Fourier domain structural relationship analysis for unsupervised multimodal change detection

Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult t...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 198; pp. 99 - 114
Main Authors Chen, Hongruixuan, Yokoya, Naoto, Chini, Marco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text
ISSN0924-2716
DOI10.1016/j.isprsjprs.2023.03.004

Cover

Loading…
Abstract Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult to compare the multimodal images directly. This paper proposes a Fourier domain structural relationship analysis framework for unsupervised multimodal change detection (FD-MCD), which exploits both modality-independent local and nonlocal structural relationships. Unlike most existing methods analyzing the structural relationship in the original domain of multimodal images, the three critical parts in the proposed framework are implemented on the (graph) Fourier domain. Firstly, a local frequency consistency metric calculated in the Fourier domain is proposed to determine the local structural difference. Then, the nonlocal structural relationship graphs are constructed for pre-change and post-change images. The two graphs are then transformed to the graph Fourier domain, and high-order vertex information is modeled for each vertex by graph spectral convolution, where the Chebyshev polynomial is applied as the transfer function to pass K-hop local neighborhood vertex information. The nonlocal structural difference map is obtained by comparing the filtered graph representations. Finally, an adaptive fusion method based on frequency-decoupling is designed to effectively fuse the local and nonlocal structural difference maps. Experiments conducted on five real datasets with different modality combinations and change events show the effectiveness of the proposed framework.
AbstractList Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can play an essential role in time-sensitive applications, such as disaster response. However, the modal heterogeneity problem makes it difficult to compare the multimodal images directly. This paper proposes a Fourier domain structural relationship analysis framework for unsupervised multimodal change detection (FD-MCD), which exploits both modality-independent local and nonlocal structural relationships. Unlike most existing methods analyzing the structural relationship in the original domain of multimodal images, the three critical parts in the proposed framework are implemented on the (graph) Fourier domain. Firstly, a local frequency consistency metric calculated in the Fourier domain is proposed to determine the local structural difference. Then, the nonlocal structural relationship graphs are constructed for pre-change and post-change images. The two graphs are then transformed to the graph Fourier domain, and high-order vertex information is modeled for each vertex by graph spectral convolution, where the Chebyshev polynomial is applied as the transfer function to pass K-hop local neighborhood vertex information. The nonlocal structural difference map is obtained by comparing the filtered graph representations. Finally, an adaptive fusion method based on frequency-decoupling is designed to effectively fuse the local and nonlocal structural difference maps. Experiments conducted on five real datasets with different modality combinations and change events show the effectiveness of the proposed framework.
Author Chen, Hongruixuan
Yokoya, Naoto
Chini, Marco
Author_xml – sequence: 1
  givenname: Hongruixuan
  orcidid: 0000-0003-0100-4786
  surname: Chen
  fullname: Chen, Hongruixuan
  organization: Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
– sequence: 2
  givenname: Naoto
  surname: Yokoya
  fullname: Yokoya, Naoto
  email: yokoya@k.u-tokyo.ac.jp
  organization: Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
– sequence: 3
  givenname: Marco
  surname: Chini
  fullname: Chini, Marco
  organization: Luxembourg Institute of Science and Technology (LIST), Belvaux, 4450, Luxembourg
BookMark eNqNkD1PwzAURT2ARAv8BjKytDw7TtIMDAjxJSGxwIZkufYLuErs4Ocg8e9xKWJgAek-veWeO5w52_PBI2MnHJYceH22WToaI23yLQWIcgk5IPfYDFohF6Lh9QGbE20AgFf1asaer8MUHcbChkE7X1CKk0lT1H0RsdfJBU-vbiy01_0HOSq6EIvJ0zRifHeEthimPrkh2EyYV-1fsLCY0GzJI7bf6Z7w-Psfsqfrq8fL28X9w83d5cX9wsi6TAvTrIQpoUJsKsPrVja27mzTykprK60QNdZCtuuuFBWs1xYaMEJ0AFa2ptFYHrLT3e4Yw9uElNTgyGDfa49hIiVWpRScQylytdlVTQxEETs1Rjfo-KE4qK1DtVE_DtXWoYIckJk8_0Ual74Epahd_w_-YsdjNvGelSsyDr1B62LWpWxwf258AhvUmxw
CitedBy_id crossref_primary_10_1109_TGRS_2025_3539732
crossref_primary_10_1016_j_patcog_2024_111148
crossref_primary_10_3390_rs16224186
crossref_primary_10_1109_JSTARS_2024_3414452
crossref_primary_10_1109_TGRS_2024_3410389
crossref_primary_10_1109_TGRS_2024_3369059
crossref_primary_10_1016_j_isprsjprs_2024_04_002
crossref_primary_10_1080_10095020_2023_2288179
crossref_primary_10_1080_01431161_2024_2347529
crossref_primary_10_1080_22797254_2024_2367221
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_1109_TGRS_2024_3446814
crossref_primary_10_1109_JSTARS_2024_3506032
crossref_primary_10_1109_TGRS_2024_3409750
crossref_primary_10_1109_JSTARS_2023_3267137
crossref_primary_10_1109_JSTARS_2024_3485687
crossref_primary_10_1016_j_rse_2023_113787
crossref_primary_10_1080_22797254_2023_2293163
crossref_primary_10_3390_rs16213979
crossref_primary_10_1109_JSTARS_2024_3427017
crossref_primary_10_3389_fpls_2023_1250844
crossref_primary_10_1109_TGRS_2024_3402391
crossref_primary_10_1109_TGRS_2023_3309855
crossref_primary_10_3390_electronics13234642
crossref_primary_10_3390_rs16203896
crossref_primary_10_1016_j_isprsjprs_2024_12_010
crossref_primary_10_1109_TGRS_2024_3515258
crossref_primary_10_3390_rs16101765
crossref_primary_10_3390_rs16050804
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_3390_rs16030560
crossref_primary_10_1016_j_jag_2024_104241
crossref_primary_10_1109_TGRS_2024_3359316
crossref_primary_10_1109_TGRS_2025_3526927
crossref_primary_10_1109_TIP_2025_3542276
crossref_primary_10_1109_TGRS_2024_3357085
crossref_primary_10_1109_TGRS_2025_3526993
crossref_primary_10_1109_JSTARS_2024_3449335
crossref_primary_10_1016_j_isprsjprs_2024_07_001
crossref_primary_10_1016_j_isprsjprs_2025_02_004
crossref_primary_10_1080_17538947_2024_2398070
crossref_primary_10_1109_JSTARS_2023_3306274
crossref_primary_10_1016_j_isprsjprs_2023_11_004
Cites_doi 10.1109/LGRS.2020.3037930
10.1109/TNNLS.2016.2636227
10.1109/TSMC.1979.4310076
10.1109/JSTARS.2019.2953128
10.1016/j.isprsjprs.2022.01.004
10.1016/j.isprsjprs.2016.02.013
10.1016/j.patcog.2020.107598
10.1016/j.isprsjprs.2017.03.001
10.1016/j.isprsjprs.2016.08.010
10.1080/01431161.2018.1448481
10.1109/LGRS.2018.2868704
10.1109/79.543975
10.1109/JSTARS.2019.2934602
10.1109/TGRS.2019.2930348
10.1109/CVPR.2005.38
10.1016/j.isprsjprs.2017.06.013
10.1109/TIP.2017.2784560
10.1109/LGRS.2022.3201003
10.1109/LGRS.2018.2843385
10.1137/090773908
10.1109/TGRS.2016.2642125
10.5772/acrt.02
10.1109/TGRS.2020.2986239
10.1109/TGRS.2021.3056196
10.1109/TIP.2021.3093766
10.1109/TGRS.2008.916201
10.1109/ICCV.2019.00662
10.1109/JSTARS.2022.3146167
10.1109/TGRS.2019.2909781
10.1109/MSP.2012.2235192
10.1109/TCYB.2021.3086884
10.1109/IPTA.2019.8936127
10.1109/TIP.2019.2933747
10.1016/S1566-2535(03)00046-0
10.1016/j.isprsjprs.2021.05.001
10.1109/36.843009
10.1109/JSTARS.2020.2983993
10.1109/TGRS.2019.2956756
10.3390/rs12172683
10.1016/j.isprsjprs.2021.02.016
10.1109/TGRS.2020.3013673
10.1109/TGRS.2017.2739800
10.1016/j.isprsjprs.2015.02.005
10.1109/TGRS.2019.2901945
10.1016/j.isprsjprs.2019.09.016
10.3390/rs11202377
10.1109/TNNLS.2015.2435783
10.3390/rs10020276
10.1109/TIP.2007.901238
10.1109/JSTARS.2020.2964409
10.1109/JSTARS.2021.3078437
10.1016/j.inffus.2012.05.003
10.1016/j.rse.2017.07.009
10.1109/LGRS.2013.2250908
10.1016/j.isprsjprs.2013.03.006
10.1109/TGRS.2019.2930322
10.3390/rs13234918
10.1109/TGRS.2022.3168126
10.1109/LGRS.2019.2892432
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2023.03.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EndPage 114
ExternalDocumentID 10_1016_j_isprsjprs_2023_03_004
S092427162300062X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c463t-c782c305ee75c16947d6fd7945aad4d226e6249bf3250bbd070c22f00d49c7ae3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Tue Aug 05 10:07:54 EDT 2025
Thu Apr 24 22:51:10 EDT 2025
Tue Jul 01 03:46:49 EDT 2025
Sat Dec 21 15:59:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multimodal remote sensing images
Graph spectral convolution
Fourier domain
Structural relationship
Change detection
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-c782c305ee75c16947d6fd7945aad4d226e6249bf3250bbd070c22f00d49c7ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0100-4786
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S092427162300062X
PQID 2834211032
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2834211032
crossref_primary_10_1016_j_isprsjprs_2023_03_004
crossref_citationtrail_10_1016_j_isprsjprs_2023_03_004
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2023_03_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hussain, Chen, Cheng, Wei, Stanley (b18) 2013; 80
Sun, Lei, Li, Tan, Kuang (b49) 2021; 59
Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2. CVPR, pp. 60–65.
