Fourier domain structural relationship analysis for unsupervised multimodal change detection
Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult t...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 198; pp. 99 - 114 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 |
DOI | 10.1016/j.isprsjprs.2023.03.004 |
Cover
Loading…
Abstract | Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult to compare the multimodal images directly. This paper proposes a Fourier domain structural relationship analysis framework for unsupervised multimodal change detection (FD-MCD), which exploits both modality-independent local and nonlocal structural relationships. Unlike most existing methods analyzing the structural relationship in the original domain of multimodal images, the three critical parts in the proposed framework are implemented on the (graph) Fourier domain. Firstly, a local frequency consistency metric calculated in the Fourier domain is proposed to determine the local structural difference. Then, the nonlocal structural relationship graphs are constructed for pre-change and post-change images. The two graphs are then transformed to the graph Fourier domain, and high-order vertex information is modeled for each vertex by graph spectral convolution, where the Chebyshev polynomial is applied as the transfer function to pass K-hop local neighborhood vertex information. The nonlocal structural difference map is obtained by comparing the filtered graph representations. Finally, an adaptive fusion method based on frequency-decoupling is designed to effectively fuse the local and nonlocal structural difference maps. Experiments conducted on five real datasets with different modality combinations and change events show the effectiveness of the proposed framework. |
---|---|
AbstractList | Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult to compare the multimodal images directly. This paper proposes a Fourier domain structural relationship analysis framework for unsupervised multimodal change detection (FD-MCD), which exploits both modality-independent local and nonlocal structural relationships. Unlike most existing methods analyzing the structural relationship in the original domain of multimodal images, the three critical parts in the proposed framework are implemented on the (graph) Fourier domain. Firstly, a local frequency consistency metric calculated in the Fourier domain is proposed to determine the local structural difference. Then, the nonlocal structural relationship graphs are constructed for pre-change and post-change images. The two graphs are then transformed to the graph Fourier domain, and high-order vertex information is modeled for each vertex by graph spectral convolution, where the Chebyshev polynomial is applied as the transfer function to pass K-hop local neighborhood vertex information. The nonlocal structural difference map is obtained by comparing the filtered graph representations. Finally, an adaptive fusion method based on frequency-decoupling is designed to effectively fuse the local and nonlocal structural difference maps. Experiments conducted on five real datasets with different modality combinations and change events show the effectiveness of the proposed framework. |
Author | Chen, Hongruixuan Yokoya, Naoto Chini, Marco |
Author_xml | – sequence: 1 givenname: Hongruixuan orcidid: 0000-0003-0100-4786 surname: Chen fullname: Chen, Hongruixuan organization: Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan – sequence: 2 givenname: Naoto surname: Yokoya fullname: Yokoya, Naoto email: yokoya@k.u-tokyo.ac.jp organization: Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan – sequence: 3 givenname: Marco surname: Chini fullname: Chini, Marco organization: Luxembourg Institute of Science and Technology (LIST), Belvaux, 4450, Luxembourg |
BookMark | eNqNkD1PwzAURT2ARAv8BjKytDw7TtIMDAjxJSGxwIZkufYLuErs4Ocg8e9xKWJgAek-veWeO5w52_PBI2MnHJYceH22WToaI23yLQWIcgk5IPfYDFohF6Lh9QGbE20AgFf1asaer8MUHcbChkE7X1CKk0lT1H0RsdfJBU-vbiy01_0HOSq6EIvJ0zRifHeEthimPrkh2EyYV-1fsLCY0GzJI7bf6Z7w-Psfsqfrq8fL28X9w83d5cX9wsi6TAvTrIQpoUJsKsPrVja27mzTykprK60QNdZCtuuuFBWs1xYaMEJ0AFa2ptFYHrLT3e4Yw9uElNTgyGDfa49hIiVWpRScQylytdlVTQxEETs1Rjfo-KE4qK1DtVE_DtXWoYIckJk8_0Ual74Epahd_w_-YsdjNvGelSsyDr1B62LWpWxwf258AhvUmxw |
CitedBy_id | crossref_primary_10_1109_TGRS_2025_3539732 crossref_primary_10_1016_j_patcog_2024_111148 crossref_primary_10_3390_rs16224186 crossref_primary_10_1109_JSTARS_2024_3414452 crossref_primary_10_1109_TGRS_2024_3410389 crossref_primary_10_1109_TGRS_2024_3369059 crossref_primary_10_1016_j_isprsjprs_2024_04_002 crossref_primary_10_1080_10095020_2023_2288179 crossref_primary_10_1080_01431161_2024_2347529 crossref_primary_10_1080_22797254_2024_2367221 crossref_primary_10_1109_TGRS_2023_3297850 crossref_primary_10_1109_TGRS_2024_3446814 crossref_primary_10_1109_JSTARS_2024_3506032 crossref_primary_10_1109_TGRS_2024_3409750 crossref_primary_10_1109_JSTARS_2023_3267137 crossref_primary_10_1109_JSTARS_2024_3485687 crossref_primary_10_1016_j_rse_2023_113787 crossref_primary_10_1080_22797254_2023_2293163 crossref_primary_10_3390_rs16213979 crossref_primary_10_1109_JSTARS_2024_3427017 crossref_primary_10_3389_fpls_2023_1250844 crossref_primary_10_1109_TGRS_2024_3402391 crossref_primary_10_1109_TGRS_2023_3309855 crossref_primary_10_3390_electronics13234642 crossref_primary_10_3390_rs16203896 crossref_primary_10_1016_j_isprsjprs_2024_12_010 crossref_primary_10_1109_TGRS_2024_3515258 crossref_primary_10_3390_rs16101765 crossref_primary_10_3390_rs16050804 crossref_primary_10_1016_j_isprsjprs_2024_01_002 crossref_primary_10_3390_rs16030560 crossref_primary_10_1016_j_jag_2024_104241 crossref_primary_10_1109_TGRS_2024_3359316 crossref_primary_10_1109_TGRS_2025_3526927 crossref_primary_10_1109_TIP_2025_3542276 crossref_primary_10_1109_TGRS_2024_3357085 crossref_primary_10_1109_TGRS_2025_3526993 crossref_primary_10_1109_JSTARS_2024_3449335 crossref_primary_10_1016_j_isprsjprs_2024_07_001 crossref_primary_10_1016_j_isprsjprs_2025_02_004 crossref_primary_10_1080_17538947_2024_2398070 crossref_primary_10_1109_JSTARS_2023_3306274 crossref_primary_10_1016_j_isprsjprs_2023_11_004 |
Cites_doi | 10.1109/LGRS.2020.3037930 10.1109/TNNLS.2016.2636227 10.1109/TSMC.1979.4310076 10.1109/JSTARS.2019.2953128 10.1016/j.isprsjprs.2022.01.004 10.1016/j.isprsjprs.2016.02.013 10.1016/j.patcog.2020.107598 10.1016/j.isprsjprs.2017.03.001 10.1016/j.isprsjprs.2016.08.010 10.1080/01431161.2018.1448481 10.1109/LGRS.2018.2868704 10.1109/79.543975 10.1109/JSTARS.2019.2934602 10.1109/TGRS.2019.2930348 10.1109/CVPR.2005.38 10.1016/j.isprsjprs.2017.06.013 10.1109/TIP.2017.2784560 10.1109/LGRS.2022.3201003 10.1109/LGRS.2018.2843385 10.1137/090773908 10.1109/TGRS.2016.2642125 10.5772/acrt.02 10.1109/TGRS.2020.2986239 10.1109/TGRS.2021.3056196 10.1109/TIP.2021.3093766 10.1109/TGRS.2008.916201 10.1109/ICCV.2019.00662 10.1109/JSTARS.2022.3146167 10.1109/TGRS.2019.2909781 10.1109/MSP.2012.2235192 10.1109/TCYB.2021.3086884 10.1109/IPTA.2019.8936127 10.1109/TIP.2019.2933747 10.1016/S1566-2535(03)00046-0 10.1016/j.isprsjprs.2021.05.001 10.1109/36.843009 10.1109/JSTARS.2020.2983993 10.1109/TGRS.2019.2956756 10.3390/rs12172683 10.1016/j.isprsjprs.2021.02.016 10.1109/TGRS.2020.3013673 10.1109/TGRS.2017.2739800 10.1016/j.isprsjprs.2015.02.005 10.1109/TGRS.2019.2901945 10.1016/j.isprsjprs.2019.09.016 10.3390/rs11202377 10.1109/TNNLS.2015.2435783 10.3390/rs10020276 10.1109/TIP.2007.901238 10.1109/JSTARS.2020.2964409 10.1109/JSTARS.2021.3078437 10.1016/j.inffus.2012.05.003 10.1016/j.rse.2017.07.009 10.1109/LGRS.2013.2250908 10.1016/j.isprsjprs.2013.03.006 10.1109/TGRS.2019.2930322 10.3390/rs13234918 10.1109/TGRS.2022.3168126 10.1109/LGRS.2019.2892432 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2023.03.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_isprsjprs_2023_03_004 S092427162300062X |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c463t-c782c305ee75c16947d6fd7945aad4d226e6249bf3250bbd070c22f00d49c7ae3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Tue Aug 05 10:07:54 EDT 2025 Thu Apr 24 22:51:10 EDT 2025 Tue Jul 01 03:46:49 EDT 2025 Sat Dec 21 15:59:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multimodal remote sensing images Graph spectral convolution Fourier domain Structural relationship Change detection |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-c782c305ee75c16947d6fd7945aad4d226e6249bf3250bbd070c22f00d49c7ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0100-4786 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S092427162300062X |
PQID | 2834211032 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2834211032 crossref_primary_10_1016_j_isprsjprs_2023_03_004 crossref_citationtrail_10_1016_j_isprsjprs_2023_03_004 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2023_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hussain, Chen, Cheng, Wei, Stanley (b18) 2013; 80 Sun, Lei, Li, Tan, Kuang (b49) 2021; 59 Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2. CVPR, pp. 60–65. Otsu (b39) 1979; 9 Vetrivel, Gerke, Kerle, Nex, Vosselman (b55) 2018; 140 Wan, Xiang, You (b58) 2019; 16 Zhan, Gong, Jiang, Li (b69) 2018; 15 Radoi (b43) 2022; 19 Chen, Wu, Du, Zhang, Wang (b8) 2020; 58 Proakis (b42) 2001 Hou, Bai, Li, Shang, Shen (b17) 2021; 177 Mignotte (b36) 2022 Wu, Li, Yuan, Qin, Miao, Gong (b66) 2021 Wang, Liu, Du, Liang, Xia, Li (b61) 2018; 10 Liu, Gong, Qin, Zhang (b29) 2018; 29 Touati, Mignotte, Dahmane (b54) 2020; 29 Volpi, Camps-Valls, Tuia (b56) 2015; 107 Dabov, Foi, Katkovnik, Egiazarian (b11) 2007; 16 Sun, Lei, Li, Sun, Kuang (b48) 2021; 109 Touati, Mignotte, Dahmane (b53) 2020; 13 Lei, Wang, Ning, Wang, Xue, Wang, Nandi (b26) 2022; 60 Baatz, M., 2000. Multi resolution segmentation: an optimum approach for high quality multi scale image segmentation. In: Beutrage Zum AGIT-Symposium. Salzburg, Heidelberg, 2000, pp. 12–23. Wang, Gao, Dong, Zhang, Du (b60) 2022; 15 Buades, Coll, Morel (b6) 2010; 52 Moon (b37) 1996; 13 Wu, Du, Cui, Zhang (b64) 2017; 199 Touati, R., Mignotte, M., Dahmane, M., 2019a. Multimodal Change Detection Using a Convolution Model-Based Mapping. In: Ninth International Conference on Image Processing Theory, Tools and Applications. IPTA, pp. 1–6. Yang, Jiao, Liu, Hou, Yang (b68) 2019; 57 Wan, Zhang, You (b59) 2018; 39 Luppino, Bianchi, Moser, Anfinse (b32) 2019; 57 Bruna, Zaremba, Szlam, LeCun (b3) 2013 Wan, Xiang, You (b57) 2019; 57 Wu, Chen, Du, Zhang (b63) 2022; 52 Jimenez-Sierra, Quintero-Olaya, Alvear-Muñoz, Benítez-Restrepo, Florez-Ospina, Chanussot (b22) 2022; 60 Sun, Lei, Guan, Kuang (b47) 2021; 30 Kipf, Welling (b23) 2016 Wu, Li, Qin, Ni, Zhang, Fu, Sun (b65) 2021; 105 Wong (b62) 2011 Du, Liu, Xia, Zhao (b12) 2013; 14 Adriano, Yokoya, Xia, Miura, Liu, Matsuoka, Koshimura (b1) 2021; 175 Sun, Lei, Tan, Guan, Wu, Kuang (b50) 2022; 185 Ienco, Interdonato, Gaetano, Ho Tong Minh (b19) 2019; 158 Piella (b41) 2003; 4 Mignotte (b35) 2020; 58 Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y., 2019. Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6519–6528. Zhao, Wang, Gong, Liu (b71) 2017; 55 Shuman, Narang, Frossard, Ortega, Vandergheynst (b45) 2013; 30 Wu, Zhang, Du (b67) 2017; 55 Zhu (b72) 2017; 130 Li, Gong, Zhang, Wu (b27) 2021; 14 Liu, Li, Mercier, He, Pan (b30) 2018; 27 Luppino, Hansen, Kampffmeyer, Bianchi, Moser, Jenssen, Anfinsen (b33) 2022 Stein, Shakarchi (b46) 2010 Lei, Sun, Kuang (b25) 2022; 19 Niu, Gong, Zhan, Yang (b38) 2019; 16 Gil-Yepes, Ruiz, Recio, Balaguer-Beser, Hermosilla (b14) 2016; 121 Bruzzone, Diego Fernàndez Prieto (b4) 2000; 38 Kwan, Ayhan, Larkin, Kwan, Bernabé, Plaza (b24) 2019; 11 Chen, Yokoya, Wu, Du (b9) 2022 Saerens, Fouss, Yen, Dupont (b44) 2004 Camps-Valls, Gómez-Chova, Muñoz-Marí, Rojo-Álvarez, Martínez-Ramón (b7) 2008; 46 Chung (b10) 1997 Liu, Mercier, Dezert, Pan (b31) 2014; 11 Li, Peng, Chen, Jiao, Zhou, Shang (b28) 2019; 57 Touati, Mignotte, Dahmane (b52) 2019; 12 Gong, Zhao, Liu, Miao, Jiao (b15) 2016; 27 Han, Tang, Yang, Lin, Zou, Feng (b16) 2021; 13 Zhang, Gong, Su, Liu, Li (b70) 2016; 116 Jiang, Li, Liu, Zhang, He (b20) 2020; 13 Jimenez-Sierra, Benítez-Restrepo, Vargas-Cardona, Chanussot (b21) 2020; 12 Gao, Gao, Dong, Wang (b13) 2019; 12 Luppino, Kampffmeyer, Bianchi, Moser, Serpico, Jenssen, Anfinsen (b34) 2022; 60 Sun (10.1016/j.isprsjprs.2023.03.004_b50) 2022; 185 10.1016/j.isprsjprs.2023.03.004_b2 Touati (10.1016/j.isprsjprs.2023.03.004_b53) 2020; 13 Wong (10.1016/j.isprsjprs.2023.03.004_b62) 2011 10.1016/j.isprsjprs.2023.03.004_b5 Wu (10.1016/j.isprsjprs.2023.03.004_b65) 2021; 105 10.1016/j.isprsjprs.2023.03.004_b40 Jimenez-Sierra (10.1016/j.isprsjprs.2023.03.004_b22) 2022; 60 Mignotte (10.1016/j.isprsjprs.2023.03.004_b36) 2022 Sun (10.1016/j.isprsjprs.2023.03.004_b47) 2021; 30 Wang (10.1016/j.isprsjprs.2023.03.004_b61) 2018; 10 Hou (10.1016/j.isprsjprs.2023.03.004_b17) 2021; 177 Luppino (10.1016/j.isprsjprs.2023.03.004_b34) 2022; 60 Sun (10.1016/j.isprsjprs.2023.03.004_b49) 2021; 59 Wan (10.1016/j.isprsjprs.2023.03.004_b57) 2019; 57 Touati (10.1016/j.isprsjprs.2023.03.004_b54) 2020; 29 Wu (10.1016/j.isprsjprs.2023.03.004_b64) 2017; 199 Wu (10.1016/j.isprsjprs.2023.03.004_b66) 2021 Chen (10.1016/j.isprsjprs.2023.03.004_b9) 2022 Liu (10.1016/j.isprsjprs.2023.03.004_b31) 2014; 11 Sun (10.1016/j.isprsjprs.2023.03.004_b48) 2021; 109 Volpi (10.1016/j.isprsjprs.2023.03.004_b56) 2015; 107 Buades (10.1016/j.isprsjprs.2023.03.004_b6) 2010; 52 Hussain (10.1016/j.isprsjprs.2023.03.004_b18) 2013; 80 Wan (10.1016/j.isprsjprs.2023.03.004_b59) 2018; 39 Camps-Valls (10.1016/j.isprsjprs.2023.03.004_b7) 2008; 46 Wu (10.1016/j.isprsjprs.2023.03.004_b67) 2017; 55 Yang (10.1016/j.isprsjprs.2023.03.004_b68) 2019; 57 Radoi (10.1016/j.isprsjprs.2023.03.004_b43) 2022; 19 Vetrivel (10.1016/j.isprsjprs.2023.03.004_b55) 2018; 140 Zhao (10.1016/j.isprsjprs.2023.03.004_b71) 2017; 55 Lei (10.1016/j.isprsjprs.2023.03.004_b26) 2022; 60 Zhan (10.1016/j.isprsjprs.2023.03.004_b69) 2018; 15 Wu (10.1016/j.isprsjprs.2023.03.004_b63) 2022; 52 Du (10.1016/j.isprsjprs.2023.03.004_b12) 2013; 14 Saerens (10.1016/j.isprsjprs.2023.03.004_b44) 2004 Niu (10.1016/j.isprsjprs.2023.03.004_b38) 2019; 16 Gil-Yepes (10.1016/j.isprsjprs.2023.03.004_b14) 2016; 121 Bruzzone (10.1016/j.isprsjprs.2023.03.004_b4) 2000; 38 Zhang (10.1016/j.isprsjprs.2023.03.004_b70) 2016; 116 Chung (10.1016/j.isprsjprs.2023.03.004_b10) 1997 Otsu (10.1016/j.isprsjprs.2023.03.004_b39) 1979; 9 Shuman (10.1016/j.isprsjprs.2023.03.004_b45) 2013; 30 Adriano (10.1016/j.isprsjprs.2023.03.004_b1) 2021; 175 Proakis (10.1016/j.isprsjprs.2023.03.004_b42) 2001 Mignotte (10.1016/j.isprsjprs.2023.03.004_b35) 2020; 58 Zhu (10.1016/j.isprsjprs.2023.03.004_b72) 2017; 130 Touati (10.1016/j.isprsjprs.2023.03.004_b52) 2019; 12 Dabov (10.1016/j.isprsjprs.2023.03.004_b11) 2007; 16 Gao (10.1016/j.isprsjprs.2023.03.004_b13) 2019; 12 Li (10.1016/j.isprsjprs.2023.03.004_b27) 2021; 14 Liu (10.1016/j.isprsjprs.2023.03.004_b29) 2018; 29 Chen (10.1016/j.isprsjprs.2023.03.004_b8) 2020; 58 Ienco (10.1016/j.isprsjprs.2023.03.004_b19) 2019; 158 Jimenez-Sierra (10.1016/j.isprsjprs.2023.03.004_b21) 2020; 12 Liu (10.1016/j.isprsjprs.2023.03.004_b30) 2018; 27 Moon (10.1016/j.isprsjprs.2023.03.004_b37) 1996; 13 Gong (10.1016/j.isprsjprs.2023.03.004_b15) 2016; 27 Luppino (10.1016/j.isprsjprs.2023.03.004_b33) 2022 Bruna (10.1016/j.isprsjprs.2023.03.004_b3) 2013 Kwan (10.1016/j.isprsjprs.2023.03.004_b24) 2019; 11 Wang (10.1016/j.isprsjprs.2023.03.004_b60) 2022; 15 10.1016/j.isprsjprs.2023.03.004_b51 Li (10.1016/j.isprsjprs.2023.03.004_b28) 2019; 57 Luppino (10.1016/j.isprsjprs.2023.03.004_b32) 2019; 57 Jiang (10.1016/j.isprsjprs.2023.03.004_b20) 2020; 13 Han (10.1016/j.isprsjprs.2023.03.004_b16) 2021; 13 Lei (10.1016/j.isprsjprs.2023.03.004_b25) 2022; 19 Kipf (10.1016/j.isprsjprs.2023.03.004_b23) 2016 Piella (10.1016/j.isprsjprs.2023.03.004_b41) 2003; 4 Stein (10.1016/j.isprsjprs.2023.03.004_b46) 2010 Wan (10.1016/j.isprsjprs.2023.03.004_b58) 2019; 16 |
References_xml | – volume: 27 start-page: 125 year: 2016 end-page: 138 ident: b15 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 58 start-page: 8046 year: 2020 end-page: 8058 ident: b35 article-title: A fractal projection and Markovian segmentation-based approach for multimodal change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 16 start-page: 45 year: 2019 end-page: 49 ident: b38 article-title: A conditional adversarial network for change detection in heterogeneous images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 59 start-page: 4841 year: 2021 end-page: 4861 ident: b49 article-title: Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 107 start-page: 50 year: 2015 end-page: 63 ident: b56 article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 116 start-page: 24 year: 2016 end-page: 41 ident: b70 article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 52 start-page: 12084 year: 2022 end-page: 12098 ident: b63 article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network publication-title: IEEE Trans. Cybern. – volume: 60 start-page: 1 year: 2022 end-page: 13 ident: b26 article-title: Difference enhancement and spatial–spectral nonlocal network for change detection in VHR remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Baatz, M., 2000. Multi resolution segmentation: an optimum approach for high quality multi scale image segmentation. In: Beutrage Zum AGIT-Symposium. Salzburg, Heidelberg, 2000, pp. 12–23. – volume: 12 start-page: 3588 year: 2019 end-page: 3601 ident: b52 article-title: A reliable mixed-norm-based multiresolution change detector in heterogeneous remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 1997 ident: b10 article-title: Spectral Graph Theory, Vol. 92 – volume: 13 start-page: 47 year: 1996 end-page: 60 ident: b37 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. – volume: 57 start-page: 9960 year: 2019 end-page: 9975 ident: b32 article-title: Unsupervised image regression for heterogeneous change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 4966 year: 2021 end-page: 4979 ident: b27 article-title: Spatially self-paced convolutional networks for change detection in heterogeneous images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 177 start-page: 103 year: 2021 end-page: 115 ident: b17 article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 175 start-page: 132 year: 2021 end-page: 143 ident: b1 article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 30 start-page: 6277 year: 2021 end-page: 6291 ident: b47 article-title: Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images publication-title: IEEE Trans. Image Process. – reference: Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2. CVPR, pp. 60–65. – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: b11 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 19 year: 2013 end-page: 27 ident: b12 article-title: Information fusion techniques for change detection from multi-temporal remote sensing images publication-title: Inf. Fusion – volume: 10 year: 2018 ident: b61 article-title: Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning publication-title: Remote Sens. – volume: 140 start-page: 45 year: 2018 end-page: 59 ident: b55 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images , and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2021 end-page: 14 ident: b66 article-title: Commonality autoencoder: Learning common features for change detection from heterogeneous images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 year: 2022 ident: b25 article-title: Adaptive local structure consistency-based heterogeneous remote sensing change detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 121 start-page: 77 year: 2016 end-page: 91 ident: b14 article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 130 start-page: 370 year: 2017 end-page: 384 ident: b72 article-title: Change detection using landsat time series: A review of frequencies, preprocessing , algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 1 year: 2022 end-page: 13 ident: b33 article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 80 start-page: 91 year: 2013 end-page: 106 ident: b18 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 year: 2020 ident: b21 article-title: Graph-based data fusion applied to: Change detection and biomass estimation in rice crops publication-title: Remote Sens. – volume: 39 start-page: 3753 year: 2018 end-page: 3775 ident: b59 article-title: Multi-sensor remote sensing image change detection based on sorted histograms publication-title: Int. J. Remote Sens. – year: 2013 ident: b3 article-title: Spectral networks and locally connected networks on graphs – volume: 13 year: 2021 ident: b16 article-title: Change detection for heterogeneous remote sensing images with improved training of hierarchical extreme learning machine (HELM) publication-title: Remote Sens. – volume: 11 year: 2019 ident: b24 article-title: Performance of change detection algorithms using heterogeneous images and extended multi-attribute profiles (EMAPs) publication-title: Remote Sens. – reference: Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y., 2019. Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6519–6528. – volume: 15 start-page: 1352 year: 2018 end-page: 1356 ident: b69 article-title: Log-based transformation feature learning for change detection in heterogeneous images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 13 start-page: 1551 year: 2020 end-page: 1566 ident: b20 article-title: Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – start-page: 1 year: 2016 end-page: 14 ident: b23 article-title: Semi-supervised classification with graph convolutional networks – volume: 55 start-page: 2367 year: 2017 end-page: 2384 ident: b67 article-title: Kernel slow feature analysis for scene change detection publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2001 ident: b42 article-title: Digital Signal Processing: Principles Algorithms and Applications – volume: 57 start-page: 9941 year: 2019 end-page: 9959 ident: b57 article-title: An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 46 start-page: 1822 year: 2008 end-page: 1835 ident: b7 article-title: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 1 year: 2022 end-page: 16 ident: b22 article-title: Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Touati, R., Mignotte, M., Dahmane, M., 2019a. Multimodal Change Detection Using a Convolution Model-Based Mapping. In: Ninth International Conference on Image Processing Theory, Tools and Applications. IPTA, pp. 1–6. – start-page: 1 year: 2022 end-page: 18 ident: b9 article-title: Unsupervised multimodal change detection based on structural relationship graph representation learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 29 start-page: 757 year: 2020 end-page: 767 ident: b54 article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model publication-title: IEEE Trans. Image Process. – volume: 55 start-page: 7066 year: 2017 end-page: 7080 ident: b71 article-title: Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 year: 2022 ident: b34 article-title: Deep image translation with an affinity-based change prior for unsupervised multimodal change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 29 start-page: 545 year: 2018 end-page: 559 ident: b29 article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 11 start-page: 168 year: 2014 end-page: 172 ident: b31 article-title: Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2022 ident: b36 article-title: MRF models based on a neighborhood adaptive class conditional likelihood for multimodal change detection publication-title: AI Comput. Sci. Robotics Technol. – volume: 105 year: 2021 ident: b65 article-title: A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 4517 year: 2019 end-page: 4529 ident: b13 article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 27 start-page: 1822 year: 2018 end-page: 1834 ident: b30 article-title: Change detection in heterogenous remote sensing images via homogeneous pixel transformation publication-title: IEEE Trans. Image Process. – year: 2010 ident: b46 article-title: Complex Analysis, Vol. 2 – volume: 15 start-page: 1823 year: 2022 end-page: 1836 ident: b60 article-title: Change detection from synthetic aperture radar images via graph-based knowledge supplement network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 38 start-page: 1171 year: 2000 end-page: 1182 ident: b4 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 158 start-page: 11 year: 2019 end-page: 22 ident: b19 article-title: Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 57 start-page: 6960 year: 2019 end-page: 6973 ident: b68 article-title: Transferred deep learning-based change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 109 start-page: 1 year: 2021 end-page: 16 ident: b48 article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection publication-title: Pattern Recognit. – volume: 4 start-page: 259 year: 2003 end-page: 280 ident: b41 article-title: A general framework for multiresolution image fusion: from pixels to regions publication-title: Inf. Fusion – volume: 16 start-page: 1026 year: 2019 end-page: 1030 ident: b58 article-title: A post-classification comparison method for SAR and optical images change detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 52 start-page: 113 year: 2010 end-page: 147 ident: b6 article-title: Image denoising methods. A new nonlocal principle publication-title: SIAM Rev. – volume: 58 start-page: 2848 year: 2020 end-page: 2864 ident: b8 article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 30 start-page: 83 year: 2013 end-page: 98 ident: b45 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b39 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 199 start-page: 241 year: 2017 end-page: 255 ident: b64 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sens. Environ. – volume: 185 start-page: 16 year: 2022 end-page: 31 ident: b50 article-title: Structured graph based image regression for unsupervised multimodal change detection publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 57 start-page: 5751 year: 2019 end-page: 5763 ident: b28 article-title: A deep learning method for change detection in synthetic aperture radar images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 371 year: 2004 end-page: 383 ident: b44 article-title: The principal components analysis of a graph, and its relationships to spectral clustering publication-title: European Conference on Machine Learning – volume: 13 start-page: 588 year: 2020 end-page: 600 ident: b53 article-title: Anomaly feature learning for unsupervised change detection in heterogeneous images: A deep sparse residual model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2011 ident: b62 article-title: Discrete Fourier Analysis, Vol. 5 – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: b43 article-title: Generative adversarial networks under CutMix transformations for multimodal change detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 19 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b25 article-title: Adaptive local structure consistency-based heterogeneous remote sensing change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3037930 – volume: 29 start-page: 545 issue: 3 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b29 article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2636227 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.isprsjprs.2023.03.004_b39 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – year: 2001 ident: 10.1016/j.isprsjprs.2023.03.004_b42 – volume: 12 start-page: 4517 issue: 11 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b13 article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2953128 – volume: 185 start-page: 16 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b50 article-title: Structured graph based image regression for unsupervised multimodal change detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.01.004 – volume: 116 start-page: 24 year: 2016 ident: 10.1016/j.isprsjprs.2023.03.004_b70 article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.02.013 – year: 2011 ident: 10.1016/j.isprsjprs.2023.03.004_b62 – volume: 109 start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b48 article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107598 – volume: 140 start-page: 45 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b55 article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images , and multiple-kernel-learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.001 – volume: 121 start-page: 77 year: 2016 ident: 10.1016/j.isprsjprs.2023.03.004_b14 article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.08.010 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b26 article-title: Difference enhancement and spatial–spectral nonlocal network for change detection in VHR remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 39 start-page: 3753 issue: 11 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b59 article-title: Multi-sensor remote sensing image change detection based on sorted histograms publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1448481 – volume: 16 start-page: 45 issue: 1 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b38 article-title: A conditional adversarial network for change detection in heterogeneous images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2868704 – year: 1997 ident: 10.1016/j.isprsjprs.2023.03.004_b10 – volume: 13 start-page: 47 issue: 6 year: 1996 ident: 10.1016/j.isprsjprs.2023.03.004_b37 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543975 – start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b33 article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 12 start-page: 3588 issue: 9 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b52 article-title: A reliable mixed-norm-based multiresolution change detector in heterogeneous remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2934602 – volume: 105 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b65 article-title: A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 57 start-page: 9960 issue: 12 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b32 article-title: Unsupervised image regression for heterogeneous change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2930348 – ident: 10.1016/j.isprsjprs.2023.03.004_b5 doi: 10.1109/CVPR.2005.38 – volume: 130 start-page: 370 year: 2017 ident: 10.1016/j.isprsjprs.2023.03.004_b72 article-title: Change detection using landsat time series: A review of frequencies, preprocessing , algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.013 – volume: 27 start-page: 1822 issue: 4 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b30 article-title: Change detection in heterogenous remote sensing images via homogeneous pixel transformation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2784560 – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b43 article-title: Generative adversarial networks under CutMix transformations for multimodal change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3201003 – volume: 15 start-page: 1352 issue: 9 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b69 article-title: Log-based transformation feature learning for change detection in heterogeneous images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2843385 – volume: 52 start-page: 113 issue: 1 year: 2010 ident: 10.1016/j.isprsjprs.2023.03.004_b6 article-title: Image denoising methods. A new nonlocal principle publication-title: SIAM Rev. doi: 10.1137/090773908 – volume: 55 start-page: 2367 issue: 4 year: 2017 ident: 10.1016/j.isprsjprs.2023.03.004_b67 article-title: Kernel slow feature analysis for scene change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2642125 – year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b36 article-title: MRF models based on a neighborhood adaptive class conditional likelihood for multimodal change detection publication-title: AI Comput. Sci. Robotics Technol. doi: 10.5772/acrt.02 – volume: 58 start-page: 8046 issue: 11 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b35 article-title: A fractal projection and Markovian segmentation-based approach for multimodal change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2986239 – start-page: 1 year: 2016 ident: 10.1016/j.isprsjprs.2023.03.004_b23 – volume: 60 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b34 article-title: Deep image translation with an affinity-based change prior for unsupervised multimodal change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3056196 – volume: 30 start-page: 6277 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b47 article-title: Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3093766 – start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b9 article-title: Unsupervised multimodal change detection based on structural relationship graph representation learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 46 start-page: 1822 issue: 6 year: 2008 ident: 10.1016/j.isprsjprs.2023.03.004_b7 article-title: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916201 – ident: 10.1016/j.isprsjprs.2023.03.004_b40 doi: 10.1109/ICCV.2019.00662 – year: 2010 ident: 10.1016/j.isprsjprs.2023.03.004_b46 – start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b66 article-title: Commonality autoencoder: Learning common features for change detection from heterogeneous images publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 15 start-page: 1823 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b60 article-title: Change detection from synthetic aperture radar images via graph-based knowledge supplement network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3146167 – volume: 57 start-page: 6960 issue: 9 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b68 article-title: Transferred deep learning-based change detection in remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2909781 – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10.1016/j.isprsjprs.2023.03.004_b45 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2235192 – volume: 52 start-page: 12084 issue: 11 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b63 article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3086884 – ident: 10.1016/j.isprsjprs.2023.03.004_b51 doi: 10.1109/IPTA.2019.8936127 – volume: 29 start-page: 757 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b54 article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2933747 – start-page: 371 year: 2004 ident: 10.1016/j.isprsjprs.2023.03.004_b44 article-title: The principal components analysis of a graph, and its relationships to spectral clustering – volume: 4 start-page: 259 issue: 4 year: 2003 ident: 10.1016/j.isprsjprs.2023.03.004_b41 article-title: A general framework for multiresolution image fusion: from pixels to regions publication-title: Inf. Fusion doi: 10.1016/S1566-2535(03)00046-0 – volume: 177 start-page: 103 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b17 article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.001 – volume: 38 start-page: 1171 issue: 3 year: 2000 ident: 10.1016/j.isprsjprs.2023.03.004_b4 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843009 – volume: 13 start-page: 1551 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b20 article-title: Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2983993 – volume: 58 start-page: 2848 issue: 4 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b8 article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2956756 – volume: 12 issue: 17 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b21 article-title: Graph-based data fusion applied to: Change detection and biomass estimation in rice crops publication-title: Remote Sens. doi: 10.3390/rs12172683 – volume: 175 start-page: 132 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b1 article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.016 – volume: 59 start-page: 4841 issue: 6 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b49 article-title: Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3013673 – volume: 55 start-page: 7066 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2023.03.004_b71 article-title: Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2739800 – volume: 107 start-page: 50 year: 2015 ident: 10.1016/j.isprsjprs.2023.03.004_b56 article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.005 – volume: 57 start-page: 5751 issue: 8 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b28 article-title: A deep learning method for change detection in synthetic aperture radar images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2901945 – volume: 158 start-page: 11 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b19 article-title: Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 – volume: 11 issue: 20 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b24 article-title: Performance of change detection algorithms using heterogeneous images and extended multi-attribute profiles (EMAPs) publication-title: Remote Sens. doi: 10.3390/rs11202377 – ident: 10.1016/j.isprsjprs.2023.03.004_b2 – volume: 27 start-page: 125 issue: 1 year: 2016 ident: 10.1016/j.isprsjprs.2023.03.004_b15 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – volume: 10 issue: 2 year: 2018 ident: 10.1016/j.isprsjprs.2023.03.004_b61 article-title: Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning publication-title: Remote Sens. doi: 10.3390/rs10020276 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.isprsjprs.2023.03.004_b11 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 13 start-page: 588 year: 2020 ident: 10.1016/j.isprsjprs.2023.03.004_b53 article-title: Anomaly feature learning for unsupervised change detection in heterogeneous images: A deep sparse residual model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2964409 – volume: 14 start-page: 4966 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b27 article-title: Spatially self-paced convolutional networks for change detection in heterogeneous images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3078437 – volume: 14 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.isprsjprs.2023.03.004_b12 article-title: Information fusion techniques for change detection from multi-temporal remote sensing images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2012.05.003 – volume: 199 start-page: 241 year: 2017 ident: 10.1016/j.isprsjprs.2023.03.004_b64 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.009 – year: 2013 ident: 10.1016/j.isprsjprs.2023.03.004_b3 – volume: 11 start-page: 168 issue: 1 year: 2014 ident: 10.1016/j.isprsjprs.2023.03.004_b31 article-title: Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2250908 – volume: 80 start-page: 91 year: 2013 ident: 10.1016/j.isprsjprs.2023.03.004_b18 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.03.006 – volume: 57 start-page: 9941 issue: 12 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b57 article-title: An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2930322 – volume: 13 issue: 23 year: 2021 ident: 10.1016/j.isprsjprs.2023.03.004_b16 article-title: Change detection for heterogeneous remote sensing images with improved training of hierarchical extreme learning machine (HELM) publication-title: Remote Sens. doi: 10.3390/rs13234918 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.03.004_b22 article-title: Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3168126 – volume: 16 start-page: 1026 issue: 7 year: 2019 ident: 10.1016/j.isprsjprs.2023.03.004_b58 article-title: A post-classification comparison method for SAR and optical images change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2892432 |
SSID | ssj0001568 |
Score | 2.589327 |
Snippet | Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | Change detection data collection domain Fourier domain Graph spectral convolution Multimodal remote sensing images photogrammetry Structural relationship |
Title | Fourier domain structural relationship analysis for unsupervised multimodal change detection |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2023.03.004 https://www.proquest.com/docview/2834211032 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaFWsj7KC17Tb7CbbeivFUhV70UIPQthXaItNQx8HL_52Z7NJtYL0ICSHJDskzO7Og3zzDUK3jMLShcDcCzgjHoup8sDPEE9AqMGF5C3Jbe3wcz_sDdjjMBiWUKeohbGwytz2O5ueWev8Tj3XZj0dj-svBFIH3xIgUWtz_aGtYGfcwvpqn98wj4Yrh7ODPTt6A-M1XqTzxQTOmu0i7thO2V8e6petzhxQ9wgd5pEjbruPO0Ylk5TRwQ8-wTLay1uajz5O0FvXdaPDejaF7B87olhLsoHnBQBuNE6xyFlJMESveJUsVqm1HgujcYY1nM40SLjyYKzNMkNuJado0L1_7fS8vJWCp1hIl56CQEDB1jaGB6oRthjXYaxhLwZCaKYhBjMhJGIyphASSanBECjfjwnRrKW4MPQM7SSzxJwj7PO4oZtShwweBiIWstnSiki_GQhKG3EFhYX6IpXzjNt2F-9RASibRGu9R1bvEYGDsAoia8HUUW1sF7kr5ifaWDUROITtwjfFjEawp-yPEpGY2QoGNSmziTH1L_7zgku0b68czucK7cA8m2sIYZaymq3RKtptPzz1-l-h_fSI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3itm23SdtebiMv62osKexBCXsWKdou7e_DfO9mkiwriQWgvTYaWSfLlC535BuCEM5y6SMyjJOM04jnTEe4zNJJINTKpso7KXO7wXT_tPfLrQTKYg4s6F8aFVQbs95g-RevwpBm82ayKonlP8egQOwEk5jA3HszDglOn4g1YOL-66fVngNzyGXGuf-QMvoV5FaPqffSC96krJO4FT_lvm9QPuJ7uQd1VWAnkkZz771uDOVuuw_IXScF1WAxVzZ8_NuCp6wvSETN8k0VJvFas09kg73UM3HNRERmESQgSWDIpR5PKAcjIGjINN3wbGrTwGcLE2PE0eKvchMfu5cNFLwrVFCLNUzaONHIBjavb2izRrbTDM5PmBpdjIqXhBmmYTfEspnKGrEgpg1ig4zin1PCOzqRlW9Aoh6XdBhJnecu0lUk5NiYyl6rdMZqquJ1Ixlr5DqS1-4QOUuOu4sWrqGPKXsTM78L5XVC8KN8BOjOsvNrG3yZn9fiIbxNH4J7wt_FxPaICl5X7VyJLO5xgpzbj7mzM4t3_vOAIFnsPd7fi9qp_swdLrsWH_exDA8fcHiCjGavDMGM_Afee9zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fourier+domain+structural+relationship+analysis+for+unsupervised+multimodal+change+detection&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Chen%2C+Hongruixuan&rft.au=Yokoya%2C+Naoto&rft.au=Chini%2C+Marco&rft.date=2023-04-01&rft.issn=0924-2716&rft.volume=198+p.99-114&rft.spage=99&rft.epage=114&rft_id=info:doi/10.1016%2Fj.isprsjprs.2023.03.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |