Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury

[Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potenti...

Full description

Saved in:
Bibliographic Details
Published inVision research (Oxford) Vol. 188; pp. 174 - 183
Main Authors Mostafa, Jakaria, Porter, Jason, Queener, Hope M., Ostrin, Lisa A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN0042-6989
1878-5646
1878-5646
DOI10.1016/j.visres.2021.07.007

Cover

Loading…
Abstract [Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potentiated in all participants. Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.
AbstractList Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m ) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m ) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m ), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m ). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.
Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651nm, 133 cd/m 2 ) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m 2 ) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m 2 ), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m 2 ). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli ( P > .05 for all). For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli ( P < .001) and potentiated over time for blue stimuli ( P < .001) across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.
Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength "red" stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength "blue" stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.
[Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction amplitude.•Pupil constriction to 2 min of 0.1 Hz red stimuli attenuated in all participants.•Pupil constriction to 2 min of 0.1 Hz blue stimuli potentiated in all participants. Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined ipRGC-driven pupil responses in civilian TBI and control participants using two pupillography protocols that assessed transient and adaptive properties: (1) a one second (s) long wavelength “red” stimulus (651 nm, 133 cd/m2) and 10 increasing intensities of 1 s short wavelength ”blue” stimuli (456 nm, 0.167 to 167 cd/m2) with a 60 s interstimulus interval, and (2) two minutes of 0.1 Hz red stimuli (33 cd/m2), followed by two minutes of 0.1 Hz blue stimuli (16 cd/m2). For Protocol 1, constriction amplitude and the 6 s post illumination pupil response (PIPR) were calculated. For Protocol 2, amplitudes and peak velocities of pupil constriction and redilation were calculated. For Protocol 1, constriction amplitude and the 6 s PIPR were not significantly different between TBI patients and control subjects for red or blue stimuli. For Protocol 2, pupil constriction amplitude attenuated over time for red stimuli and potentiated over time for blue stimuli across all subjects. Constriction and redilation velocities were similar between groups. Pupil constriction amplitude was significantly less in TBI patients compared to control subjects for red and blue stimuli, which can be attributed to age-related differences in baseline pupil size. While TBI, in addition to age, may have contributed to decreased baseline pupil diameter and constriction amplitude, responses to blue stimulation suggest no selective damage to ipRGCs.
Author Ostrin, Lisa A.
Porter, Jason
Queener, Hope M.
Mostafa, Jakaria
AuthorAffiliation 1 University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77004
AuthorAffiliation_xml – name: 1 University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77004
Author_xml – sequence: 1
  givenname: Jakaria
  surname: Mostafa
  fullname: Mostafa, Jakaria
– sequence: 2
  givenname: Jason
  surname: Porter
  fullname: Porter, Jason
– sequence: 3
  givenname: Hope M.
  surname: Queener
  fullname: Queener, Hope M.
– sequence: 4
  givenname: Lisa A.
  surname: Ostrin
  fullname: Ostrin, Lisa A.
  email: Lostrin@central.uh.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34352476$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEQtVARTQv_AKE9ctlge71fHJBQBW2lSlzgbHm9k2Qix97a3lT590yUUAEHOFme9-bNzHtX7MIHD4y9FXwpuGg-bJd7TBHSUnIplrxdct6-YAvRtV1ZN6q5YAvOlSybvusv2VVKW06MWvav2GWlqlqqtlmwx3ufI_qE1jh3KKZNyCEB_TPuoYiQ0RtXrI1fOwy-sOBcOUbCfDHNEzqipCn4BKlAKpmM4HMqnjBvihzNvKOKLYZoCEW_nePhNXu5Mi7Bm_N7zX58_fL95q58-HZ7f_P5obSqqXI59DV0wq4GAyPvxh5aOswKq2zVrqRoh0aYjqhNLwfbN6IfhOByMGMl22GkA6_Zp5PuNA87GC3tFY3TU8SdiQcdDOo_EY8bvQ573SnFlahJ4P1ZIIbHGVLWO0xHA4yHMCct67pXleoqSdR3v896HvLLZyKoE8HGkCi11TNFcH2MU2_1KU59jFPzVlNY1PbxrzaLmRwNx43R_a_5bACQy3uEqJOldCyMGMFmPQb8t8BPminC1w
CitedBy_id crossref_primary_10_3389_fnins_2023_1090672
crossref_primary_10_1016_j_visres_2022_108176
crossref_primary_10_1007_s10633_022_09871_1
crossref_primary_10_3389_fcell_2025_1551135
Cites_doi 10.1097/OPX.0000000000001198
10.1371/journal.pone.0161175
10.1037/e629582011-001
10.1682/JRRD.2008.08.0109
10.1038/nature06150
10.1177/1352458514523498
10.1089/neu.2008.0586
10.1002/cne.23555
10.1016/j.optm.2006.11.011
10.1167/iovs.14-16233
10.1089/neu.2010.1658
10.1186/s40345-020-00211-3
10.1126/science.1067262
10.7205/MILMED-D-12-00061
10.1007/BF00209231
10.1016/S1052-5149(02)00011-4
10.1016/j.apmr.2010.07.232
10.1016/S1388-2457(01)00620-4
10.1016/j.expneurol.2005.07.014
10.1001/jamaophthalmol.2013.5028
10.1167/iovs.13-13252
10.1167/iovs.12-9494
10.1167/iovs.07-0738
10.1167/iovs.10-6023
10.1080/02699050500149817
10.1111/opo.12583
10.1167/iovs.16-20659
10.1167/iovs.18-26094
10.1113/jphysiol.1991.sp018877
10.1016/0042-6989(66)90001-0
10.3233/JPD-202178
10.1167/iovs.16-19934
10.1113/jphysiol.1962.sp007033
10.1111/j.1460-9568.2008.06149.x
10.1007/s10571-008-9286-x
10.1002/cne.20970
10.1016/j.jfo.2018.06.003
10.1371/journal.pone.0093274
10.1371/journal.pone.0017860
10.1167/iovs.11-7586
10.1038/srep17610
10.1080/02699050801935260
10.5301/ejo.5001027
10.1016/j.optm.2007.10.012
10.7205/MILMED-D-15-00587
10.1007/s00415-017-8661-2
10.1007/s11940-002-0027-z
10.1007/s00417-015-3137-5
10.2147/EB.S183042
10.1016/j.ophtha.2009.02.007
10.1111/j.1600-0404.1984.tb07812.x
10.1152/jn.00368.2015
10.3109/02699052.2015.1045029
10.1111/j.1755-3768.2011.02226.x
10.3389/fneur.2011.00010
10.1016/j.neuroscience.2014.11.002
10.1111/j.1444-0938.2010.00479.x
10.3389/fneur.2019.00360
10.1038/s41598-018-26078-0
10.1016/j.visres.2006.12.015
10.1016/S0140-6736(74)91639-0
10.3928/1081597X-20100511-01
10.1016/j.visres.2009.10.012
10.1097/OPX.0000000000001486
10.1016/j.ophtha.2015.02.030
10.1097/WNO.0b013e318267fd5f
10.1111/aos.14348
10.1097/OPX.0000000000000899
10.1097/OPX.0000000000000934
10.1097/OPX.0000000000001407
10.1167/tvst.8.5.29
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.visres.2021.07.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5646
EndPage 183
ExternalDocumentID PMC8440415
34352476
10_1016_j_visres_2021_07_007
S0042698921001620
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY007551
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
6I.
6PF
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFDAS
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
H~9
IHE
IXB
J1W
K-O
KOM
L7B
LCYCR
LZ2
M29
M2V
M41
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
TEORI
TN5
WUQ
X7M
XOL
XPP
ZA5
ZGI
ZKB
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-b95e81cfbaed08d9e7878c1c4c37f217b61a8c46692bc9619b1102bad327bd343
IEDL.DBID IXB
ISSN 0042-6989
1878-5646
IngestDate Thu Aug 21 18:38:40 EDT 2025
Tue Aug 05 11:17:00 EDT 2025
Thu Apr 03 07:05:08 EDT 2025
Tue Jul 01 01:43:29 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
Fri Feb 23 02:36:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pupillography
Intrinsically photosensitivity retinal ganglion cells
Traumatic brain injury
Language English
License This article is made available under the Elsevier license.
Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-b95e81cfbaed08d9e7878c1c4c37f217b61a8c46692bc9619b1102bad327bd343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Jakaria Mostafa – conceptualization, investigation, formal analysis, writing – original draft, review, editing
Jakaria Mostafa: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Roles/Writing - original draft; Writing - review & editing.
Jason Porter: Conceptualization; Funding acquisition; Investigation; Resources; Supervision; Writing - review & editing.
Hope Queener: Formal analysis; Software; Writing - review & editing.
Author Roles
Jason Porter - conceptualization, resources, writing - review & editing
Lisa Ostrin: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Supervision; Roles/Writing - original draft; Writing - review & editing.
Lisa A Ostrin - conceptualization, resources, formal analysis, writing – original draft, review, editing
Hope M Queener - formal analysis, writing - review & editing
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0042698921001620
PMID 34352476
PQID 2559434832
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8440415
proquest_miscellaneous_2559434832
pubmed_primary_34352476
crossref_primary_10_1016_j_visres_2021_07_007
crossref_citationtrail_10_1016_j_visres_2021_07_007
elsevier_sciencedirect_doi_10_1016_j_visres_2021_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Vision research (Oxford)
PublicationTitleAlternate Vision Res
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dunn, Lankheet, Rieke (b0135) 2007; 449
Chakraborty, Collins, Kricancic (b0085) 2021
Gamlin, McDougal, Pokorny, Smith, Yau, Dacey (b0160) 2007; 47
O'Neil, M.E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quinones, A., Motu'apuaka, M., Ensley, M., & Kansagara, D. (2013). In: Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review (Washington (DC).
Rao, Spiro, Vaishnavi, Rastogi, Mielke, Noll (b0335) 2008; 22
Ba-Ali, Brondsted, Andersen, Jennum, Lund-Andersen (b0040) 2020
Berson, Dunn, Takao (b0055) 2002; 295
Adhikari, Feigl, Zele (b0015) 2019; 8
Maynard, Zele, Kwan, Feigl (b0265) 2017; 58
Kapoor, Ciuffreda (b0210) 2002; 4
Bradshaw, D. (2008). Report to The Surgeon General Traumatic Brain Injury Task Force. Department of Defense and Department of Veterans Affairs.
Abbott, Queener, Ostrin (b0005) 2018; 95
Cui, Ren, Sollars, Pickard, So (b0120) 2015; 284
Kardon, R., Garvin, M., Wang, J.K., Cockerham, K., Anderson, S., Full, J., Lemke, S., & Cockerham, G. (2013). Prevalence of structural abnormalities of the retinal nerve fiber layer (RNFL) and ganglion cell layer complex (GCLC) by OCT in veterans with traumatic brain injury (TBI). Investigative Ophthalmology & Visual Science, 54, E-Abstract 2360.
Lemke, Cockerham, Glynn-Milley, Cockerham (b0240) 2013; 131
Markwell, Feigl, Zele (b0260) 2010; 93
Joyce, Feigl, Zele (b0200) 2016; 57
Capo-Aponte, Urosevich, Temme, Tarbett, Sanghera (b0080) 2012; 177
Chan, Hills, Bakall, Fernandez (b0095) 2019; 60
Flanagan, Saunders, Queener, Richardson, Ostrin (b0155) 2020; 97
Gracitelli, Duque-Chica, Roizenblatt, Moura, Nagy, Ragot de Melo (b0165) 2015; 122
Vien, DalPorto, Yang (b0385) 2017; 94
Wang, Shen, Zhang, Qi, Yao, Chen (b0395) 2015; 253
Hattar, Kumar, Park, Tong, Tung, Yau (b0185) 2006; 497
Schroder, Chashchina, Janunts, Cayless, Langenbucher (b0355) 2018; 28
Al-Abdalla, R., Joshi, N., Nguyen, J., Ciuffreda, K.J., & Viswanathan, S. (2017). The photopic negative response in mild traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 4281.
Hammoud, Wasserman (b0175) 2002; 12
Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2016). Examining retinal structure and function in brain injury patients with homonymous hemianopia. Invest Ophthalmol Vis Sci, 57, E-Abstract 5989.
Suchoff, Kapoor, Ciuffreda, Rutner, Han, Craig (b0365) 2008; 79
Li, Yau, Chen, Tay, Lee, Pu (b0245) 2008; 28
Guldner, F.H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution. Cell and Tissue Research, 194 (1), 17–35.
Joyce, Feigl, Kerr, Roeder, Zele (b0195) 2018; 8
Park, Moura, Raza, Rhee, Kardon, Hood (b0320) 2011; 52
Saatman, Duhaime, Bullock, Maas, Valadka, Manley, Workshop Scientific, Advisory Panel (b0350) 2008; 25
Maas, Harrison-Felix, Menon, Adelson, Balkin, Bullock (b0250) 2010; 91
McDougal, Gamlin (b0270) 2010; 50
Truong, Ciuffreda (b0380) 2016; 181
Alpern, Campbell (b0035) 1962; 164
Childs, Barker, Gage, Loosemore (b0105) 2018; 10
Chougule, Najjar, Finkelstein, Kandiah, Milea (b0090) 2019; 10
Parisi, Restuccia, Fattapposta, Mina, Bucci, Pierelli (b0315) 2001; 112
Zele, Feigl, Smith, Markwell (b0405) 2011; 6
Madsen, Ba-Ali, Heegaard (b0255) 2021; 9
Munch, Leon, Crippa, Kawasaki (b0290) 2012; 53
Bradley, Bentley, Mughal, Bodhireddy, Brown (b0060) 2011; 27
Adhikari, Feigl, Zele (b0010) 2016; 11
Du, Ciuffreda, Kapoor (b0130) 2005; 19
Ciuffreda, Kapoor, Rutner, Suchoff, Han, Craig (b0110) 2007; 78
Waddell, Gronwall (b0390) 1984; 69
Yuhas, Shorter, McDaniel, Earley, Hartwick (b0400) 2017; 94
Kirbas, Turkyilmaz, Anlar, Tufekci, Durmus (b0235) 2013; 33
Perez de Sevilla Muller, L., Sargoy, A., Rodriguez, A.R., & Brecha, N.C., 2004. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One, 9 (3), e93274.
Baver, Pickard, Sollars (b0050) 2008; 27
Kardon, Anderson, Damarjian, Grace, Stone, Kawasaki (b0220) 2009; 116
Kim, Dudek (b0230) 1991; 444
Faul, Xu, Wald, Coronado (b0140) 2010
Cockerham, Goodrich, Weichel, Orcutt, Rizzo, Bower (b0115) 2009; 46
Hannibal, Kankipati, Strang, Peterson, Dacey, Gamlin (b0180) 2014; 522
Kardon (b0215) 2011
Teasdale, Jennett (b0370) 1974; 2
Buisset, Leruez (b0075) 2018; 41
Adhikari, Zele, Feigl (b0025) 2015; 56
Reeves, Phillips, Povlishock (b0340) 2005; 196
Cheng, Laron, Schiffman, Tang, Frishman (b0100) 2007; 48
Ogden, Miller (b0305) 1966; 6
Feigl, Zele, Fader, Howes, Hughes, Jones (b0150) 2012; 90
Thiagarajan, Ciuffreda (b0375) 2015; 29
Decramer, Van Keer, Stalmans, Dupont, Sunaert, Theys (b0125) 2018; 265
Herbst, Sander, Milea, Lund-Andersen, Kawasaki (b0190) 2011; 2
Ostrin (b0310) 2018; 38
Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2017). Retinal abnormalities in patients with different severities of traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 5647.
Staal, Vickers (b0360) 2011; 28
Adhikari, Pearson, Anderson, Zele, Feigl (b0020) 2015; 5
Barrionuevo, Nicandro, McAnany, Zele, Gamlin, Cao (b0045) 2014; 55
Procyk, Eleftheriou, Storchi (b0330) 2015; 114
Kankipati, Girkin, Gamlin (b0205) 2011; 52
Merezhinskaya, Mallia, Park, Bryden, Mathur, Barker (b0275) 2019; 96
Brodal (b0070) 2004
Feigl, Dumpala, Kerr, Zele (b0145) 2020; 10
Narayanan, Cheng, Bonem, Saenz, Tang, Frishman (b0295) 2014; 20
Teasdale (10.1016/j.visres.2021.07.007_b0370) 1974; 2
Kapoor (10.1016/j.visres.2021.07.007_b0210) 2002; 4
Suchoff (10.1016/j.visres.2021.07.007_b0365) 2008; 79
Buisset (10.1016/j.visres.2021.07.007_b0075) 2018; 41
Staal (10.1016/j.visres.2021.07.007_b0360) 2011; 28
Adhikari (10.1016/j.visres.2021.07.007_b0015) 2019; 8
Abbott (10.1016/j.visres.2021.07.007_b0005) 2018; 95
Dunn (10.1016/j.visres.2021.07.007_b0135) 2007; 449
Du (10.1016/j.visres.2021.07.007_b0130) 2005; 19
Gracitelli (10.1016/j.visres.2021.07.007_b0165) 2015; 122
Kardon (10.1016/j.visres.2021.07.007_b0220) 2009; 116
Vien (10.1016/j.visres.2021.07.007_b0385) 2017; 94
10.1016/j.visres.2021.07.007_b0030
Cockerham (10.1016/j.visres.2021.07.007_b0115) 2009; 46
Ogden (10.1016/j.visres.2021.07.007_b0305) 1966; 6
Procyk (10.1016/j.visres.2021.07.007_b0330) 2015; 114
Kardon (10.1016/j.visres.2021.07.007_b0215) 2011
Saatman (10.1016/j.visres.2021.07.007_b0350) 2008; 25
Gamlin (10.1016/j.visres.2021.07.007_b0160) 2007; 47
Hannibal (10.1016/j.visres.2021.07.007_b0180) 2014; 522
Feigl (10.1016/j.visres.2021.07.007_b0145) 2020; 10
Berson (10.1016/j.visres.2021.07.007_b0055) 2002; 295
Ba-Ali (10.1016/j.visres.2021.07.007_b0040) 2020
Wang (10.1016/j.visres.2021.07.007_b0395) 2015; 253
Merezhinskaya (10.1016/j.visres.2021.07.007_b0275) 2019; 96
Munch (10.1016/j.visres.2021.07.007_b0290) 2012; 53
Chakraborty (10.1016/j.visres.2021.07.007_b0085) 2021
Chan (10.1016/j.visres.2021.07.007_b0095) 2019; 60
Li (10.1016/j.visres.2021.07.007_b0245) 2008; 28
Baver (10.1016/j.visres.2021.07.007_b0050) 2008; 27
Decramer (10.1016/j.visres.2021.07.007_b0125) 2018; 265
10.1016/j.visres.2021.07.007_b0325
Feigl (10.1016/j.visres.2021.07.007_b0150) 2012; 90
Maynard (10.1016/j.visres.2021.07.007_b0265) 2017; 58
10.1016/j.visres.2021.07.007_b0280
Capo-Aponte (10.1016/j.visres.2021.07.007_b0080) 2012; 177
Ciuffreda (10.1016/j.visres.2021.07.007_b0110) 2007; 78
Reeves (10.1016/j.visres.2021.07.007_b0340) 2005; 196
10.1016/j.visres.2021.07.007_b0285
Narayanan (10.1016/j.visres.2021.07.007_b0295) 2014; 20
Brodal (10.1016/j.visres.2021.07.007_b0070) 2004
Thiagarajan (10.1016/j.visres.2021.07.007_b0375) 2015; 29
Barrionuevo (10.1016/j.visres.2021.07.007_b0045) 2014; 55
Chougule (10.1016/j.visres.2021.07.007_b0090) 2019; 10
Hammoud (10.1016/j.visres.2021.07.007_b0175) 2002; 12
Kim (10.1016/j.visres.2021.07.007_b0230) 1991; 444
Joyce (10.1016/j.visres.2021.07.007_b0195) 2018; 8
Kirbas (10.1016/j.visres.2021.07.007_b0235) 2013; 33
Maas (10.1016/j.visres.2021.07.007_b0250) 2010; 91
Rao (10.1016/j.visres.2021.07.007_b0335) 2008; 22
Adhikari (10.1016/j.visres.2021.07.007_b0020) 2015; 5
McDougal (10.1016/j.visres.2021.07.007_b0270) 2010; 50
Herbst (10.1016/j.visres.2021.07.007_b0190) 2011; 2
Alpern (10.1016/j.visres.2021.07.007_b0035) 1962; 164
Ostrin (10.1016/j.visres.2021.07.007_b0310) 2018; 38
10.1016/j.visres.2021.07.007_b0170
Waddell (10.1016/j.visres.2021.07.007_b0390) 1984; 69
Adhikari (10.1016/j.visres.2021.07.007_b0025) 2015; 56
Bradley (10.1016/j.visres.2021.07.007_b0060) 2011; 27
Hattar (10.1016/j.visres.2021.07.007_b0185) 2006; 497
Joyce (10.1016/j.visres.2021.07.007_b0200) 2016; 57
Flanagan (10.1016/j.visres.2021.07.007_b0155) 2020; 97
Truong (10.1016/j.visres.2021.07.007_b0380) 2016; 181
Adhikari (10.1016/j.visres.2021.07.007_b0010) 2016; 11
Lemke (10.1016/j.visres.2021.07.007_b0240) 2013; 131
Markwell (10.1016/j.visres.2021.07.007_b0260) 2010; 93
Cheng (10.1016/j.visres.2021.07.007_b0100) 2007; 48
Parisi (10.1016/j.visres.2021.07.007_b0315) 2001; 112
Childs (10.1016/j.visres.2021.07.007_b0105) 2018; 10
Zele (10.1016/j.visres.2021.07.007_b0405) 2011; 6
Yuhas (10.1016/j.visres.2021.07.007_b0400) 2017; 94
Kankipati (10.1016/j.visres.2021.07.007_b0205) 2011; 52
10.1016/j.visres.2021.07.007_b0225
Faul (10.1016/j.visres.2021.07.007_b0140) 2010
10.1016/j.visres.2021.07.007_b0300
Schroder (10.1016/j.visres.2021.07.007_b0355) 2018; 28
Madsen (10.1016/j.visres.2021.07.007_b0255) 2021; 9
Cui (10.1016/j.visres.2021.07.007_b0120) 2015; 284
10.1016/j.visres.2021.07.007_b0065
Park (10.1016/j.visres.2021.07.007_b0320) 2011; 52
References_xml – volume: 94
  start-page: 125
  year: 2017
  end-page: 134
  ident: b0385
  article-title: Retrograde degeneration of retinal ganglion cells secondary to head trauma
  publication-title: Optometry and Vision Science
– volume: 449
  start-page: 603
  year: 2007
  end-page: 606
  ident: b0135
  article-title: Light adaptation in cone vision involves switching between receptor and post-receptor sites
  publication-title: Nature
– volume: 6
  start-page: 485
  year: 1966
  end-page: 506
  ident: b0305
  article-title: Studies of the optic nerve of the rhesus monkey: Nerve fiber spectrum and physiological properties
  publication-title: Vision Research
– volume: 284
  start-page: 845
  year: 2015
  end-page: 853
  ident: b0120
  article-title: The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells
  publication-title: Neuroscience
– volume: 9
  start-page: 7
  year: 2021
  ident: b0255
  article-title: Melanopsin-mediated pupillary responses in bipolar disorder-a cross-sectional pupillometric investigation
  publication-title: International Journal of Bipolar Disorders
– volume: 164
  start-page: 478
  year: 1962
  end-page: 507
  ident: b0035
  article-title: The spectral sensitivity of the consensual light reflex
  publication-title: Journal of Physiology
– volume: 50
  start-page: 72
  year: 2010
  end-page: 87
  ident: b0270
  article-title: The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex
  publication-title: Vision Research
– volume: 177
  start-page: 804
  year: 2012
  end-page: 813
  ident: b0080
  article-title: Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury
  publication-title: Military Medicine
– volume: 94
  start-page: 108
  year: 2017
  end-page: 117
  ident: b0400
  article-title: Blue and red light-evoked pupil responses in photophobic subjects with TBI
  publication-title: Optometry and Vision Science
– volume: 6
  year: 2011
  ident: b0405
  article-title: The circadian response of intrinsically photosensitive retinal ganglion cells
  publication-title: PLoS ONE
– volume: 58
  start-page: 990
  year: 2017
  end-page: 996
  ident: b0265
  article-title: Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related macular degeneration
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 29
  start-page: 1420
  year: 2015
  end-page: 1425
  ident: b0375
  article-title: Pupillary responses to light in chronic non-blast-induced mTBI
  publication-title: Brain Injury
– volume: 8
  start-page: 7796
  year: 2018
  ident: b0195
  article-title: Melanopsin-mediated pupil function is impaired in Parkinson's disease
  publication-title: Scientific Reports
– volume: 181
  start-page: 1382
  year: 2016
  end-page: 1390
  ident: b0380
  article-title: Objective pupillary correlates of photosensitivity in the normal and mild traumatic brain injury populations
  publication-title: Military Medicine
– volume: 5
  start-page: 17610
  year: 2015
  ident: b0020
  article-title: Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR)
  publication-title: Scientific Reports
– volume: 265
  start-page: 41
  year: 2018
  end-page: 45
  ident: b0125
  article-title: Tracking posttraumatic hemianopia
  publication-title: Journal of Neurology
– volume: 52
  start-page: 6624
  year: 2011
  end-page: 6635
  ident: b0320
  article-title: Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 79
  start-page: 259
  year: 2008
  end-page: 265
  ident: b0365
  article-title: The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: A retrospective analysis
  publication-title: Optometry
– year: 2010
  ident: b0140
  article-title: Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths. https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf: Centers for Disease Control and Prevention
– volume: 22
  start-page: 381
  year: 2008
  end-page: 386
  ident: b0335
  article-title: Prevalence and types of sleep disturbances acutely after traumatic brain injury
  publication-title: Brain Injury
– volume: 522
  start-page: 2231
  year: 2014
  end-page: 2248
  ident: b0180
  article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey
  publication-title: The Journal of Comparative Neurology
– reference: Bradshaw, D. (2008). Report to The Surgeon General Traumatic Brain Injury Task Force. Department of Defense and Department of Veterans Affairs.
– volume: 116
  start-page: 1564
  year: 2009
  end-page: 1573
  ident: b0220
  article-title: Chromatic pupil responses: Preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex
  publication-title: Ophthalmol
– volume: 4
  start-page: 271
  year: 2002
  end-page: 280
  ident: b0210
  article-title: Vision disturbances following traumatic brain injury
  publication-title: Current Treatment Options in Neurology
– volume: 114
  start-page: 1321
  year: 2015
  end-page: 1330
  ident: b0330
  article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones
  publication-title: Journal of Neurophysiology
– volume: 12
  start-page: 205
  year: 2002
  end-page: 216
  ident: b0175
  article-title: Diffuse axonal injuries: Pathophysiology and imaging
  publication-title: Neuroimaging Clinics of North America
– volume: 444
  start-page: 269
  year: 1991
  end-page: 287
  ident: b0230
  article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: Excitatory synaptic mechanisms
  publication-title: Journal of Physiology
– volume: 97
  start-page: 198
  year: 2020
  end-page: 206
  ident: b0155
  article-title: Effects of mydriatics on rod/cone- and melanopsin-driven pupil responses
  publication-title: Optometry and Vision Science
– year: 2021
  ident: b0085
  article-title: The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors
  publication-title: J Optom.
– volume: 8
  start-page: 29
  year: 2019
  ident: b0015
  article-title: The flicker Pupil Light Response (fPLR)
  publication-title: Translational Vision Science & Technology
– volume: 28
  start-page: 1095
  year: 2008
  end-page: 1107
  ident: b0245
  article-title: Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway
  publication-title: Cellular and Molecular Neurobiology
– volume: 10
  start-page: 101
  year: 2018
  end-page: 110
  ident: b0105
  article-title: Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography
  publication-title: Eye Brain
– volume: 33
  start-page: 58
  year: 2013
  end-page: 61
  ident: b0235
  article-title: Retinal nerve fiber layer thickness in patients with Alzheimer disease
  publication-title: Journal of Neuro-Ophthalmology
– volume: 56
  start-page: 3838
  year: 2015
  end-page: 3849
  ident: b0025
  article-title: The post-illumination pupil response (PIPR)
  publication-title: Investigative Ophthalmology & Visual Science
– reference: Kardon, R., Garvin, M., Wang, J.K., Cockerham, K., Anderson, S., Full, J., Lemke, S., & Cockerham, G. (2013). Prevalence of structural abnormalities of the retinal nerve fiber layer (RNFL) and ganglion cell layer complex (GCLC) by OCT in veterans with traumatic brain injury (TBI). Investigative Ophthalmology & Visual Science, 54, E-Abstract 2360.
– volume: 91
  start-page: 1641
  year: 2010
  end-page: 1649
  ident: b0250
  article-title: Common data elements for traumatic brain injury: Recommendations from the interagency working group on demographics and clinical assessment
  publication-title: Archives of Physical Medicine and Rehabilitation
– volume: 497
  start-page: 326
  year: 2006
  end-page: 349
  ident: b0185
  article-title: Central projections of melanopsin-expressing retinal ganglion cells in the mouse
  publication-title: The Journal of Comparative Neurology
– volume: 52
  start-page: 2287
  year: 2011
  end-page: 2292
  ident: b0205
  article-title: The post-illumination pupil response is reduced in glaucoma patients
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 196
  start-page: 126
  year: 2005
  end-page: 137
  ident: b0340
  article-title: Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury
  publication-title: Experimental Neurology
– volume: 41
  start-page: 910
  year: 2018
  end-page: 915
  ident: b0075
  article-title: Traumatic homonymous hemianopsia and ganglion cell complex changes: Report of 3 cases
  publication-title: Journal Francais d'Ophtalmologie
– volume: 95
  start-page: 9
  year: 2018
  ident: b0005
  article-title: The ipRGC-driven pupil response with light exposure, refractive error, and sleep
  publication-title: Optometry and Vision Science
– volume: 96
  start-page: 542
  year: 2019
  end-page: 555
  ident: b0275
  article-title: Visual deficits and dysfunctions associated with traumatic brain injury: A systematic review and meta-analysis
  publication-title: Optometry and Vision Science
– volume: 20
  start-page: 1331
  year: 2014
  end-page: 1341
  ident: b0295
  article-title: Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis
  publication-title: Multiple Sclerosis Journal
– volume: 10
  start-page: 360
  year: 2019
  ident: b0090
  article-title: Light-induced pupillary responses in Alzheimer's disease
  publication-title: Frontiers in Neurology
– volume: 28
  start-page: 841
  year: 2011
  end-page: 847
  ident: b0360
  article-title: Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system
  publication-title: Journal of Neurotrauma
– reference: Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2017). Retinal abnormalities in patients with different severities of traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 5647.
– volume: 57
  start-page: 5672
  year: 2016
  end-page: 5680
  ident: b0200
  article-title: The effects of short-term light adaptation on the human post-illumination pupil response
  publication-title: Investigative Ophthalmology & Visual Science
– year: 2004
  ident: b0070
  article-title: The central nervous system: Structure and function
– volume: 295
  start-page: 1070
  year: 2002
  end-page: 1073
  ident: b0055
  article-title: Phototransduction by retinal ganglion cells that set the circadian clock
  publication-title: Science
– volume: 90
  start-page: e230
  year: 2012
  end-page: e234
  ident: b0150
  article-title: The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes
  publication-title: Acta Ophthalmologica
– volume: 131
  start-page: 1602
  year: 2013
  end-page: 1609
  ident: b0240
  article-title: Visual quality of life in veterans with blast-induced traumatic brain injury
  publication-title: JAMA Ophthalmology
– start-page: 502
  year: 2011
  end-page: 525
  ident: b0215
  article-title: Regulation of light through the pupil
  publication-title: Adler's Physiology of the Eye
– volume: 2
  start-page: 81
  year: 1974
  end-page: 84
  ident: b0370
  article-title: Assessment of coma and impaired consciousness. A practical scale
  publication-title: Lancet
– volume: 38
  start-page: 503
  year: 2018
  end-page: 515
  ident: b0310
  article-title: The ipRGC-driven pupil response with light exposure and refractive error in children
  publication-title: Ophthalmic and Physiological Optics
– volume: 78
  start-page: 155
  year: 2007
  end-page: 161
  ident: b0110
  article-title: Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis
  publication-title: Optometry
– volume: 93
  start-page: 137
  year: 2010
  end-page: 149
  ident: b0260
  article-title: Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm
  publication-title: Clinical and Experimental Optometry
– volume: 122
  start-page: 1139
  year: 2015
  end-page: 1148
  ident: b0165
  article-title: Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma
  publication-title: Ophthalmology
– reference: Guldner, F.H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution. Cell and Tissue Research, 194 (1), 17–35.
– volume: 25
  start-page: 719
  year: 2008
  end-page: 738
  ident: b0350
  article-title: Classification of traumatic brain injury for targeted therapies
  publication-title: Journal of Neurotrauma
– volume: 60
  start-page: 2005
  year: 2019
  end-page: 2011
  ident: b0095
  article-title: Indirect traumatic optic neuropathy in mild chronic traumatic brain injury
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 19
  start-page: 1125
  year: 2005
  end-page: 1138
  ident: b0130
  article-title: Elevated dark adaptation thresholds in traumatic brain injury
  publication-title: Brain Injury
– volume: 69
  start-page: 270
  year: 1984
  end-page: 276
  ident: b0390
  article-title: Sensitivity to light and sound following minor head injury
  publication-title: Acta Neurologica Scandinavica
– volume: 53
  start-page: 4546
  year: 2012
  end-page: 4555
  ident: b0290
  article-title: Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 112
  start-page: 1860
  year: 2001
  end-page: 1867
  ident: b0315
  article-title: Morphological and functional retinal impairment in Alzheimer's disease patients
  publication-title: Clinical Neurophysiology
– reference: Al-Abdalla, R., Joshi, N., Nguyen, J., Ciuffreda, K.J., & Viswanathan, S. (2017). The photopic negative response in mild traumatic brain injury. Investigative Ophthalmology & Visual Science, 58, E-Abstract 4281.
– volume: 10
  start-page: 1467
  year: 2020
  end-page: 1476
  ident: b0145
  article-title: Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease
  publication-title: J Parkinsons Dis
– volume: 46
  start-page: 811
  year: 2009
  end-page: 818
  ident: b0115
  article-title: Eye and visual function in traumatic brain injury
  publication-title: Journal of Rehabilitation Research and Development
– volume: 55
  start-page: 719
  year: 2014
  end-page: 727
  ident: b0045
  article-title: Assessing rod, cone, and melanopsin contributions to human pupil flicker responses
  publication-title: Investigative Ophthalmology & Visual Science
– reference: Perez de Sevilla Muller, L., Sargoy, A., Rodriguez, A.R., & Brecha, N.C., 2004. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One, 9 (3), e93274.
– reference: O'Neil, M.E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quinones, A., Motu'apuaka, M., Ensley, M., & Kansagara, D. (2013). In: Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review (Washington (DC).
– volume: 11
  year: 2016
  ident: b0010
  article-title: Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR)
  publication-title: PLoS ONE
– reference: Mostafa, J., Wickum, S., Frishman, L.J., & Porter, J. (2016). Examining retinal structure and function in brain injury patients with homonymous hemianopia. Invest Ophthalmol Vis Sci, 57, E-Abstract 5989.
– volume: 2
  start-page: 10
  year: 2011
  ident: b0190
  article-title: Test-retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer
  publication-title: Frontiers in Neurology
– volume: 253
  start-page: 1997
  year: 2015
  end-page: 2005
  ident: b0395
  article-title: Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR)
  publication-title: Graefes Archive for Clinical and Experimental Ophthalmology
– year: 2020
  ident: b0040
  article-title: Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy
  publication-title: Acta Ophthalmologica
– volume: 47
  start-page: 946
  year: 2007
  end-page: 954
  ident: b0160
  article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells
  publication-title: Vision Research
– volume: 28
  start-page: 150
  year: 2018
  end-page: 156
  ident: b0355
  article-title: Reproducibility and normal values of static pupil diameters
  publication-title: European Journal of Ophthalmology
– volume: 27
  start-page: 1763
  year: 2008
  end-page: 1770
  ident: b0050
  article-title: Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus
  publication-title: European Journal of Neuroscience
– volume: 27
  start-page: 202
  year: 2011
  end-page: 207
  ident: b0060
  article-title: Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer
  publication-title: Journal of Refractive Surgery
– volume: 48
  start-page: 5798
  year: 2007
  end-page: 5805
  ident: b0100
  article-title: The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 95
  start-page: 9
  issue: 4
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0005
  article-title: The ipRGC-driven pupil response with light exposure, refractive error, and sleep
  publication-title: Optometry and Vision Science
  doi: 10.1097/OPX.0000000000001198
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.visres.2021.07.007_b0010
  article-title: Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161175
– ident: 10.1016/j.visres.2021.07.007_b0065
  doi: 10.1037/e629582011-001
– volume: 46
  start-page: 811
  issue: 6
  year: 2009
  ident: 10.1016/j.visres.2021.07.007_b0115
  article-title: Eye and visual function in traumatic brain injury
  publication-title: Journal of Rehabilitation Research and Development
  doi: 10.1682/JRRD.2008.08.0109
– volume: 449
  start-page: 603
  issue: 7162
  year: 2007
  ident: 10.1016/j.visres.2021.07.007_b0135
  article-title: Light adaptation in cone vision involves switching between receptor and post-receptor sites
  publication-title: Nature
  doi: 10.1038/nature06150
– volume: 20
  start-page: 1331
  issue: 10
  year: 2014
  ident: 10.1016/j.visres.2021.07.007_b0295
  article-title: Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis
  publication-title: Multiple Sclerosis Journal
  doi: 10.1177/1352458514523498
– ident: 10.1016/j.visres.2021.07.007_b0285
– volume: 25
  start-page: 719
  issue: 7
  year: 2008
  ident: 10.1016/j.visres.2021.07.007_b0350
  article-title: Classification of traumatic brain injury for targeted therapies
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2008.0586
– volume: 522
  start-page: 2231
  year: 2014
  ident: 10.1016/j.visres.2021.07.007_b0180
  article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey
  publication-title: The Journal of Comparative Neurology
  doi: 10.1002/cne.23555
– volume: 78
  start-page: 155
  issue: 4
  year: 2007
  ident: 10.1016/j.visres.2021.07.007_b0110
  article-title: Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis
  publication-title: Optometry
  doi: 10.1016/j.optm.2006.11.011
– volume: 56
  start-page: 3838
  issue: 6
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0025
  article-title: The post-illumination pupil response (PIPR)
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.14-16233
– volume: 28
  start-page: 841
  issue: 5
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0360
  article-title: Selective vulnerability of non-myelinated axons to stretch injury in an in vitro co-culture system
  publication-title: Journal of Neurotrauma
  doi: 10.1089/neu.2010.1658
– ident: 10.1016/j.visres.2021.07.007_b0300
– volume: 9
  start-page: 7
  year: 2021
  ident: 10.1016/j.visres.2021.07.007_b0255
  article-title: Melanopsin-mediated pupillary responses in bipolar disorder-a cross-sectional pupillometric investigation
  publication-title: International Journal of Bipolar Disorders
  doi: 10.1186/s40345-020-00211-3
– volume: 295
  start-page: 1070
  issue: 5557
  year: 2002
  ident: 10.1016/j.visres.2021.07.007_b0055
  article-title: Phototransduction by retinal ganglion cells that set the circadian clock
  publication-title: Science
  doi: 10.1126/science.1067262
– volume: 177
  start-page: 804
  issue: 7
  year: 2012
  ident: 10.1016/j.visres.2021.07.007_b0080
  article-title: Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury
  publication-title: Military Medicine
  doi: 10.7205/MILMED-D-12-00061
– ident: 10.1016/j.visres.2021.07.007_b0170
  doi: 10.1007/BF00209231
– volume: 12
  start-page: 205
  issue: 2
  year: 2002
  ident: 10.1016/j.visres.2021.07.007_b0175
  article-title: Diffuse axonal injuries: Pathophysiology and imaging
  publication-title: Neuroimaging Clinics of North America
  doi: 10.1016/S1052-5149(02)00011-4
– volume: 91
  start-page: 1641
  issue: 11
  year: 2010
  ident: 10.1016/j.visres.2021.07.007_b0250
  article-title: Common data elements for traumatic brain injury: Recommendations from the interagency working group on demographics and clinical assessment
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2010.07.232
– volume: 112
  start-page: 1860
  issue: 10
  year: 2001
  ident: 10.1016/j.visres.2021.07.007_b0315
  article-title: Morphological and functional retinal impairment in Alzheimer's disease patients
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(01)00620-4
– ident: 10.1016/j.visres.2021.07.007_b0030
– ident: 10.1016/j.visres.2021.07.007_b0225
– volume: 196
  start-page: 126
  issue: 1
  year: 2005
  ident: 10.1016/j.visres.2021.07.007_b0340
  article-title: Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury
  publication-title: Experimental Neurology
  doi: 10.1016/j.expneurol.2005.07.014
– volume: 131
  start-page: 1602
  issue: 12
  year: 2013
  ident: 10.1016/j.visres.2021.07.007_b0240
  article-title: Visual quality of life in veterans with blast-induced traumatic brain injury
  publication-title: JAMA Ophthalmology
  doi: 10.1001/jamaophthalmol.2013.5028
– volume: 55
  start-page: 719
  year: 2014
  ident: 10.1016/j.visres.2021.07.007_b0045
  article-title: Assessing rod, cone, and melanopsin contributions to human pupil flicker responses
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.13-13252
– volume: 53
  start-page: 4546
  issue: 8
  year: 2012
  ident: 10.1016/j.visres.2021.07.007_b0290
  article-title: Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.12-9494
– volume: 48
  start-page: 5798
  issue: 12
  year: 2007
  ident: 10.1016/j.visres.2021.07.007_b0100
  article-title: The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.07-0738
– volume: 52
  start-page: 2287
  issue: 5
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0205
  article-title: The post-illumination pupil response is reduced in glaucoma patients
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.10-6023
– volume: 19
  start-page: 1125
  issue: 13
  year: 2005
  ident: 10.1016/j.visres.2021.07.007_b0130
  article-title: Elevated dark adaptation thresholds in traumatic brain injury
  publication-title: Brain Injury
  doi: 10.1080/02699050500149817
– volume: 38
  start-page: 503
  issue: 5
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0310
  article-title: The ipRGC-driven pupil response with light exposure and refractive error in children
  publication-title: Ophthalmic and Physiological Optics
  doi: 10.1111/opo.12583
– volume: 58
  start-page: 990
  year: 2017
  ident: 10.1016/j.visres.2021.07.007_b0265
  article-title: Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related macular degeneration
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.16-20659
– volume: 60
  start-page: 2005
  issue: 6
  year: 2019
  ident: 10.1016/j.visres.2021.07.007_b0095
  article-title: Indirect traumatic optic neuropathy in mild chronic traumatic brain injury
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.18-26094
– volume: 444
  start-page: 269
  year: 1991
  ident: 10.1016/j.visres.2021.07.007_b0230
  article-title: Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: Excitatory synaptic mechanisms
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1991.sp018877
– volume: 6
  start-page: 485
  issue: 9
  year: 1966
  ident: 10.1016/j.visres.2021.07.007_b0305
  article-title: Studies of the optic nerve of the rhesus monkey: Nerve fiber spectrum and physiological properties
  publication-title: Vision Research
  doi: 10.1016/0042-6989(66)90001-0
– ident: 10.1016/j.visres.2021.07.007_b0280
– start-page: 502
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0215
  article-title: Regulation of light through the pupil
– year: 2021
  ident: 10.1016/j.visres.2021.07.007_b0085
  article-title: The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors
  publication-title: J Optom.
– volume: 10
  start-page: 1467
  year: 2020
  ident: 10.1016/j.visres.2021.07.007_b0145
  article-title: Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-202178
– volume: 57
  start-page: 5672
  year: 2016
  ident: 10.1016/j.visres.2021.07.007_b0200
  article-title: The effects of short-term light adaptation on the human post-illumination pupil response
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.16-19934
– volume: 164
  start-page: 478
  year: 1962
  ident: 10.1016/j.visres.2021.07.007_b0035
  article-title: The spectral sensitivity of the consensual light reflex
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1962.sp007033
– volume: 27
  start-page: 1763
  issue: 7
  year: 2008
  ident: 10.1016/j.visres.2021.07.007_b0050
  article-title: Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2008.06149.x
– volume: 28
  start-page: 1095
  issue: 8
  year: 2008
  ident: 10.1016/j.visres.2021.07.007_b0245
  article-title: Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway
  publication-title: Cellular and Molecular Neurobiology
  doi: 10.1007/s10571-008-9286-x
– volume: 497
  start-page: 326
  issue: 3
  year: 2006
  ident: 10.1016/j.visres.2021.07.007_b0185
  article-title: Central projections of melanopsin-expressing retinal ganglion cells in the mouse
  publication-title: The Journal of Comparative Neurology
  doi: 10.1002/cne.20970
– volume: 41
  start-page: 910
  issue: 10
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0075
  article-title: Traumatic homonymous hemianopsia and ganglion cell complex changes: Report of 3 cases
  publication-title: Journal Francais d'Ophtalmologie
  doi: 10.1016/j.jfo.2018.06.003
– ident: 10.1016/j.visres.2021.07.007_b0325
  doi: 10.1371/journal.pone.0093274
– volume: 6
  issue: 3
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0405
  article-title: The circadian response of intrinsically photosensitive retinal ganglion cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017860
– volume: 52
  start-page: 6624
  issue: 9
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0320
  article-title: Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response
  publication-title: Investigative Ophthalmology & Visual Science
  doi: 10.1167/iovs.11-7586
– volume: 5
  start-page: 17610
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0020
  article-title: Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR)
  publication-title: Scientific Reports
  doi: 10.1038/srep17610
– year: 2004
  ident: 10.1016/j.visres.2021.07.007_b0070
– volume: 22
  start-page: 381
  issue: 5
  year: 2008
  ident: 10.1016/j.visres.2021.07.007_b0335
  article-title: Prevalence and types of sleep disturbances acutely after traumatic brain injury
  publication-title: Brain Injury
  doi: 10.1080/02699050801935260
– volume: 28
  start-page: 150
  issue: 2
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0355
  article-title: Reproducibility and normal values of static pupil diameters
  publication-title: European Journal of Ophthalmology
  doi: 10.5301/ejo.5001027
– volume: 79
  start-page: 259
  issue: 5
  year: 2008
  ident: 10.1016/j.visres.2021.07.007_b0365
  article-title: The frequency of occurrence, types, and characteristics of visual field defects in acquired brain injury: A retrospective analysis
  publication-title: Optometry
  doi: 10.1016/j.optm.2007.10.012
– volume: 181
  start-page: 1382
  issue: 10
  year: 2016
  ident: 10.1016/j.visres.2021.07.007_b0380
  article-title: Objective pupillary correlates of photosensitivity in the normal and mild traumatic brain injury populations
  publication-title: Military Medicine
  doi: 10.7205/MILMED-D-15-00587
– volume: 265
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0125
  article-title: Tracking posttraumatic hemianopia
  publication-title: Journal of Neurology
  doi: 10.1007/s00415-017-8661-2
– volume: 4
  start-page: 271
  issue: 4
  year: 2002
  ident: 10.1016/j.visres.2021.07.007_b0210
  article-title: Vision disturbances following traumatic brain injury
  publication-title: Current Treatment Options in Neurology
  doi: 10.1007/s11940-002-0027-z
– volume: 253
  start-page: 1997
  issue: 11
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0395
  article-title: Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR)
  publication-title: Graefes Archive for Clinical and Experimental Ophthalmology
  doi: 10.1007/s00417-015-3137-5
– volume: 10
  start-page: 101
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0105
  article-title: Investigating possible retinal biomarkers of head trauma in Olympic boxers using optical coherence tomography
  publication-title: Eye Brain
  doi: 10.2147/EB.S183042
– year: 2010
  ident: 10.1016/j.visres.2021.07.007_b0140
– volume: 116
  start-page: 1564
  year: 2009
  ident: 10.1016/j.visres.2021.07.007_b0220
  article-title: Chromatic pupil responses: Preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex
  publication-title: Ophthalmol
  doi: 10.1016/j.ophtha.2009.02.007
– volume: 69
  start-page: 270
  issue: 5
  year: 1984
  ident: 10.1016/j.visres.2021.07.007_b0390
  article-title: Sensitivity to light and sound following minor head injury
  publication-title: Acta Neurologica Scandinavica
  doi: 10.1111/j.1600-0404.1984.tb07812.x
– volume: 114
  start-page: 1321
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0330
  article-title: Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00368.2015
– volume: 29
  start-page: 1420
  issue: 12
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0375
  article-title: Pupillary responses to light in chronic non-blast-induced mTBI
  publication-title: Brain Injury
  doi: 10.3109/02699052.2015.1045029
– volume: 90
  start-page: e230
  issue: 3
  year: 2012
  ident: 10.1016/j.visres.2021.07.007_b0150
  article-title: The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes
  publication-title: Acta Ophthalmologica
  doi: 10.1111/j.1755-3768.2011.02226.x
– volume: 2
  start-page: 10
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0190
  article-title: Test-retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2011.00010
– volume: 284
  start-page: 845
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0120
  article-title: The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.11.002
– volume: 93
  start-page: 137
  issue: 3
  year: 2010
  ident: 10.1016/j.visres.2021.07.007_b0260
  article-title: Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm
  publication-title: Clinical and Experimental Optometry
  doi: 10.1111/j.1444-0938.2010.00479.x
– volume: 10
  start-page: 360
  year: 2019
  ident: 10.1016/j.visres.2021.07.007_b0090
  article-title: Light-induced pupillary responses in Alzheimer's disease
  publication-title: Frontiers in Neurology
  doi: 10.3389/fneur.2019.00360
– volume: 8
  start-page: 7796
  year: 2018
  ident: 10.1016/j.visres.2021.07.007_b0195
  article-title: Melanopsin-mediated pupil function is impaired in Parkinson's disease
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-26078-0
– volume: 47
  start-page: 946
  issue: 7
  year: 2007
  ident: 10.1016/j.visres.2021.07.007_b0160
  article-title: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells
  publication-title: Vision Research
  doi: 10.1016/j.visres.2006.12.015
– volume: 2
  start-page: 81
  issue: 7872
  year: 1974
  ident: 10.1016/j.visres.2021.07.007_b0370
  article-title: Assessment of coma and impaired consciousness. A practical scale
  publication-title: Lancet
  doi: 10.1016/S0140-6736(74)91639-0
– volume: 27
  start-page: 202
  issue: 3
  year: 2011
  ident: 10.1016/j.visres.2021.07.007_b0060
  article-title: Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer
  publication-title: Journal of Refractive Surgery
  doi: 10.3928/1081597X-20100511-01
– volume: 50
  start-page: 72
  issue: 1
  year: 2010
  ident: 10.1016/j.visres.2021.07.007_b0270
  article-title: The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex
  publication-title: Vision Research
  doi: 10.1016/j.visres.2009.10.012
– volume: 97
  start-page: 198
  issue: 3
  year: 2020
  ident: 10.1016/j.visres.2021.07.007_b0155
  article-title: Effects of mydriatics on rod/cone- and melanopsin-driven pupil responses
  publication-title: Optometry and Vision Science
  doi: 10.1097/OPX.0000000000001486
– volume: 122
  start-page: 1139
  issue: 6
  year: 2015
  ident: 10.1016/j.visres.2021.07.007_b0165
  article-title: Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.02.030
– volume: 33
  start-page: 58
  issue: 1
  year: 2013
  ident: 10.1016/j.visres.2021.07.007_b0235
  article-title: Retinal nerve fiber layer thickness in patients with Alzheimer disease
  publication-title: Journal of Neuro-Ophthalmology
  doi: 10.1097/WNO.0b013e318267fd5f
– year: 2020
  ident: 10.1016/j.visres.2021.07.007_b0040
  article-title: Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy
  publication-title: Acta Ophthalmologica
  doi: 10.1111/aos.14348
– volume: 94
  start-page: 125
  issue: 1
  year: 2017
  ident: 10.1016/j.visres.2021.07.007_b0385
  article-title: Retrograde degeneration of retinal ganglion cells secondary to head trauma
  publication-title: Optometry and Vision Science
  doi: 10.1097/OPX.0000000000000899
– volume: 94
  start-page: 108
  issue: 1
  year: 2017
  ident: 10.1016/j.visres.2021.07.007_b0400
  article-title: Blue and red light-evoked pupil responses in photophobic subjects with TBI
  publication-title: Optometry and Vision Science
  doi: 10.1097/OPX.0000000000000934
– volume: 96
  start-page: 542
  issue: 8
  year: 2019
  ident: 10.1016/j.visres.2021.07.007_b0275
  article-title: Visual deficits and dysfunctions associated with traumatic brain injury: A systematic review and meta-analysis
  publication-title: Optometry and Vision Science
  doi: 10.1097/OPX.0000000000001407
– volume: 8
  start-page: 29
  year: 2019
  ident: 10.1016/j.visres.2021.07.007_b0015
  article-title: The flicker Pupil Light Response (fPLR)
  publication-title: Translational Vision Science & Technology
  doi: 10.1167/tvst.8.5.29
SSID ssj0007529
Score 2.3811405
Snippet [Display omitted] •TBI patients did not demonstrate selective damage of ipRGCs.•TBI patients had a smaller baseline pupil and decreased constriction...
Previous findings regarding intrinsically photosensitive retinal ganglion cell (ipRGC) function after traumatic brain injury (TBI) are conflicting. We examined...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 174
SubjectTerms Brain Injuries, Traumatic
Humans
Intrinsically photosensitivity retinal ganglion cells
Light
Photic Stimulation
Pupil
Pupillography
Reflex, Pupillary
Retinal Ganglion Cells
Rod Opsins
Traumatic brain injury
Title Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury
URI https://dx.doi.org/10.1016/j.visres.2021.07.007
https://www.ncbi.nlm.nih.gov/pubmed/34352476
https://www.proquest.com/docview/2559434832
https://pubmed.ncbi.nlm.nih.gov/PMC8440415
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGkBAXBBsfhVEZCXELa2zHjo9l2tSBthOTeotsx2aZuiSsLdIu_O285yQVZZMmcUzy4lh-9vtw3u9nQj4yJ6UKQSfCcEhQtJGJUdwnQXoRMlu6iUPs8Nm5nF2Ir_NsvkOOBiwMllX2tr-z6dFa93cO-9E8bKsKMb4Iw8w1QxohyTBv5yKPIL75l401VhnTAwwFpQf4XKzx-lWBH0LSbpZGCk88VPZ-93Q3_Py3ivIvt3TynDzr40k67br8guz4eo_sT2vIpa9v6ScaKzzj1vkeeXLW_0jfJz9PobWqjipa3NL2slk1S6xlR-tHEdmIrf4wCPJtaorb-0l5g5aRtuu2WoBIrK31S1rBrY6cdUlxV5dCN9eRCJZaPH8CBK5AcS_Jxcnx96NZ0p--kDgh-SqxOvN56oI1vpzkpfawtHOXOuG4CpDIWJmaHESlZtZpyMMsRBLMmpIzZUsu-CuyWze1f0NoWvLAS5NrMQlClQbaAt-Z5T7oAAGcHxE-DHrhempyPCFjUQw1aFdFp6oCVVVM8J-5GpFk81bbUXM8IK8GfRZbU6wA7_HAmx8G9Rew-nDMTe2bNQhBQiZw1rERed1Nh01fYAgyJpSE725NlI0AMntvP6mry8jwnSNrY5q9_e8evyNP8aoDTR6Q3dXN2r-H6Gllx-TR59_pmDyenn6bnY_jYvkDVPQgmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemIQEXxDY-CgOMhLhFa2LHjo_bxNTCutMm9WbZjs0ylSSsLdL-e95zkooypElckxfH8rPfh_1-PxPyKXNCyBBUwg2DBEUZkRjJfBKE5yG3pRs7xA7PLsTkin-d5_MdcjpgYbCssrf9nU2P1rp_ctSP5lFbVYjxRRhmoTKkERIZ5O2PIBoQOLWn85ONOZZ5pgYcCooP-LlY5PWrAkeErN1ZGjk88VbZf_un-_Hn32WUf_ils-fkWR9Q0uOuz3tkx9f75OC4hmT6xx39TGOJZ9w73yePZ_1J-gH5OYXWqjrqaHFH2-tm1SyxmB3NH0VoI7b63SDKt6kp7u8n5S2aRtqu22oBIrG41i9pBY86dtYlxW1dCt1cRyZYavECChC4Ac29IFdnXy5PJ0l__ULiuGCrxKrcF6kL1vhyXJTKw9ouXOq4YzJAJmNFagoQFSqzTkEiZiGUyKwpWSZtyTh7SXbrpvavCU1LFlhpCsXHgcvSQFvgPPPCBxVAZ35E2DDo2vXc5HhFxkIPRWg3ulOVRlXpMR6ayxFJNl-1HTfHA_Jy0KfemmMa3McDX34c1K9h-eGYm9o3axCCjIwzDnZxRF5102HTFxiCPONSwH-3JspGAKm9t9_U1XWk-C6QtjHN3_x3jz-QJ5PL2bk-n158e0ue4psOQXlIdle3a_8OQqmVfR-Xym8QliE2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+photosensitive+retinal+ganglion+cell-driven+pupil+responses+in+patients+with+traumatic+brain+injury&rft.jtitle=Vision+research+%28Oxford%29&rft.au=Mostafa%2C+Jakaria&rft.au=Porter%2C+Jason&rft.au=Queener%2C+Hope+M.&rft.au=Ostrin%2C+Lisa+A.&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0042-6989&rft.eissn=1878-5646&rft.volume=188&rft.spage=174&rft.epage=183&rft_id=info:doi/10.1016%2Fj.visres.2021.07.007&rft.externalDocID=S0042698921001620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6989&client=summon