Otsu (b39) 1979; 9
Vetrivel, Gerke, Kerle, Nex, Vosselman (b55) 2018; 140
Wan, Xiang, You (b58) 2019; 16
Zhan, Gong, Jiang, Li (b69) 2018; 15
Radoi (b43) 2022; 19
Chen, Wu, Du, Zhang, Wang (b8) 2020; 58
Proakis (b42) 2001
Hou, Bai, Li, Shang, Shen (b17) 2021; 177
Mignotte (b36) 2022
Wu, Li, Yuan, Qin, Miao, Gong (b66) 2021
Wang, Liu, Du, Liang, Xia, Li (b61) 2018; 10
Liu, Gong, Qin, Zhang (b29) 2018; 29
Touati, Mignotte, Dahmane (b54) 2020; 29
Volpi, Camps-Valls, Tuia (b56) 2015; 107
Dabov, Foi, Katkovnik, Egiazarian (b11) 2007; 16
Sun, Lei, Li, Sun, Kuang (b48) 2021; 109
Touati, Mignotte, Dahmane (b53) 2020; 13
Lei, Wang, Ning, Wang, Xue, Wang, Nandi (b26) 2022; 60
Baatz, M., 2000. Multi resolution segmentation: an optimum approach for high quality multi scale image segmentation. In: Beutrage Zum AGIT-Symposium. Salzburg, Heidelberg, 2000, pp. 12–23.
Wang, Gao, Dong, Zhang, Du (b60) 2022; 15
Buades, Coll, Morel (b6) 2010; 52
Moon (b37) 1996; 13
Wu, Du, Cui, Zhang (b64) 2017; 199
Touati, R., Mignotte, M., Dahmane, M., 2019a. Multimodal Change Detection Using a Convolution Model-Based Mapping. In: Ninth International Conference on Image Processing Theory, Tools and Applications. IPTA, pp. 1–6.
Yang, Jiao, Liu, Hou, Yang (b68) 2019; 57
Wan, Zhang, You (b59) 2018; 39
Luppino, Bianchi, Moser, Anfinse (b32) 2019; 57
Bruna, Zaremba, Szlam, LeCun (b3) 2013
Wan, Xiang, You (b57) 2019; 57
Wu, Chen, Du, Zhang (b63) 2022; 52
Jimenez-Sierra, Quintero-Olaya, Alvear-Muñoz, Benítez-Restrepo, Florez-Ospina, Chanussot (b22) 2022; 60
Sun, Lei, Guan, Kuang (b47) 2021; 30
Kipf, Welling (b23) 2016
Wu, Li, Qin, Ni, Zhang, Fu, Sun (b65) 2021; 105
Wong (b62) 2011
Du, Liu, Xia, Zhao (b12) 2013; 14
Adriano, Yokoya, Xia, Miura, Liu, Matsuoka, Koshimura (b1) 2021; 175
Sun, Lei, Tan, Guan, Wu, Kuang (b50) 2022; 185
Ienco, Interdonato, Gaetano, Ho Tong Minh (b19) 2019; 158
Piella (b41) 2003; 4
Mignotte (b35) 2020; 58
Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y., 2019. Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6519–6528.
Zhao, Wang, Gong, Liu (b71) 2017; 55
Shuman, Narang, Frossard, Ortega, Vandergheynst (b45) 2013; 30
Wu, Zhang, Du (b67) 2017; 55
Zhu (b72) 2017; 130
Li, Gong, Zhang, Wu (b27) 2021; 14
Liu, Li, Mercier, He, Pan (b30) 2018; 27
Luppino, Hansen, Kampffmeyer, Bianchi, Moser, Jenssen, Anfinsen (b33) 2022
Stein, Shakarchi (b46) 2010
Lei, Sun, Kuang (b25) 2022; 19
Niu, Gong, Zhan, Yang (b38) 2019; 16
Gil-Yepes, Ruiz, Recio, Balaguer-Beser, Hermosilla (b14) 2016; 121
Bruzzone, Diego Fernàndez Prieto (b4) 2000; 38
Kwan, Ayhan, Larkin, Kwan, Bernabé, Plaza (b24) 2019; 11
Chen, Yokoya, Wu, Du (b9) 2022
Saerens, Fouss, Yen, Dupont (b44) 2004
Camps-Valls, Gómez-Chova, Muñoz-Marí, Rojo-Álvarez, Martínez-Ramón (b7) 2008; 46
Chung (b10) 1997
Liu, Mercier, Dezert, Pan (b31) 2014; 11
Li, Peng, Chen, Jiao, Zhou, Shang (b28) 2019; 57
Touati, Mignotte, Dahmane (b52) 2019; 12
Gong, Zhao, Liu, Miao, Jiao (b15) 2016; 27
Han, Tang, Yang, Lin, Zou, Feng (b16) 2021; 13
Zhang, Gong, Su, Liu, Li (b70) 2016; 116
Jiang, Li, Liu, Zhang, He (b20) 2020; 13
Jimenez-Sierra, Benítez-Restrepo, Vargas-Cardona, Chanussot (b21) 2020; 12
Gao, Gao, Dong, Wang (b13) 2019; 12
Luppino, Kampffmeyer, Bianchi, Moser, Serpico, Jenssen, Anfinsen (b34) 2022; 60
Sun (10.1016/j.isprsjprs.2023.03.004_b50) 2022; 185
10.1016/j.isprsjprs.2023.03.004_b2
Touati (10.1016/j.isprsjprs.2023.03.004_b53) 2020; 13
Wong (10.1016/j.isprsjprs.2023.03.004_b62) 2011
10.1016/j.isprsjprs.2023.03.004_b5
Wu (10.1016/j.isprsjprs.2023.03.004_b65) 2021; 105
10.1016/j.isprsjprs.2023.03.004_b40
Jimenez-Sierra (10.1016/j.isprsjprs.2023.03.004_b22) 2022; 60
Mignotte (10.1016/j.isprsjprs.2023.03.004_b36) 2022
Sun (10.1016/j.isprsjprs.2023.03.004_b47) 2021; 30
Wang (10.1016/j.isprsjprs.2023.03.004_b61) 2018; 10
Hou (10.1016/j.isprsjprs.2023.03.004_b17) 2021; 177
Luppino (10.1016/j.isprsjprs.2023.03.004_b34) 2022; 60
Sun (10.1016/j.isprsjprs.2023.03.004_b49) 2021; 59
Wan (10.1016/j.isprsjprs.2023.03.004_b57) 2019; 57
Touati (10.1016/j.isprsjprs.2023.03.004_b54) 2020; 29
Wu (10.1016/j.isprsjprs.2023.03.004_b64) 2017; 199
Wu (10.1016/j.isprsjprs.2023.03.004_b66) 2021
Chen (10.1016/j.isprsjprs.2023.03.004_b9) 2022
Liu (10.1016/j.isprsjprs.2023.03.004_b31) 2014; 11
Sun (10.1016/j.isprsjprs.2023.03.004_b48) 2021; 109
Volpi (10.1016/j.isprsjprs.2023.03.004_b56) 2015; 107
Buades (10.1016/j.isprsjprs.2023.03.004_b6) 2010; 52
Hussain (10.1016/j.isprsjprs.2023.03.004_b18) 2013; 80
Wan (10.1016/j.isprsjprs.2023.03.004_b59) 2018; 39
Camps-Valls (10.1016/j.isprsjprs.2023.03.004_b7) 2008; 46
Wu (10.1016/j.isprsjprs.2023.03.004_b67) 2017; 55
Yang (10.1016/j.isprsjprs.2023.03.004_b68) 2019; 57
Radoi (10.1016/j.isprsjprs.2023.03.004_b43) 2022; 19
Vetrivel (10.1016/j.isprsjprs.2023.03.004_b55) 2018; 140
Zhao (10.1016/j.isprsjprs.2023.03.004_b71) 2017; 55
Lei (10.1016/j.isprsjprs.2023.03.004_b26) 2022; 60
Zhan (10.1016/j.isprsjprs.2023.03.004_b69) 2018; 15
Wu (10.1016/j.isprsjprs.2023.03.004_b63) 2022; 52
Du (10.1016/j.isprsjprs.2023.03.004_b12) 2013; 14
Saerens (10.1016/j.isprsjprs.2023.03.004_b44) 2004
Niu (10.1016/j.isprsjprs.2023.03.004_b38) 2019; 16
Gil-Yepes (10.1016/j.isprsjprs.2023.03.004_b14) 2016; 121
Bruzzone (10.1016/j.isprsjprs.2023.03.004_b4) 2000; 38
Zhang (10.1016/j.isprsjprs.2023.03.004_b70) 2016; 116
Chung (10.1016/j.isprsjprs.2023.03.004_b10) 1997
Otsu (10.1016/j.isprsjprs.2023.03.004_b39) 1979; 9
Shuman (10.1016/j.isprsjprs.2023.03.004_b45) 2013; 30
Adriano (10.1016/j.isprsjprs.2023.03.004_b1) 2021; 175
Proakis (10.1016/j.isprsjprs.2023.03.004_b42) 2001
Mignotte (10.1016/j.isprsjprs.2023.03.004_b35) 2020; 58
Zhu (10.1016/j.isprsjprs.2023.03.004_b72) 2017; 130
Touati (10.1016/j.isprsjprs.2023.03.004_b52) 2019; 12
Dabov (10.1016/j.isprsjprs.2023.03.004_b11) 2007; 16
Gao (10.1016/j.isprsjprs.2023.03.004_b13) 2019; 12
Li (10.1016/j.isprsjprs.2023.03.004_b27) 2021; 14
Liu (10.1016/j.isprsjprs.2023.03.004_b29) 2018; 29
Chen (10.1016/j.isprsjprs.2023.03.004_b8) 2020; 58
Ienco (10.1016/j.isprsjprs.2023.03.004_b19) 2019; 158
Jimenez-Sierra (10.1016/j.isprsjprs.2023.03.004_b21) 2020; 12
Liu (10.1016/j.isprsjprs.2023.03.004_b30) 2018; 27
Moon (10.1016/j.isprsjprs.2023.03.004_b37) 1996; 13
Gong (10.1016/j.isprsjprs.2023.03.004_b15) 2016; 27
Luppino (10.1016/j.isprsjprs.2023.03.004_b33) 2022
Bruna (10.1016/j.isprsjprs.2023.03.004_b3) 2013
Kwan (10.1016/j.isprsjprs.2023.03.004_b24) 2019; 11
Wang (10.1016/j.isprsjprs.2023.03.004_b60) 2022; 15
10.1016/j.isprsjprs.2023.03.004_b51
Li (10.1016/j.isprsjprs.2023.03.004_b28) 2019; 57
Luppino (10.1016/j.isprsjprs.2023.03.004_b32) 2019; 57
Jiang (10.1016/j.isprsjprs.2023.03.004_b20) 2020; 13
Han (10.1016/j.isprsjprs.2023.03.004_b16) 2021; 13
Lei (10.1016/j.isprsjprs.2023.03.004_b25) 2022; 19
Kipf (10.1016/j.isprsjprs.2023.03.004_b23) 2016
Piella (10.1016/j.isprsjprs.2023.03.004_b41) 2003; 4
Stein (10.1016/j.isprsjprs.2023.03.004_b46) 2010
Wan (10.1016/j.isprsjprs.2023.03.004_b58) 2019; 16
References_xml – volume: 27
  start-page: 125
  year: 2016
  end-page: 138
  ident: b15
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 58
  start-page: 8046
  year: 2020
  end-page: 8058
  ident: b35
  article-title: A fractal projection and Markovian segmentation-based approach for multimodal change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  start-page: 45
  year: 2019
  end-page: 49
  ident: b38
  article-title: A conditional adversarial network for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 59
  start-page: 4841
  year: 2021
  end-page: 4861
  ident: b49
  article-title: Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 107
  start-page: 50
  year: 2015
  end-page: 63
  ident: b56
  article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 116
  start-page: 24
  year: 2016
  end-page: 41
  ident: b70
  article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 12084
  year: 2022
  end-page: 12098
  ident: b63
  article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network
  publication-title: IEEE Trans. Cybern.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 13
  ident: b26
  article-title: Difference enhancement and spatial–spectral nonlocal network for change detection in VHR remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Baatz, M., 2000. Multi resolution segmentation: an optimum approach for high quality multi scale image segmentation. In: Beutrage Zum AGIT-Symposium. Salzburg, Heidelberg, 2000, pp. 12–23.
– volume: 12
  start-page: 3588
  year: 2019
  end-page: 3601
  ident: b52
  article-title: A reliable mixed-norm-based multiresolution change detector in heterogeneous remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 1997
  ident: b10
  article-title: Spectral Graph Theory, Vol. 92
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: b37
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
– volume: 57
  start-page: 9960
  year: 2019
  end-page: 9975
  ident: b32
  article-title: Unsupervised image regression for heterogeneous change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 4966
  year: 2021
  end-page: 4979
  ident: b27
  article-title: Spatially self-paced convolutional networks for change detection in heterogeneous images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 177
  start-page: 103
  year: 2021
  end-page: 115
  ident: b17
  article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 175
  start-page: 132
  year: 2021
  end-page: 143
  ident: b1
  article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 6277
  year: 2021
  end-page: 6291
  ident: b47
  article-title: Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images
  publication-title: IEEE Trans. Image Process.
– reference: Buades, A., Coll, B., Morel, J.M., 2005. A non-local algorithm for image denoising. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2. CVPR, pp. 60–65.
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: b11
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 19
  year: 2013
  end-page: 27
  ident: b12
  article-title: Information fusion techniques for change detection from multi-temporal remote sensing images
  publication-title: Inf. Fusion
– volume: 10
  year: 2018
  ident: b61
  article-title: Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning
  publication-title: Remote Sens.
– volume: 140
  start-page: 45
  year: 2018
  end-page: 59
  ident: b55
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images , and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b66
  article-title: Commonality autoencoder: Learning common features for change detection from heterogeneous images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 19
  year: 2022
  ident: b25
  article-title: Adaptive local structure consistency-based heterogeneous remote sensing change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 121
  start-page: 77
  year: 2016
  end-page: 91
  ident: b14
  article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 130
  start-page: 370
  year: 2017
  end-page: 384
  ident: b72
  article-title: Change detection using landsat time series: A review of frequencies, preprocessing , algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2022
  end-page: 13
  ident: b33
  article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 80
  start-page: 91
  year: 2013
  end-page: 106
  ident: b18
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  year: 2020
  ident: b21
  article-title: Graph-based data fusion applied to: Change detection and biomass estimation in rice crops
  publication-title: Remote Sens.
– volume: 39
  start-page: 3753
  year: 2018
  end-page: 3775
  ident: b59
  article-title: Multi-sensor remote sensing image change detection based on sorted histograms
  publication-title: Int. J. Remote Sens.
– year: 2013
  ident: b3
  article-title: Spectral networks and locally connected networks on graphs
– volume: 13
  year: 2021
  ident: b16
  article-title: Change detection for heterogeneous remote sensing images with improved training of hierarchical extreme learning machine (HELM)
  publication-title: Remote Sens.
– volume: 11
  year: 2019
  ident: b24
  article-title: Performance of change detection algorithms using heterogeneous images and extended multi-attribute profiles (EMAPs)
  publication-title: Remote Sens.
– reference: Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y., 2019. Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6519–6528.
– volume: 15
  start-page: 1352
  year: 2018
  end-page: 1356
  ident: b69
  article-title: Log-based transformation feature learning for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 13
  start-page: 1551
  year: 2020
  end-page: 1566
  ident: b20
  article-title: Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– start-page: 1
  year: 2016
  end-page: 14
  ident: b23
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 55
  start-page: 2367
  year: 2017
  end-page: 2384
  ident: b67
  article-title: Kernel slow feature analysis for scene change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2001
  ident: b42
  article-title: Digital Signal Processing: Principles Algorithms and Applications
– volume: 57
  start-page: 9941
  year: 2019
  end-page: 9959
  ident: b57
  article-title: An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 46
  start-page: 1822
  year: 2008
  end-page: 1835
  ident: b7
  article-title: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: b22
  article-title: Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Touati, R., Mignotte, M., Dahmane, M., 2019a. Multimodal Change Detection Using a Convolution Model-Based Mapping. In: Ninth International Conference on Image Processing Theory, Tools and Applications. IPTA, pp. 1–6.
– start-page: 1
  year: 2022
  end-page: 18
  ident: b9
  article-title: Unsupervised multimodal change detection based on structural relationship graph representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 757
  year: 2020
  end-page: 767
  ident: b54
  article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model
  publication-title: IEEE Trans. Image Process.
– volume: 55
  start-page: 7066
  year: 2017
  end-page: 7080
  ident: b71
  article-title: Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  year: 2022
  ident: b34
  article-title: Deep image translation with an affinity-based change prior for unsupervised multimodal change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 545
  year: 2018
  end-page: 559
  ident: b29
  article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 11
  start-page: 168
  year: 2014
  end-page: 172
  ident: b31
  article-title: Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2022
  ident: b36
  article-title: MRF models based on a neighborhood adaptive class conditional likelihood for multimodal change detection
  publication-title: AI Comput. Sci. Robotics Technol.
– volume: 105
  year: 2021
  ident: b65
  article-title: A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 4517
  year: 2019
  end-page: 4529
  ident: b13
  article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 27
  start-page: 1822
  year: 2018
  end-page: 1834
  ident: b30
  article-title: Change detection in heterogenous remote sensing images via homogeneous pixel transformation
  publication-title: IEEE Trans. Image Process.
– year: 2010
  ident: b46
  article-title: Complex Analysis, Vol. 2
– volume: 15
  start-page: 1823
  year: 2022
  end-page: 1836
  ident: b60
  article-title: Change detection from synthetic aperture radar images via graph-based knowledge supplement network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 38
  start-page: 1171
  year: 2000
  end-page: 1182
  ident: b4
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 158
  start-page: 11
  year: 2019
  end-page: 22
  ident: b19
  article-title: Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 57
  start-page: 6960
  year: 2019
  end-page: 6973
  ident: b68
  article-title: Transferred deep learning-based change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 109
  start-page: 1
  year: 2021
  end-page: 16
  ident: b48
  article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection
  publication-title: Pattern Recognit.
– volume: 4
  start-page: 259
  year: 2003
  end-page: 280
  ident: b41
  article-title: A general framework for multiresolution image fusion: from pixels to regions
  publication-title: Inf. Fusion
– volume: 16
  start-page: 1026
  year: 2019
  end-page: 1030
  ident: b58
  article-title: A post-classification comparison method for SAR and optical images change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 52
  start-page: 113
  year: 2010
  end-page: 147
  ident: b6
  article-title: Image denoising methods. A new nonlocal principle
  publication-title: SIAM Rev.
– volume: 58
  start-page: 2848
  year: 2020
  end-page: 2864
  ident: b8
  article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: b45
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b39
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 199
  start-page: 241
  year: 2017
  end-page: 255
  ident: b64
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 16
  year: 2022
  end-page: 31
  ident: b50
  article-title: Structured graph based image regression for unsupervised multimodal change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 57
  start-page: 5751
  year: 2019
  end-page: 5763
  ident: b28
  article-title: A deep learning method for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 371
  year: 2004
  end-page: 383
  ident: b44
  article-title: The principal components analysis of a graph, and its relationships to spectral clustering
  publication-title: European Conference on Machine Learning
– volume: 13
  start-page: 588
  year: 2020
  end-page: 600
  ident: b53
  article-title: Anomaly feature learning for unsupervised change detection in heterogeneous images: A deep sparse residual model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2011
  ident: b62
  article-title: Discrete Fourier Analysis, Vol. 5
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b43
  article-title: Generative adversarial networks under CutMix transformations for multimodal change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 19
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b25
  article-title: Adaptive local structure consistency-based heterogeneous remote sensing change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3037930
– volume: 29
  start-page: 545
  issue: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b29
  article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2636227
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.isprsjprs.2023.03.004_b39
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– year: 2001
  ident: 10.1016/j.isprsjprs.2023.03.004_b42
– volume: 12
  start-page: 4517
  issue: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b13
  article-title: Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2953128
– volume: 185
  start-page: 16
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b50
  article-title: Structured graph based image regression for unsupervised multimodal change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.01.004
– volume: 116
  start-page: 24
  year: 2016
  ident: 10.1016/j.isprsjprs.2023.03.004_b70
  article-title: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.02.013
– year: 2011
  ident: 10.1016/j.isprsjprs.2023.03.004_b62
– volume: 109
  start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b48
  article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107598
– volume: 140
  start-page: 45
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b55
  article-title: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images , and multiple-kernel-learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.001
– volume: 121
  start-page: 77
  year: 2016
  ident: 10.1016/j.isprsjprs.2023.03.004_b14
  article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.08.010
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b26
  article-title: Difference enhancement and spatial–spectral nonlocal network for change detection in VHR remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 39
  start-page: 3753
  issue: 11
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b59
  article-title: Multi-sensor remote sensing image change detection based on sorted histograms
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1448481
– volume: 16
  start-page: 45
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b38
  article-title: A conditional adversarial network for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2868704
– year: 1997
  ident: 10.1016/j.isprsjprs.2023.03.004_b10
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10.1016/j.isprsjprs.2023.03.004_b37
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b33
  article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 12
  start-page: 3588
  issue: 9
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b52
  article-title: A reliable mixed-norm-based multiresolution change detector in heterogeneous remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2934602
– volume: 105
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b65
  article-title: A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 57
  start-page: 9960
  issue: 12
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b32
  article-title: Unsupervised image regression for heterogeneous change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2930348
– ident: 10.1016/j.isprsjprs.2023.03.004_b5
  doi: 10.1109/CVPR.2005.38
– volume: 130
  start-page: 370
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.03.004_b72
  article-title: Change detection using landsat time series: A review of frequencies, preprocessing , algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.013
– volume: 27
  start-page: 1822
  issue: 4
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b30
  article-title: Change detection in heterogenous remote sensing images via homogeneous pixel transformation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2784560
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b43
  article-title: Generative adversarial networks under CutMix transformations for multimodal change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3201003
– volume: 15
  start-page: 1352
  issue: 9
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b69
  article-title: Log-based transformation feature learning for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2843385
– volume: 52
  start-page: 113
  issue: 1
  year: 2010
  ident: 10.1016/j.isprsjprs.2023.03.004_b6
  article-title: Image denoising methods. A new nonlocal principle
  publication-title: SIAM Rev.
  doi: 10.1137/090773908
– volume: 55
  start-page: 2367
  issue: 4
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.03.004_b67
  article-title: Kernel slow feature analysis for scene change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2642125
– year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b36
  article-title: MRF models based on a neighborhood adaptive class conditional likelihood for multimodal change detection
  publication-title: AI Comput. Sci. Robotics Technol.
  doi: 10.5772/acrt.02
– volume: 58
  start-page: 8046
  issue: 11
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b35
  article-title: A fractal projection and Markovian segmentation-based approach for multimodal change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2986239
– start-page: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2023.03.004_b23
– volume: 60
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b34
  article-title: Deep image translation with an affinity-based change prior for unsupervised multimodal change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3056196
– volume: 30
  start-page: 6277
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b47
  article-title: Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3093766
– start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b9
  article-title: Unsupervised multimodal change detection based on structural relationship graph representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 46
  start-page: 1822
  issue: 6
  year: 2008
  ident: 10.1016/j.isprsjprs.2023.03.004_b7
  article-title: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916201
– ident: 10.1016/j.isprsjprs.2023.03.004_b40
  doi: 10.1109/ICCV.2019.00662
– year: 2010
  ident: 10.1016/j.isprsjprs.2023.03.004_b46
– start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b66
  article-title: Commonality autoencoder: Learning common features for change detection from heterogeneous images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 15
  start-page: 1823
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b60
  article-title: Change detection from synthetic aperture radar images via graph-based knowledge supplement network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3146167
– volume: 57
  start-page: 6960
  issue: 9
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b68
  article-title: Transferred deep learning-based change detection in remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2909781
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.isprsjprs.2023.03.004_b45
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2235192
– volume: 52
  start-page: 12084
  issue: 11
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b63
  article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3086884
– ident: 10.1016/j.isprsjprs.2023.03.004_b51
  doi: 10.1109/IPTA.2019.8936127
– volume: 29
  start-page: 757
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b54
  article-title: Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2933747
– start-page: 371
  year: 2004
  ident: 10.1016/j.isprsjprs.2023.03.004_b44
  article-title: The principal components analysis of a graph, and its relationships to spectral clustering
– volume: 4
  start-page: 259
  issue: 4
  year: 2003
  ident: 10.1016/j.isprsjprs.2023.03.004_b41
  article-title: A general framework for multiresolution image fusion: from pixels to regions
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(03)00046-0
– volume: 177
  start-page: 103
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b17
  article-title: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.001
– volume: 38
  start-page: 1171
  issue: 3
  year: 2000
  ident: 10.1016/j.isprsjprs.2023.03.004_b4
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.843009
– volume: 13
  start-page: 1551
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b20
  article-title: Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2983993
– volume: 58
  start-page: 2848
  issue: 4
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b8
  article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2956756
– volume: 12
  issue: 17
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b21
  article-title: Graph-based data fusion applied to: Change detection and biomass estimation in rice crops
  publication-title: Remote Sens.
  doi: 10.3390/rs12172683
– volume: 175
  start-page: 132
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b1
  article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.016
– volume: 59
  start-page: 4841
  issue: 6
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b49
  article-title: Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3013673
– volume: 55
  start-page: 7066
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.03.004_b71
  article-title: Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2739800
– volume: 107
  start-page: 50
  year: 2015
  ident: 10.1016/j.isprsjprs.2023.03.004_b56
  article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.005
– volume: 57
  start-page: 5751
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b28
  article-title: A deep learning method for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2901945
– volume: 158
  start-page: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b19
  article-title: Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
– volume: 11
  issue: 20
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b24
  article-title: Performance of change detection algorithms using heterogeneous images and extended multi-attribute profiles (EMAPs)
  publication-title: Remote Sens.
  doi: 10.3390/rs11202377
– ident: 10.1016/j.isprsjprs.2023.03.004_b2
– volume: 27
  start-page: 125
  issue: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2023.03.004_b15
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– volume: 10
  issue: 2
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.03.004_b61
  article-title: Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning
  publication-title: Remote Sens.
  doi: 10.3390/rs10020276
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.isprsjprs.2023.03.004_b11
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 13
  start-page: 588
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.03.004_b53
  article-title: Anomaly feature learning for unsupervised change detection in heterogeneous images: A deep sparse residual model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2964409
– volume: 14
  start-page: 4966
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b27
  article-title: Spatially self-paced convolutional networks for change detection in heterogeneous images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3078437
– volume: 14
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.isprsjprs.2023.03.004_b12
  article-title: Information fusion techniques for change detection from multi-temporal remote sensing images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.05.003
– volume: 199
  start-page: 241
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.03.004_b64
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.009
– year: 2013
  ident: 10.1016/j.isprsjprs.2023.03.004_b3
– volume: 11
  start-page: 168
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2023.03.004_b31
  article-title: Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2250908
– volume: 80
  start-page: 91
  year: 2013
  ident: 10.1016/j.isprsjprs.2023.03.004_b18
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.03.006
– volume: 57
  start-page: 9941
  issue: 12
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b57
  article-title: An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2930322
– volume: 13
  issue: 23
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.03.004_b16
  article-title: Change detection for heterogeneous remote sensing images with improved training of hierarchical extreme learning machine (HELM)
  publication-title: Remote Sens.
  doi: 10.3390/rs13234918
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.03.004_b22
  article-title: Graph learning based on signal smoothness representation for homogeneous and heterogeneous change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3168126
– volume: 16
  start-page: 1026
  issue: 7
  year: 2019
  ident: 10.1016/j.isprsjprs.2023.03.004_b58
  article-title: A post-classification comparison method for SAR and optical images change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2892432
SSID ssj0001568
Score 2.589327
Snippet Change detection on multimodal remote sensing images has become an increasingly interesting and challenging topic in the remote sensing community, which can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Change detection
data collection
domain
Fourier domain
Graph spectral convolution
Multimodal remote sensing images
photogrammetry
Structural relationship
Title Fourier domain structural relationship analysis for unsupervised multimodal change detection
URI https://dx.doi.org/10.1016/j.isprsjprs.2023.03.004
https://www.proquest.com/docview/2834211032
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaFWsj7KC17Tb7CbbeivFUhV70UIPQthXaItNQx8HL_52Z7NJtYL0ICSHJDskzO7Og3zzDUK3jMLShcDcCzgjHoup8sDPEE9AqMGF5C3Jbe3wcz_sDdjjMBiWUKeohbGwytz2O5ueWev8Tj3XZj0dj-svBFIH3xIgUWtz_aGtYGfcwvpqn98wj4Yrh7ODPTt6A-M1XqTzxQTOmu0i7thO2V8e6petzhxQ9wgd5pEjbruPO0Ylk5TRwQ8-wTLay1uajz5O0FvXdaPDejaF7B87olhLsoHnBQBuNE6xyFlJMESveJUsVqm1HgujcYY1nM40SLjyYKzNMkNuJado0L1_7fS8vJWCp1hIl56CQEDB1jaGB6oRthjXYaxhLwZCaKYhBjMhJGIyphASSanBECjfjwnRrKW4MPQM7SSzxJwj7PO4oZtShwweBiIWstnSiki_GQhKG3EFhYX6IpXzjNt2F-9RASibRGu9R1bvEYGDsAoia8HUUW1sF7kr5ifaWDUROITtwjfFjEawp-yPEpGY2QoGNSmziTH1L_7zgku0b68czucK7cA8m2sIYZaymq3RKtptPzz1-l-h_fSI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3itm23SdtebiMv62osKexBCXsWKdou7e_DfO9mkiwriQWgvTYaWSfLlC535BuCEM5y6SMyjJOM04jnTEe4zNJJINTKpso7KXO7wXT_tPfLrQTKYg4s6F8aFVQbs95g-RevwpBm82ayKonlP8egQOwEk5jA3HszDglOn4g1YOL-66fVngNzyGXGuf-QMvoV5FaPqffSC96krJO4FT_lvm9QPuJ7uQd1VWAnkkZz771uDOVuuw_IXScF1WAxVzZ8_NuCp6wvSETN8k0VJvFas09kg73UM3HNRERmESQgSWDIpR5PKAcjIGjINN3wbGrTwGcLE2PE0eKvchMfu5cNFLwrVFCLNUzaONHIBjavb2izRrbTDM5PmBpdjIqXhBmmYTfEspnKGrEgpg1ig4zin1PCOzqRlW9Aoh6XdBhJnecu0lUk5NiYyl6rdMZqquJ1Ixlr5DqS1-4QOUuOu4sWrqGPKXsTM78L5XVC8KN8BOjOsvNrG3yZn9fiIbxNH4J7wt_FxPaICl5X7VyJLO5xgpzbj7mzM4t3_vOAIFnsPd7fi9qp_swdLrsWH_exDA8fcHiCjGavDMGM_Afee9zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fourier+domain+structural+relationship+analysis+for+unsupervised+multimodal+change+detection&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Chen%2C+Hongruixuan&rft.au=Yokoya%2C+Naoto&rft.au=Chini%2C+Marco&rft.date=2023-04-01&rft.issn=0924-2716&rft.volume=198+p.99-114&rft.spage=99&rft.epage=114&rft_id=info:doi/10.1016%2Fj.isprsjprs.2023.03.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon