Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach
The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East re...
Saved in:
Published in | Biochimica et biophysica acta. Molecular basis of disease Vol. 1866; no. 10; p. 165878 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective.
Schematic representation of novel corona virus showing target proteins and its mechanism of host entry. [Display omitted]
•The recent exposure to SARS-CoV-2 has affected entire world, resulted >0.4 million deaths.•Potential drug targets of SARS-CoV-2 are highly conserved.•A slight structural difference makes available drugs ineffective against SARS-CoV-2.•Cytokine storm during SARS-CoV-2 infection may be targeted to handle COVID-19 patients.•Many FDA approved drugs are showing positive effects in clinical trials but further validation in large subject groups is required. |
---|---|
AbstractList | The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. Schematic representation of novel corona virus showing target proteins and its mechanism of host entry. [Display omitted] •The recent exposure to SARS-CoV-2 has affected entire world, resulted >0.4 million deaths.•Potential drug targets of SARS-CoV-2 are highly conserved.•A slight structural difference makes available drugs ineffective against SARS-CoV-2.•Cytokine storm during SARS-CoV-2 infection may be targeted to handle COVID-19 patients.•Many FDA approved drugs are showing positive effects in clinical trials but further validation in large subject groups is required. The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. Schematic representation of novel corona virus showing target proteins and its mechanism of host entry. Unlabelled Image • The recent exposure to SARS-CoV-2 has affected entire world, resulted >0.4 million deaths. • Potential drug targets of SARS-CoV-2 are highly conserved. • A slight structural difference makes available drugs ineffective against SARS-CoV-2. • Cytokine storm during SARS-CoV-2 infection may be targeted to handle COVID-19 patients. • Many FDA approved drugs are showing positive effects in clinical trials but further validation in large subject groups is required. The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective.The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. |
ArticleNumber | 165878 |
Author | Naqvi, Ahmad Abu Turab Hasan, Gulam Mustafa Singh, Indrakant K. Mohammad, Taj Fatima, Kisa Hariprasad, Gururao Fatima, Urooj Atif, Shaikh Muhammad Singh, Archana Hassan, Md. Imtaiyaz |
Author_xml | – sequence: 1 givenname: Ahmad Abu Turab surname: Naqvi fullname: Naqvi, Ahmad Abu Turab organization: Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India – sequence: 2 givenname: Kisa surname: Fatima fullname: Fatima, Kisa organization: Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India – sequence: 3 givenname: Taj surname: Mohammad fullname: Mohammad, Taj organization: Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India – sequence: 4 givenname: Urooj surname: Fatima fullname: Fatima, Urooj organization: Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P., India – sequence: 5 givenname: Indrakant K. surname: Singh fullname: Singh, Indrakant K. organization: Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110 019, India – sequence: 6 givenname: Archana surname: Singh fullname: Singh, Archana organization: Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India – sequence: 7 givenname: Shaikh Muhammad surname: Atif fullname: Atif, Shaikh Muhammad organization: Department of Medicine, University of Colorado, Aurora, CO, USA – sequence: 8 givenname: Gururao surname: Hariprasad fullname: Hariprasad, Gururao organization: Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India – sequence: 9 givenname: Gulam Mustafa surname: Hasan fullname: Hasan, Gulam Mustafa organization: Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia – sequence: 10 givenname: Md. Imtaiyaz surname: Hassan fullname: Hassan, Md. Imtaiyaz email: mihassan@jmi.ac.in organization: Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32544429$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9r2zAUxcXoWNNs32AMP-6hTmVJsa0-DErYn0Jh0HRjb0K-vokVHMmT5EC__RScla0Pm14kpN85V5xzQc6ss0jI24IuClqUV7tF0-jWhAWjLF2Vy7qqX5BZUVcyZyX9cUZmVLJlLgSX5-QihB1Nq6zoK3LO2VIIweSMuFsbzLaLITM2umx9c7_OV-57zrItWrfHyyxEP0IcfTriwfVjNM5eZoOOnUsIBhMybdssduj1YDBcZ-uTQveTiYGEDIN3GrrX5OVG9wHfnPY5-fbp48PqS3739fPt6uYuB1HymMNSAmrGpeaC63pTSo4aaAGwgVLWvMAmcbwoW8kBeFO1tARoaN1K1jLG-Jx8mHyHsdljC2hj-o8avNlr_6icNurvF2s6tXUHVTHJj9Zz8v5k4N3PEUNUexMA-15bdGNQTBRCUCmZSOi7P2c9DfmdcgLEBIB3IXjcPCEFVccy1U5NZapjmWoqM8mun8nARH3MP_3Y9P8TnwLAlPLBoFcBDFrA1niEqFpn_m3wC0vFvxU |
CitedBy_id | crossref_primary_10_1186_s12974_022_02642_4 crossref_primary_10_1371_journal_ppat_1009233 crossref_primary_10_1007_s11010_020_03935_z crossref_primary_10_1016_j_ebiom_2021_103525 crossref_primary_10_3389_fimmu_2024_1402135 crossref_primary_10_1093_bib_bbaa288 crossref_primary_10_1016_j_omtn_2023_04_015 crossref_primary_10_1080_26895293_2021_2013327 crossref_primary_10_1089_omi_2020_0122 crossref_primary_10_1038_s42003_022_03277_0 crossref_primary_10_1016_j_compbiomed_2020_104054 crossref_primary_10_1172_jci_insight_142167 crossref_primary_10_2174_2666796704666230102121225 crossref_primary_10_1039_D1RA02529E crossref_primary_10_3390_microorganisms10112224 crossref_primary_10_2217_fmb_2021_0064 crossref_primary_10_3390_idr13030061 crossref_primary_10_1007_s11696_023_03180_w crossref_primary_10_1371_journal_pone_0278061 crossref_primary_10_1007_s41745_021_00268_8 crossref_primary_10_1109_ACCESS_2022_3207207 crossref_primary_10_3390_v17020182 crossref_primary_10_3390_life12122046 crossref_primary_10_1007_s13596_023_00739_6 crossref_primary_10_3389_fchem_2021_757826 crossref_primary_10_1089_omi_2020_0131 crossref_primary_10_1155_2022_8551576 crossref_primary_10_1080_08830185_2021_1967949 crossref_primary_10_1002_mas_21813 crossref_primary_10_3389_fcimb_2020_587269 crossref_primary_10_1016_j_prp_2021_153565 crossref_primary_10_1186_s12948_021_00161_w crossref_primary_10_1007_s12033_024_01357_6 crossref_primary_10_3390_biology9110374 crossref_primary_10_3389_fimmu_2021_660632 crossref_primary_10_3389_fphar_2020_630500 crossref_primary_10_3390_microbiolres14030093 crossref_primary_10_1021_acs_langmuir_1c01488 crossref_primary_10_1002_ppap_202200242 crossref_primary_10_1016_j_addr_2021_01_014 crossref_primary_10_1016_j_abb_2023_109856 crossref_primary_10_3389_fphar_2021_629935 crossref_primary_10_1155_2023_2297559 crossref_primary_10_3390_ijerph192114143 crossref_primary_10_3390_v14112436 crossref_primary_10_24018_ejbiomed_2024_3_3_93 crossref_primary_10_3390_v13071192 crossref_primary_10_4239_wjd_v13_i7_543 crossref_primary_10_18006_2021_9_5__591_597 crossref_primary_10_3390_v15040871 crossref_primary_10_1093_bib_bbac362 crossref_primary_10_1111_1751_7915_14027 crossref_primary_10_15407_agrisp10_03_003 crossref_primary_10_1016_j_cbi_2021_109449 crossref_primary_10_3390_ijms24108867 crossref_primary_10_33084_jmd_v1i1_2212 crossref_primary_10_1002_jmr_70002 crossref_primary_10_3390_diagnostics12061503 crossref_primary_10_1007_s12026_024_09553_x crossref_primary_10_1016_j_ijbiomac_2021_04_129 crossref_primary_10_11124_JBIES_20_00516 crossref_primary_10_3390_molecules26237385 crossref_primary_10_3389_fphar_2020_585888 crossref_primary_10_1080_20565623_2024_2389664 crossref_primary_10_1007_s42995_023_00215_9 crossref_primary_10_3390_genes12070973 crossref_primary_10_1369_00221554231168916 crossref_primary_10_1016_j_sjbs_2021_02_066 crossref_primary_10_3389_fimmu_2022_952229 crossref_primary_10_1109_JSEN_2021_3059970 crossref_primary_10_3390_ijerph192114391 crossref_primary_10_5812_archcid_132803 crossref_primary_10_1016_j_heliyon_2024_e25618 crossref_primary_10_3390_v14112328 crossref_primary_10_1016_j_micinf_2021_104832 crossref_primary_10_3103_S0095452721060153 crossref_primary_10_1007_s11030_022_10580_9 crossref_primary_10_1093_bib_bbaa173 crossref_primary_10_2174_1381612828666220518102440 crossref_primary_10_3390_ijms26010151 crossref_primary_10_2196_25995 crossref_primary_10_3389_fgene_2023_1240245 crossref_primary_10_1016_j_jbc_2022_101658 crossref_primary_10_3390_molecules26216455 crossref_primary_10_31083_j_fbl2701013 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1016_j_celrep_2022_111892 crossref_primary_10_1038_s42004_022_00731_2 crossref_primary_10_1016_j_ijid_2021_07_043 crossref_primary_10_1177_17534259221077750 crossref_primary_10_14710_dmj_v12i5_39577 crossref_primary_10_1016_j_ymeth_2021_12_003 crossref_primary_10_1007_s10930_022_10073_6 crossref_primary_10_1016_j_hnm_2023_200220 crossref_primary_10_1039_D1RA07103C crossref_primary_10_22159_ijcpr_2022v14i2_1957 crossref_primary_10_3389_fgene_2022_966939 crossref_primary_10_3390_app13031426 crossref_primary_10_1016_j_sjbs_2021_01_051 crossref_primary_10_3390_futurepharmacol2040034 crossref_primary_10_3390_jpm11090926 crossref_primary_10_1007_s12035_021_02430_w crossref_primary_10_3390_vaccines12050459 crossref_primary_10_3390_bios12080637 crossref_primary_10_2147_JIR_S395331 crossref_primary_10_3389_fimmu_2023_1195871 crossref_primary_10_1038_s41598_022_06977_z crossref_primary_10_3390_ijms232415744 crossref_primary_10_3389_fimmu_2022_843928 crossref_primary_10_1016_j_arabjc_2021_103315 crossref_primary_10_3390_math12121904 crossref_primary_10_1017_qrd_2021_13 crossref_primary_10_1080_07391102_2022_2139295 crossref_primary_10_1016_j_isci_2020_101903 crossref_primary_10_1021_acs_analchem_2c02617 crossref_primary_10_3389_fimmu_2021_645013 crossref_primary_10_3390_biology9090243 crossref_primary_10_1016_j_heliyon_2022_e08864 crossref_primary_10_1021_acsabm_2c00613 crossref_primary_10_1186_s12985_024_02328_8 crossref_primary_10_1016_j_sjbs_2021_01_040 crossref_primary_10_4331_wjbc_v13_i2_47 crossref_primary_10_1007_s12013_024_01421_7 crossref_primary_10_1039_D2SC00108J crossref_primary_10_1021_acschembio_2c00565 crossref_primary_10_3390_v16071073 crossref_primary_10_3390_su142416761 crossref_primary_10_3390_vaccines10111805 crossref_primary_10_3390_ijms22168663 crossref_primary_10_18273_revmed_v34n2_2021006 crossref_primary_10_3390_medicina56110591 crossref_primary_10_1080_07391102_2022_2120541 crossref_primary_10_3390_life12020231 crossref_primary_10_1016_j_phyplu_2020_100016 crossref_primary_10_1002_jmv_26814 crossref_primary_10_1080_07391102_2022_2143426 crossref_primary_10_1016_j_heliyon_2024_e24570 crossref_primary_10_3390_biom11081126 crossref_primary_10_1371_journal_pone_0255169 crossref_primary_10_1016_j_bpj_2021_06_003 crossref_primary_10_1016_j_jiph_2023_09_011 crossref_primary_10_3389_fimmu_2023_1220306 crossref_primary_10_1016_j_imu_2021_100675 crossref_primary_10_3389_fmicb_2022_923546 crossref_primary_10_1186_s12985_023_02095_y crossref_primary_10_3389_fmolb_2020_618318 crossref_primary_10_3390_microorganisms11112709 crossref_primary_10_1016_j_comptc_2023_114049 crossref_primary_10_3390_vaccines9090978 crossref_primary_10_3390_jcm11143968 crossref_primary_10_4103_2773_0344_361971 crossref_primary_10_1093_bib_bbab222 crossref_primary_10_2147_IDR_S379324 crossref_primary_10_1186_s12985_023_02139_3 crossref_primary_10_1007_s42399_020_00655_9 crossref_primary_10_1038_s41423_021_00752_2 crossref_primary_10_1039_D2SM01181F crossref_primary_10_1093_bib_bbab339 crossref_primary_10_1093_bib_bbab456 crossref_primary_10_1186_s43088_023_00342_3 crossref_primary_10_2478_amma_2022_0024 crossref_primary_10_3390_molecules25235604 crossref_primary_10_3390_idr16020024 crossref_primary_10_1021_acs_chemrev_1c00965 crossref_primary_10_23749_mdl_v112i3_11472 crossref_primary_10_52547_JoMMID_9_2_88 crossref_primary_10_1017_erm_2022_11 crossref_primary_10_1016_j_ijbiomac_2023_125950 crossref_primary_10_1186_s12931_021_01885_8 crossref_primary_10_1021_acs_jnatprod_3c00636 crossref_primary_10_3390_vaccines9030244 crossref_primary_10_1016_j_virs_2022_10_003 crossref_primary_10_3390_bios13050553 crossref_primary_10_1080_07391102_2020_1844804 crossref_primary_10_3389_fendo_2021_677701 crossref_primary_10_3389_fimmu_2023_1267774 crossref_primary_10_1093_bib_bbaa437 crossref_primary_10_1051_bioconf_202412402007 crossref_primary_10_1016_j_biopha_2021_111272 crossref_primary_10_1021_acs_jcim_1c01561 crossref_primary_10_3389_av_2023_11664 crossref_primary_10_1002_jgm_3303 crossref_primary_10_1186_s12859_023_05389_8 crossref_primary_10_3390_v14050961 crossref_primary_10_1007_s13337_024_00876_9 crossref_primary_10_22207_JPAM_15_2_52 crossref_primary_10_3390_pharmaceutics13111759 crossref_primary_10_1016_j_jpap_2021_100082 crossref_primary_10_3390_v14010025 crossref_primary_10_1016_j_vaccine_2023_10_038 crossref_primary_10_1080_17474086_2022_2110061 crossref_primary_10_3389_fimmu_2022_1041185 crossref_primary_10_3390_ph16060834 crossref_primary_10_2298_JSC240104021A crossref_primary_10_51847_VsOsr2f5dN crossref_primary_10_1080_23144599_2023_2222981 crossref_primary_10_3390_v14020186 crossref_primary_10_3390_vaccines11111644 crossref_primary_10_1021_acsptsci_0c00215 crossref_primary_10_1038_s41598_023_31764_9 crossref_primary_10_3233_JAD_220105 crossref_primary_10_3390_bios11060167 crossref_primary_10_2174_0115680266276749240206101847 crossref_primary_10_3390_kinasesphosphatases3010004 crossref_primary_10_1021_acsnano_4c13924 crossref_primary_10_3390_ph14121216 crossref_primary_10_1016_j_jics_2021_100272 crossref_primary_10_3390_v15122291 crossref_primary_10_1088_1752_7163_ac59c7 crossref_primary_10_1016_j_surfin_2023_103821 crossref_primary_10_1016_j_biopha_2022_112658 crossref_primary_10_1016_j_crgsc_2021_100159 crossref_primary_10_1016_j_molstruc_2024_140460 crossref_primary_10_1038_s41598_024_60721_3 crossref_primary_10_1016_j_dsx_2022_102482 crossref_primary_10_1016_j_ijpharm_2022_122421 crossref_primary_10_3390_microorganisms10030598 crossref_primary_10_3390_v15010213 crossref_primary_10_1093_bib_bbaa334 crossref_primary_10_1016_j_jviromet_2021_114271 crossref_primary_10_3389_fimmu_2021_763313 crossref_primary_10_18231_j_ijcap_2023_061 crossref_primary_10_1002_pro_4190 crossref_primary_10_3389_fimmu_2022_1058884 crossref_primary_10_1016_j_ab_2023_115079 crossref_primary_10_1002_rmv_2431 crossref_primary_10_1038_s41392_022_00950_y crossref_primary_10_1177_09612033231175280 crossref_primary_10_1088_1742_6596_2099_1_012037 crossref_primary_10_1007_s11033_023_08844_0 crossref_primary_10_3390_pathogens13040279 crossref_primary_10_2174_26669587_v2_e2204260 crossref_primary_10_1080_10406638_2022_2046613 crossref_primary_10_3390_medicina59101709 crossref_primary_10_1186_s40580_023_00399_x crossref_primary_10_1016_j_phytochem_2022_113213 crossref_primary_10_3390_ijms222212243 crossref_primary_10_1002_rmv_2316 crossref_primary_10_1007_s00044_024_03244_w crossref_primary_10_1016_j_heliyon_2022_e11137 crossref_primary_10_1007_s40495_025_00390_6 crossref_primary_10_3389_fimmu_2022_1034444 crossref_primary_10_3390_vaccines10081346 crossref_primary_10_3390_vaccines10071125 crossref_primary_10_3390_nu16173033 crossref_primary_10_1186_s12985_022_01768_4 crossref_primary_10_1371_journal_pone_0256988 crossref_primary_10_1007_s40120_021_00288_7 crossref_primary_10_3389_fimmu_2022_1007089 crossref_primary_10_3390_ijms25189977 crossref_primary_10_1016_j_ygeno_2021_05_006 crossref_primary_10_23736_S1825_859X_21_00104_3 crossref_primary_10_3390_v14091991 crossref_primary_10_1016_j_snb_2022_131568 crossref_primary_10_2174_1389557522666220511125102 crossref_primary_10_1016_j_tips_2022_08_008 crossref_primary_10_1016_j_cyto_2021_155697 crossref_primary_10_1016_j_sjbs_2021_12_020 crossref_primary_10_1208_s12249_021_02089_5 crossref_primary_10_1016_j_procs_2021_08_050 crossref_primary_10_1186_s13568_024_01719_y crossref_primary_10_1097_MRM_0000000000000393 crossref_primary_10_1371_journal_pgph_0001593 crossref_primary_10_32604_biocell_2025_058038 crossref_primary_10_1080_17512433_2021_1874348 crossref_primary_10_1007_s10661_022_09942_5 crossref_primary_10_3390_life12040478 crossref_primary_10_1039_D3MD00056G crossref_primary_10_1016_j_jtcme_2021_04_001 crossref_primary_10_1155_2022_7336309 crossref_primary_10_3389_fcimb_2023_1155938 crossref_primary_10_1016_j_arr_2023_102068 crossref_primary_10_1016_j_snr_2025_100315 crossref_primary_10_3389_fnins_2021_694446 crossref_primary_10_3390_biom12050690 crossref_primary_10_3390_v13050942 crossref_primary_10_1007_s10142_024_01509_6 crossref_primary_10_33084_jmd_v1i1_2307 crossref_primary_10_3748_wjg_v27_i23_3208 crossref_primary_10_1016_j_ejps_2023_106598 crossref_primary_10_1021_acs_analchem_1c00013 crossref_primary_10_1177_15353702221099579 crossref_primary_10_1016_j_ijbiomac_2022_11_227 crossref_primary_10_1016_j_ijbiomac_2021_02_203 crossref_primary_10_1080_07391102_2021_1977181 crossref_primary_10_1242_jcs_257758 crossref_primary_10_4103_jcrsm_jcrsm_29_21 crossref_primary_10_1186_s13104_022_06144_7 crossref_primary_10_4103_ijhas_IJHAS_171_20 crossref_primary_10_2174_1568026622666220707114121 crossref_primary_10_1016_j_virol_2023_02_011 crossref_primary_10_1016_j_intimp_2021_108328 crossref_primary_10_3389_fviro_2022_875213 crossref_primary_10_59400_cai_v2i2_1279 crossref_primary_10_3389_fmed_2021_745789 crossref_primary_10_3389_fphar_2021_634176 crossref_primary_10_3390_jpm12020220 crossref_primary_10_3390_vaccines11071226 crossref_primary_10_1016_j_crimmu_2022_08_006 crossref_primary_10_1016_j_micpath_2021_105236 crossref_primary_10_3390_ijms23116188 crossref_primary_10_1080_07391102_2022_2127902 crossref_primary_10_1016_j_lfs_2021_119201 crossref_primary_10_32604_biocell_2023_029272 crossref_primary_10_3389_fcimb_2021_744903 crossref_primary_10_3390_s21134617 crossref_primary_10_1016_j_meegid_2021_105128 crossref_primary_10_1016_S2666_5247_21_00121_X crossref_primary_10_1016_j_compbiomed_2022_105598 crossref_primary_10_3390_ijms232315269 crossref_primary_10_3390_vaccines9101196 crossref_primary_10_1016_j_isci_2022_103743 crossref_primary_10_1177_08971900221097248 crossref_primary_10_1016_j_jics_2022_100433 crossref_primary_10_3389_fnano_2020_588915 crossref_primary_10_1155_2024_7112940 crossref_primary_10_1186_s12985_023_02279_6 crossref_primary_10_3390_ijms222111779 crossref_primary_10_1002_EXP_20210082 crossref_primary_10_1016_j_actatropica_2020_105778 crossref_primary_10_1016_j_csbj_2025_03_034 crossref_primary_10_5144_0256_4947_2022_147 crossref_primary_10_1016_j_virusres_2022_199024 crossref_primary_10_1080_0889311X_2022_2065270 crossref_primary_10_1111_odi_13925 crossref_primary_10_1080_14787210_2022_2036605 crossref_primary_10_1128_mbio_00169_22 crossref_primary_10_3390_pathogens11050522 crossref_primary_10_3389_fbinf_2021_717141 crossref_primary_10_1016_j_antiviral_2022_105478 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1051_e3sconf_202343702011 crossref_primary_10_1016_j_fct_2021_112009 crossref_primary_10_3390_ph15050530 crossref_primary_10_3390_vaccines12080857 crossref_primary_10_1021_acs_analchem_2c02033 crossref_primary_10_15407_oncology_2024_03_216 crossref_primary_10_1080_07391102_2023_2257328 crossref_primary_10_1038_s41598_021_93231_7 crossref_primary_10_3390_ijerph18031318 crossref_primary_10_1080_07391102_2021_1885495 crossref_primary_10_1016_j_omtn_2025_102452 crossref_primary_10_1093_bioinformatics_btae208 crossref_primary_10_1002_cbdv_202301786 crossref_primary_10_1016_j_ijbiomac_2023_127986 crossref_primary_10_1039_D1CP01045J crossref_primary_10_3389_fphar_2024_1494953 crossref_primary_10_3390_pathogens11050516 crossref_primary_10_1016_j_micpath_2022_105512 crossref_primary_10_17721_1728_2748_2021_86_17_22 crossref_primary_10_1007_s10528_023_10458_x crossref_primary_10_1089_jir_2020_0105 crossref_primary_10_1016_j_ijbiomac_2021_02_071 crossref_primary_10_2174_1874467214666210906125959 crossref_primary_10_5808_gi_21056 crossref_primary_10_3390_v16050757 crossref_primary_10_3390_v13020243 crossref_primary_10_2147_IJGM_S461613 crossref_primary_10_3389_fcimb_2022_875123 crossref_primary_10_1021_acs_jcim_1c00184 crossref_primary_10_1007_s00894_022_05138_3 crossref_primary_10_14233_ajchem_2022_23673 crossref_primary_10_1007_s11010_022_04393_5 crossref_primary_10_1038_s41598_025_94938_7 crossref_primary_10_5812_ijpr_127042 crossref_primary_10_3390_ijms24098377 crossref_primary_10_3390_nano12203550 crossref_primary_10_1002_jev2_12112 crossref_primary_10_18699_VJGB_22_15 crossref_primary_10_1002_vms3_1029 crossref_primary_10_3389_fmicb_2023_1222301 crossref_primary_10_3390_cells10071817 crossref_primary_10_3390_ijms24043100 crossref_primary_10_3390_v14040653 crossref_primary_10_3390_microorganisms9040677 crossref_primary_10_1016_j_cellin_2022_100046 crossref_primary_10_33084_bjop_v7i4_6365 crossref_primary_10_3390_vaccines9060639 crossref_primary_10_1016_j_ijbiomac_2022_03_058 crossref_primary_10_1016_j_meegid_2021_105057 crossref_primary_10_1016_j_abb_2021_108771 crossref_primary_10_1016_j_compbiomed_2021_105084 crossref_primary_10_1016_j_cytogfr_2021_02_002 crossref_primary_10_1080_03639045_2022_2137196 crossref_primary_10_1177_2472555220979579 crossref_primary_10_1186_s12985_023_02208_7 crossref_primary_10_3390_pathogens10020114 crossref_primary_10_3390_vaccines10070985 crossref_primary_10_1016_j_bios_2022_113981 crossref_primary_10_3390_microorganisms10071284 crossref_primary_10_1016_j_biopha_2022_112700 crossref_primary_10_1016_j_jpha_2023_05_011 crossref_primary_10_1016_j_cophys_2022_100596 crossref_primary_10_2217_fvl_2020_0392 crossref_primary_10_1080_07391102_2021_1887764 crossref_primary_10_1016_j_compbiomed_2023_106785 crossref_primary_10_1016_j_meegid_2021_105164 crossref_primary_10_22625_2072_6732_2022_14_3_55_60 crossref_primary_10_1007_s12033_024_01253_z crossref_primary_10_1002_asia_202101215 crossref_primary_10_3389_fcimb_2024_1357866 crossref_primary_10_3389_fmicb_2022_883597 crossref_primary_10_3390_jcm10132772 crossref_primary_10_1371_journal_pcbi_1010667 crossref_primary_10_1016_j_nmni_2021_100853 crossref_primary_10_3390_ijms232214350 crossref_primary_10_47485_2767_5416_1037 crossref_primary_10_1007_s00284_021_02396_x crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_1089_jir_2020_0156 crossref_primary_10_3390_md20120786 crossref_primary_10_3389_fpubh_2023_1202216 crossref_primary_10_24293_ijcpml_v29i1_1952 crossref_primary_10_3390_molecules25204666 crossref_primary_10_47993_gmb_v46i2_664 crossref_primary_10_3390_scipharm89010011 crossref_primary_10_3390_reports5020014 crossref_primary_10_2174_1389450123666220919123029 crossref_primary_10_3390_ijms24043236 crossref_primary_10_1016_j_meegid_2021_105191 crossref_primary_10_1007_s00894_024_06236_0 crossref_primary_10_1371_journal_pone_0261497 crossref_primary_10_1007_s10439_022_03094_w crossref_primary_10_3390_ijms23052414 crossref_primary_10_1016_j_micpath_2021_105041 crossref_primary_10_1016_j_vas_2024_100408 crossref_primary_10_3390_genes13030423 crossref_primary_10_1016_j_ejmech_2022_114853 crossref_primary_10_1016_j_isci_2023_107570 crossref_primary_10_1177_10738584211009149 crossref_primary_10_3390_ijms23179763 crossref_primary_10_1007_s12551_022_01031_8 crossref_primary_10_1016_j_bbadis_2022_166612 crossref_primary_10_3390_ijms25052850 crossref_primary_10_1016_j_bbrc_2022_08_050 crossref_primary_10_1038_s41598_022_24170_0 crossref_primary_10_47993_gmb_v46i2_777 crossref_primary_10_1038_s41598_024_78381_8 crossref_primary_10_3389_fcimb_2021_741147 crossref_primary_10_1073_pnas_2402653121 crossref_primary_10_1111_apha_13712 crossref_primary_10_3389_fcimb_2021_806265 crossref_primary_10_3389_fmicb_2022_824217 crossref_primary_10_1007_s11030_022_10441_5 crossref_primary_10_3390_ijms23126394 crossref_primary_10_1590_s0103_4014_2020_34100_012 crossref_primary_10_30895_2221_996X_2024_569 crossref_primary_10_1007_s13205_023_03608_w crossref_primary_10_1016_j_heliyon_2023_e19345 crossref_primary_10_1155_2024_8683822 crossref_primary_10_1021_acs_jmedchem_2c01005 crossref_primary_10_1038_s41598_022_13373_0 crossref_primary_10_1155_2023_4586423 crossref_primary_10_1016_j_aca_2023_341151 crossref_primary_10_1016_j_carbpol_2022_120167 crossref_primary_10_3390_pathogens10070869 crossref_primary_10_2174_2666958702101010006 crossref_primary_10_1038_s42003_024_05970_8 crossref_primary_10_1007_s13577_021_00620_1 crossref_primary_10_1155_2021_6667135 crossref_primary_10_2174_1568026622666220831114838 crossref_primary_10_1002_bab_2431 crossref_primary_10_3164_jcbn_23_32 crossref_primary_10_1002_adtp_202100044 crossref_primary_10_1016_j_antiviral_2023_105653 crossref_primary_10_1134_S0026893322010034 crossref_primary_10_1002_jcc_26512 crossref_primary_10_1186_s12985_021_01526_y crossref_primary_10_1142_S273741652250020X crossref_primary_10_1371_journal_pone_0268909 crossref_primary_10_1186_s42269_022_00945_3 crossref_primary_10_3390_molecules26103003 crossref_primary_10_1007_s12539_021_00491_y crossref_primary_10_1016_j_heliyon_2024_e40113 crossref_primary_10_4081_monaldi_2024_2981 crossref_primary_10_1038_s41598_023_35671_x crossref_primary_10_3390_ijms241411597 crossref_primary_10_3390_biology10070589 crossref_primary_10_3389_fimmu_2022_866564 crossref_primary_10_3390_molecules27010223 crossref_primary_10_3390_v16091489 crossref_primary_10_1016_j_cca_2020_08_013 crossref_primary_10_3390_bios13090865 crossref_primary_10_1016_j_bbadis_2022_166634 crossref_primary_10_2174_1389450122666210809090909 crossref_primary_10_3390_antiox10060971 crossref_primary_10_1186_s40035_022_00316_y crossref_primary_10_3390_microorganisms12071330 crossref_primary_10_1007_s00706_024_03271_8 crossref_primary_10_3390_microorganisms9030605 crossref_primary_10_3390_pr10071397 crossref_primary_10_7759_cureus_45479 crossref_primary_10_1016_j_clindermatol_2021_01_020 crossref_primary_10_1016_j_arcmed_2020_09_013 crossref_primary_10_1016_j_compbiomed_2022_106284 crossref_primary_10_3390_vaccines11030549 crossref_primary_10_3390_vaccines11030668 crossref_primary_10_1002_bse_3013 crossref_primary_10_1002_pro_4773 crossref_primary_10_3389_fmed_2022_869818 crossref_primary_10_1021_acs_jcim_3c00409 crossref_primary_10_14776_piv_2021_28_e6 crossref_primary_10_1016_j_diamond_2021_108542 crossref_primary_10_3390_mi13020196 crossref_primary_10_1002_jcla_24534 crossref_primary_10_3390_ijms23031771 crossref_primary_10_1016_j_eng_2020_10_003 crossref_primary_10_1371_journal_ppat_1011265 crossref_primary_10_3390_microorganisms9040868 crossref_primary_10_59786_bmtj_213 crossref_primary_10_3390_ijms22137135 crossref_primary_10_3390_pathogens10091155 crossref_primary_10_1016_j_omtn_2025_102505 crossref_primary_10_1016_j_tim_2020_12_007 crossref_primary_10_1080_07391102_2023_2187634 crossref_primary_10_2147_RMHP_S284473 crossref_primary_10_1007_s10311_021_01323_7 crossref_primary_10_1016_j_compbiomed_2021_104748 crossref_primary_10_1038_s41598_022_17558_5 crossref_primary_10_29333_ejmste_11264 crossref_primary_10_1007_s11071_022_07548_7 crossref_primary_10_1007_s00894_022_05270_0 crossref_primary_10_3390_v13061076 crossref_primary_10_1039_D4CP01014K crossref_primary_10_3390_cells10040821 crossref_primary_10_1016_j_cellsig_2021_110121 crossref_primary_10_1021_acs_jmedchem_3c00810 crossref_primary_10_3389_fchem_2020_584894 crossref_primary_10_3390_pathogens11121515 crossref_primary_10_1021_acsbiomaterials_2c00669 crossref_primary_10_31482_mmsl_2021_018 crossref_primary_10_3917_rfps_062_0057 crossref_primary_10_1021_acs_jmedchem_2c01168 crossref_primary_10_1021_acsbiomaterials_2c00510 crossref_primary_10_1039_D4DD00006D crossref_primary_10_3389_fphy_2024_1357639 crossref_primary_10_1002_jmv_26615 crossref_primary_10_1016_j_ijbiomac_2021_08_076 crossref_primary_10_3390_biology10090880 crossref_primary_10_1016_j_cll_2022_02_005 crossref_primary_10_3390_ijerph18041626 crossref_primary_10_1080_01919512_2025_2474453 crossref_primary_10_3390_ijerph18157857 crossref_primary_10_3389_fmicb_2022_871645 crossref_primary_10_3390_biology10020091 crossref_primary_10_3389_fnins_2022_867825 crossref_primary_10_32628_IJSRSET229145 crossref_primary_10_61186_rabms_9_3_143 crossref_primary_10_15406_jlprr_2022_09_00280 crossref_primary_10_3390_v15061281 crossref_primary_10_3390_org5020006 crossref_primary_10_1016_j_lfs_2020_118919 crossref_primary_10_1021_acs_est_1c04705 crossref_primary_10_1016_j_virusres_2020_198102 crossref_primary_10_2147_IDR_S341694 crossref_primary_10_3390_ijerph20010672 crossref_primary_10_3390_v15020508 crossref_primary_10_3389_fmicb_2021_698365 crossref_primary_10_3390_microorganisms9102167 crossref_primary_10_7883_yoken_JJID_2021_273 crossref_primary_10_29333_ejgm_12511 crossref_primary_10_1016_j_scitotenv_2021_152033 crossref_primary_10_32322_jhsm_969409 crossref_primary_10_3390_vaccines9060588 crossref_primary_10_1155_2023_5705076 crossref_primary_10_3390_vaccines8040649 crossref_primary_10_3345_cep_2021_00696 crossref_primary_10_3390_microorganisms9091794 crossref_primary_10_1016_j_antiviral_2024_105869 crossref_primary_10_62063_ecb_22 crossref_primary_10_1016_j_antiviral_2024_105987 crossref_primary_10_1016_j_medj_2021_02_001 crossref_primary_10_1093_femsre_fuad048 crossref_primary_10_1021_acs_analchem_3c05225 crossref_primary_10_1016_j_ijbiomac_2020_08_166 crossref_primary_10_3389_fimmu_2022_963627 crossref_primary_10_3390_biology10080733 crossref_primary_10_3389_fmmed_2022_917201 crossref_primary_10_3934_mbe_2024264 crossref_primary_10_1016_j_jbc_2021_101518 crossref_primary_10_1016_j_jaci_2021_10_014 crossref_primary_10_1111_imm_13623 crossref_primary_10_3390_ijms22147425 crossref_primary_10_3390_ijms23031781 crossref_primary_10_1128_spectrum_02549_23 crossref_primary_10_3390_cimb45050271 crossref_primary_10_1021_acs_jpclett_2c01102 crossref_primary_10_2174_1570163819666220909114900 crossref_primary_10_1016_j_nbt_2021_10_002 crossref_primary_10_29328_journal_ijcv_1001028 crossref_primary_10_3390_ijms22115672 crossref_primary_10_1038_s41598_024_53111_2 crossref_primary_10_1093_rheumatology_kead601 crossref_primary_10_1016_j_mcp_2024_101973 crossref_primary_10_3390_microorganisms9081643 crossref_primary_10_12968_indn_2021_2_15 crossref_primary_10_1080_07391102_2023_2188419 crossref_primary_10_2174_1381612828666220519150821 crossref_primary_10_3390_v13112202 crossref_primary_10_3390_ijms23042100 crossref_primary_10_3390_molecules30051066 crossref_primary_10_29328_journal_ijcv_1001029 crossref_primary_10_3390_nu13103458 crossref_primary_10_3390_w15061018 crossref_primary_10_1021_acs_jcim_2c00802 crossref_primary_10_18621_eurj_1132682 crossref_primary_10_3390_microorganisms13020284 crossref_primary_10_3390_v14061255 crossref_primary_10_3390_ijms252111509 crossref_primary_10_56782_pps_292 crossref_primary_10_1039_D2MD00009A crossref_primary_10_1007_s10735_020_09915_3 crossref_primary_10_1152_ajpendo_00174_2021 crossref_primary_10_3389_fimmu_2022_827605 crossref_primary_10_1016_j_vaccine_2023_12_008 crossref_primary_10_3390_v14030511 crossref_primary_10_3390_medicina57111189 crossref_primary_10_17352_acn_000050 crossref_primary_10_3390_v14112424 crossref_primary_10_1007_s11030_021_10355_8 crossref_primary_10_1080_07391102_2023_2226745 crossref_primary_10_1109_ACCESS_2021_3082108 crossref_primary_10_1016_j_ijsu_2020_08_049 crossref_primary_10_4103_bbrj_bbrj_161_21 crossref_primary_10_1016_j_jfluchem_2021_109865 crossref_primary_10_22159_ijap_2023v15i1_46288 crossref_primary_10_1080_19932820_2023_2209949 crossref_primary_10_1111_1348_0421_13173 crossref_primary_10_1080_07391102_2020_1848634 crossref_primary_10_1007_s40200_022_01002_6 crossref_primary_10_1080_07391102_2021_1900920 crossref_primary_10_1002_jmv_26776 crossref_primary_10_1007_s12560_022_09514_3 crossref_primary_10_3390_diagnostics13142418 crossref_primary_10_1007_s15010_021_01677_8 crossref_primary_10_1021_acssynbio_1c00643 crossref_primary_10_3390_ijms22179131 crossref_primary_10_3390_bios13020163 crossref_primary_10_3390_biomedicines11030701 crossref_primary_10_1016_j_genrep_2020_100925 crossref_primary_10_3390_cells10071585 crossref_primary_10_1039_D2MD00204C crossref_primary_10_1016_j_virusres_2021_198631 crossref_primary_10_1089_regen_2022_0021 crossref_primary_10_3389_fchem_2021_622898 crossref_primary_10_1080_10408363_2020_1851167 crossref_primary_10_1080_14789450_2021_2010549 crossref_primary_10_4103_1995_7645_338445 crossref_primary_10_1007_s10570_023_05060_8 crossref_primary_10_1016_j_pbiomolbio_2021_05_007 crossref_primary_10_20538_1682_0363_2022_2_195_206 crossref_primary_10_7717_peerj_11171 crossref_primary_10_1109_JSEN_2024_3411030 crossref_primary_10_1080_14756366_2021_1885396 crossref_primary_10_31260_RepertMedCir_01217372_1487 crossref_primary_10_3390_antib12030060 crossref_primary_10_1186_s12879_023_08870_0 crossref_primary_10_3390_vaccines11020243 crossref_primary_10_3390_ph13100277 crossref_primary_10_12688_f1000research_109701_1 crossref_primary_10_3390_diagnostics14050519 crossref_primary_10_12688_f1000research_109701_2 crossref_primary_10_3389_fcimb_2022_882661 crossref_primary_10_1016_j_vaccine_2022_05_065 crossref_primary_10_3389_fmed_2021_822633 crossref_primary_10_2174_0115680266251803230925075508 crossref_primary_10_1016_j_jpha_2021_03_012 crossref_primary_10_12677_ACM_2022_1281079 crossref_primary_10_3390_molecules28073159 crossref_primary_10_1016_j_imu_2023_101167 crossref_primary_10_21931_RB_2021_06_02_31 crossref_primary_10_3389_fcimb_2023_1283328 crossref_primary_10_52711_0974_360X_2023_00594 crossref_primary_10_1016_j_csbj_2021_11_040 crossref_primary_10_2174_2666796703666220623090158 crossref_primary_10_1007_s40203_024_00241_0 crossref_primary_10_1016_j_virusres_2024_199375 crossref_primary_10_1038_s43246_022_00256_0 crossref_primary_10_1016_j_gene_2021_146134 crossref_primary_10_1016_j_ejmech_2022_114458 crossref_primary_10_1631_jzus_B2000523 crossref_primary_10_2196_42700 crossref_primary_10_1002_cmdc_202100455 crossref_primary_10_1007_s11224_022_02027_6 crossref_primary_10_1186_s12985_021_01642_9 crossref_primary_10_1007_s11262_021_01846_9 crossref_primary_10_1016_j_bbadis_2021_166294 crossref_primary_10_3389_fimmu_2022_870787 crossref_primary_10_1186_s42269_023_01002_3 crossref_primary_10_3390_molecules30030491 crossref_primary_10_3389_fimmu_2021_701501 crossref_primary_10_3390_diagnostics12071561 crossref_primary_10_1016_j_imu_2023_101397 crossref_primary_10_3390_molecules27238251 crossref_primary_10_6065_apem_2244150_075 crossref_primary_10_1016_j_colsurfb_2024_114385 crossref_primary_10_1007_s00253_022_12112_9 crossref_primary_10_24171_j_phrp_2023_0209 crossref_primary_10_3389_fcimb_2021_765039 crossref_primary_10_3389_fonc_2022_1029830 crossref_primary_10_3390_antib12010005 |
Cites_doi | 10.1016/j.it.2020.02.007 10.55563/clinexprheumatol/xcdary 10.1128/JVI.00118-12 10.1016/j.tmaid.2020.101658 10.1016/S0022-2836(03)00865-9 10.4103/ijmr.IJMR_502_20 10.1038/nrmicro975 10.1038/s41368-020-0074-x 10.1016/j.antiviral.2017.12.010 10.1126/science.abb8034 10.1016/S1473-3099(14)70920-X 10.1016/j.immuni.2020.04.016 10.1186/1471-2164-15-1161 10.1042/BSR20201256 10.1126/science.abb2762 10.1073/pnas.2004168117 10.1126/science.1087139 10.1128/JVI.78.24.13600-13612.2004 10.1038/s41418-020-0530-3 10.1128/JVI.74.11.5213-5223.2000 10.1016/S2213-2600(20)30076-X 10.1016/j.virusres.2007.02.017 10.1021/acscentsci.0c00272 10.1016/j.jviromet.2005.02.005 10.1128/JVI.00467-06 10.2174/1568026616999150918145640 10.5582/bst.2020.01047 10.1038/nrmicro2090 10.3390/v12020183 10.1371/journal.pone.0038214 10.1016/j.clim.2020.108393 10.1056/NEJMoa2007016 10.1038/nrd.2015.37 10.1056/NEJMoa2001316 10.1159/000504621 10.3390/ijms21072272 10.1038/s41586-020-2008-3 10.1016/j.cell.2020.03.035 10.3389/fmicb.2019.03022 10.1016/S0140-6736(20)30183-5 10.1128/JVI.01925-19 10.1038/s41467-020-15562-9 10.1126/science.abb2507 10.1084/jem.20200537 10.1107/S0907444909018253 10.1016/j.compbiomed.2020.103670 10.1111/j.1365-2362.2010.02460.x 10.1002/jmv.25681 10.14336/AD.2020.0228 10.4049/jimmunol.1303196 10.1016/j.virol.2013.11.040 10.1073/pnas.2005615117 10.1007/s11095-020-02799-8 10.1038/s41422-020-0282-0 10.1038/s41586-020-2179-y 10.1038/s41577-020-0308-3 10.1016/j.chom.2020.02.001 10.1038/d41586-020-00889-6 10.1016/j.apsb.2020.02.008 10.1136/bmj.m1168 10.1016/S2214-109X(20)30074-7 10.1016/j.cytogfr.2014.06.005 10.1038/s41591-020-0820-9 10.1126/science.1118391 10.1080/01652176.2020.1727993 10.1001/jama.2020.1585 10.1128/mBio.00165-13 10.1093/emboj/cdf327 10.1038/s41421-020-0156-0 10.1016/j.cell.2020.02.058 10.1016/j.clim.2020.108408 10.1016/S0092-8674(00)81771-7 10.1128/JVI.01528-14 10.1128/JCM.00310-20 10.3390/v12020244 10.1002/jmv.25801 10.1016/j.ijantimicag.2020.105932 10.1016/j.coi.2019.12.002 10.3389/fmicb.2014.00296 10.1056/NEJMc2001737 10.1002/ddr.21656 10.1007/978-1-4939-2438-7_1 10.1016/bs.aivir.2016.08.005 10.1128/JVI.79.20.12905-12913.2005 10.1016/S0140-6736(20)31022-9 10.1073/pnas.0506735102 10.1093/jmcb/mjaa014 10.1093/jmcb/mjaa015 10.1126/science.1085952 10.1128/JVI.01381-18 10.2217/fvl-2018-0144 10.1016/j.tim.2018.04.004 10.1128/AAC.00483-20 10.1016/j.lfs.2020.117592 10.1038/nri1732 10.1016/j.coi.2005.05.009 10.1002/cbic.202000047 10.1080/17476348.2020.1679628 10.1016/j.phrs.2020.104761 10.1016/j.jmb.2005.09.012 10.1016/S0092-8674(03)00424-0 10.1128/JVI.01939-06 10.1016/S0140-6736(20)30251-8 10.1016/j.jmii.2020.03.005 10.1128/JVI.00080-16 10.1097/CM9.0000000000000797 10.1016/j.cell.2020.02.052 10.1021/cr4005692 10.1016/j.chom.2016.01.007 10.3390/v12020215 10.1016/j.virusres.2014.08.001 10.1073/pnas.0711241105 10.1002/minf.202000028 10.1038/nsmb999 10.1038/s41586-020-2180-5 10.1111/tmi.13383 10.1016/j.coviro.2012.04.004 10.1126/science.1085658 10.1001/jama.2020.4783 10.1038/s41467-019-13940-6 10.1128/genomeA.00818-15 10.1016/j.cub.2020.03.063 10.1016/S1473-3099(20)30141-9 10.1073/pnas.0307877101 10.20944/preprints202003.0024.v1 10.1128/JVI.70.9.6083-6096.1996 10.1016/j.jcrc.2020.03.005 10.1093/nar/gky384 10.1016/j.jmb.2008.10.045 10.1126/sciadv.aav4580 10.1016/j.lfs.2020.117477 10.1016/j.antiviral.2020.104792 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bbadis.2020.165878 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-260X |
EndPage | 165878 |
ExternalDocumentID | PMC7293463 32544429 10_1016_j_bbadis_2020_165878 S092544392030226X |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABGSF ABLVK ABMAC ABMZM ABUDA ABVKL ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IXB J1W KOM LCYCR LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSU SSZ T5K ~G- 3O- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACIEU ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ IHE R2- SBG SEW UQL WUQ XJT XPP CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c463t-c59cea239a343a8f693eac01ccfc69831eb463316d93cc3b7d06ccb08d92d2223 |
IEDL.DBID | IXB |
ISSN | 0925-4439 1879-260X |
IngestDate | Thu Aug 21 18:34:48 EDT 2025 Fri Jul 11 02:40:01 EDT 2025 Thu Apr 03 07:06:29 EDT 2025 Tue Jul 01 01:16:58 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Fri Feb 23 02:48:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | ORF FDA E SARS-CoV Molecular basis of pathogenesis Comparative genomics TMPRSS2 MERS-CoV TNF M N COVID-19 UTR SARS-CoV-2 S RBD WHO IFNγ IL Drug target Nsp G-CSF ACE2 Molecular evolution STAT JAK |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-c59cea239a343a8f693eac01ccfc69831eb463316d93cc3b7d06ccb08d92d2223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7293463 |
PMID | 32544429 |
PQID | 2414409924 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7293463 proquest_miscellaneous_2414409924 pubmed_primary_32544429 crossref_primary_10_1016_j_bbadis_2020_165878 crossref_citationtrail_10_1016_j_bbadis_2020_165878 elsevier_sciencedirect_doi_10_1016_j_bbadis_2020_165878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Molecular basis of disease |
PublicationTitleAlternate | Biochim Biophys Acta Mol Basis Dis |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Lee, Steinhauer, Stevens, Skehel, Wiley (bb0370) 1998; 95 Tang, Bidon, Jaimes, Whittaker, Daniel (bb0335) 2020 De Clercq (bb0540) 2004; 2 Cao (bb0640) 2020; 20 Zhang, Wu, Zhang (bb0175) 2020; 30 Josset, Menachery, Gralinski, Agnihothram, Sova, Carter, Yount, Graham, Baric, Katze (bb0440) 2013; 4 Shamsi, Mohammad, Anwar, AlAjmi, Hussain, Rehman, Islam, Hassan (bb0100) 2020; 40 Rota, Oberste, Monroe, Nix, Campagnoli, Icenogle, Penaranda, Bankamp, Maher, Chen (bb0145) 2003; 300 Nishikiori, Sugiyama, Xiang, Niiyama, Ishibashi, Inoue, Ishikawa, Matsumura, Katoh (bb0260) 2012; 86 Fehr, Perlman (bb0045) 2015 Cortegiani, Ingoglia, Ippolito, Giarratano, Einav (bb0530) 2020; 57 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei, Yuan, Zhang, Dai, Liu, Wang, Zheng, Xu, Holmes, Zhang (bb0135) 2020; 579 Ou, Liu, Lei, Li, Mi, Ren, Guo, Guo, Chen, Hu, Xiang, Mu, Chen, Chen, Hu, Jin, Wang, Qian (bb0360) 2020; 11 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bb0005) 2020; 395 Leng, Zhu, Hou, Feng, Yang, Han, Shan, Meng, Du, Wang, Fan, Wang, Deng, Shi, Li, Hu, Zhang, Gao, Liu, Li, Zhao, Yin, He, Gao, Wang, Yang, Jin, Stambler, Lim, Su, Moskalev, Cano, Chakrabarti, Min, Ellison-Hughes, Caruso, Jin, Zhao (bb0740) 2020; 11 Sarzi-Puttini, Giorgi, Sirotti, Marotto, Ardizzone, Rizzardini, Antinori, Galli (bb0570) 2020; 38 Ma, Xia, Zhou, Liu, Zhou, Wang, Li, Yan, Chen, Zhang (bb0700) 2020; 140 Snijder, Bredenbeek, Dobbe, Thiel, Ziebuhr, Poon, Guan, Rozanov, Spaan, Gorbalenya (bb0220) 2003; 331 van Dinten, van Tol, Gorbalenya, Snijder (bb0265) 2000; 74 T. Okabayashi, H. Kariwa, S.i. Yokota, S. Iki, T. Indoh, N. Yokosawa, I. Takashima, H. Tsutsumi, N. Fujii, Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections, Journal of Medical Virology, 78 (2006) 417–424. Elfiky (bb0500) 2020; 117592 Wang, Hu, Hu, Zhu, Liu, Zhang, Wang, Xiang, Cheng, Xiong (bb0020) 2020; 323 Graham, Sparks, Eckerle, Sims, Denison (bb0105) 2008; 133 Almeida, Johnson, Herrmann, Geralt, Wuthrich (bb0205) 2007; 81 Golchin, Seyedjafari, Ardeshirylajimi (bb0650) 2020 Sexton, Smith, Blanc, Vignuzzi, Peersen, Denison (bb0760) 2016; 90 Chiang, Davis, Gack (bb0425) 2014; 25 Z. Ruan, C. Liu, Y. Guo, Z. He, X. Huang, X. Jia, T. Yang, Potential Inhibitors Targeting RNA-Dependent RNA Polymerase Activity (NSP12) of SARS-CoV-2, (2020). Li, Guan, Wu, Wang, Zhou, Tong, Ren, Leung, Lau, Wong (bb0010) 2020; 382 Zhang, Lin, Sun, Curth, Drosten, Sauerhering, Becker, Rox, Hilgenfeld (bb0095) 2020 Shen, Wang, Zhao, Yang, Li, Yuan, Wang, Li, Yang, Xing, Wei, Xiao, Qu, Qing, Chen, Xu, Peng, Li, Zheng, Chen, Huang, Jiang, Liu, Zhang, Liu, Liu (bb0655) 2020; 323 Joseph, Saikatendu, Subramanian, Neuman, Brooun, Griffith, Moy, Yadav, Velasquez, Buchmeier, Stevens, Kuhn (bb0250) 2006; 80 FitzGerald (bb0710) 2020; 367 Peti, Johnson, Herrmann, Neuman, Buchmeier, Nelson, Joseph, Page, Stevens, Kuhn, Wuthrich (bb0235) 2005; 79 Zumla, Chan, Azhar, Hui, Yuen (bb0070) 2016; 15 Harcourt, Jukneliene, Kanjanahaluethai, Bechill, Severson, Smith, Rota, Baker (bb0210) 2004; 78 Zou, Ruan, Huang, Liang, Huang, Hong, Yu, Kang, Song, Xia (bb0015) 2020; 382 Zhang, Holmes (bb0155) 2020; 181 Zhang, Wu, Li, Zhao, Wang (bb0750) 2020; 105954 Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche, Muller, Drosten, Pohlmann (bb0085) 2020 Haga, Yamamoto, Nakai-Murakami, Osawa, Tokunaga, Sata, Yamamoto, Sasazuki, Ishizaka (bb0480) 2008; 105 Greene, Hiemstra (bb0400) 2020; 12 Moens, Meyts (bb0395) 2020; 62 Duan, Liu, Zhao, Huang, Ren, Liu, Zhou, The Trial of Chloroquine in the Treatment of Corona Virus Disease (bb0665) 2019; 36 Chan, Yip, K.K. To, Tang, Wong, Leung, Fung, Ng, Zou, Tsoi, Choi, Tam, Cheng, Chan, Tsang, Yuen (bb0300) 2020; 58 Shi, Qi, Boularan, Huang, Abu-Asab, Shelhamer, Kehrl (bb0415) 2014; 193 Omrani, Saad, Baig, Bahloul, Abdul-Matin, Alaidaroos, Almakhlafi, Albarrak, Memish, Albarrak (bb0720) 2014; 14 Paquette, Banner, Zhao, Fang, Huang, Leόn, Ng, Almansa, Martin-Loeches, Ramirez (bb0470) 2012; 7 Minakshi, Padhan, Rehman, Hassan, Ahmad (bb0285) 2014; 191 Selinger, Tisoncik-Go, Menachery, Agnihothram, Law, Chang, Kelly, Sova, Baric, Katze (bb0430) 2014; 15 Bomma, Venkatesh, Kumar, Babu, Rao (bb0275) 2012; 21 Morse, Lalonde, Xu, Liu (bb0130) 2020; 21 Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld (bb0380) 2003; 300 Dandekar, Perlman (bb0445) 2005; 5 Xu, Zhong, Deng, Peng, Dan, Zeng, Li, Chen (bb0615) 2020; 12 Manolaridis, Wojdyla, Panjikar, Snijder, Gorbalenya, Berglind, Nordlund, Coutard, Tucker (bb0225) 2009; 65 Deng, StJohn, Osswald, O’Brien, Banach, Sleeman, Ghosh, Mesecar, Baker (bb0770) 2014; 88 Li, Yuan, Dai, Chen, Liu, Fung (bb0330) 2020; 10 Jawhara (bb0695) 2020; 21 Liu, Cao, Xu, Wang, Zhang, Hu, Li, Hu, Zhong, Wang (bb0605) 2020; 6 Walls, Park, Tortorici, Wall, McGuire, Veesler (bb0295) 2020; 181 Runfeng, Yunlong, Jicheng, Weiqi, Qinhai, Yongxia, Chufang, Jin, Zhenhua, Haiming (bb0455) 2020; 156 Ledford (bb0485) 2020; 580 Zhang, Zhao, Zhang, Wang, Li, Liu, Wang, Qin, Zhang, Yan, Zeng, Zhang (bb0510) 2020; 214 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu (bb0055) 2020; 395 Lau, Peiris (bb0060) 2005; 17 Sit, Brackman, Ip, Tam, Law, E.M. To, Yu, Sims, Tsang, Chu (bb0180) 2020 Anand, Palm, Mesters, Siddell, Ziebuhr, Hilgenfeld (bb0230) 2002; 21 Huang (bb0625) 2011; 41 Chen, Xiong, Bao, Shi (bb0660) 2020; 20 Cao (bb0465) 2020; 20 Chen, Liu, Guo (bb0035) 2020; 92 Ton, Gentile, Hsing, Ban, Cherkasov (bb0090) 2020; 39 Li, Zhou, Zhang, Wang, Zhao, Liu (bb0550) 2020; 64 Wang, Li, Jin, Zhen, Kong, Song, Xiao, Yin, Wei, Wang, Si, Guo, Liu, Ou, Wang, Fang, Chao, Li (bb0765) 2005; 126 Mercorelli, Palù, Loregian (bb0790) 2018; 26 Cong, Ulasli, Schepers, Mauthe, V’kovski, Kriegenburg, Thiel, de Haan, Reggiori (bb0345) 2020; 94 Elfiky (bb0560) 2020; 248 Schlagenhauf, Grobusch, Maier, Gautret (bb0585) 2020; 34 Alsadi, Jones (bb0190) 2019; 14 Du, He, Zhou, Liu, Zheng, Jiang (bb0515) 2009; 7 Xue, Blocquel, Habchi, Uversky, Kurgan, Uversky, Longhi (bb0185) 2014; 114 von Grotthuss, Wyrwicz, Rychlewski (bb0270) 2003; 113 Hong (bb0595) 2020; 12 Elfiky (bb0565) 2020; 253 Fung, Liu (bb0405) 2014; 5 Mészáros, Erdős, Dosztányi (bb0280) 2018; 46 Muller, Schulte, Lange-Grunweller, Obermann, Madhugiri, Pleschka, Ziebuhr, Hartmann, Grunweller (bb0200) 2018; 150 Gao, Yan, Huang, Liu, Zhao, Cao, Wang, Sun, Ming, Zhang, Ge, Zheng, Zhang, Wang, Zhu, Zhu, Hu, Hua, Zhang, Yang, Li, Yang, Liu, Xu, Guddat, Wang, Lou, Rao (bb0375) 2020 Orleans, Vice, Manchikanti (bb0735) 2020; 23 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bb0290) 2020; 581 A.C. Walls, X. Xiong, Y.-J. Park, M.A. Tortorici, J. Snijder, J. Quispe, E. Cameroni, R. Gopal, M. Dai, A. Lanzavecchia, Unexpected receptor functional mimicry elucidates activation of coronavirus fusion, Cell, 176 (2019) 1026–1039. e1015. Xu, Zhao, Teng, Abdalla, Zhu, Xie, Wang, Guo (bb0075) 2020; 12 Channappanavar, Fehr, Vijay, Mack, Zhao, Meyerholz, Perlman (bb0450) 2016; 19 Hassan (bb0355) 2016; 16 Lu, Wang, Wang, Nie, Zhao, Su, Deng, Zhou, Li, Wang (bb0140) 2015; 3 Colson, Rolain, Lagier, Brouqui, Raoult (bb0525) 2020; 55 Andersen, Rambaut, Lipkin, Holmes, Garry (bb0080) 2020; 26 Qing, Gallagher (bb0315) 2020; 41 Wang, Zhang, Du, Du, Zhao, Jin, Fu, Gao, Cheng, Lu, Hu, Luo, Wang, Lu, Li, Wang, Ruan, Yang, Mei, Wang, Ding, Wu, Tang, Ye, Ye, Liu, Yang, Yin, Wang, Fan, Zhou, Liu, Gu, Xu, Shang, Zhang, Cao, Guo, Wan, Qin, Jiang, Jaki, Hayden, Horby, Cao, Wang (bb0580) 2020; 395 Zhang, Lin, Sun, Curth, Drosten, Sauerhering, Becker, Rox, Hilgenfeld (bb0390) 2020 Graham, Baric (bb0150) 2020; 52 Xia, Yan, Xu, Agrawal, Algaissi, Tseng, Wang, Du, Tan, Wilson (bb0320) 2019; 5 Koren, King, Knowles, Phillips (bb0555) 2003; 168 Day (bb0675) 2020; 368 Tong (bb0115) 2009; 9 Fan, Wang, Liu, An, Liu, He, Song, Tong (bb0785) 2020; 133 Zhang, Penninger, Li, Zhong, Slutsky (bb0065) 2020 Zanotto, Gibbs, Gould, Holmes (bb0255) 1996; 70 Mielech, Kilianski, Baez-Santos, Mesecar, Baker (bb0435) 2014; 450 Capuano, Scavone, Racagni, Scaglione (bb0715) 2020; 104849 Duan, Liu, Li, Zhang, Yu, Qu, Zhou, Chen, Meng, Hu, Peng, Yuan, Huang, Wang, Yu, Gao, Wang, Yu, Li, Zhang, Wu, Li, Xu, Chen, Peng, Lin, Liu, Huang, Zhou, Zhang, Wang, Zhang, Deng, Xia, Gong, Zhang, Zheng, Liu, Yang, Zhou, Yu, Hou, Shi, Chen, Chen, Zhang, Yang (bb0745) 2020; 117 Kleine-Weber, Elzayat, Wang, Graham, Muller, Drosten, Pohlmann, Hoffmann (bb0775) 2019; 93 Tan, Verschueren, Anand, Shen, Yang, Xu, Rao, Bigalke, Heisen, Mesters (bb0385) 2005; 354 Neuman, Buchmeier (bb0340) 2016; 96 Gao, Tian, Yang (bb0600) 2020; 14 Chen, Strych, Hotez, Bottazzi (bb0705) 2020 Hellewell, Abbott, Gimma, Bosse, Jarvis, Russell, Munday, Kucharski, Edmunds, Sun (bb0050) 2020; 8 FitzGerald (bb0610) 2020; 367 Robson (bb0505) 2020; 119 Lau, Woo, Li, Huang, Tsoi, Wong, Wong, Leung, Chan, Yuen (bb0170) 2005; 102 Fehr, Perlman (bb0325) 2015; 1282 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bb0120) 2020; 367 Neuvonen, Ahola (bb0215) 2009; 385 Xu, Han, Li, Sun, Wang, Fu, Zhou, Zheng, Yang, Li, Zhang, Pan, Wei (bb0645) 2020; 117 Suzuki, Otake, Uchimoto, Hasebe, Goto (bb0125) 2020; 12 South, Diz, Chappell (bb0620) 2020; 318 Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bb0110) 2020; 581 Weiss (bb0420) 2020; 217 Yan, Zhang, Li, Xia, Guo, Zhou (bb0310) 2020; 367 Li, Shi, Yu, Ren, Smith, Epstein, Wang, Crameri, Hu, Zhang, Zhang, McEachern, Field, Daszak, Eaton, Zhang, Wang (bb0160) 2005; 310 Xu, Shi, Wang, Zhang, Huang, Zhang, Liu, Zhao, Liu, Zhu (bb0030) 2020; 8 Guastalegname, Vallone (bb0495) 2020 Gurwitz (bb0690) 2020 Totura, Baric (bb0410) 2012; 2 Wu, Peng, Huang, Ding, Wang, Niu, Meng, Zhu, Zhang, Wang (bb0040) 2020; 27 Egloff, Ferron, Campanacci, Longhi, Rancurel, Dutartre, Snijder, Gorbalenya, Cambillau, Canard (bb0245) 2004; 101 Luo, Liu, Qiu, Liu, Liu, Li (bb0755) 2020; 92 Atluri, Manchikanti, Hirsch (bb0680) 2020; 23 Ekins, Lane, Madrid (bb0685) 2020; 37 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bb0305) 2020; 367 Wang, Cao, Zhang, Yang, Liu, Xu, Shi, Robson (10.1016/j.bbadis.2020.165878_bb0505) 2020; 119 Bomma (10.1016/j.bbadis.2020.165878_bb0275) 2012; 21 Wu (10.1016/j.bbadis.2020.165878_bb0535) 2020; 53 Chiang (10.1016/j.bbadis.2020.165878_bb0425) 2014; 25 Wrapp (10.1016/j.bbadis.2020.165878_bb0120) 2020; 367 Fung (10.1016/j.bbadis.2020.165878_bb0405) 2014; 5 Sit (10.1016/j.bbadis.2020.165878_bb0180) 2020 Fehr (10.1016/j.bbadis.2020.165878_bb0325) 2015; 1282 Zumla (10.1016/j.bbadis.2020.165878_bb0575) 2016; 15 Gao (10.1016/j.bbadis.2020.165878_bb0600) 2020; 14 FitzGerald (10.1016/j.bbadis.2020.165878_bb0710) 2020; 367 Elfiky (10.1016/j.bbadis.2020.165878_bb0565) 2020; 253 Gurwitz (10.1016/j.bbadis.2020.165878_bb0690) 2020 Muller (10.1016/j.bbadis.2020.165878_bb0200) 2018; 150 Duan (10.1016/j.bbadis.2020.165878_bb0665) 2019; 36 Cao (10.1016/j.bbadis.2020.165878_bb0640) 2020; 20 Cruz (10.1016/j.bbadis.2020.165878_bb0730) 2020; 14 Wu (10.1016/j.bbadis.2020.165878_bb0040) 2020; 27 Deng (10.1016/j.bbadis.2020.165878_bb0770) 2014; 88 Duan (10.1016/j.bbadis.2020.165878_bb0745) 2020; 117 Lu (10.1016/j.bbadis.2020.165878_bb0140) 2015; 3 Moens (10.1016/j.bbadis.2020.165878_bb0395) 2020; 62 Kleine-Weber (10.1016/j.bbadis.2020.165878_bb0775) 2019; 93 Li (10.1016/j.bbadis.2020.165878_bb0550) 2020; 64 Chen (10.1016/j.bbadis.2020.165878_bb0660) 2020; 20 Zhang (10.1016/j.bbadis.2020.165878_bb0095) Luo (10.1016/j.bbadis.2020.165878_bb0755) 2020; 92 Mészáros (10.1016/j.bbadis.2020.165878_bb0280) 2018; 46 Shi (10.1016/j.bbadis.2020.165878_bb0415) 2014; 193 Malik (10.1016/j.bbadis.2020.165878_bb0025) 2020; 40 Xia (10.1016/j.bbadis.2020.165878_bb0320) 2019; 5 Lau (10.1016/j.bbadis.2020.165878_bb0060) 2005; 17 Gao (10.1016/j.bbadis.2020.165878_bb0375) Hellewell (10.1016/j.bbadis.2020.165878_bb0050) 2020; 8 Wang (10.1016/j.bbadis.2020.165878_bb0520) 2020; 30 Joseph (10.1016/j.bbadis.2020.165878_bb0250) 2006; 80 Anand (10.1016/j.bbadis.2020.165878_bb0380) 2003; 300 Walls (10.1016/j.bbadis.2020.165878_bb0295) 2020; 181 Sheahan (10.1016/j.bbadis.2020.165878_bb0725) 2020; 11 Zhang (10.1016/j.bbadis.2020.165878_bb0065) 2020 Suzuki (10.1016/j.bbadis.2020.165878_bb0125) 2020; 12 Rota (10.1016/j.bbadis.2020.165878_bb0145) 2003; 300 Elfiky (10.1016/j.bbadis.2020.165878_bb0500) 2020; 117592 Tang (10.1016/j.bbadis.2020.165878_bb0335) 2020 Hong (10.1016/j.bbadis.2020.165878_bb0595) 2020; 12 Xu (10.1016/j.bbadis.2020.165878_bb0075) 2020; 12 Shamsi (10.1016/j.bbadis.2020.165878_bb0795) 2020; 40 Neuman (10.1016/j.bbadis.2020.165878_bb0340) 2016; 96 Dandekar (10.1016/j.bbadis.2020.165878_bb0445) 2005; 5 Selinger (10.1016/j.bbadis.2020.165878_bb0430) 2014; 15 Xu (10.1016/j.bbadis.2020.165878_bb0030) 2020; 8 Zumla (10.1016/j.bbadis.2020.165878_bb0070) 2016; 15 Josset (10.1016/j.bbadis.2020.165878_bb0440) 2013; 4 Du (10.1016/j.bbadis.2020.165878_bb0515) 2009; 7 Zhai (10.1016/j.bbadis.2020.165878_bb0240) 2005; 12 Channappanavar (10.1016/j.bbadis.2020.165878_bb0450) 2016; 19 Chen (10.1016/j.bbadis.2020.165878_bb0705) 2020 Guastalegname (10.1016/j.bbadis.2020.165878_bb0495) 2020 Li (10.1016/j.bbadis.2020.165878_bb0330) 2020; 10 Chen (10.1016/j.bbadis.2020.165878_bb0370) 1998; 95 Nishikiori (10.1016/j.bbadis.2020.165878_bb0260) 2012; 86 van Dinten (10.1016/j.bbadis.2020.165878_bb0265) 2000; 74 De Clercq (10.1016/j.bbadis.2020.165878_bb0540) 2004; 2 Golchin (10.1016/j.bbadis.2020.165878_bb0650) 2020 10.1016/j.bbadis.2020.165878_bb0475 Zhang (10.1016/j.bbadis.2020.165878_bb0750) 2020; 105954 Sexton (10.1016/j.bbadis.2020.165878_bb0760) 2016; 90 Jawhara (10.1016/j.bbadis.2020.165878_bb0695) 2020; 21 10.1016/j.bbadis.2020.165878_bb0350 Ekins (10.1016/j.bbadis.2020.165878_bb0685) 2020; 37 Lan (10.1016/j.bbadis.2020.165878_bb0290) 2020; 581 Shamsi (10.1016/j.bbadis.2020.165878_bb0100) 2020; 40 Leng (10.1016/j.bbadis.2020.165878_bb0740) 2020; 11 Wu (10.1016/j.bbadis.2020.165878_bb0135) 2020; 579 Huang (10.1016/j.bbadis.2020.165878_bb0590) 2020; 12 Zhang (10.1016/j.bbadis.2020.165878_bb0155) 2020; 181 Qing (10.1016/j.bbadis.2020.165878_bb0315) 2020; 41 Ledford (10.1016/j.bbadis.2020.165878_bb0485) 2020; 580 Liu (10.1016/j.bbadis.2020.165878_bb0605) 2020; 6 Haga (10.1016/j.bbadis.2020.165878_bb0480) 2008; 105 Cortegiani (10.1016/j.bbadis.2020.165878_bb0530) 2020; 57 Orleans (10.1016/j.bbadis.2020.165878_bb0735) 2020; 23 Mielech (10.1016/j.bbadis.2020.165878_bb0435) 2014; 450 Elfiky (10.1016/j.bbadis.2020.165878_bb0560) 2020; 248 Zou (10.1016/j.bbadis.2020.165878_bb0015) 2020; 382 Atluri (10.1016/j.bbadis.2020.165878_bb0680) 2020; 23 10.1016/j.bbadis.2020.165878_bb0365 Ou (10.1016/j.bbadis.2020.165878_bb0360) 2020; 11 Weiss (10.1016/j.bbadis.2020.165878_bb0420) 2020; 217 Anand (10.1016/j.bbadis.2020.165878_bb0230) 2002; 21 Velavan (10.1016/j.bbadis.2020.165878_bb0545) 2020; 25 Paquette (10.1016/j.bbadis.2020.165878_bb0470) 2012; 7 Guan (10.1016/j.bbadis.2020.165878_bb0165) 2003; 302 Omrani (10.1016/j.bbadis.2020.165878_bb0720) 2014; 14 Graham (10.1016/j.bbadis.2020.165878_bb0150) 2020; 52 Greene (10.1016/j.bbadis.2020.165878_bb0400) 2020; 12 Andersen (10.1016/j.bbadis.2020.165878_bb0080) 2020; 26 Wu (10.1016/j.bbadis.2020.165878_bb0780) 2020; 10 Li (10.1016/j.bbadis.2020.165878_bb0010) 2020; 382 Day (10.1016/j.bbadis.2020.165878_bb0675) 2020; 368 Minakshi (10.1016/j.bbadis.2020.165878_bb0285) 2014; 191 Shi (10.1016/j.bbadis.2020.165878_bb0460) 2020; 27 Neuvonen (10.1016/j.bbadis.2020.165878_bb0215) 2009; 385 Wang (10.1016/j.bbadis.2020.165878_bb0765) 2005; 126 Koren (10.1016/j.bbadis.2020.165878_bb0555) 2003; 168 Tang (10.1016/j.bbadis.2020.165878_bb0195) 2020; 12 Lu (10.1016/j.bbadis.2020.165878_bb0055) 2020; 395 Zhang (10.1016/j.bbadis.2020.165878_bb0390) Xu (10.1016/j.bbadis.2020.165878_bb0615) 2020; 12 Hassan (10.1016/j.bbadis.2020.165878_bb0355) 2016; 16 Grein (10.1016/j.bbadis.2020.165878_bb0635) 2020; 382 Huang (10.1016/j.bbadis.2020.165878_bb0005) 2020; 395 Mercorelli (10.1016/j.bbadis.2020.165878_bb0790) 2018; 26 Peti (10.1016/j.bbadis.2020.165878_bb0235) 2005; 79 Ton (10.1016/j.bbadis.2020.165878_bb0090) 2020; 39 Wang (10.1016/j.bbadis.2020.165878_bb0020) 2020; 323 Shang (10.1016/j.bbadis.2020.165878_bb0110) 2020; 581 Schlagenhauf (10.1016/j.bbadis.2020.165878_bb0585) 2020; 34 Tan (10.1016/j.bbadis.2020.165878_bb0385) 2005; 354 Huang (10.1016/j.bbadis.2020.165878_bb0625) 2011; 41 Harcourt (10.1016/j.bbadis.2020.165878_bb0210) 2004; 78 Cong (10.1016/j.bbadis.2020.165878_bb0345) 2020; 94 Manolaridis (10.1016/j.bbadis.2020.165878_bb0225) 2009; 65 Capuano (10.1016/j.bbadis.2020.165878_bb0715) 2020; 104849 Alsadi (10.1016/j.bbadis.2020.165878_bb0190) 2019; 14 Graham (10.1016/j.bbadis.2020.165878_bb0105) 2008; 133 South (10.1016/j.bbadis.2020.165878_bb0620) 2020; 318 Li (10.1016/j.bbadis.2020.165878_bb0160) 2005; 310 Morse (10.1016/j.bbadis.2020.165878_bb0130) 2020; 21 Hoffmann (10.1016/j.bbadis.2020.165878_bb0085) 2020 von Grotthuss (10.1016/j.bbadis.2020.165878_bb0270) 2003; 113 Zhang (10.1016/j.bbadis.2020.165878_bb0175) 2020; 30 Almeida (10.1016/j.bbadis.2020.165878_bb0205) 2007; 81 Totura (10.1016/j.bbadis.2020.165878_bb0410) 2012; 2 Bhatnagar (10.1016/j.bbadis.2020.165878_bb0670) 2020; 151 Lau (10.1016/j.bbadis.2020.165878_bb0170) 2005; 102 Liu (10.1016/j.bbadis.2020.165878_bb0490) 2020; 6 FitzGerald (10.1016/j.bbadis.2020.165878_bb0610) 2020; 367 Zhang (10.1016/j.bbadis.2020.165878_bb0630) 2020; 126 Fan (10.1016/j.bbadis.2020.165878_bb0785) 2020; 133 Wang (10.1016/j.bbadis.2020.165878_bb0580) 2020; 395 Fehr (10.1016/j.bbadis.2020.165878_bb0045) 2015 Sarzi-Puttini (10.1016/j.bbadis.2020.165878_bb0570) 2020; 38 Snijder (10.1016/j.bbadis.2020.165878_bb0220) 2003; 331 Wrapp (10.1016/j.bbadis.2020.165878_bb0305) 2020; 367 Zanotto (10.1016/j.bbadis.2020.165878_bb0255) 1996; 70 Runfeng (10.1016/j.bbadis.2020.165878_bb0455) 2020; 156 Zhang (10.1016/j.bbadis.2020.165878_bb0510) 2020; 214 Tong (10.1016/j.bbadis.2020.165878_bb0115) 2009; 9 Egloff (10.1016/j.bbadis.2020.165878_bb0245) 2004; 101 Cao (10.1016/j.bbadis.2020.165878_bb0465) 2020; 20 Xu (10.1016/j.bbadis.2020.165878_bb0645) 2020; 117 Shen (10.1016/j.bbadis.2020.165878_bb0655) 2020; 323 Colson (10.1016/j.bbadis.2020.165878_bb0525) 2020; 55 Xue (10.1016/j.bbadis.2020.165878_bb0185) 2014; 114 Chan (10.1016/j.bbadis.2020.165878_bb0300) 2020; 58 Yan (10.1016/j.bbadis.2020.165878_bb0310) 2020; 367 Ma (10.1016/j.bbadis.2020.165878_bb0700) 2020; 140 Chen (10.1016/j.bbadis.2020.165878_bb0035) 2020; 92 |
References_xml | – volume: 55 start-page: 105932 year: 2020 ident: bb0525 article-title: Chloroquine and hydroxychloroquine as available weapons to fight COVID-19 publication-title: Int J Antimicrob Agents – reference: A.C. Walls, X. Xiong, Y.-J. Park, M.A. Tortorici, J. Snijder, J. Quispe, E. Cameroni, R. Gopal, M. Dai, A. Lanzavecchia, Unexpected receptor functional mimicry elucidates activation of coronavirus fusion, Cell, 176 (2019) 1026–1039. e1015. – volume: 12 start-page: 183 year: 2020 ident: bb0125 article-title: Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis publication-title: Viruses – volume: 150 start-page: 123 year: 2018 end-page: 129 ident: bb0200 article-title: Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses publication-title: Antivir. Res. – year: 2020 ident: bb0085 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 27 start-page: 325 year: 2020 end-page: 328 ident: bb0040 article-title: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China publication-title: Cell Host Microbe – volume: 151 start-page: 184 year: 2020 end-page: 189 ident: bb0670 article-title: Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: protocol for restricted public health emergency use publication-title: Indian J. Med. Res. – volume: 11 start-page: 216 year: 2020 end-page: 228 ident: bb0740 article-title: Transplantation of ACE2(−) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia publication-title: Aging Dis. – volume: 382 start-page: 1199 year: 2020 end-page: 1207 ident: bb0010 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia publication-title: N. Engl. J. Med. – volume: 318 start-page: H1084 year: 2020 end-page: H1090 ident: bb0620 article-title: COVID-19, ACE2, and the cardiovascular consequences publication-title: Am. J. Phys. Heart Circ. Phys. – year: 2020 ident: bb0690 article-title: Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics publication-title: Drug Dev. Res. – volume: 58 start-page: e00310 year: 2020 end-page: 20 ident: bb0300 article-title: Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens publication-title: J. Clin. Microbiol. – volume: 133 start-page: 1051 year: 2020 end-page: 1056 ident: bb0785 article-title: Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model publication-title: Chin. Med. J. – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bb0290 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 79 start-page: 12905 year: 2005 end-page: 12913 ident: bb0235 article-title: Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7 publication-title: J. Virol. – volume: 11 start-page: 1 year: 2020 end-page: 14 ident: bb0725 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV publication-title: Nat. Commun. – volume: 40 year: 2020 ident: bb0795 article-title: Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy publication-title: Bioscience Reports – volume: 21 start-page: 61 year: 2012 end-page: 70 ident: bb0275 article-title: PONDR (predicators of natural disorder regions) publication-title: International Journal of Computer Technology and Electronics Engineering – reference: T. Okabayashi, H. Kariwa, S.i. Yokota, S. Iki, T. Indoh, N. Yokosawa, I. Takashima, H. Tsutsumi, N. Fujii, Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections, Journal of Medical Virology, 78 (2006) 417–424. – volume: 64 start-page: e00483 year: 2020 end-page: 20 ident: bb0550 article-title: Updated approaches against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. – volume: 367 start-page: 1434 year: 2020 ident: bb0610 article-title: Misguided drug advice for COVID-19 publication-title: Science – volume: 23 start-page: E71 year: 2020 end-page: E83 ident: bb0735 article-title: Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use publication-title: Pain Physician – volume: 65 start-page: 839 year: 2009 end-page: 846 ident: bb0225 article-title: Structure of the C-terminal domain of nsp4 from feline coronavirus publication-title: Acta Crystallogr D Biol Crystallogr – year: 2020 ident: bb0375 article-title: Structure of the RNA-dependent RNA polymerase from COVID-19 virus – volume: 27 start-page: 1451 year: 2020 end-page: 1454 ident: bb0460 article-title: COVID-19 infection: the perspectives on immune responses publication-title: Cell Death Differ. – volume: 181 start-page: 223 year: 2020 end-page: 227 ident: bb0155 article-title: A genomic perspective on the origin and emergence of SARS-CoV-2 publication-title: Cell – volume: 193 start-page: 3080 year: 2014 end-page: 3089 ident: bb0415 article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome publication-title: J. Immunol. – volume: 12 start-page: 8 year: 2020 ident: bb0615 article-title: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa publication-title: Int J Oral Sci – volume: 5 start-page: 296 year: 2014 ident: bb0405 article-title: Coronavirus infection, ER stress, apoptosis and innate immunity publication-title: Front. Microbiol. – volume: 30 start-page: 269 year: 2020 end-page: 271 ident: bb0520 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. – volume: 8 start-page: 420 year: 2020 end-page: 422 ident: bb0030 article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome publication-title: The Lancet Respiratory Medicine – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bb0305 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – start-page: 104792 year: 2020 ident: bb0335 article-title: Coronavirus membrane fusion mechanism offers as a potential target for antiviral development publication-title: Antiviral Research – volume: 253 start-page: 117592 year: 2020 ident: bb0565 article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study publication-title: Life Sci. – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bb0135 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 105 start-page: 7809 year: 2008 end-page: 7814 ident: bb0480 article-title: Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 980 year: 2005 end-page: 986 ident: bb0240 article-title: Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer publication-title: Nat. Struct. Mol. Biol. – volume: 36 year: 2019 ident: bb0665 article-title: COVID-19 and its research progress in forensic toxicology publication-title: Fa Yi Xue Za Zhi – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: bb0005 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: The Lancet – volume: 101 start-page: 3792 year: 2004 end-page: 3796 ident: bb0245 article-title: The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 year: 2015 ident: bb0140 article-title: Complete genome sequence of Middle East respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China publication-title: Genome Announc. – volume: 46 start-page: W329 year: 2018 end-page: W337 ident: bb0280 article-title: IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding publication-title: Nucleic Acids Res. – volume: 80 start-page: 7894 year: 2006 end-page: 7901 ident: bb0250 article-title: Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs publication-title: J. Virol. – volume: 140 start-page: 108408 year: 2020 ident: bb0700 article-title: Potential effect of blood purification therapy in reducing cytokine storm as a late complication of severe COVID-19 publication-title: Clinical Immunology (Orlando, Fla.) – volume: 191 start-page: 180 year: 2014 end-page: 183 ident: bb0285 article-title: The SARS coronavirus 3a protein binds calcium in its cytoplasmic domain publication-title: Virus Res. – volume: 302 start-page: 276 year: 2003 end-page: 278 ident: bb0165 article-title: Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China publication-title: Science – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: bb0310 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 14 start-page: 1090 year: 2014 end-page: 1095 ident: bb0720 article-title: Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study publication-title: Lancet Infect. Dis. – volume: 25 start-page: 278 year: 2020 end-page: 280 ident: bb0545 article-title: The COVID-19 epidemic publication-title: Tropical Med. Int. Health – volume: 11 start-page: 1620 year: 2020 ident: bb0360 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. – year: 2020 ident: bb0095 article-title: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors – volume: 385 start-page: 212 year: 2009 end-page: 225 ident: bb0215 article-title: Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites publication-title: J. Mol. Biol. – volume: 217 start-page: e20200537 year: 2020 ident: bb0420 article-title: Forty years with coronaviruses publication-title: Journal of Experimental Medicine – start-page: 1 year: 2020 end-page: 7 ident: bb0650 article-title: Mesenchymal stem cell therapy for COVID-19: present or future publication-title: Stem Cell Rev. Rep. – volume: 12 start-page: 215 year: 2020 ident: bb0195 article-title: Helicase of Type 2 porcine reproductive and respiratory syndrome virus strain hv reveals a unique structure publication-title: Viruses – start-page: 1 year: 2020 end-page: 5 ident: bb0065 article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target publication-title: Intensive Care Med. – volume: 5 start-page: 917 year: 2005 end-page: 927 ident: bb0445 article-title: Immunopathogenesis of coronavirus infections: implications for SARS publication-title: Nat. Rev. Immunol. – volume: 20 start-page: 398 year: 2020 end-page: 400 ident: bb0660 article-title: Convalescent plasma as a potential therapy for COVID-19 publication-title: Lancet Infect. Dis. – volume: 21 start-page: 730 year: 2020 end-page: 738 ident: bb0130 article-title: Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV publication-title: Chembiochem – volume: 62 start-page: 79 year: 2020 end-page: 90 ident: bb0395 article-title: Recent human genetic errors of innate immunity leading to increased susceptibility to infection publication-title: Curr. Opin. Immunol. – volume: 37 start-page: 71 year: 2020 ident: bb0685 article-title: Tilorone: a broad-spectrum antiviral invented in the USA and commercialized in Russia and beyond publication-title: Pharm. Res. – volume: 119 start-page: 103670 year: 2020 ident: bb0505 article-title: Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus publication-title: Comput. Biol. Med. – volume: 300 start-page: 1763 year: 2003 end-page: 1767 ident: bb0380 article-title: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs publication-title: Science – volume: 117592 year: 2020 ident: bb0500 article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study publication-title: Life Sci. – volume: 19 start-page: 181 year: 2016 end-page: 193 ident: bb0450 article-title: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice publication-title: Cell Host Microbe – volume: 310 start-page: 676 year: 2005 end-page: 679 ident: bb0160 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science – volume: 53 start-page: 368 year: 2020 end-page: 370 ident: bb0535 article-title: TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib publication-title: J Microbiol Immunol Infect – volume: 14 start-page: 72 year: 2020 end-page: 73 ident: bb0600 article-title: Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies publication-title: Bioscience Trends – volume: 16 start-page: 899 year: 2016 end-page: 900 ident: bb0355 article-title: Editorial. Recent advances in the structure-based drug design and discovery publication-title: Curr. Top. Med. Chem. – volume: 30 start-page: 1578 year: 2020 ident: bb0175 article-title: Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak publication-title: Curr. Biol. – volume: 10 start-page: 3022 year: 2020 ident: bb0330 article-title: Regulation of the ER stress response by the Ion Channel activity of the infectious bronchitis coronavirus envelope protein modulates Virion release, apoptosis, viral fitness, and pathogenesis publication-title: Front. Microbiol. – volume: 40 start-page: 68 year: 2020 end-page: 76 ident: bb0025 article-title: Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments publication-title: Vet. Q. – volume: 92 start-page: 418 year: 2020 end-page: 423 ident: bb0035 article-title: Emerging coronaviruses: genome structure, replication, and pathogenesis publication-title: J. Med. Virol. – volume: 23 start-page: E71 year: 2020 end-page: E83 ident: bb0680 article-title: Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use publication-title: Pain Physician – volume: 354 start-page: 25 year: 2005 end-page: 40 ident: bb0385 article-title: pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses publication-title: J. Mol. Biol. – volume: 15 start-page: 327 year: 2016 end-page: 347 ident: bb0575 article-title: Coronaviruses—drug discovery and therapeutic options publication-title: Nat. Rev. Drug Discov. – volume: 12 year: 2020 ident: bb0075 article-title: Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV publication-title: Viruses – volume: 94 start-page: e01925 year: 2020 end-page: 19 ident: bb0345 article-title: Nucleocapsid Protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle publication-title: Journal of Virology – volume: 88 start-page: 11886 year: 2014 end-page: 11898 ident: bb0770 article-title: Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance publication-title: J. Virol. – volume: 15 start-page: 1161 year: 2014 ident: bb0430 article-title: Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates publication-title: BMC Genomics – volume: 102 start-page: 14040 year: 2005 end-page: 14045 ident: bb0170 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 491 year: 2014 end-page: 505 ident: bb0425 article-title: Regulation of RIG-I-like receptor signaling by host and viral proteins publication-title: Cytokine Growth Factor Rev. – volume: 86 start-page: 7565 year: 2012 end-page: 7576 ident: bb0260 article-title: Crystal structure of the superfamily 1 helicase from tomato mosaic virus publication-title: J. Virol. – volume: 96 start-page: 1 year: 2016 end-page: 27 ident: bb0340 article-title: Supramolecular architecture of the coronavirus particle publication-title: Adv. Virus Res. – volume: 117 start-page: 9490 year: 2020 end-page: 9496 ident: bb0745 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc Natl Acad Sci U S A – volume: 580 start-page: 15 year: 2020 end-page: 16 ident: bb0485 article-title: Coronavirus shuts down trials of drugs for multiple other diseases publication-title: Nature – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bb0055 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: bb0295 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – start-page: 1 year: 2020 end-page: 4 ident: bb0705 article-title: The SARS-CoV-2 vaccine pipeline: an overview publication-title: Curr Trop Med Rep – volume: 92 start-page: 814 year: 2020 end-page: 818 ident: bb0755 article-title: Tocilizumab treatment in COVID-19: a single center experience publication-title: J. Med. Virol. – volume: 104849 year: 2020 ident: bb0715 article-title: NSAIDs in patients with viral infections, including Covid-19: victims or perpetrators? publication-title: Pharmacol. Res. – volume: 38 start-page: 337 year: 2020 end-page: 342 ident: bb0570 article-title: COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? publication-title: Clin. Exp. Rheumatol. – volume: 395 start-page: 1569 year: 2020 end-page: 1578 ident: bb0580 article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial publication-title: The Lancet – volume: 10 start-page: 766 year: 2020 end-page: 788 ident: bb0780 article-title: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods publication-title: Acta Pharmaceutica Sinica B – volume: 21 start-page: 3213 year: 2002 end-page: 3224 ident: bb0230 article-title: Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain publication-title: EMBO J. – volume: 93 year: 2019 ident: bb0775 article-title: Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization publication-title: J Virol – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bb0120 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 214 start-page: 108393 year: 2020 ident: bb0510 article-title: The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China publication-title: Clin. Immunol. – volume: 26 start-page: 865 year: 2018 end-page: 876 ident: bb0790 article-title: Drug repurposing for viral infectious diseases: how far are we? publication-title: Trends Microbiol. – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: bb0110 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 1282 start-page: 1 year: 2015 end-page: 23 ident: bb0325 article-title: Coronaviruses: an overview of their replication and pathogenesis publication-title: Methods Mol. Biol. – reference: Z. Ruan, C. Liu, Y. Guo, Z. He, X. Huang, X. Jia, T. Yang, Potential Inhibitors Targeting RNA-Dependent RNA Polymerase Activity (NSP12) of SARS-CoV-2, (2020). – volume: 7 start-page: e38214 year: 2012 ident: bb0470 article-title: Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection publication-title: PloS One – volume: 41 start-page: 719 year: 2011 end-page: 733 ident: bb0625 article-title: J.b. Xu, J.x. Liu, Y. He, X.l. Nie, Q. Li, Y.m. Hu, S.q. Zhao, M. Wang, W.y. Zhang, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers decrease the incidence of atrial fibrillation: a meta-analysis publication-title: Eur. J. Clin. Investig. – volume: 14 start-page: 31 year: 2020 end-page: 39 ident: bb0730 article-title: The potential of mesenchymal stem cell therapy for chronic lung disease publication-title: Expert Review of Respiratory Medicine – volume: 248 start-page: 117477 year: 2020 ident: bb0560 article-title: Anti-HCV, nucleotide inhibitors, repurposing against COVID-19 publication-title: Life Sci. – volume: 117 start-page: 10970 year: 2020 end-page: 10975 ident: bb0645 article-title: Effective treatment of severe COVID-19 patients with tocilizumab publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 368 start-page: m1168 year: 2020 ident: bb0675 article-title: Covid-19: European drugs agency to review safety of ibuprofen publication-title: BMJ – volume: 105954 year: 2020 ident: bb0750 article-title: The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality publication-title: Int. J. Antimicrob. Agents – volume: 41 start-page: 271 year: 2020 end-page: 273 ident: bb0315 article-title: SARS coronavirus redux publication-title: Trends Immunol. – volume: 2 start-page: 704 year: 2004 end-page: 720 ident: bb0540 article-title: Antivirals and antiviral strategies publication-title: Nat. Rev. Microbiol. – volume: 81 start-page: 3151 year: 2007 end-page: 3161 ident: bb0205 article-title: Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus publication-title: J. Virol. – volume: 6 start-page: 315 year: 2020 end-page: 331 ident: bb0490 article-title: Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases publication-title: ACS Cent Sci – year: 2020 ident: bb0390 article-title: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors – volume: 15 start-page: 327 year: 2016 end-page: 347 ident: bb0070 article-title: Coronaviruses - drug discovery and therapeutic options publication-title: Nat. Rev. Drug Discov. – volume: 6 start-page: 16 year: 2020 ident: bb0605 article-title: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro publication-title: Cell Discovery – volume: 156 start-page: 104761 year: 2020 ident: bb0455 article-title: Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) publication-title: Pharmacol. Res. – volume: 8 start-page: e488 year: 2020 end-page: e496 ident: bb0050 article-title: Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts publication-title: The Lancet Global Health – volume: 331 start-page: 991 year: 2003 end-page: 1004 ident: bb0220 article-title: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage publication-title: J. Mol. Biol. – volume: 74 start-page: 5213 year: 2000 end-page: 5223 ident: bb0265 article-title: The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis publication-title: J. Virol. – volume: 382 start-page: 1177 year: 2020 end-page: 1179 ident: bb0015 article-title: SARS-CoV-2 viral load in upper respiratory specimens of infected patients publication-title: N. Engl. J. Med. – volume: 90 start-page: 7415 year: 2016 end-page: 7428 ident: bb0760 article-title: Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens publication-title: J. Virol. – volume: 40 year: 2020 ident: bb0100 article-title: Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy publication-title: Biosci Rep – start-page: ciaa321 year: 2020 ident: bb0495 article-title: Could chloroquine /hydroxychloroquine be harmful in Coronavirus Disease 2019 (COVID-19) treatment? publication-title: Clin. Infect. Dis. – volume: 12 start-page: 322 year: 2020 end-page: 325 ident: bb0590 article-title: Treating COVID-19 with chloroquine publication-title: J Mol Cell Biol – volume: 17 start-page: 404 year: 2005 end-page: 410 ident: bb0060 article-title: Pathogenesis of severe acute respiratory syndrome publication-title: Curr. Opin. Immunol. – volume: 4 year: 2013 ident: bb0440 article-title: Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus publication-title: MBio – volume: 126 start-page: e142 year: 2020 end-page: e143 ident: bb0630 article-title: Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19 publication-title: Circ. Res. – volume: 26 start-page: 450 year: 2020 end-page: 452 ident: bb0080 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. – volume: 78 start-page: 13600 year: 2004 end-page: 13612 ident: bb0210 article-title: Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity publication-title: J. Virol. – volume: 21 start-page: 2272 year: 2020 ident: bb0695 article-title: Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? publication-title: Int. J. Mol. Sci. – volume: 133 start-page: 88 year: 2008 end-page: 100 ident: bb0105 article-title: SARS coronavirus replicase proteins in pathogenesis publication-title: Virus Res. – volume: 323 start-page: 1061 year: 2020 end-page: 1069 ident: bb0020 article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan publication-title: China, JAMA – volume: 20 start-page: 269 year: 2020 end-page: 270 ident: bb0640 article-title: COVID-19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol – volume: 52 start-page: 734 year: 2020 end-page: 736 ident: bb0150 article-title: SARS-CoV-2: Combating Coronavirus Emergence publication-title: Immunity – volume: 114 start-page: 6880 year: 2014 end-page: 6911 ident: bb0185 article-title: Structural disorder in viral proteins publication-title: Chem. Rev. – volume: 367 start-page: 1434 year: 2020 ident: bb0710 article-title: Misguided drug advice for COVID-19 publication-title: Science – volume: 20 start-page: 269 year: 2020 end-page: 270 ident: bb0465 article-title: COVID-19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol – volume: 39 start-page: 2000028 year: 2020 ident: bb0090 article-title: Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds publication-title: Mol Inform – volume: 12 start-page: 249 year: 2020 end-page: 250 ident: bb0595 article-title: Combating COVID-19 with chloroquine publication-title: J Mol Cell Biol – volume: 5 year: 2019 ident: bb0320 article-title: A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike publication-title: Science Advances – volume: 57 start-page: 279 year: 2020 end-page: 283 ident: bb0530 article-title: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19 publication-title: J. Crit. Care – volume: 113 start-page: 701 year: 2003 end-page: 702 ident: bb0270 article-title: mRNA cap-1 methyltransferase in the SARS genome publication-title: Cell – volume: 95 start-page: 409 year: 1998 end-page: 417 ident: bb0370 article-title: Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation publication-title: Cell – volume: 323 start-page: 1582 year: 2020 end-page: 1589 ident: bb0655 article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma publication-title: JAMA – volume: 9 start-page: 223 year: 2009 end-page: 245 ident: bb0115 article-title: Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections publication-title: Infectious Disorders–Drug Targets (Formerly Current Drug Targets-Infectious Disorders) – volume: 168 start-page: 1289 year: 2003 end-page: 1292 ident: bb0555 article-title: Ribavirin in the treatment of SARS: a new trick for an old drug? publication-title: Cmaj – start-page: 1 year: 2020 end-page: 6 ident: bb0180 article-title: Infection of dogs with SARS-CoV-2 publication-title: Nature – volume: 34 start-page: 101658 year: 2020 ident: bb0585 article-title: Repurposing antimalarials and other drugs for COVID-19 publication-title: Travel Med. Infect. Dis. – volume: 70 start-page: 6083 year: 1996 end-page: 6096 ident: bb0255 article-title: A reevaluation of the higher taxonomy of viruses based on RNA polymerases publication-title: J. Virol. – volume: 300 start-page: 1394 year: 2003 end-page: 1399 ident: bb0145 article-title: Characterization of a novel coronavirus associated with severe acute respiratory syndrome publication-title: Science – volume: 12 start-page: 1 year: 2020 end-page: 3 ident: bb0400 article-title: Innate immunity of the lung publication-title: Journal of Innate Immunity – volume: 7 start-page: 226 year: 2009 end-page: 236 ident: bb0515 article-title: The spike protein of SARS-CoV — a target for vaccine and therapeutic development publication-title: Nat. Rev. Microbiol. – volume: 382 start-page: 2327 year: 2020 end-page: 2336 ident: bb0635 article-title: Compassionate use of remdesivir for patients with severe Covid-19 publication-title: N Engl J Med – volume: 14 start-page: 275 year: 2019 end-page: 286 ident: bb0190 article-title: Membrane binding proteins of coronaviruses publication-title: Future Virol – start-page: 1 year: 2015 end-page: 23 ident: bb0045 article-title: Coronaviruses: an overview of their replication and pathogenesis publication-title: Coronaviruses – volume: 126 start-page: 171 year: 2005 end-page: 177 ident: bb0765 article-title: Study on the resistance of severe acute respiratory syndrome-associated coronavirus publication-title: J. Virol. Methods – volume: 2 start-page: 264 year: 2012 end-page: 275 ident: bb0410 article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon publication-title: Current Opinion in Virology – volume: 450 start-page: 64 year: 2014 end-page: 70 ident: bb0435 article-title: MERS-CoV papain-like protease has deISGylating and deubiquitinating activities publication-title: Virology – volume: 36 issue: 2020 year: 2019 ident: 10.1016/j.bbadis.2020.165878_bb0665 article-title: COVID-19 and its research progress in forensic toxicology publication-title: Fa Yi Xue Za Zhi – volume: 41 start-page: 271 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0315 article-title: SARS coronavirus redux publication-title: Trends Immunol. doi: 10.1016/j.it.2020.02.007 – volume: 38 start-page: 337 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0570 article-title: COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? publication-title: Clin. Exp. Rheumatol. doi: 10.55563/clinexprheumatol/xcdary – volume: 86 start-page: 7565 year: 2012 ident: 10.1016/j.bbadis.2020.165878_bb0260 article-title: Crystal structure of the superfamily 1 helicase from tomato mosaic virus publication-title: J. Virol. doi: 10.1128/JVI.00118-12 – volume: 34 start-page: 101658 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0585 article-title: Repurposing antimalarials and other drugs for COVID-19 publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101658 – volume: 331 start-page: 991 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0220 article-title: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00865-9 – ident: 10.1016/j.bbadis.2020.165878_bb0365 – volume: 151 start-page: 184 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0670 article-title: Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: protocol for restricted public health emergency use publication-title: Indian J. Med. Res. doi: 10.4103/ijmr.IJMR_502_20 – volume: 2 start-page: 704 year: 2004 ident: 10.1016/j.bbadis.2020.165878_bb0540 article-title: Antivirals and antiviral strategies publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro975 – volume: 12 start-page: 8 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0615 article-title: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa publication-title: Int J Oral Sci doi: 10.1038/s41368-020-0074-x – start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0065 article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target publication-title: Intensive Care Med. – volume: 150 start-page: 123 year: 2018 ident: 10.1016/j.bbadis.2020.165878_bb0200 article-title: Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.12.010 – volume: 367 start-page: 1434 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0610 article-title: Misguided drug advice for COVID-19 publication-title: Science doi: 10.1126/science.abb8034 – ident: 10.1016/j.bbadis.2020.165878_bb0375 – ident: 10.1016/j.bbadis.2020.165878_bb0390 – volume: 14 start-page: 1090 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0720 article-title: Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(14)70920-X – volume: 52 start-page: 734 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0150 article-title: SARS-CoV-2: Combating Coronavirus Emergence publication-title: Immunity doi: 10.1016/j.immuni.2020.04.016 – volume: 15 start-page: 1161 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0430 article-title: Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1161 – volume: 40 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0795 article-title: Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy publication-title: Bioscience Reports doi: 10.1042/BSR20201256 – volume: 367 start-page: 1444 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0310 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 117 start-page: 9490 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0745 article-title: Effectiveness of convalescent plasma therapy in severe COVID-19 patients publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2004168117 – volume: 302 start-page: 276 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0165 article-title: Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China publication-title: Science doi: 10.1126/science.1087139 – volume: 78 start-page: 13600 year: 2004 ident: 10.1016/j.bbadis.2020.165878_bb0210 article-title: Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity publication-title: J. Virol. doi: 10.1128/JVI.78.24.13600-13612.2004 – volume: 27 start-page: 1451 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0460 article-title: COVID-19 infection: the perspectives on immune responses publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0530-3 – volume: 74 start-page: 5213 year: 2000 ident: 10.1016/j.bbadis.2020.165878_bb0265 article-title: The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis publication-title: J. Virol. doi: 10.1128/JVI.74.11.5213-5223.2000 – volume: 9 start-page: 223 year: 2009 ident: 10.1016/j.bbadis.2020.165878_bb0115 article-title: Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections publication-title: Infectious Disorders–Drug Targets (Formerly Current Drug Targets-Infectious Disorders) – volume: 8 start-page: 420 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0030 article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome publication-title: The Lancet Respiratory Medicine doi: 10.1016/S2213-2600(20)30076-X – volume: 133 start-page: 88 year: 2008 ident: 10.1016/j.bbadis.2020.165878_bb0105 article-title: SARS coronavirus replicase proteins in pathogenesis publication-title: Virus Res. doi: 10.1016/j.virusres.2007.02.017 – volume: 6 start-page: 315 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0490 article-title: Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c00272 – volume: 126 start-page: 171 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0765 article-title: Study on the resistance of severe acute respiratory syndrome-associated coronavirus publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2005.02.005 – volume: 80 start-page: 7894 year: 2006 ident: 10.1016/j.bbadis.2020.165878_bb0250 article-title: Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs publication-title: J. Virol. doi: 10.1128/JVI.00467-06 – volume: 16 start-page: 899 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0355 article-title: Editorial. Recent advances in the structure-based drug design and discovery publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026616999150918145640 – volume: 14 start-page: 72 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0600 article-title: Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies publication-title: Bioscience Trends doi: 10.5582/bst.2020.01047 – volume: 7 start-page: 226 year: 2009 ident: 10.1016/j.bbadis.2020.165878_bb0515 article-title: The spike protein of SARS-CoV — a target for vaccine and therapeutic development publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2090 – volume: 12 start-page: 183 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0125 article-title: Genomic characterization and phylogenetic classification of bovine coronaviruses through whole genome sequence analysis publication-title: Viruses doi: 10.3390/v12020183 – volume: 7 start-page: e38214 year: 2012 ident: 10.1016/j.bbadis.2020.165878_bb0470 article-title: Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection publication-title: PloS One doi: 10.1371/journal.pone.0038214 – volume: 318 start-page: H1084 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0620 article-title: COVID-19, ACE2, and the cardiovascular consequences publication-title: Am. J. Phys. Heart Circ. Phys. – volume: 214 start-page: 108393 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0510 article-title: The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China publication-title: Clin. Immunol. doi: 10.1016/j.clim.2020.108393 – volume: 382 start-page: 2327 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0635 article-title: Compassionate use of remdesivir for patients with severe Covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2007016 – volume: 15 start-page: 327 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0070 article-title: Coronaviruses - drug discovery and therapeutic options publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2015.37 – volume: 382 start-page: 1199 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0010 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001316 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0400 article-title: Innate immunity of the lung publication-title: Journal of Innate Immunity doi: 10.1159/000504621 – volume: 21 start-page: 2272 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0695 article-title: Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072272 – volume: 126 start-page: e142 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0630 article-title: Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19 publication-title: Circ. Res. – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0135 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 181 start-page: 223 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0155 article-title: A genomic perspective on the origin and emergence of SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.03.035 – volume: 10 start-page: 3022 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0330 article-title: Regulation of the ER stress response by the Ion Channel activity of the infectious bronchitis coronavirus envelope protein modulates Virion release, apoptosis, viral fitness, and pathogenesis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.03022 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0005 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: The Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 94 start-page: e01925 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0345 article-title: Nucleocapsid Protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle publication-title: Journal of Virology doi: 10.1128/JVI.01925-19 – volume: 11 start-page: 1620 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0360 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – ident: 10.1016/j.bbadis.2020.165878_bb0095 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0120 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 217 start-page: e20200537 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0420 article-title: Forty years with coronaviruses publication-title: Journal of Experimental Medicine doi: 10.1084/jem.20200537 – volume: 65 start-page: 839 year: 2009 ident: 10.1016/j.bbadis.2020.165878_bb0225 article-title: Structure of the C-terminal domain of nsp4 from feline coronavirus publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909018253 – start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0650 article-title: Mesenchymal stem cell therapy for COVID-19: present or future publication-title: Stem Cell Rev. Rep. – volume: 119 start-page: 103670 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0505 article-title: Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103670 – volume: 41 start-page: 719 year: 2011 ident: 10.1016/j.bbadis.2020.165878_bb0625 article-title: J.b. Xu, J.x. Liu, Y. He, X.l. Nie, Q. Li, Y.m. Hu, S.q. Zhao, M. Wang, W.y. Zhang, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers decrease the incidence of atrial fibrillation: a meta-analysis publication-title: Eur. J. Clin. Investig. doi: 10.1111/j.1365-2362.2010.02460.x – volume: 92 start-page: 418 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0035 article-title: Emerging coronaviruses: genome structure, replication, and pathogenesis publication-title: J. Med. Virol. doi: 10.1002/jmv.25681 – volume: 117592 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0500 article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study publication-title: Life Sci. – volume: 11 start-page: 216 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0740 article-title: Transplantation of ACE2(−) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia publication-title: Aging Dis. doi: 10.14336/AD.2020.0228 – volume: 193 start-page: 3080 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0415 article-title: SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome publication-title: J. Immunol. doi: 10.4049/jimmunol.1303196 – volume: 450 start-page: 64 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0435 article-title: MERS-CoV papain-like protease has deISGylating and deubiquitinating activities publication-title: Virology doi: 10.1016/j.virol.2013.11.040 – volume: 117 start-page: 10970 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0645 article-title: Effective treatment of severe COVID-19 patients with tocilizumab publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2005615117 – volume: 37 start-page: 71 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0685 article-title: Tilorone: a broad-spectrum antiviral invented in the USA and commercialized in Russia and beyond publication-title: Pharm. Res. doi: 10.1007/s11095-020-02799-8 – volume: 30 start-page: 269 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0520 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – volume: 23 start-page: E71 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0680 article-title: Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use publication-title: Pain Physician – start-page: 1 year: 2015 ident: 10.1016/j.bbadis.2020.165878_bb0045 article-title: Coronaviruses: an overview of their replication and pathogenesis – volume: 581 start-page: 221 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0110 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 20 start-page: 269 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0640 article-title: COVID-19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0308-3 – volume: 27 start-page: 325 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0040 article-title: Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.02.001 – volume: 580 start-page: 15 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0485 article-title: Coronavirus shuts down trials of drugs for multiple other diseases publication-title: Nature doi: 10.1038/d41586-020-00889-6 – volume: 10 start-page: 766 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0780 article-title: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods publication-title: Acta Pharmaceutica Sinica B doi: 10.1016/j.apsb.2020.02.008 – start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0180 article-title: Infection of dogs with SARS-CoV-2 publication-title: Nature – volume: 368 start-page: m1168 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0675 article-title: Covid-19: European drugs agency to review safety of ibuprofen publication-title: BMJ doi: 10.1136/bmj.m1168 – volume: 8 start-page: e488 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0050 article-title: Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts publication-title: The Lancet Global Health doi: 10.1016/S2214-109X(20)30074-7 – volume: 25 start-page: 491 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0425 article-title: Regulation of RIG-I-like receptor signaling by host and viral proteins publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.06.005 – start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0705 article-title: The SARS-CoV-2 vaccine pipeline: an overview publication-title: Curr Trop Med Rep – volume: 26 start-page: 450 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0080 article-title: The proximal origin of SARS-CoV-2 publication-title: Nat. Med. doi: 10.1038/s41591-020-0820-9 – volume: 310 start-page: 676 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0160 article-title: Bats are natural reservoirs of SARS-like coronaviruses publication-title: Science doi: 10.1126/science.1118391 – volume: 40 start-page: 68 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0025 article-title: Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments publication-title: Vet. Q. doi: 10.1080/01652176.2020.1727993 – volume: 20 start-page: 269 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0465 article-title: COVID-19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0308-3 – volume: 323 start-page: 1061 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0020 article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan publication-title: China, JAMA doi: 10.1001/jama.2020.1585 – volume: 4 year: 2013 ident: 10.1016/j.bbadis.2020.165878_bb0440 article-title: Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus publication-title: MBio doi: 10.1128/mBio.00165-13 – volume: 21 start-page: 3213 year: 2002 ident: 10.1016/j.bbadis.2020.165878_bb0230 article-title: Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain publication-title: EMBO J. doi: 10.1093/emboj/cdf327 – volume: 6 start-page: 16 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0605 article-title: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro publication-title: Cell Discovery doi: 10.1038/s41421-020-0156-0 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0295 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 140 start-page: 108408 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0700 article-title: Potential effect of blood purification therapy in reducing cytokine storm as a late complication of severe COVID-19 publication-title: Clinical Immunology (Orlando, Fla.) doi: 10.1016/j.clim.2020.108408 – volume: 95 start-page: 409 year: 1998 ident: 10.1016/j.bbadis.2020.165878_bb0370 article-title: Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation publication-title: Cell doi: 10.1016/S0092-8674(00)81771-7 – volume: 88 start-page: 11886 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0770 article-title: Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance publication-title: J. Virol. doi: 10.1128/JVI.01528-14 – volume: 58 start-page: e00310 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0300 article-title: Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00310-20 – volume: 12 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0075 article-title: Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV publication-title: Viruses doi: 10.3390/v12020244 – volume: 92 start-page: 814 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0755 article-title: Tocilizumab treatment in COVID-19: a single center experience publication-title: J. Med. Virol. doi: 10.1002/jmv.25801 – volume: 55 start-page: 105932 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0525 article-title: Chloroquine and hydroxychloroquine as available weapons to fight COVID-19 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.105932 – volume: 62 start-page: 79 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0395 article-title: Recent human genetic errors of innate immunity leading to increased susceptibility to infection publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2019.12.002 – volume: 5 start-page: 296 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0405 article-title: Coronavirus infection, ER stress, apoptosis and innate immunity publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00296 – volume: 382 start-page: 1177 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0015 article-title: SARS-CoV-2 viral load in upper respiratory specimens of infected patients publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2001737 – year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0690 article-title: Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics publication-title: Drug Dev. Res. doi: 10.1002/ddr.21656 – volume: 1282 start-page: 1 year: 2015 ident: 10.1016/j.bbadis.2020.165878_bb0325 article-title: Coronaviruses: an overview of their replication and pathogenesis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2438-7_1 – volume: 96 start-page: 1 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0340 article-title: Supramolecular architecture of the coronavirus particle publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2016.08.005 – volume: 79 start-page: 12905 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0235 article-title: Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7 publication-title: J. Virol. doi: 10.1128/JVI.79.20.12905-12913.2005 – volume: 395 start-page: 1569 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0580 article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial publication-title: The Lancet doi: 10.1016/S0140-6736(20)31022-9 – volume: 102 start-page: 14040 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0170 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506735102 – volume: 12 start-page: 322 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0590 article-title: Treating COVID-19 with chloroquine publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjaa014 – volume: 168 start-page: 1289 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0555 article-title: Ribavirin in the treatment of SARS: a new trick for an old drug? publication-title: Cmaj – volume: 12 start-page: 249 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0595 article-title: Combating COVID-19 with chloroquine publication-title: J Mol Cell Biol doi: 10.1093/jmcb/mjaa015 – volume: 300 start-page: 1394 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0145 article-title: Characterization of a novel coronavirus associated with severe acute respiratory syndrome publication-title: Science doi: 10.1126/science.1085952 – volume: 40 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0100 article-title: Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy publication-title: Biosci Rep doi: 10.1042/BSR20201256 – volume: 93 year: 2019 ident: 10.1016/j.bbadis.2020.165878_bb0775 article-title: Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization publication-title: J Virol doi: 10.1128/JVI.01381-18 – volume: 14 start-page: 275 year: 2019 ident: 10.1016/j.bbadis.2020.165878_bb0190 article-title: Membrane binding proteins of coronaviruses publication-title: Future Virol doi: 10.2217/fvl-2018-0144 – volume: 26 start-page: 865 year: 2018 ident: 10.1016/j.bbadis.2020.165878_bb0790 article-title: Drug repurposing for viral infectious diseases: how far are we? publication-title: Trends Microbiol. doi: 10.1016/j.tim.2018.04.004 – volume: 64 start-page: e00483 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0550 article-title: Updated approaches against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00483-20 – start-page: ciaa321 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0495 article-title: Could chloroquine /hydroxychloroquine be harmful in Coronavirus Disease 2019 (COVID-19) treatment? publication-title: Clin. Infect. Dis. – volume: 253 start-page: 117592 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0565 article-title: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117592 – volume: 5 start-page: 917 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0445 article-title: Immunopathogenesis of coronavirus infections: implications for SARS publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1732 – volume: 17 start-page: 404 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0060 article-title: Pathogenesis of severe acute respiratory syndrome publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2005.05.009 – volume: 21 start-page: 730 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0130 article-title: Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV publication-title: Chembiochem doi: 10.1002/cbic.202000047 – volume: 14 start-page: 31 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0730 article-title: The potential of mesenchymal stem cell therapy for chronic lung disease publication-title: Expert Review of Respiratory Medicine doi: 10.1080/17476348.2020.1679628 – volume: 156 start-page: 104761 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0455 article-title: Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104761 – volume: 354 start-page: 25 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0385 article-title: pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.012 – volume: 113 start-page: 701 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0270 article-title: mRNA cap-1 methyltransferase in the SARS genome publication-title: Cell doi: 10.1016/S0092-8674(03)00424-0 – volume: 81 start-page: 3151 year: 2007 ident: 10.1016/j.bbadis.2020.165878_bb0205 article-title: Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.01939-06 – volume: 395 start-page: 565 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0055 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 53 start-page: 368 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0535 article-title: TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib publication-title: J Microbiol Immunol Infect doi: 10.1016/j.jmii.2020.03.005 – volume: 90 start-page: 7415 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0760 article-title: Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens publication-title: J. Virol. doi: 10.1128/JVI.00080-16 – volume: 133 start-page: 1051 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0785 article-title: Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model publication-title: Chin. Med. J. doi: 10.1097/CM9.0000000000000797 – year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0085 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 114 start-page: 6880 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0185 article-title: Structural disorder in viral proteins publication-title: Chem. Rev. doi: 10.1021/cr4005692 – volume: 19 start-page: 181 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0450 article-title: Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.007 – volume: 12 start-page: 215 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0195 article-title: Helicase of Type 2 porcine reproductive and respiratory syndrome virus strain hv reveals a unique structure publication-title: Viruses doi: 10.3390/v12020215 – volume: 15 start-page: 327 year: 2016 ident: 10.1016/j.bbadis.2020.165878_bb0575 article-title: Coronaviruses—drug discovery and therapeutic options publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2015.37 – volume: 191 start-page: 180 year: 2014 ident: 10.1016/j.bbadis.2020.165878_bb0285 article-title: The SARS coronavirus 3a protein binds calcium in its cytoplasmic domain publication-title: Virus Res. doi: 10.1016/j.virusres.2014.08.001 – volume: 105 start-page: 7809 year: 2008 ident: 10.1016/j.bbadis.2020.165878_bb0480 article-title: Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0711241105 – volume: 39 start-page: 2000028 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0090 article-title: Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds publication-title: Mol Inform doi: 10.1002/minf.202000028 – volume: 12 start-page: 980 year: 2005 ident: 10.1016/j.bbadis.2020.165878_bb0240 article-title: Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb999 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0290 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 25 start-page: 278 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0545 article-title: The COVID-19 epidemic publication-title: Tropical Med. Int. Health doi: 10.1111/tmi.13383 – volume: 105954 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0750 article-title: The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality publication-title: Int. J. Antimicrob. Agents – volume: 2 start-page: 264 year: 2012 ident: 10.1016/j.bbadis.2020.165878_bb0410 article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon publication-title: Current Opinion in Virology doi: 10.1016/j.coviro.2012.04.004 – volume: 300 start-page: 1763 year: 2003 ident: 10.1016/j.bbadis.2020.165878_bb0380 article-title: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs publication-title: Science doi: 10.1126/science.1085658 – ident: 10.1016/j.bbadis.2020.165878_bb0475 – volume: 323 start-page: 1582 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0655 article-title: Treatment of 5 critically ill patients with COVID-19 with convalescent plasma publication-title: JAMA doi: 10.1001/jama.2020.4783 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0725 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-019-13940-6 – volume: 3 year: 2015 ident: 10.1016/j.bbadis.2020.165878_bb0140 article-title: Complete genome sequence of Middle East respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China publication-title: Genome Announc. doi: 10.1128/genomeA.00818-15 – volume: 30 start-page: 1578 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0175 article-title: Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.03.063 – volume: 20 start-page: 398 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0660 article-title: Convalescent plasma as a potential therapy for COVID-19 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30141-9 – volume: 104849 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0715 article-title: NSAIDs in patients with viral infections, including Covid-19: victims or perpetrators? publication-title: Pharmacol. Res. – volume: 101 start-page: 3792 year: 2004 ident: 10.1016/j.bbadis.2020.165878_bb0245 article-title: The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0307877101 – ident: 10.1016/j.bbadis.2020.165878_bb0350 doi: 10.20944/preprints202003.0024.v1 – volume: 21 start-page: 61 year: 2012 ident: 10.1016/j.bbadis.2020.165878_bb0275 article-title: PONDR (predicators of natural disorder regions) publication-title: International Journal of Computer Technology and Electronics Engineering – volume: 70 start-page: 6083 year: 1996 ident: 10.1016/j.bbadis.2020.165878_bb0255 article-title: A reevaluation of the higher taxonomy of viruses based on RNA polymerases publication-title: J. Virol. doi: 10.1128/JVI.70.9.6083-6096.1996 – volume: 57 start-page: 279 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0530 article-title: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19 publication-title: J. Crit. Care doi: 10.1016/j.jcrc.2020.03.005 – volume: 46 start-page: W329 year: 2018 ident: 10.1016/j.bbadis.2020.165878_bb0280 article-title: IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky384 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0305 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 385 start-page: 212 year: 2009 ident: 10.1016/j.bbadis.2020.165878_bb0215 article-title: Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.10.045 – volume: 5 year: 2019 ident: 10.1016/j.bbadis.2020.165878_bb0320 article-title: A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike publication-title: Science Advances doi: 10.1126/sciadv.aav4580 – volume: 23 start-page: E71 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0735 article-title: Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use publication-title: Pain Physician – volume: 367 start-page: 1434 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0710 article-title: Misguided drug advice for COVID-19 publication-title: Science doi: 10.1126/science.abb8034 – volume: 248 start-page: 117477 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0560 article-title: Anti-HCV, nucleotide inhibitors, repurposing against COVID-19 publication-title: Life Sci. doi: 10.1016/j.lfs.2020.117477 – start-page: 104792 year: 2020 ident: 10.1016/j.bbadis.2020.165878_bb0335 article-title: Coronavirus membrane fusion mechanism offers as a potential target for antiviral development publication-title: Antiviral Research doi: 10.1016/j.antiviral.2020.104792 |
SSID | ssj0000670 |
Score | 2.7113066 |
SecondaryResourceType | review_article |
Snippet | The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165878 |
SubjectTerms | Betacoronavirus - genetics Betacoronavirus - isolation & purification Betacoronavirus - pathogenicity Comparative genomics Coronavirus Infections - drug therapy Coronavirus Infections - pathology Coronavirus Infections - virology COVID-19 Cytokines - metabolism Drug target Genetic Variation Genome, Viral Humans Middle East Respiratory Syndrome Coronavirus - genetics Middle East Respiratory Syndrome Coronavirus - isolation & purification Middle East Respiratory Syndrome Coronavirus - pathogenicity Molecular basis of pathogenesis Molecular evolution Pandemics Pneumonia, Viral - drug therapy Pneumonia, Viral - pathology Pneumonia, Viral - virology RNA-Dependent RNA Polymerase - genetics SARS-CoV-2 Spike Glycoprotein, Coronavirus - chemistry |
Title | Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach |
URI | https://dx.doi.org/10.1016/j.bbadis.2020.165878 https://www.ncbi.nlm.nih.gov/pubmed/32544429 https://www.proquest.com/docview/2414409924 https://pubmed.ncbi.nlm.nih.gov/PMC7293463 |
Volume | 1866 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIcReEIyPlY_KSDzOtI0dN-atREwdHxNaGepbFH8EgiCZaIfEC387d7FTrYA0iac06dm1fNf7iO9-B_AMfXJF5zPcSYcBinSKl8IkHC2fqVQqKyWoOPndiZqfydfLdLkDeV8LQ2mVUfcHnd5p6_hkFHdzdF7Xo8VYE7wW2neUU3QilqiHhcy6Ir7ly8vauHvPgsScqPvyuS7Hy5jS1QTaneAjtMXUbO3f5ulv9_PPLMpLZunoNtyK_iSbhSXfgR3f7MON0GHy5z7czPuGbnehPW5WFIqvWN2sW7aYnS543n7kCSOg1m_-kAUw2Yvv-NH_iDJ5yKhpcfuJdGK9YmXjWKjZwhD7BVvEEbiEbpLaIkmEKb8HZ0evPuRzHvstcCuVWHObauvLROhSSFFmldIC1fJ4Ym1llc7ExBukExPltLBWmKkbK2vNOHM6ceRn3Ifdpm38ASVMeTdNVWa81lK4LKtSgVOkU1dJXXo3ANFvc2EjGDn1xPha9FlnX4rAnIKYUwTmDIBvRp0HMI4r6Kc9B4stoSrQXlwx8mnP8AK5RIcoZePbCySSdByuMWwdwIMgAJu1CBJINPD4u1uisSEgLO_tb5r6c4fpjTGOwM19-N8rfgR7dBfyDB_DLrLfP0F_aW2GcO35r8kQrs_y07fv6Xr8Zn4y7P4mvwGBdxjf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcYaGIv02Bf3QfzJB6x2saOE--NVUMtAx4oTH2z4o-MoC1Ba5nEf89d7FR0Q0LiLbLPjuW73Ed8_h0hu-CTSzyfYU44CFCEk6zgJmFg-UwpU1FKjpeTj0_k-FwcztLZGhl1d2EwrTLq_qDTW20dW_pxN_tXVdWfDhTCa4F9BzkFJ2L2hGyAN5Bh_YbJ7Otdddz-aAFqhuTd_bk2ycuYwlWI2p1AExhjrLZ2v3363__8N43yjl06eEGeR4eS7oc1b5E1X2-Tp6HE5M022Rx1Fd1ekmZSzzEWn9OqXjR0un86ZaPmB0soIrX-9ns0oMle_4FH_zcK5R7FqsXNT1SK1ZwWtaPh0hbE2F_oNI6AJbSTVBZIIk75K3J-8O1sNGax4AKzQvIFs6myvki4KrjgRV5KxUEvD4bWllaqnA-9ATo-lE5xa7nJ3EBaawa5U4lDR-M1Wa-b2r_FjCnvslTmxisluMvzMuUwRZq5UqjCux7h3TZrG9HIsSjGL92lnV3qwByNzNGBOT3ClqOuAhrHA_RZx0G9IlUaDMYDIz93DNfAJTxFKWrfXAORwPNwBXFrj7wJArBcC0eJBAsP710RjSUBgnmv9tTVRQvqDUEOh8199-gVfyKb47PjI300Ofn-njzDnpB0-IGsgyj4j-A8LcxO-3HcAnE-F90 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+SARS-CoV-2+genome%2C+structure%2C+evolution%2C+pathogenesis+and+therapies%3A+Structural+genomics+approach&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+basis+of+disease&rft.au=Naqvi%2C+Ahmad+Abu+Turab&rft.au=Fatima%2C+Kisa&rft.au=Mohammad%2C+Taj&rft.au=Fatima%2C+Urooj&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0925-4439&rft.eissn=1879-260X&rft.volume=1866&rft.issue=10&rft.spage=165878&rft.epage=165878&rft_id=info:doi/10.1016%2Fj.bbadis.2020.165878&rft_id=info%3Apmid%2F32544429&rft.externalDocID=PMC7293463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon |