 start-page: 884 issue: 6 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0345 article-title: Robust spatial filtering with graph convolutional neural networks publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2017.2726981 – volume: 319 start-page: 769 issue: 5864 year: 2008 ident: 10.1016/j.isprsjprs.2019.02.010_b0045 article-title: The size, scale, and shape of cities publication-title: Science doi: 10.1126/science.1151419 – start-page: 3921 year: 2012 ident: 10.1016/j.isprsjprs.2019.02.010_b0450 article-title: Approximating Signals Supported on Graphs – ident: 10.1016/j.isprsjprs.2019.02.010_b0070 – start-page: 419 year: 2002 ident: 10.1016/j.isprsjprs.2019.02.010_b0085 article-title: Detecting building alignments for generalization purposes – year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0245 article-title: Gated graph sequence neural networks – start-page: 5425 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0280 article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs – start-page: 9 year: 2005 ident: 10.1016/j.isprsjprs.2019.02.010_b0075 article-title: Usage of principal component analysis in the process of automated generalisation – volume: 27 start-page: 93 issue: 2 year: 1995 ident: 10.1016/j.isprsjprs.2019.02.010_b0025 article-title: Local indicators of spatial association—LISA publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.1995.tb00338.x – start-page: 1746 year: 2014 ident: 10.1016/j.isprsjprs.2019.02.010_b0210 article-title: Convolutional neural networks for sentence classification – start-page: 1263 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0135 article-title: Neural message passing for quantum chemistry – start-page: 770 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0160 article-title: Deep residual learning for image recognition – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0325 article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – volume: 169 start-page: 431 year: 2018 ident: 10.1016/j.isprsjprs.2019.02.010_b0225 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.052 – volume: 12 start-page: 31 issue: 1 year: 2008 ident: 10.1016/j.isprsjprs.2019.02.010_b0340 article-title: An approach for the classification of urban building structures based on discriminant analysis techniques publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2008.01085.x – volume: 61 start-page: 1644 issue: 7 year: 2013 ident: 10.1016/j.isprsjprs.2019.02.010_b0310 article-title: Discrete signal processing on graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2238935 – volume: 147 start-page: 80 year: 2019 ident: 10.1016/j.isprsjprs.2019.02.010_b0230 article-title: A multi-faceted CNN architecture for automatic classification of mobile LiDAR data and an algorithm to reproduce point cloud samples for enhanced training publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.006 – volume: 36 start-page: 302 issue: 3 year: 2007 ident: 10.1016/j.isprsjprs.2019.02.010_b0010 article-title: Polygon cluster pattern mining based on Gestalt principles publication-title: Acta Geod. Cartogr. Sin. – volume: 40 start-page: 260 issue: 2 year: 2016 ident: 10.1016/j.isprsjprs.2019.02.010_b0320 article-title: Vertex-frequency analysis on graphs publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.02.005 – volume: 22 start-page: 217 issue: 2 year: 2007 ident: 10.1016/j.isprsjprs.2019.02.010_b0150 article-title: Building patterns and landscape fragmentation in northern Wisconsin, USA publication-title: Landscape Ecol. doi: 10.1007/s10980-006-9016-z – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2019.02.010_b0065 article-title: Geometric deep learning: going beyond Euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 12 start-page: 73 year: 2008 ident: 10.1016/j.isprsjprs.2019.02.010_b0390 article-title: A multi-parameter approach to automated building grouping and generalization publication-title: Geoinformatica doi: 10.1007/s10707-007-0020-5 |
SSID | ssj0001568 |
Score | 2.610421 |
Snippet | Machine learning methods, specifically, convolutional neural networks (CNNs), have emerged as an integral part of scientific research in many disciplines.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 259 |
SubjectTerms | artificial intelligence Building pattern classification buildings Deep learning Graph convolutional neural network Graph Fourier transform graphs Machine learning neural networks Spatial vector data vector data |
Title | A graph convolutional neural network for classification of building patterns using spatial vector data |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2019.02.010 https://www.proquest.com/docview/2221010303 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_UgPvG5RPBaN236yHpbFpdVwYsu7C00aaIr0l22q-DF3-5MmvpC2IOH0geZtmQmk5n2yzeEnInQ2ixJeMBheg5indsgDyMTJKIwoSpYnCnH9nmbDobx9SgZLZFesxYGYZXe99c-3Xlrf6Xte7M9HY_bdwxShwjCfQhBHEMPrmCPM7Ty8_cvmEdYL4fDxgG2_oHxGlfTWfUEG2K8Oo68E5fS_j1D_fLVbgLqb5INHznSbv1yW2TJlNtk_Ruf4DZZ9SXNH992iO1Sd0gRV-7tC8SRv9LtHPqbQshKNQbQiBhySqITS5WvlU2njn2zrCjC4x9ohfBrkH51n_opokt3ybB_ed8bBL6oQqDjlM8DLTpCC6QgtqFiHVNETFujII9hKkTPx62xSoSQRqS5YIVFivdQq06UFDrhlu-R5XJSmn1CM1twZjkTKuGxKGAs55GO4kRZncE98gOSNh0ptWccx8IXz7KBlj3JTw1I1IBkkQQNHBD2KTitSTcWi1w0mpI_7EfC1LBY-LTRrYTRhb9M8tJMXqBRBCkxVmLjh_95wBFZw7Ma8XNMluezF3MCwcxctZy1tshK9-pmcPsBRkP4Hw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB51y4HlsNotrHjsw0hcozpx3LrcKrSobLu9ABI3K3ZsthVKK1qQ-PfMOE4FaCUOe4gSJZ4k8tjzSD5_A3CiUu_7UopEoHtOclv4pEgzl0hVutSUPO-bwPY57Y2u89838qYFZ81aGIJVRttf2_RgreOZbuzN7nI2615yTB0yDPcxBAkMPR9gi9ipZBu2hhfj0XRjkNN6RRy1T0jgFcxrtlrer-a4EcxrEPg7aTXtv53UG3MdfND5Z_gUg0c2rN_vC7Rc1YGdF5SCHdiOVc3_Pu2CH7JwyAhaHocYihOFZdgFADjDqJVZiqEJNBT0xBaemVgumy0DAWe1YoSQv2UrQmCj9GP42s8IYLoH1-e_rs5GSayrkNi8J9aJVQNlFbEQ-9TwgSszbr0zmMpwk5LxE955o1LMJHqF4qUnlvfUmkEmSyuFF1-hXS0qtw-s70vBveDKSJGrEqdzkdksl8bbPt6jOIBe05HaRtJxqn1xpxt02VxvNKBJA5pnGjVwAHwjuKx5N94XOW00pV8NIY3e4X3h40a3GicY_TUpKrd4wEYZZsVUjE0c_s8DfsL26OrPRE8upuMj-EhXagDQN2iv7x_cd4xt1uZHHLvPu1P60A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph+convolutional+neural+network+for+classification+of+building+patterns+using+spatial+vector+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Yan%2C+Xiongfeng&rft.au=Ai%2C+Tinghua&rft.au=Yang%2C+Min&rft.au=Yin%2C+Hongmei&rft.date=2019-04-01&rft.issn=0924-2716&rft.volume=150+p.259-273&rft.spage=259&rft.epage=273&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.02.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |