Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury
[Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potenti...
Saved in:
Published in | Vision research (Oxford) Vol. 188; pp. 174 - 183 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0042-6989 1878-5646 1878-5646 |
DOI | 10.1016/j.visres.2021.07.007 |
Cover
Loading…
Abstract | [Display omitted]
•TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potentiated in all participants.
Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs. |
---|---|
AbstractList | Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m
) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m
) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m
), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m
). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs. Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651nm, 133 cd/m 2 ) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m 2 ) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m 2 ), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m 2 ). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli ( P > .05 for all). For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli ( P < .001) and potentiated over time for blue stimuli ( P < .001) across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs. Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs. [Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potentiated in all participants. Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs. |
Author | Ostrin, Lisa A. Porter, Jason Queener, Hope M. Mostafa, Jakaria |
AuthorAffiliation | 1 University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77004 |
AuthorAffiliation_xml | – name: 1 University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77004 |
Author_xml | – sequence: 1 givenname: Jakaria surname: Mostafa fullname: Mostafa, Jakaria – sequence: 2 givenname: Jason surname: Porter fullname: Porter, Jason – sequence: 3 givenname: Hope M. surname: Queener fullname: Queener, Hope M. – sequence: 4 givenname: Lisa A. surname: Ostrin fullname: Ostrin, Lisa A. email: Lostrin@central.uh.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34352476$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1vEzEQtVARTQv_AKE9ctlge71fHJBQBW2lSlzgbHm9k2Qix97a3lT590yUUAEHOFme9-bNzHtX7MIHD4y9FXwpuGg-bJd7TBHSUnIplrxdct6-YAvRtV1ZN6q5YAvOlSybvusv2VVKW06MWvav2GWlqlqqtlmwx3ufI_qE1jh3KKZNyCEB_TPuoYiQ0RtXrI1fOwy-sOBcOUbCfDHNEzqipCn4BKlAKpmM4HMqnjBvihzNvKOKLYZoCEW_nePhNXu5Mi7Bm_N7zX58_fL95q58-HZ7f_P5obSqqXI59DV0wq4GAyPvxh5aOswKq2zVrqRoh0aYjqhNLwfbN6IfhOByMGMl22GkA6_Zp5PuNA87GC3tFY3TU8SdiQcdDOo_EY8bvQ573SnFlahJ4P1ZIIbHGVLWO0xHA4yHMCct67pXleoqSdR3v896HvLLZyKoE8HGkCi11TNFcH2MU2_1KU59jFPzVlNY1PbxrzaLmRwNx43R_a_5bACQy3uEqJOldCyMGMFmPQb8t8BPminC1w |
CitedBy_id | crossref_primary_10_3389_fnins_2023_1090672 crossref_primary_10_1016_j_visres_2022_108176 crossref_primary_10_1007_s10633_022_09871_1 crossref_primary_10_3389_fcell_2025_1551135 |
Cites_doi | 10.1097/OPX.0000000000001198 10.1371/journal.pone.0161175 10.1037/e629582011-001 10.1682/JRRD.2008.08.0109 10.1038/nature06150 10.1177/1352458514523498 10.1089/neu.2008.0586 10.1002/cne.23555 10.1016/j.optm.2006.11.011 10.1167/iovs.14-16233 10.1089/neu.2010.1658 10.1186/s40345-020-00211-3 10.1126/science.1067262 10.7205/MILMED-D-12-00061 10.1007/BF00209231 10.1016/S1052-5149(02)00011-4 10.1016/j.apmr.2010.07.232 10.1016/S1388-2457(01)00620-4 10.1016/j.expneurol.2005.07.014 10.1001/jamaophthalmol.2013.5028 10.1167/iovs.13-13252 10.1167/iovs.12-9494 10.1167/iovs.07-0738 10.1167/iovs.10-6023 10.1080/02699050500149817 10.1111/opo.12583 10.1167/iovs.16-20659 10.1167/iovs.18-26094 10.1113/jphysiol.1991.sp018877 10.1016/0042-6989(66)90001-0 10.3233/JPD-202178 10.1167/iovs.16-19934 10.1113/jphysiol.1962.sp007033 10.1111/j.1460-9568.2008.06149.x 10.1007/s10571-008-9286-x 10.1002/cne.20970 10.1016/j.jfo.2018.06.003 10.1371/journal.pone.0093274 10.1371/journal.pone.0017860 10.1167/iovs.11-7586 10.1038/srep17610 10.1080/02699050801935260 10.5301/ejo.5001027 10.1016/j.optm.2007.10.012 10.7205/MILMED-D-15-00587 10.1007/s00415-017-8661-2 10.1007/s11940-002-0027-z 10.1007/s00417-015-3137-5 10.2147/EB.S183042 10.1016/j.ophtha.2009.02.007 10.1111/j.1600-0404.1984.tb07812.x 10.1152/jn.00368.2015 10.3109/02699052.2015.1045029 10.1111/j.1755-3768.2011.02226.x 10.3389/fneur.2011.00010 10.1016/j.neuroscience.2014.11.002 10.1111/j.1444-0938.2010.00479.x 10.3389/fneur.2019.00360 10.1038/s41598-018-26078-0 10.1016/j.visres.2006.12.015 10.1016/S0140-6736(74)91639-0 10.3928/1081597X-20100511-01 10.1016/j.visres.2009.10.012 10.1097/OPX.0000000000001486 10.1016/j.ophtha.2015.02.030 10.1097/WNO.0b013e318267fd5f 10.1111/aos.14348 10.1097/OPX.0000000000000899 10.1097/OPX.0000000000000934 10.1097/OPX.0000000000001407 10.1167/tvst.8.5.29 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.visres.2021.07.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1878-5646 |
EndPage | 183 |
ExternalDocumentID | PMC8440415 34352476 10_1016_j_visres_2021_07_007 S0042698921001620 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY007551 |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 6I. 6PF 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXLA AAXUO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AETEA AEXQZ AFDAS AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HEA HMK HMO HMQ HVGLF HZ~ H~9 IHE IXB J1W K-O KOM L7B LCYCR LZ2 M29 M2V M41 MO0 MOBAO N9A NCXOZ O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSN SSZ T5K TEORI TN5 WUQ X7M XOL XPP ZA5 ZGI ZKB ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c463t-b95e81cfbaed08d9e7878c1c4c37f217b61a8c46692bc9619b1102bad327bd343 |
IEDL.DBID | IXB |
ISSN | 0042-6989 1878-5646 |
IngestDate | Thu Aug 21 18:38:40 EDT 2025 Tue Aug 05 11:17:00 EDT 2025 Thu Apr 03 07:05:08 EDT 2025 Tue Jul 01 01:43:29 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 Fri Feb 23 02:36:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pupillography Intrinsically photosensitivity retinal ganglion cells Traumatic brain injury |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-b95e81cfbaed08d9e7878c1c4c37f217b61a8c46692bc9619b1102bad327bd343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Jakaria Mostafa – conceptualization, investigation, formal analysis, writing – original draft, review, editing Jakaria Mostafa: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Roles/Writing - original draft; Writing - review & editing. Jason Porter: Conceptualization; Funding acquisition; Investigation; Resources; Supervision; Writing - review & editing. Hope Queener: Formal analysis; Software; Writing - review & editing. Author Roles Jason Porter - conceptualization, resources, writing - review & editing Lisa Ostrin: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Supervision; Roles/Writing - original draft; Writing - review & editing. Lisa A Ostrin - conceptualization, resources, formal analysis, writing – original draft, review, editing Hope M Queener - formal analysis, writing - review & editing |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0042698921001620 |
PMID | 34352476 |
PQID | 2559434832 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8440415 proquest_miscellaneous_2559434832 pubmed_primary_34352476 crossref_primary_10_1016_j_visres_2021_07_007 crossref_citationtrail_10_1016_j_visres_2021_07_007 elsevier_sciencedirect_doi_10_1016_j_visres_2021_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Vision research (Oxford) |
PublicationTitleAlternate | Vision Res |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dunn, Lankheet, Rieke (b0135) 2007; 449 Chakraborty, Collins, Kricancic (b0085) 2021 Gamlin, McDougal, Pokorny, Smith, Yau, Dacey (b0160) 2007; 47 O'Neil, M.E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quinones, A., Motu'apuaka, M., Ensley, M., & Kansagara, D. (2013). In: Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review (Washington (DC). Rao, Spiro, Vaishnavi, Rastogi, Mielke, Noll (b0335) 2008; 22 Ba-Ali, Brondsted, Andersen, Jennum, Lund-Andersen (b0040) 2020 Berson, Dunn, Takao (b0055) 2002; 295 Adhikari, Feigl, Zele (b0015) 2019; 8 Maynard, Zele, Kwan, Feigl (b0265) 2017; 58 Kapoor, Ciuffreda (b0210) 2002; 4 Bradshaw, D. (2008). Report to The Surgeon General Traumatic Brain Injury Task Force. Department of Defense and Department of Veterans Affairs. Abbott, Queener, Ostrin (b0005) 2018; 95 Cui, Ren, Sollars, Pickard, So (b0120) 2015; 284 Kardon, R., Garvin, M., Wang, J.K., Cockerham, K., Anderson, S., Full, J., Lemke, S., & Cockerham, G. (2013). Prevalence of structural abnormalities of the retinal nerve fiber layer (RNFL) and ganglion cell layer complex (GCLC) by OCT in veterans with traumatic brain injury (TBI). Investigative Ophthalmology & Visual Science, 54, E-Abstract 2360. Lemke, Cockerham, Glynn-Milley, Cockerham (b0240) 2013; 131 Markwell, Feigl, Zele (b0260) 2010; 93 Joyce, Feigl, Zele (b0200) 2016; 57 Capo-Aponte, Urosevich, Temme, Tarbett, Sanghera (b0080) 2012; 177 Chan, Hills, Bakall, Fernandez (b0095) 2019; 60 Flanagan, Saunders, Queener, Richardson, Ostrin (b0155) 2020; 97 Gracitelli, Duque-Chica, Roizenblatt, Moura, Nagy, Ragot de Melo (b0165) 2015; 122 Vien, DalPorto, Yang (b0385) 2017; 94 Wang, Shen, Zhang, Qi, Yao, Chen (b0395) 2015; 253 Hattar, Kumar, Park, Tong, Tung, Yau (b0185) 2006; 497 Schroder, Chashchina, Janunts, Cayless, Langenbucher (b0355) 2018; 28 Al-Abdalla, R., Joshi, N., Nguyen, J., Ciuffreda, K.J., & Viswanathan, S. (2017). The photopic negative response in mild traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 4281. Hammoud, Wasserman (b0175) 2002; 12 Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2016). Examining retinal structure and function in brain injury patients with homonymous hemianopia. Invest Ophthalmol Vis Sci, 57, E-Abstract 5989. Suchoff, Kapoor, Ciuffreda, Rutner, Han, Craig (b0365) 2008; 79 Li, Yau, Chen, Tay, Lee, Pu (b0245) 2008; 28 Guldner, F.H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution. Cell and Tissue Research, 194 (1), 17–35. Joyce, Feigl, Kerr, Roeder, Zele (b0195) 2018; 8 Park, Moura, Raza, Rhee, Kardon, Hood (b0320) 2011; 52 Saatman, Duhaime, Bullock, Maas, Valadka, Manley, Workshop Scientific, Advisory Panel (b0350) 2008; 25 Maas, Harrison-Felix, Menon, Adelson, Balkin, Bullock (b0250) 2010; 91 McDougal, Gamlin (b0270) 2010; 50 Truong, Ciuffreda (b0380) 2016; 181 Alpern, Campbell (b0035) 1962; 164 Childs, Barker, Gage, Loosemore (b0105) 2018; 10 Chougule, Najjar, Finkelstein, Kandiah, Milea (b0090) 2019; 10 Parisi, Restuccia, Fattapposta, Mina, Bucci, Pierelli (b0315) 2001; 112 Zele, Feigl, Smith, Markwell (b0405) 2011; 6 Madsen, Ba-Ali, Heegaard (b0255) 2021; 9 Munch, Leon, Crippa, Kawasaki (b0290) 2012; 53 Bradley, Bentley, Mughal, Bodhireddy, Brown (b0060) 2011; 27 Adhikari, Feigl, Zele (b0010) 2016; 11 Du, Ciuffreda, Kapoor (b0130) 2005; 19 Ciuffreda, Kapoor, Rutner, Suchoff, Han, Craig (b0110) 2007; 78 Waddell, Gronwall (b0390) 1984; 69 Yuhas, Shorter, McDaniel, Earley, Hartwick (b0400) 2017; 94 Kirbas, Turkyilmaz, Anlar, Tufekci, Durmus (b0235) 2013; 33 Perez de Sevilla Muller, L., Sargoy, A., Rodriguez, A.R., & Brecha, N.C., 2004. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One, 9 (3), e93274. Baver, Pickard, Sollars (b0050) 2008; 27 Kardon, Anderson, Damarjian, Grace, Stone, Kawasaki (b0220) 2009; 116 Kim, Dudek (b0230) 1991; 444 Faul, Xu, Wald, Coronado (b0140) 2010 Cockerham, Goodrich, Weichel, Orcutt, Rizzo, Bower (b0115) 2009; 46 Hannibal, Kankipati, Strang, Peterson, Dacey, Gamlin (b0180) 2014; 522 Kardon (b0215) 2011 Teasdale, Jennett (b0370) 1974; 2 Buisset, Leruez (b0075) 2018; 41 Adhikari, Zele, Feigl (b0025) 2015; 56 Reeves, Phillips, Povlishock (b0340) 2005; 196 Cheng, Laron, Schiffman, Tang, Frishman (b0100) 2007; 48 Ogden, Miller (b0305) 1966; 6 Feigl, Zele, Fader, Howes, Hughes, Jones (b0150) 2012; 90 Thiagarajan, Ciuffreda (b0375) 2015; 29 Decramer, Van Keer, Stalmans, Dupont, Sunaert, Theys (b0125) 2018; 265 Herbst, Sander, Milea, Lund-Andersen, Kawasaki (b0190) 2011; 2 Ostrin (b0310) 2018; 38 Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2017). Retinal abnormalities in patients with different severities of traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 5647. Staal, Vickers (b0360) 2011; 28 Adhikari, Pearson, Anderson, Zele, Feigl (b0020) 2015; 5 Barrionuevo, Nicandro, McAnany, Zele, Gamlin, Cao (b0045) 2014; 55 Procyk, Eleftheriou, Storchi (b0330) 2015; 114 Kankipati, Girkin, Gamlin (b0205) 2011; 52 Merezhinskaya, Mallia, Park, Bryden, Mathur, Barker (b0275) 2019; 96 Brodal (b0070) 2004 Feigl, Dumpala, Kerr, Zele (b0145) 2020; 10 Narayanan, Cheng, Bonem, Saenz, Tang, Frishman (b0295) 2014; 20 Teasdale (10.1016/j.visres.2021.07.007_b0370) 1974; 2 Kapoor (10.1016/j.visres.2021.07.007_b0210) 2002; 4 Suchoff (10.1016/j.visres.2021.07.007_b0365) 2008; 79 Buisset (10.1016/j.visres.2021.07.007_b0075) 2018; 41 Staal (10.1016/j.visres.2021.07.007_b0360) 2011; 28 Adhikari (10.1016/j.visres.2021.07.007_b0015) 2019; 8 Abbott (10.1016/j.visres.2021.07.007_b0005) 2018; 95 Dunn (10.1016/j.visres.2021.07.007_b0135) 2007; 449 Du (10.1016/j.visres.2021.07.007_b0130) 2005; 19 Gracitelli (10.1016/j.visres.2021.07.007_b0165) 2015; 122 Kardon (10.1016/j.visres.2021.07.007_b0220) 2009; 116 Vien (10.1016/j.visres.2021.07.007_b0385) 2017; 94 10.1016/j.visres.2021.07.007_b0030 Cockerham (10.1016/j.visres.2021.07.007_b0115) 2009; 46 Ogden (10.1016/j.visres.2021.07.007_b0305) 1966; 6 Procyk (10.1016/j.visres.2021.07.007_b0330) 2015; 114 Kardon (10.1016/j.visres.2021.07.007_b0215) 2011 Saatman (10.1016/j.visres.2021.07.007_b0350) 2008; 25 Gamlin (10.1016/j.visres.2021.07.007_b0160) 2007; 47 Hannibal (10.1016/j.visres.2021.07.007_b0180) 2014; 522 Feigl (10.1016/j.visres.2021.07.007_b0145) 2020; 10 Berson (10.1016/j.visres.2021.07.007_b0055) 2002; 295 Ba-Ali (10.1016/j.visres.2021.07.007_b0040) 2020 Wang (10.1016/j.visres.2021.07.007_b0395) 2015; 253 Merezhinskaya (10.1016/j.visres.2021.07.007_b0275) 2019; 96 Munch (10.1016/j.visres.2021.07.007_b0290) 2012; 53 Chakraborty (10.1016/j.visres.2021.07.007_b0085) 2021 Chan (10.1016/j.visres.2021.07.007_b0095) 2019; 60 Li (10.1016/j.visres.2021.07.007_b0245) 2008; 28 Baver (10.1016/j.visres.2021.07.007_b0050) 2008; 27 Decramer (10.1016/j.visres.2021.07.007_b0125) 2018; 265 10.1016/j.visres.2021.07.007_b0325 Feigl (10.1016/j.visres.2021.07.007_b0150) 2012; 90 Maynard (10.1016/j.visres.2021.07.007_b0265) 2017; 58 10.1016/j.visres.2021.07.007_b0280 Capo-Aponte (10.1016/j.visres.2021.07.007_b0080) 2012; 177 Ciuffreda (10.1016/j.visres.2021.07.007_b0110) 2007; 78 Reeves (10.1016/j.visres.2021.07.007_b0340) 2005; 196 10.1016/j.visres.2021.07.007_b0285 Narayanan (10.1016/j.visres.2021.07.007_b0295) 2014; 20 Brodal (10.1016/j.visres.2021.07.007_b0070) 2004 Thiagarajan (10.1016/j.visres.2021.07.007_b0375) 2015; 29 Barrionuevo (10.1016/j.visres.2021.07.007_b0045) 2014; 55 Chougule (10.1016/j.visres.2021.07.007_b0090) 2019; 10 Hammoud (10.1016/j.visres.2021.07.007_b0175) 2002; 12 Kim (10.1016/j.visres.2021.07.007_b0230) 1991; 444 Joyce (10.1016/j.visres.2021.07.007_b0195) 2018; 8 Kirbas (10.1016/j.visres.2021.07.007_b0235) 2013; 33 Maas (10.1016/j.visres.2021.07.007_b0250) 2010; 91 Rao (10.1016/j.visres.2021.07.007_b0335) 2008; 22 Adhikari (10.1016/j.visres.2021.07.007_b0020) 2015; 5 McDougal (10.1016/j.visres.2021.07.007_b0270) 2010; 50 Herbst (10.1016/j.visres.2021.07.007_b0190) 2011; 2 Alpern (10.1016/j.visres.2021.07.007_b0035) 1962; 164 Ostrin (10.1016/j.visres.2021.07.007_b0310) 2018; 38 10.1016/j.visres.2021.07.007_b0170 Waddell (10.1016/j.visres.2021.07.007_b0390) 1984; 69 Adhikari (10.1016/j.visres.2021.07.007_b0025) 2015; 56 Bradley (10.1016/j.visres.2021.07.007_b0060) 2011; 27 Hattar (10.1016/j.visres.2021.07.007_b0185) 2006; 497 Joyce (10.1016/j.visres.2021.07.007_b0200) 2016; 57 Flanagan (10.1016/j.visres.2021.07.007_b0155) 2020; 97 Truong (10.1016/j.visres.2021.07.007_b0380) 2016; 181 Adhikari (10.1016/j.visres.2021.07.007_b0010) 2016; 11 Lemke (10.1016/j.visres.2021.07.007_b0240) 2013; 131 Markwell (10.1016/j.visres.2021.07.007_b0260) 2010; 93 Cheng (10.1016/j.visres.2021.07.007_b0100) 2007; 48 Parisi (10.1016/j.visres.2021.07.007_b0315) 2001; 112 Childs (10.1016/j.visres.2021.07.007_b0105) 2018; 10 Zele (10.1016/j.visres.2021.07.007_b0405) 2011; 6 Yuhas (10.1016/j.visres.2021.07.007_b0400) 2017; 94 Kankipati (10.1016/j.visres.2021.07.007_b0205) 2011; 52 10.1016/j.visres.2021.07.007_b0225 Faul (10.1016/j.visres.2021.07.007_b0140) 2010 10.1016/j.visres.2021.07.007_b0300 Schroder (10.1016/j.visres.2021.07.007_b0355) 2018; 28 Madsen (10.1016/j.visres.2021.07.007_b0255) 2021; 9 Cui (10.1016/j.visres.2021.07.007_b0120) 2015; 284 10.1016/j.visres.2021.07.007_b0065 Park (10.1016/j.visres.2021.07.007_b0320) 2011; 52 |
References_xml | – volume: 94 start-page: 125 year: 2017 end-page: 134 ident: b0385 article-title: Retrograde degeneration of retinal ganglion cells secondary to head trauma publication-title: Optometry and Vision Science – volume: 449 start-page: 603 year: 2007 end-page: 606 ident: b0135 article-title: Light adaptation in cone vision involves switching between receptor and post-receptor sites publication-title: Nature – volume: 6 start-page: 485 year: 1966 end-page: 506 ident: b0305 article-title: Studies of the optic nerve of the rhesus monkey: Nerve fiber spectrum and physiological properties publication-title: Vision Research – volume: 284 start-page: 845 year: 2015 end-page: 853 ident: b0120 article-title: The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells publication-title: Neuroscience – volume: 9 start-page: 7 year: 2021 ident: b0255 article-title: Melanopsin-mediated pupillary responses in bipolar disorder-a cross-sectional pupillometric investigation publication-title: International Journal of Bipolar Disorders – volume: 164 start-page: 478 year: 1962 end-page: 507 ident: b0035 article-title: The spectral sensitivity of the consensual light reflex publication-title: Journal of Physiology – volume: 50 start-page: 72 year: 2010 end-page: 87 ident: b0270 article-title: The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex publication-title: Vision Research – volume: 177 start-page: 804 year: 2012 end-page: 813 ident: b0080 article-title: Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury publication-title: Military Medicine – volume: 94 start-page: 108 year: 2017 end-page: 117 ident: b0400 article-title: Blue and red light-evoked pupil responses in photophobic subjects with TBI publication-title: Optometry and Vision Science – volume: 6 year: 2011 ident: b0405 article-title: The circadian response of intrinsically photosensitive retinal ganglion cells publication-title: PLoS ONE – volume: 58 start-page: 990 year: 2017 end-page: 996 ident: b0265 article-title: Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related macular degeneration publication-title: Investigative Ophthalmology & Visual Science – volume: 29 start-page: 1420 year: 2015 end-page: 1425 ident: b0375 article-title: Pupillary responses to light in chronic non-blast-induced mTBI publication-title: Brain Injury – volume: 8 start-page: 7796 year: 2018 ident: b0195 article-title: Melanopsin-mediated pupil function is impaired in Parkinson's disease publication-title: Scientific Reports – volume: 181 start-page: 1382 year: 2016 end-page: 1390 ident: b0380 article-title: Objective pupillary correlates of photosensitivity in the normal and mild traumatic brain injury populations publication-title: Military Medicine – volume: 5 start-page: 17610 year: 2015 ident: b0020 article-title: Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR) publication-title: Scientific Reports – volume: 265 start-page: 41 year: 2018 end-page: 45 ident: b0125 article-title: Tracking posttraumatic hemianopia publication-title: Journal of Neurology – volume: 52 start-page: 6624 year: 2011 end-page: 6635 ident: b0320 article-title: Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response publication-title: Investigative Ophthalmology & Visual Science – volume: 79 start-page: 259 year: 2008 end-page: 265 ident: b0365 article-title: The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: A retrospective analysis publication-title: Optometry – year: 2010 ident: b0140 article-title: Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths. https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf: Centers for Disease Control and Prevention – volume: 22 start-page: 381 year: 2008 end-page: 386 ident: b0335 article-title: Prevalence and types of sleep disturbances acutely after traumatic brain injury publication-title: Brain Injury – volume: 522 start-page: 2231 year: 2014 end-page: 2248 ident: b0180 article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey publication-title: The Journal of Comparative Neurology – reference: Bradshaw, D. (2008). Report to The Surgeon General Traumatic Brain Injury Task Force. Department of Defense and Department of Veterans Affairs. – volume: 116 start-page: 1564 year: 2009 end-page: 1573 ident: b0220 article-title: Chromatic pupil responses: Preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex publication-title: Ophthalmol – volume: 4 start-page: 271 year: 2002 end-page: 280 ident: b0210 article-title: Vision disturbances following traumatic brain injury publication-title: Current Treatment Options in Neurology – volume: 114 start-page: 1321 year: 2015 end-page: 1330 ident: b0330 article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones publication-title: Journal of Neurophysiology – volume: 12 start-page: 205 year: 2002 end-page: 216 ident: b0175 article-title: Diffuse axonal injuries: Pathophysiology and imaging publication-title: Neuroimaging Clinics of North America – volume: 444 start-page: 269 year: 1991 end-page: 287 ident: b0230 article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: Excitatory synaptic mechanisms publication-title: Journal of Physiology – volume: 97 start-page: 198 year: 2020 end-page: 206 ident: b0155 article-title: Effects of mydriatics on rod/cone- and melanopsin-driven pupil responses publication-title: Optometry and Vision Science – year: 2021 ident: b0085 article-title: The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors publication-title: J Optom. – volume: 8 start-page: 29 year: 2019 ident: b0015 article-title: The flicker Pupil Light Response (fPLR) publication-title: Translational Vision Science & Technology – volume: 28 start-page: 1095 year: 2008 end-page: 1107 ident: b0245 article-title: Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway publication-title: Cellular and Molecular Neurobiology – volume: 10 start-page: 101 year: 2018 end-page: 110 ident: b0105 article-title: Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography publication-title: Eye Brain – volume: 33 start-page: 58 year: 2013 end-page: 61 ident: b0235 article-title: Retinal nerve fiber layer thickness in patients with Alzheimer disease publication-title: Journal of Neuro-Ophthalmology – volume: 56 start-page: 3838 year: 2015 end-page: 3849 ident: b0025 article-title: The post-illumination pupil response (PIPR) publication-title: Investigative Ophthalmology & Visual Science – reference: Kardon, R., Garvin, M., Wang, J.K., Cockerham, K., Anderson, S., Full, J., Lemke, S., & Cockerham, G. (2013). Prevalence of structural abnormalities of the retinal nerve fiber layer (RNFL) and ganglion cell layer complex (GCLC) by OCT in veterans with traumatic brain injury (TBI). Investigative Ophthalmology & Visual Science, 54, E-Abstract 2360. – volume: 91 start-page: 1641 year: 2010 end-page: 1649 ident: b0250 article-title: Common data elements for traumatic brain injury: Recommendations from the interagency working group on demographics and clinical assessment publication-title: Archives of Physical Medicine and Rehabilitation – volume: 497 start-page: 326 year: 2006 end-page: 349 ident: b0185 article-title: Central projections of melanopsin-expressing retinal ganglion cells in the mouse publication-title: The Journal of Comparative Neurology – volume: 52 start-page: 2287 year: 2011 end-page: 2292 ident: b0205 article-title: The post-illumination pupil response is reduced in glaucoma patients publication-title: Investigative Ophthalmology & Visual Science – volume: 196 start-page: 126 year: 2005 end-page: 137 ident: b0340 article-title: Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury publication-title: Experimental Neurology – volume: 41 start-page: 910 year: 2018 end-page: 915 ident: b0075 article-title: Traumatic homonymous hemianopsia and ganglion cell complex changes: Report of 3 cases publication-title: Journal Francais d'Ophtalmologie – volume: 95 start-page: 9 year: 2018 ident: b0005 article-title: The ipRGC-driven pupil response with light exposure, refractive error, and sleep publication-title: Optometry and Vision Science – volume: 96 start-page: 542 year: 2019 end-page: 555 ident: b0275 article-title: Visual deficits and dysfunctions associated with traumatic brain injury: A systematic review and meta-analysis publication-title: Optometry and Vision Science – volume: 20 start-page: 1331 year: 2014 end-page: 1341 ident: b0295 article-title: Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis publication-title: Multiple Sclerosis Journal – volume: 10 start-page: 360 year: 2019 ident: b0090 article-title: Light-induced pupillary responses in Alzheimer's disease publication-title: Frontiers in Neurology – volume: 28 start-page: 841 year: 2011 end-page: 847 ident: b0360 article-title: Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system publication-title: Journal of Neurotrauma – reference: Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2017). Retinal abnormalities in patients with different severities of traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 5647. – volume: 57 start-page: 5672 year: 2016 end-page: 5680 ident: b0200 article-title: The effects of short-term light adaptation on the human post-illumination pupil response publication-title: Investigative Ophthalmology & Visual Science – year: 2004 ident: b0070 article-title: The central nervous system: Structure and function – volume: 295 start-page: 1070 year: 2002 end-page: 1073 ident: b0055 article-title: Phototransduction by retinal ganglion cells that set the circadian clock publication-title: Science – volume: 90 start-page: e230 year: 2012 end-page: e234 ident: b0150 article-title: The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes publication-title: Acta Ophthalmologica – volume: 131 start-page: 1602 year: 2013 end-page: 1609 ident: b0240 article-title: Visual quality of life in veterans with blast-induced traumatic brain injury publication-title: JAMA Ophthalmology – start-page: 502 year: 2011 end-page: 525 ident: b0215 article-title: Regulation of light through the pupil publication-title: Adler's Physiology of the Eye – volume: 2 start-page: 81 year: 1974 end-page: 84 ident: b0370 article-title: Assessment of coma and impaired consciousness. A practical scale publication-title: Lancet – volume: 38 start-page: 503 year: 2018 end-page: 515 ident: b0310 article-title: The ipRGC-driven pupil response with light exposure and refractive error in children publication-title: Ophthalmic and Physiological Optics – volume: 78 start-page: 155 year: 2007 end-page: 161 ident: b0110 article-title: Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis publication-title: Optometry – volume: 93 start-page: 137 year: 2010 end-page: 149 ident: b0260 article-title: Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm publication-title: Clinical and Experimental Optometry – volume: 122 start-page: 1139 year: 2015 end-page: 1148 ident: b0165 article-title: Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma publication-title: Ophthalmology – reference: Guldner, F.H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution. Cell and Tissue Research, 194 (1), 17–35. – volume: 25 start-page: 719 year: 2008 end-page: 738 ident: b0350 article-title: Classification of traumatic brain injury for targeted therapies publication-title: Journal of Neurotrauma – volume: 60 start-page: 2005 year: 2019 end-page: 2011 ident: b0095 article-title: Indirect traumatic optic neuropathy in mild chronic traumatic brain injury publication-title: Investigative Ophthalmology & Visual Science – volume: 19 start-page: 1125 year: 2005 end-page: 1138 ident: b0130 article-title: Elevated dark adaptation thresholds in traumatic brain injury publication-title: Brain Injury – volume: 69 start-page: 270 year: 1984 end-page: 276 ident: b0390 article-title: Sensitivity to light and sound following minor head injury publication-title: Acta Neurologica Scandinavica – volume: 53 start-page: 4546 year: 2012 end-page: 4555 ident: b0290 article-title: Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses publication-title: Investigative Ophthalmology & Visual Science – volume: 112 start-page: 1860 year: 2001 end-page: 1867 ident: b0315 article-title: Morphological and functional retinal impairment in Alzheimer's disease patients publication-title: Clinical Neurophysiology – reference: Al-Abdalla, R., Joshi, N., Nguyen, J., Ciuffreda, K.J., & Viswanathan, S. (2017). The photopic negative response in mild traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 4281. – volume: 10 start-page: 1467 year: 2020 end-page: 1476 ident: b0145 article-title: Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease publication-title: J Parkinsons Dis – volume: 46 start-page: 811 year: 2009 end-page: 818 ident: b0115 article-title: Eye and visual function in traumatic brain injury publication-title: Journal of Rehabilitation Research and Development – volume: 55 start-page: 719 year: 2014 end-page: 727 ident: b0045 article-title: Assessing rod, cone, and melanopsin contributions to human pupil flicker responses publication-title: Investigative Ophthalmology & Visual Science – reference: Perez de Sevilla Muller, L., Sargoy, A., Rodriguez, A.R., & Brecha, N.C., 2004. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One, 9 (3), e93274. – reference: O'Neil, M.E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quinones, A., Motu'apuaka, M., Ensley, M., & Kansagara, D. (2013). In: Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review (Washington (DC). – volume: 11 year: 2016 ident: b0010 article-title: Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR) publication-title: PLoS ONE – reference: Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2016). Examining retinal structure and function in brain injury patients with homonymous hemianopia. Invest Ophthalmol Vis Sci, 57, E-Abstract 5989. – volume: 2 start-page: 10 year: 2011 ident: b0190 article-title: Test-retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer publication-title: Frontiers in Neurology – volume: 253 start-page: 1997 year: 2015 end-page: 2005 ident: b0395 article-title: Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR) publication-title: Graefes Archive for Clinical and Experimental Ophthalmology – year: 2020 ident: b0040 article-title: Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy publication-title: Acta Ophthalmologica – volume: 47 start-page: 946 year: 2007 end-page: 954 ident: b0160 article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells publication-title: Vision Research – volume: 28 start-page: 150 year: 2018 end-page: 156 ident: b0355 article-title: Reproducibility and normal values of static pupil diameters publication-title: European Journal of Ophthalmology – volume: 27 start-page: 1763 year: 2008 end-page: 1770 ident: b0050 article-title: Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus publication-title: European Journal of Neuroscience – volume: 27 start-page: 202 year: 2011 end-page: 207 ident: b0060 article-title: Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer publication-title: Journal of Refractive Surgery – volume: 48 start-page: 5798 year: 2007 end-page: 5805 ident: b0100 article-title: The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis publication-title: Investigative Ophthalmology & Visual Science – volume: 95 start-page: 9 issue: 4 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0005 article-title: The ipRGC-driven pupil response with light exposure, refractive error, and sleep publication-title: Optometry and Vision Science doi: 10.1097/OPX.0000000000001198 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.visres.2021.07.007_b0010 article-title: Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR) publication-title: PLoS ONE doi: 10.1371/journal.pone.0161175 – ident: 10.1016/j.visres.2021.07.007_b0065 doi: 10.1037/e629582011-001 – volume: 46 start-page: 811 issue: 6 year: 2009 ident: 10.1016/j.visres.2021.07.007_b0115 article-title: Eye and visual function in traumatic brain injury publication-title: Journal of Rehabilitation Research and Development doi: 10.1682/JRRD.2008.08.0109 – volume: 449 start-page: 603 issue: 7162 year: 2007 ident: 10.1016/j.visres.2021.07.007_b0135 article-title: Light adaptation in cone vision involves switching between receptor and post-receptor sites publication-title: Nature doi: 10.1038/nature06150 – volume: 20 start-page: 1331 issue: 10 year: 2014 ident: 10.1016/j.visres.2021.07.007_b0295 article-title: Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis publication-title: Multiple Sclerosis Journal doi: 10.1177/1352458514523498 – ident: 10.1016/j.visres.2021.07.007_b0285 – volume: 25 start-page: 719 issue: 7 year: 2008 ident: 10.1016/j.visres.2021.07.007_b0350 article-title: Classification of traumatic brain injury for targeted therapies publication-title: Journal of Neurotrauma doi: 10.1089/neu.2008.0586 – volume: 522 start-page: 2231 year: 2014 ident: 10.1016/j.visres.2021.07.007_b0180 article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.23555 – volume: 78 start-page: 155 issue: 4 year: 2007 ident: 10.1016/j.visres.2021.07.007_b0110 article-title: Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis publication-title: Optometry doi: 10.1016/j.optm.2006.11.011 – volume: 56 start-page: 3838 issue: 6 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0025 article-title: The post-illumination pupil response (PIPR) publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.14-16233 – volume: 28 start-page: 841 issue: 5 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0360 article-title: Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system publication-title: Journal of Neurotrauma doi: 10.1089/neu.2010.1658 – ident: 10.1016/j.visres.2021.07.007_b0300 – volume: 9 start-page: 7 year: 2021 ident: 10.1016/j.visres.2021.07.007_b0255 article-title: Melanopsin-mediated pupillary responses in bipolar disorder-a cross-sectional pupillometric investigation publication-title: International Journal of Bipolar Disorders doi: 10.1186/s40345-020-00211-3 – volume: 295 start-page: 1070 issue: 5557 year: 2002 ident: 10.1016/j.visres.2021.07.007_b0055 article-title: Phototransduction by retinal ganglion cells that set the circadian clock publication-title: Science doi: 10.1126/science.1067262 – volume: 177 start-page: 804 issue: 7 year: 2012 ident: 10.1016/j.visres.2021.07.007_b0080 article-title: Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury publication-title: Military Medicine doi: 10.7205/MILMED-D-12-00061 – ident: 10.1016/j.visres.2021.07.007_b0170 doi: 10.1007/BF00209231 – volume: 12 start-page: 205 issue: 2 year: 2002 ident: 10.1016/j.visres.2021.07.007_b0175 article-title: Diffuse axonal injuries: Pathophysiology and imaging publication-title: Neuroimaging Clinics of North America doi: 10.1016/S1052-5149(02)00011-4 – volume: 91 start-page: 1641 issue: 11 year: 2010 ident: 10.1016/j.visres.2021.07.007_b0250 article-title: Common data elements for traumatic brain injury: Recommendations from the interagency working group on demographics and clinical assessment publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1016/j.apmr.2010.07.232 – volume: 112 start-page: 1860 issue: 10 year: 2001 ident: 10.1016/j.visres.2021.07.007_b0315 article-title: Morphological and functional retinal impairment in Alzheimer's disease patients publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(01)00620-4 – ident: 10.1016/j.visres.2021.07.007_b0030 – ident: 10.1016/j.visres.2021.07.007_b0225 – volume: 196 start-page: 126 issue: 1 year: 2005 ident: 10.1016/j.visres.2021.07.007_b0340 article-title: Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury publication-title: Experimental Neurology doi: 10.1016/j.expneurol.2005.07.014 – volume: 131 start-page: 1602 issue: 12 year: 2013 ident: 10.1016/j.visres.2021.07.007_b0240 article-title: Visual quality of life in veterans with blast-induced traumatic brain injury publication-title: JAMA Ophthalmology doi: 10.1001/jamaophthalmol.2013.5028 – volume: 55 start-page: 719 year: 2014 ident: 10.1016/j.visres.2021.07.007_b0045 article-title: Assessing rod, cone, and melanopsin contributions to human pupil flicker responses publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.13-13252 – volume: 53 start-page: 4546 issue: 8 year: 2012 ident: 10.1016/j.visres.2021.07.007_b0290 article-title: Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.12-9494 – volume: 48 start-page: 5798 issue: 12 year: 2007 ident: 10.1016/j.visres.2021.07.007_b0100 article-title: The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.07-0738 – volume: 52 start-page: 2287 issue: 5 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0205 article-title: The post-illumination pupil response is reduced in glaucoma patients publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.10-6023 – volume: 19 start-page: 1125 issue: 13 year: 2005 ident: 10.1016/j.visres.2021.07.007_b0130 article-title: Elevated dark adaptation thresholds in traumatic brain injury publication-title: Brain Injury doi: 10.1080/02699050500149817 – volume: 38 start-page: 503 issue: 5 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0310 article-title: The ipRGC-driven pupil response with light exposure and refractive error in children publication-title: Ophthalmic and Physiological Optics doi: 10.1111/opo.12583 – volume: 58 start-page: 990 year: 2017 ident: 10.1016/j.visres.2021.07.007_b0265 article-title: Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related macular degeneration publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.16-20659 – volume: 60 start-page: 2005 issue: 6 year: 2019 ident: 10.1016/j.visres.2021.07.007_b0095 article-title: Indirect traumatic optic neuropathy in mild chronic traumatic brain injury publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.18-26094 – volume: 444 start-page: 269 year: 1991 ident: 10.1016/j.visres.2021.07.007_b0230 article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: Excitatory synaptic mechanisms publication-title: Journal of Physiology doi: 10.1113/jphysiol.1991.sp018877 – volume: 6 start-page: 485 issue: 9 year: 1966 ident: 10.1016/j.visres.2021.07.007_b0305 article-title: Studies of the optic nerve of the rhesus monkey: Nerve fiber spectrum and physiological properties publication-title: Vision Research doi: 10.1016/0042-6989(66)90001-0 – ident: 10.1016/j.visres.2021.07.007_b0280 – start-page: 502 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0215 article-title: Regulation of light through the pupil – year: 2021 ident: 10.1016/j.visres.2021.07.007_b0085 article-title: The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors publication-title: J Optom. – volume: 10 start-page: 1467 year: 2020 ident: 10.1016/j.visres.2021.07.007_b0145 article-title: Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease publication-title: J Parkinsons Dis doi: 10.3233/JPD-202178 – volume: 57 start-page: 5672 year: 2016 ident: 10.1016/j.visres.2021.07.007_b0200 article-title: The effects of short-term light adaptation on the human post-illumination pupil response publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.16-19934 – volume: 164 start-page: 478 year: 1962 ident: 10.1016/j.visres.2021.07.007_b0035 article-title: The spectral sensitivity of the consensual light reflex publication-title: Journal of Physiology doi: 10.1113/jphysiol.1962.sp007033 – volume: 27 start-page: 1763 issue: 7 year: 2008 ident: 10.1016/j.visres.2021.07.007_b0050 article-title: Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2008.06149.x – volume: 28 start-page: 1095 issue: 8 year: 2008 ident: 10.1016/j.visres.2021.07.007_b0245 article-title: Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway publication-title: Cellular and Molecular Neurobiology doi: 10.1007/s10571-008-9286-x – volume: 497 start-page: 326 issue: 3 year: 2006 ident: 10.1016/j.visres.2021.07.007_b0185 article-title: Central projections of melanopsin-expressing retinal ganglion cells in the mouse publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.20970 – volume: 41 start-page: 910 issue: 10 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0075 article-title: Traumatic homonymous hemianopsia and ganglion cell complex changes: Report of 3 cases publication-title: Journal Francais d'Ophtalmologie doi: 10.1016/j.jfo.2018.06.003 – ident: 10.1016/j.visres.2021.07.007_b0325 doi: 10.1371/journal.pone.0093274 – volume: 6 issue: 3 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0405 article-title: The circadian response of intrinsically photosensitive retinal ganglion cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0017860 – volume: 52 start-page: 6624 issue: 9 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0320 article-title: Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response publication-title: Investigative Ophthalmology & Visual Science doi: 10.1167/iovs.11-7586 – volume: 5 start-page: 17610 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0020 article-title: Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR) publication-title: Scientific Reports doi: 10.1038/srep17610 – year: 2004 ident: 10.1016/j.visres.2021.07.007_b0070 – volume: 22 start-page: 381 issue: 5 year: 2008 ident: 10.1016/j.visres.2021.07.007_b0335 article-title: Prevalence and types of sleep disturbances acutely after traumatic brain injury publication-title: Brain Injury doi: 10.1080/02699050801935260 – volume: 28 start-page: 150 issue: 2 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0355 article-title: Reproducibility and normal values of static pupil diameters publication-title: European Journal of Ophthalmology doi: 10.5301/ejo.5001027 – volume: 79 start-page: 259 issue: 5 year: 2008 ident: 10.1016/j.visres.2021.07.007_b0365 article-title: The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: A retrospective analysis publication-title: Optometry doi: 10.1016/j.optm.2007.10.012 – volume: 181 start-page: 1382 issue: 10 year: 2016 ident: 10.1016/j.visres.2021.07.007_b0380 article-title: Objective pupillary correlates of photosensitivity in the normal and mild traumatic brain injury populations publication-title: Military Medicine doi: 10.7205/MILMED-D-15-00587 – volume: 265 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0125 article-title: Tracking posttraumatic hemianopia publication-title: Journal of Neurology doi: 10.1007/s00415-017-8661-2 – volume: 4 start-page: 271 issue: 4 year: 2002 ident: 10.1016/j.visres.2021.07.007_b0210 article-title: Vision disturbances following traumatic brain injury publication-title: Current Treatment Options in Neurology doi: 10.1007/s11940-002-0027-z – volume: 253 start-page: 1997 issue: 11 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0395 article-title: Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR) publication-title: Graefes Archive for Clinical and Experimental Ophthalmology doi: 10.1007/s00417-015-3137-5 – volume: 10 start-page: 101 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0105 article-title: Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography publication-title: Eye Brain doi: 10.2147/EB.S183042 – year: 2010 ident: 10.1016/j.visres.2021.07.007_b0140 – volume: 116 start-page: 1564 year: 2009 ident: 10.1016/j.visres.2021.07.007_b0220 article-title: Chromatic pupil responses: Preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex publication-title: Ophthalmol doi: 10.1016/j.ophtha.2009.02.007 – volume: 69 start-page: 270 issue: 5 year: 1984 ident: 10.1016/j.visres.2021.07.007_b0390 article-title: Sensitivity to light and sound following minor head injury publication-title: Acta Neurologica Scandinavica doi: 10.1111/j.1600-0404.1984.tb07812.x – volume: 114 start-page: 1321 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0330 article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones publication-title: Journal of Neurophysiology doi: 10.1152/jn.00368.2015 – volume: 29 start-page: 1420 issue: 12 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0375 article-title: Pupillary responses to light in chronic non-blast-induced mTBI publication-title: Brain Injury doi: 10.3109/02699052.2015.1045029 – volume: 90 start-page: e230 issue: 3 year: 2012 ident: 10.1016/j.visres.2021.07.007_b0150 article-title: The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes publication-title: Acta Ophthalmologica doi: 10.1111/j.1755-3768.2011.02226.x – volume: 2 start-page: 10 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0190 article-title: Test-retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer publication-title: Frontiers in Neurology doi: 10.3389/fneur.2011.00010 – volume: 284 start-page: 845 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0120 article-title: The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.11.002 – volume: 93 start-page: 137 issue: 3 year: 2010 ident: 10.1016/j.visres.2021.07.007_b0260 article-title: Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm publication-title: Clinical and Experimental Optometry doi: 10.1111/j.1444-0938.2010.00479.x – volume: 10 start-page: 360 year: 2019 ident: 10.1016/j.visres.2021.07.007_b0090 article-title: Light-induced pupillary responses in Alzheimer's disease publication-title: Frontiers in Neurology doi: 10.3389/fneur.2019.00360 – volume: 8 start-page: 7796 year: 2018 ident: 10.1016/j.visres.2021.07.007_b0195 article-title: Melanopsin-mediated pupil function is impaired in Parkinson's disease publication-title: Scientific Reports doi: 10.1038/s41598-018-26078-0 – volume: 47 start-page: 946 issue: 7 year: 2007 ident: 10.1016/j.visres.2021.07.007_b0160 article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells publication-title: Vision Research doi: 10.1016/j.visres.2006.12.015 – volume: 2 start-page: 81 issue: 7872 year: 1974 ident: 10.1016/j.visres.2021.07.007_b0370 article-title: Assessment of coma and impaired consciousness. A practical scale publication-title: Lancet doi: 10.1016/S0140-6736(74)91639-0 – volume: 27 start-page: 202 issue: 3 year: 2011 ident: 10.1016/j.visres.2021.07.007_b0060 article-title: Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer publication-title: Journal of Refractive Surgery doi: 10.3928/1081597X-20100511-01 – volume: 50 start-page: 72 issue: 1 year: 2010 ident: 10.1016/j.visres.2021.07.007_b0270 article-title: The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex publication-title: Vision Research doi: 10.1016/j.visres.2009.10.012 – volume: 97 start-page: 198 issue: 3 year: 2020 ident: 10.1016/j.visres.2021.07.007_b0155 article-title: Effects of mydriatics on rod/cone- and melanopsin-driven pupil responses publication-title: Optometry and Vision Science doi: 10.1097/OPX.0000000000001486 – volume: 122 start-page: 1139 issue: 6 year: 2015 ident: 10.1016/j.visres.2021.07.007_b0165 article-title: Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2015.02.030 – volume: 33 start-page: 58 issue: 1 year: 2013 ident: 10.1016/j.visres.2021.07.007_b0235 article-title: Retinal nerve fiber layer thickness in patients with Alzheimer disease publication-title: Journal of Neuro-Ophthalmology doi: 10.1097/WNO.0b013e318267fd5f – year: 2020 ident: 10.1016/j.visres.2021.07.007_b0040 article-title: Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy publication-title: Acta Ophthalmologica doi: 10.1111/aos.14348 – volume: 94 start-page: 125 issue: 1 year: 2017 ident: 10.1016/j.visres.2021.07.007_b0385 article-title: Retrograde degeneration of retinal ganglion cells secondary to head trauma publication-title: Optometry and Vision Science doi: 10.1097/OPX.0000000000000899 – volume: 94 start-page: 108 issue: 1 year: 2017 ident: 10.1016/j.visres.2021.07.007_b0400 article-title: Blue and red light-evoked pupil responses in photophobic subjects with TBI publication-title: Optometry and Vision Science doi: 10.1097/OPX.0000000000000934 – volume: 96 start-page: 542 issue: 8 year: 2019 ident: 10.1016/j.visres.2021.07.007_b0275 article-title: Visual deficits and dysfunctions associated with traumatic brain injury: A systematic review and meta-analysis publication-title: Optometry and Vision Science doi: 10.1097/OPX.0000000000001407 – volume: 8 start-page: 29 year: 2019 ident: 10.1016/j.visres.2021.07.007_b0015 article-title: The flicker Pupil Light Response (fPLR) publication-title: Translational Vision Science & Technology doi: 10.1167/tvst.8.5.29 |
SSID | ssj0007529 |
Score | 2.3811405 |
Snippet | [Display omitted]
•TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction... Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 174 |
SubjectTerms | Brain Injuries, Traumatic Humans Intrinsically photosensitivity retinal ganglion cells Light Photic Stimulation Pupil Pupillography Reflex, Pupillary Retinal Ganglion Cells Rod Opsins Traumatic brain injury |
Title | Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury |
URI | https://dx.doi.org/10.1016/j.visres.2021.07.007 https://www.ncbi.nlm.nih.gov/pubmed/34352476 https://www.proquest.com/docview/2559434832 https://pubmed.ncbi.nlm.nih.gov/PMC8440415 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGkBAXBBsfhVEZCXELa2zHjo9l2tSBthOTeotsx2aZuiSsLdIu_O285yQVZZMmcUzy4lh-9vtw3u9nQj4yJ6UKQSfCcEhQtJGJUdwnQXoRMlu6iUPs8Nm5nF2Ir_NsvkOOBiwMllX2tr-z6dFa93cO-9E8bKsKMb4Iw8w1QxohyTBv5yKPIL75l401VhnTAwwFpQf4XKzx-lWBH0LSbpZGCk88VPZ-93Q3_Py3ivIvt3TynDzr40k67br8guz4eo_sT2vIpa9v6ScaKzzj1vkeeXLW_0jfJz9PobWqjipa3NL2slk1S6xlR-tHEdmIrf4wCPJtaorb-0l5g5aRtuu2WoBIrK31S1rBrY6cdUlxV5dCN9eRCJZaPH8CBK5AcS_Jxcnx96NZ0p--kDgh-SqxOvN56oI1vpzkpfawtHOXOuG4CpDIWJmaHESlZtZpyMMsRBLMmpIzZUsu-CuyWze1f0NoWvLAS5NrMQlClQbaAt-Z5T7oAAGcHxE-DHrhempyPCFjUQw1aFdFp6oCVVVM8J-5GpFk81bbUXM8IK8GfRZbU6wA7_HAmx8G9Rew-nDMTe2bNQhBQiZw1rERed1Nh01fYAgyJpSE725NlI0AMntvP6mry8jwnSNrY5q9_e8evyNP8aoDTR6Q3dXN2r-H6Gllx-TR59_pmDyenn6bnY_jYvkDVPQgmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemIQEXxDY-CgOMhLhFa2LHjo_bxNTCutMm9WbZjs0ylSSsLdL-e95zkooypElckxfH8rPfh_1-PxPyKXNCyBBUwg2DBEUZkRjJfBKE5yG3pRs7xA7PLsTkin-d5_MdcjpgYbCssrf9nU2P1rp_ctSP5lFbVYjxRRhmoTKkERIZ5O2PIBoQOLWn85ONOZZ5pgYcCooP-LlY5PWrAkeErN1ZGjk88VbZf_un-_Hn32WUf_ils-fkWR9Q0uOuz3tkx9f75OC4hmT6xx39TGOJZ9w73yePZ_1J-gH5OYXWqjrqaHFH2-tm1SyxmB3NH0VoI7b63SDKt6kp7u8n5S2aRtqu22oBIrG41i9pBY86dtYlxW1dCt1cRyZYavECChC4Ac29IFdnXy5PJ0l__ULiuGCrxKrcF6kL1vhyXJTKw9ouXOq4YzJAJmNFagoQFSqzTkEiZiGUyKwpWSZtyTh7SXbrpvavCU1LFlhpCsXHgcvSQFvgPPPCBxVAZ35E2DDo2vXc5HhFxkIPRWg3ulOVRlXpMR6ayxFJNl-1HTfHA_Jy0KfemmMa3McDX34c1K9h-eGYm9o3axCCjIwzDnZxRF5102HTFxiCPONSwH-3JspGAKm9t9_U1XWk-C6QtjHN3_x3jz-QJ5PL2bk-n158e0ue4psOQXlIdle3a_8OQqmVfR-Xym8QliE2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+photosensitive+retinal+ganglion+cell-driven+pupil+responses+in+patients+with+traumatic+brain+injury&rft.jtitle=Vision+research+%28Oxford%29&rft.au=Mostafa%2C+Jakaria&rft.au=Porter%2C+Jason&rft.au=Queener%2C+Hope+M.&rft.au=Ostrin%2C+Lisa+A.&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0042-6989&rft.eissn=1878-5646&rft.volume=188&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.visres.2021.07.007&rft.externalDocID=S0042698921001620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6989&client=summon |