Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction

Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electr...

Full description

Saved in:
Bibliographic Details
Published inColloid and interface science communications Vol. 45; p. 100542
Main Authors Kumar, Aditya, Nath, Kalpita, Parekh, Yash, Enayathullah, M. Ghalib, Bokara, Kiran Kumar, Sinhamahapatra, Apruba
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. [Display omitted] •Photodeposition of ~10 nm silver nanoparticles on the fabric under UV irradiation•Ag0/Ag+ redox couple confirmed by TEM, SEM, XPS, UV-VIS•Washing durable up to 5 times•The fabric offers anti-microbial properties•The fabric exhibits 97% viral annihilation specific to SARS-CoV-2
AbstractList Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag 0 /Ag + redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2 . Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger . The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. Unlabelled Image
Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.
Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag /Ag redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to . Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria and fungi . The direct photodeposition provides interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.
Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. [Display omitted] •Photodeposition of ~10 nm silver nanoparticles on the fabric under UV irradiation•Ag0/Ag+ redox couple confirmed by TEM, SEM, XPS, UV-VIS•Washing durable up to 5 times•The fabric offers anti-microbial properties•The fabric exhibits 97% viral annihilation specific to SARS-CoV-2
ArticleNumber 100542
Author Bokara, Kiran Kumar
Sinhamahapatra, Apruba
Nath, Kalpita
Parekh, Yash
Kumar, Aditya
Enayathullah, M. Ghalib
Author_xml – sequence: 1
  givenname: Aditya
  surname: Kumar
  fullname: Kumar, Aditya
  email: aditya@iitism.ac.in
  organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
– sequence: 2
  givenname: Kalpita
  surname: Nath
  fullname: Nath, Kalpita
  organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
– sequence: 3
  givenname: Yash
  surname: Parekh
  fullname: Parekh, Yash
  organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
– sequence: 4
  givenname: M. Ghalib
  surname: Enayathullah
  fullname: Enayathullah, M. Ghalib
  organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
– sequence: 5
  givenname: Kiran Kumar
  surname: Bokara
  fullname: Bokara, Kiran Kumar
  email: bokarakiran@ccmb.res.in
  organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
– sequence: 6
  givenname: Apruba
  surname: Sinhamahapatra
  fullname: Sinhamahapatra, Apruba
  email: apurba@iitism.ac.in
  organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34729365$$D View this record in MEDLINE/PubMed
BookMark eNqFUVtrFDEUDlKxF_sPRObRl1lznc74ICyLrUJB6FZfQ-bMGZslk4xJdsF_3yy7leqDPp1w8l0433dOTnzwSMgbRheMsub9ZgHBQZgWnHJWVlRJ_oKccc5UTUXLT569T8llShtKC1JSLtpX5FTIK96JRp2R9dJnO1mIobfGVcm6HcbKGx9mE7MFh_X8EHIYcA7JZhyq0fTRQqrGEKv18m5dr8L3mlcDphy3kG3wr8nL0biEl8d5Qb5df7pffa5vv958WS1va5CNyHUvQYHqFXAjDBXjiAxa2ZseruRolJQ9jh2XAo2gXJquMVJB042MMdMOHMQF-XjQnbf9hAOgz9E4PUc7mfhLB2P1nz_ePugfYadbpSSVqgi8OwrE8HNbDtCTTYDOGY9hmzRXXbFuVLOHvn3u9dvkKckC-HAAlChTijhqsNns4yjW1mlG9b45vdGH5vS-OX1orpDlX-Qn_f_QjgFgSXlnMeoEFj3gYCNC1kOw_xZ4BCDAthU
CitedBy_id crossref_primary_10_1088_2632_959X_ad437b
crossref_primary_10_1177_22808000241277383
crossref_primary_10_1002_slct_202400100
crossref_primary_10_1016_j_marpolbul_2023_115701
crossref_primary_10_3390_coatings13030542
crossref_primary_10_3390_v15030741
crossref_primary_10_3390_nano12060990
crossref_primary_10_1007_s10570_024_05774_3
crossref_primary_10_1002_adfm_202402607
crossref_primary_10_1039_D2TB00849A
crossref_primary_10_1016_j_egycc_2025_100180
crossref_primary_10_1007_s42247_023_00520_0
crossref_primary_10_3390_polym14153066
crossref_primary_10_1016_j_cej_2022_137048
crossref_primary_10_1021_acsnano_2c08894
crossref_primary_10_1128_aem_01553_23
crossref_primary_10_3390_coatings12111679
crossref_primary_10_1016_j_apmt_2024_102203
crossref_primary_10_1142_S0219581X23300043
crossref_primary_10_1038_s41598_024_61920_8
crossref_primary_10_3390_ma15144742
crossref_primary_10_1021_acsami_4c15289
crossref_primary_10_1016_j_apsb_2023_02_010
crossref_primary_10_1016_j_colcom_2023_100724
crossref_primary_10_3390_ma16114075
crossref_primary_10_1016_j_ijbiomac_2024_136023
crossref_primary_10_36790_epistemus_v16i33_223
crossref_primary_10_1016_j_ijbiomac_2024_137961
crossref_primary_10_1177_15280837251320571
crossref_primary_10_3390_ijms23031162
Cites_doi 10.1089/fpd.2015.2054
10.1080/00405000.2019.1668137
10.3390/polym13020207
10.1056/NEJMc2004973
10.1021/nn900277t
10.1155/2013/741743
10.1021/bc900215b
10.1016/j.nano.2011.05.007
10.1016/j.apcatb.2015.04.040
10.1016/j.heliyon.2021.e06456
10.1177/135965350801300210
10.1016/j.bbrc.2020.09.018
10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
10.1186/1477-3155-3-6
10.1021/bi0508542
10.1016/j.antiviral.2020.104787
10.1039/C5RA22176E
10.1021/bm050462a
10.1016/j.apsusc.2011.10.038
10.1007/s12221-011-0620-4
10.1016/j.oceram.2020.100006
10.1038/srep10138
10.1021/acs.nanolett.0c03725
10.1166/jbn.2008.012
10.1088/1742-6596/187/1/012072
10.1021/acs.nanolett.5b04328
10.1046/j.1472-765X.1997.00219.x
10.3923/jm.2014.34.42
10.1186/1477-3155-8-19
10.1016/j.jviromet.2011.09.003
10.1056/NEJMp058068
10.1186/1477-3155-8-1
10.1021/acsnano.1c00629
10.1016/j.progpolymsci.2018.07.007
10.1016/j.cell.2020.02.052
10.1186/1556-276X-8-93
10.1007/s11671-008-9128-2
10.1039/C8RA08982E
10.1016/j.cell.2020.02.058
10.1016/j.jviromet.2012.03.014
10.1021/jp406148h
10.1155/2015/720654
ContentType Journal Article
Copyright 2021 Elsevier B.V.
2021 Elsevier B.V. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: 2021 Elsevier B.V. 2021 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.colcom.2021.100542
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2215-0382
EndPage 100542
ExternalDocumentID PMC8554045
34729365
10_1016_j_colcom_2021_100542
S2215038221001825
Genre Journal Article
GroupedDBID --M
0R~
0SF
4.4
457
4G.
6I.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEXQZ
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GROUPED_DOAJ
IXB
KOM
KQ8
M41
M~E
NCXOZ
O9-
OAUVE
OK1
RIG
ROL
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c463t-b4c5c5b5c2a3a03ffe1c84babc74fa544bef9243ea3024a96a45c69f111a8d2c3
IEDL.DBID IXB
ISSN 2215-0382
IngestDate Thu Aug 21 18:24:40 EDT 2025
Fri Jul 11 03:02:31 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Tue Jul 01 01:24:29 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Fri Feb 23 02:42:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Anti-viral
Anti-bacterial
Anti-fungal
Silver nanoparticles
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 Elsevier B.V.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-b4c5c5b5c2a3a03ffe1c84babc74fa544bef9243ea3024a96a45c69f111a8d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2215038221001825
PMID 34729365
PQID 2593026565
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8554045
proquest_miscellaneous_2593026565
pubmed_primary_34729365
crossref_citationtrail_10_1016_j_colcom_2021_100542
crossref_primary_10_1016_j_colcom_2021_100542
elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Colloid and interface science communications
PublicationTitleAlternate Colloid Interface Sci Commun
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References W.H. Organization (bb0145) 2020
Holt, Bard (bb0205) 2005; 44
Shrivastava, Bera, Singh, Singh, Ramachandrarao, Dash (bb0065) 2009; 3
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche, Müller, Drosten, Pöhlmann (bb0220) 2020; 181
Baram-Pinto, Shukla, Perkas, Gedanken, Sarid (bb0085) 2009; 20
Mori, Ono, Miyahira, Nguyen, Matsui, Ishihara (bb0040) 2013; 8
Roy, Bulut, Some, Mandal, Yilmaz (bb0185) 2019; 9
Abbaszadegan, Ghahramani, Gholami, Hemmateenejad, Dorostkar, Nabavizadeh, Sharghi (bb0195) 2015; 2015
Sun, Singh, Vig, Pillai, Singh (bb0090) 2008; 4
Jeremiah, Miyakawa, Morita, Yamaoka, Ryo (bb0230) 2020; 533
Deng, Nikiforov, Coenye, Cools, Aziz, Morent, De Geyter, Leys (bb0060) 2015; 5
Hu, Hu, Wang (bb0180) 2015; 176-177
Yang, Xu, Chen, Wang, Mao, Xie, Wang, Bao, Zhang (bb0160) 2015; 15
Lu, Sun, Chen, Hui, Ho, Luk, Lau, Che (bb0080) 2008; 13
Isogai, Hänninen, Fujisawa, Saito (bb0155) 2018; 86
Martí, Tuñón-Molina, Aachmann, Muramoto, Noda, Takayama, Serrano-Aroca (bb0025) 2021; 13
Pothan, Simon, Spange, Thomas (bb0165) 2006; 7
Balagna, Perero, Percivalle, Nepita, Ferraris (bb0120) 2020; 1
Firdhouse, Lalitha (bb0055) 2013; 2013
Caly, Druce, Catton, Jans, Wagstaff (bb0150) 2020; 178
Xiang, Chen, Pang, Zheng (bb0110) 2011; 178
Walls, Park, Tortorici, Wall, McGuire, Veesler (bb0215) 2020; 181
Chin, Chu, Perera, Hui, Yen, Chan, Peiris, Poon (bb0020) 2020; 1
Tawil, Sacher, Boulais, Mandeville, Meunier (bb0170) 2013; 117
Xing, Cheng, Tan, Zhou, Fang, Lin (bb0140) 2020; 111
Osterholm (bb0010) 2005; 352
Serrano-Aroca, Takayama, Tuñón-Molina, Seyran, Hassan, Pal Choudhury, Uversky, Lundstrom, Adadi, Palù, Aljabali, Chauhan, Kandimalla, Tambuwala, Lal, Abd El-Aziz, Sherchan, Barh, Redwan, Bazan, Mishra, Uhal, Brufsky (bb0035) 2021; 15
Rogers, Parkinson, Choi, Speshock, Hussain (bb0095) 2008; 3
Elechiguerra, Burt, Morones, Camacho-Bragado, Gao, Lara, Yacaman (bb0070) 2005; 3
Suresh Kumar Kailasa, Tae-Jung Park, JigneshkumarRohit (bib236) 2019
Sharmin, Rahaman, Sarkar, Atolani, Islam, Adeyemi (bb0235) 2021; 7
Jiang, Xie (bb0175) 2016; 6
Feng, Wu, Chen, Cui, Kim, Kim (bb0190) 2000; 52
Speshock, Murdock, Braydich-Stolle, Schrand, Hussain (bb0100) 2010; 8
Kumar, Karmacharya, Joshi, Gulenko, Park, Kim, Cho (bb0030) 2021; 21
Ouda (bb0210) 2014; 9
Van Doremalen, Bushmaker, Morris, Holbrook, Gamble, Williamson, Tamin, Harcourt, Thornburg, Gerber (bb0015) 2020; 382
Jiang, Liu, Yao (bb0045) 2011; 12
Thanh, Phong (bb0050) 2009; 187
Mehrbod, Motamed, Tabatabaeian, Soleymani, Amini, Shahidi, Kheyri (bb0105) 2009
Liau, Read, Pugh, Furr, Russell (bb0200) 1997; 25
Guzman, Dille, Godet (bb0135) 2012; 8
Cucinotta, Vanelli (bb0005) 2020; 91
Trefry, Wooley (bb0075) 2012; 183
Omrani, Taghavinia (bb0125) 2012; 258
Lara, Ayala-Nuñez, Ixtepan-Turrent, Rodriguez-Padilla (bb0225) 2010; 8
Bekele, Gokulan, Williams, Khare (bb0130) 2016; 13
Martí (10.1016/j.colcom.2021.100542_bb0025) 2021; 13
Hoffmann (10.1016/j.colcom.2021.100542_bb0220) 2020; 181
Serrano-Aroca (10.1016/j.colcom.2021.100542_bb0035) 2021; 15
Sun (10.1016/j.colcom.2021.100542_bb0090) 2008; 4
Balagna (10.1016/j.colcom.2021.100542_bb0120) 2020; 1
Walls (10.1016/j.colcom.2021.100542_bb0215) 2020; 181
Bekele (10.1016/j.colcom.2021.100542_bb0130) 2016; 13
Chin (10.1016/j.colcom.2021.100542_bb0020) 2020; 1
Kumar (10.1016/j.colcom.2021.100542_bb0030) 2021; 21
Jeremiah (10.1016/j.colcom.2021.100542_bb0230) 2020; 533
Guzman (10.1016/j.colcom.2021.100542_bb0135) 2012; 8
Xing (10.1016/j.colcom.2021.100542_bb0140) 2020; 111
Elechiguerra (10.1016/j.colcom.2021.100542_bb0070) 2005; 3
Xiang (10.1016/j.colcom.2021.100542_bb0110) 2011; 178
Jiang (10.1016/j.colcom.2021.100542_bb0045) 2011; 12
W.H. Organization (10.1016/j.colcom.2021.100542_bb0145) 2020
Roy (10.1016/j.colcom.2021.100542_bb0185) 2019; 9
Abbaszadegan (10.1016/j.colcom.2021.100542_bb0195) 2015; 2015
Suresh Kumar Kailasa (10.1016/j.colcom.2021.100542_bib236) 2019
Hu (10.1016/j.colcom.2021.100542_bb0180) 2015; 176-177
Caly (10.1016/j.colcom.2021.100542_bb0150) 2020; 178
Thanh (10.1016/j.colcom.2021.100542_bb0050) 2009; 187
Shrivastava (10.1016/j.colcom.2021.100542_bb0065) 2009; 3
Baram-Pinto (10.1016/j.colcom.2021.100542_bb0085) 2009; 20
Omrani (10.1016/j.colcom.2021.100542_bb0125) 2012; 258
Firdhouse (10.1016/j.colcom.2021.100542_bb0055) 2013; 2013
Jiang (10.1016/j.colcom.2021.100542_bb0175) 2016; 6
Feng (10.1016/j.colcom.2021.100542_bb0190) 2000; 52
Rogers (10.1016/j.colcom.2021.100542_bb0095) 2008; 3
Isogai (10.1016/j.colcom.2021.100542_bb0155) 2018; 86
Deng (10.1016/j.colcom.2021.100542_bb0060) 2015; 5
Yang (10.1016/j.colcom.2021.100542_bb0160) 2015; 15
Trefry (10.1016/j.colcom.2021.100542_bb0075) 2012; 183
Liau (10.1016/j.colcom.2021.100542_bb0200) 1997; 25
Osterholm (10.1016/j.colcom.2021.100542_bb0010) 2005; 352
Lara (10.1016/j.colcom.2021.100542_bb0225) 2010; 8
Holt (10.1016/j.colcom.2021.100542_bb0205) 2005; 44
Cucinotta (10.1016/j.colcom.2021.100542_bb0005) 2020; 91
Sharmin (10.1016/j.colcom.2021.100542_bb0235) 2021; 7
Ouda (10.1016/j.colcom.2021.100542_bb0210) 2014; 9
Van Doremalen (10.1016/j.colcom.2021.100542_bb0015) 2020; 382
Lu (10.1016/j.colcom.2021.100542_bb0080) 2008; 13
Mehrbod (10.1016/j.colcom.2021.100542_bb0105) 2009
Pothan (10.1016/j.colcom.2021.100542_bb0165) 2006; 7
Speshock (10.1016/j.colcom.2021.100542_bb0100) 2010; 8
Mori (10.1016/j.colcom.2021.100542_bb0040) 2013; 8
Tawil (10.1016/j.colcom.2021.100542_bb0170) 2013; 117
References_xml – volume: 13
  start-page: 253
  year: 2008
  ident: bb0080
  article-title: Silver nanoparticles inhibit hepatitis B virus replication
  publication-title: Antivir. Ther.
– volume: 20
  start-page: 1497
  year: 2009
  end-page: 1502
  ident: bb0085
  article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with Mercaptoethane sulfonate
  publication-title: Bioconjug. Chem.
– volume: 533
  start-page: 195
  year: 2020
  end-page: 200
  ident: bb0230
  article-title: Potent antiviral effect of silver nanoparticles on SARS-CoV-2
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 178
  start-page: 104787
  year: 2020
  ident: bb0150
  article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro
  publication-title: Antivir. Res.
– volume: 352
  start-page: 1839
  year: 2005
  end-page: 1842
  ident: bb0010
  article-title: Preparing for the next pandemic
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 8069
  year: 2021
  end-page: 8086
  ident: bb0035
  article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era
  publication-title: ACS Nano
– volume: 52
  start-page: 662
  year: 2000
  end-page: 668
  ident: bb0190
  article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus
  publication-title: J. Biomed. Mater. Res.
– volume: 382
  start-page: 1564
  year: 2020
  end-page: 1567
  ident: bb0015
  article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 34
  year: 2014
  ident: bb0210
  article-title: Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea
  publication-title: Res. J. Microbiol.
– volume: 8
  start-page: 93
  year: 2013
  ident: bb0040
  article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus
  publication-title: Nanoscale Res. Lett.
– volume: 5
  start-page: 10138
  year: 2015
  ident: bb0060
  article-title: Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process
  publication-title: Sci. Rep.
– start-page: 461
  year: 2019
  end-page: 484
  ident: bib236
  article-title: Janardhan Reddy Koduru,Chapter 14 - Antimicrobial activity of silver nanoparticles
  publication-title: Alexandru Mihai Grumezescu, Nanoparticles in Pharmacotherapy
– volume: 13
  start-page: 239
  year: 2016
  end-page: 244
  ident: bb0130
  article-title: Dose and size-dependent antiviral effects of silver nanoparticles on feline Calicivirus, a human norovirus surrogate
  publication-title: Foodborne Pathog. Dis.
– volume: 15
  start-page: 8397
  year: 2015
  end-page: 8401
  ident: bb0160
  article-title: Encapsulated silver nanoparticles can be directly converted to silver Nanoshell in the gas phase
  publication-title: Nano Lett.
– volume: 183
  start-page: 19
  year: 2012
  end-page: 24
  ident: bb0075
  article-title: Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay
  publication-title: J. Virol. Methods
– volume: 258
  start-page: 2373
  year: 2012
  end-page: 2377
  ident: bb0125
  article-title: Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 100006
  year: 2020
  ident: bb0120
  article-title: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating
  publication-title: Open Ceramics
– volume: 13
  start-page: 207
  year: 2021
  ident: bb0025
  article-title: Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis
  publication-title: Polymers
– volume: 8
  start-page: 19
  year: 2010
  ident: bb0100
  article-title: Interaction of silver nanoparticles with Tacaribe virus
  publication-title: J. Nanobiotechnol.
– volume: 9
  start-page: 2673
  year: 2019
  end-page: 2702
  ident: bb0185
  article-title: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity
  publication-title: RSC Adv.
– volume: 3
  start-page: 1357
  year: 2009
  end-page: 1364
  ident: bb0065
  article-title: Characterization of antiplatelet properties of silver nanoparticles
  publication-title: ACS Nano
– volume: 3
  start-page: 6
  year: 2005
  ident: bb0070
  article-title: Interaction of silver nanoparticles with HIV-1
  publication-title: J. Nanobiotechnol.
– volume: 86
  start-page: 122
  year: 2018
  end-page: 148
  ident: bb0155
  article-title: Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions
  publication-title: Prog. Polym. Sci.
– volume: 176-177
  start-page: 637
  year: 2015
  end-page: 645
  ident: bb0180
  article-title: Enhanced solar photodegradation of toxic pollutants by long-lived electrons in ag–Ag2O nanocomposites
  publication-title: Appl. Catal. B Environ.
– volume: 21
  start-page: 337
  year: 2021
  end-page: 343
  ident: bb0030
  article-title: Photoactive antiviral face mask with self-sterilization and reusability
  publication-title: Nano Lett.
– volume: 178
  start-page: 137
  year: 2011
  end-page: 142
  ident: bb0110
  article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro
  publication-title: J. Virol. Methods
– volume: 25
  start-page: 279
  year: 1997
  end-page: 283
  ident: bb0200
  article-title: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions
  publication-title: Lett. Appl. Microbiol.
– year: 2020
  ident: bb0145
  article-title: Clinical Management of Severe Acute Respiratory Infection when Novel Coronavirus (nCoV) Infection Is Suspected, Interim Guidance, 13 March 2020
– volume: 2015
  start-page: 720654
  year: 2015
  ident: bb0195
  article-title: The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study
  publication-title: J. Nanomater.
– volume: 117
  start-page: 20656
  year: 2013
  end-page: 20665
  ident: bb0170
  article-title: X-ray photoelectron spectroscopic and transmission Electron microscopic characterizations of bacteriophage–nanoparticle complexes for pathogen detection
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 3186
  year: 2016
  end-page: 3197
  ident: bb0175
  article-title: In situ growth of ag/ag 2 O nanoparticles on gC 3 N 4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity
  publication-title: RSC Adv.
– volume: 12
  start-page: 620
  year: 2011
  ident: bb0045
  article-title: In situ deposition of silver nanoparticles on the cotton fabrics
  publication-title: Fibers Polym.
– volume: 8
  start-page: 1
  year: 2010
  ident: bb0225
  article-title: Mode of antiviral action of silver nanoparticles against HIV-1
  publication-title: J. Nanobiotechnol.
– volume: 7
  year: 2021
  ident: bb0235
  article-title: Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study
  publication-title: Heliyon
– volume: 3
  start-page: 129
  year: 2008
  end-page: 133
  ident: bb0095
  article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation
  publication-title: Nanoscale Res. Lett.
– volume: 44
  start-page: 13214
  year: 2005
  end-page: 13223
  ident: bb0205
  article-title: Interaction of silver(I) ions with the respiratory chain of Escherichia coli:an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar ag+
  publication-title: Biochemistry
– volume: 2013
  start-page: 741743
  year: 2013
  ident: bb0055
  article-title: Fabrication of antimicrobial perspiration pads and cotton cloth using <i>Amaranthus dubius</i> mediated silver nanoparticles
  publication-title: J. Chem.
– volume: 187
  year: 2009
  ident: bb0050
  article-title: Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid
  publication-title: J. Phys. Conf. Ser.
– volume: 181
  year: 2020
  ident: bb0215
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 181
  year: 2020
  ident: bb0220
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 4
  start-page: 149
  year: 2008
  end-page: 158
  ident: bb0090
  article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus
  publication-title: J. Biomed. Nanotechnol.
– volume: 111
  start-page: 855
  year: 2020
  end-page: 861
  ident: bb0140
  article-title: Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–ag complex
  publication-title: J. Textile Institute
– volume: 1
  start-page: e10
  year: 2020
  ident: bb0020
  article-title: Stability of SARS-CoV-2 in different environmental conditions
  publication-title: MedRxiv
– volume: 8
  start-page: 37
  year: 2012
  end-page: 45
  ident: bb0135
  article-title: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria
  publication-title: Nanomedicine
– volume: 91
  start-page: 157
  year: 2020
  end-page: 160
  ident: bb0005
  article-title: WHO Declares COVID-19 a Pandemic
  publication-title: Acta Biomed
– volume: 7
  start-page: 892
  year: 2006
  end-page: 898
  ident: bb0165
  article-title: XPS studies of chemically modified Banana fibers
  publication-title: Biomacromolecules
– year: 2009
  ident: bb0105
  article-title: In Vitro Antiviral Effect Of
– volume: 13
  start-page: 239
  year: 2016
  ident: 10.1016/j.colcom.2021.100542_bb0130
  article-title: Dose and size-dependent antiviral effects of silver nanoparticles on feline Calicivirus, a human norovirus surrogate
  publication-title: Foodborne Pathog. Dis.
  doi: 10.1089/fpd.2015.2054
– volume: 111
  start-page: 855
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0140
  article-title: Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–ag complex
  publication-title: J. Textile Institute
  doi: 10.1080/00405000.2019.1668137
– year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0145
– volume: 13
  start-page: 207
  year: 2021
  ident: 10.1016/j.colcom.2021.100542_bb0025
  article-title: Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis
  publication-title: Polymers
  doi: 10.3390/polym13020207
– start-page: 461
  year: 2019
  ident: 10.1016/j.colcom.2021.100542_bib236
  article-title: Janardhan Reddy Koduru,Chapter 14 - Antimicrobial activity of silver nanoparticles
– volume: 382
  start-page: 1564
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0015
  article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2004973
– volume: 3
  start-page: 1357
  year: 2009
  ident: 10.1016/j.colcom.2021.100542_bb0065
  article-title: Characterization of antiplatelet properties of silver nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn900277t
– volume: 2013
  start-page: 741743
  year: 2013
  ident: 10.1016/j.colcom.2021.100542_bb0055
  article-title: Fabrication of antimicrobial perspiration pads and cotton cloth using Amaranthus dubius mediated silver nanoparticles
  publication-title: J. Chem.
  doi: 10.1155/2013/741743
– year: 2009
  ident: 10.1016/j.colcom.2021.100542_bb0105
– volume: 20
  start-page: 1497
  year: 2009
  ident: 10.1016/j.colcom.2021.100542_bb0085
  article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with Mercaptoethane sulfonate
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc900215b
– volume: 8
  start-page: 37
  year: 2012
  ident: 10.1016/j.colcom.2021.100542_bb0135
  article-title: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.05.007
– volume: 176-177
  start-page: 637
  year: 2015
  ident: 10.1016/j.colcom.2021.100542_bb0180
  article-title: Enhanced solar photodegradation of toxic pollutants by long-lived electrons in ag–Ag2O nanocomposites
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.04.040
– volume: 7
  year: 2021
  ident: 10.1016/j.colcom.2021.100542_bb0235
  article-title: Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06456
– volume: 13
  start-page: 253
  year: 2008
  ident: 10.1016/j.colcom.2021.100542_bb0080
  article-title: Silver nanoparticles inhibit hepatitis B virus replication
  publication-title: Antivir. Ther.
  doi: 10.1177/135965350801300210
– volume: 533
  start-page: 195
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0230
  article-title: Potent antiviral effect of silver nanoparticles on SARS-CoV-2
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.09.018
– volume: 52
  start-page: 662
  year: 2000
  ident: 10.1016/j.colcom.2021.100542_bb0190
  article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
– volume: 3
  start-page: 6
  year: 2005
  ident: 10.1016/j.colcom.2021.100542_bb0070
  article-title: Interaction of silver nanoparticles with HIV-1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-3-6
– volume: 44
  start-page: 13214
  year: 2005
  ident: 10.1016/j.colcom.2021.100542_bb0205
  article-title: Interaction of silver(I) ions with the respiratory chain of Escherichia coli:an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar ag+
  publication-title: Biochemistry
  doi: 10.1021/bi0508542
– volume: 178
  start-page: 104787
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0150
  article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2020.104787
– volume: 6
  start-page: 3186
  year: 2016
  ident: 10.1016/j.colcom.2021.100542_bb0175
  article-title: In situ growth of ag/ag 2 O nanoparticles on gC 3 N 4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22176E
– volume: 7
  start-page: 892
  year: 2006
  ident: 10.1016/j.colcom.2021.100542_bb0165
  article-title: XPS studies of chemically modified Banana fibers
  publication-title: Biomacromolecules
  doi: 10.1021/bm050462a
– volume: 258
  start-page: 2373
  year: 2012
  ident: 10.1016/j.colcom.2021.100542_bb0125
  article-title: Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.10.038
– volume: 12
  start-page: 620
  year: 2011
  ident: 10.1016/j.colcom.2021.100542_bb0045
  article-title: In situ deposition of silver nanoparticles on the cotton fabrics
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-011-0620-4
– volume: 1
  start-page: 100006
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0120
  article-title: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating
  publication-title: Open Ceramics
  doi: 10.1016/j.oceram.2020.100006
– volume: 1
  start-page: e10
  issue: 1
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0020
  article-title: Stability of SARS-CoV-2 in different environmental conditions
  publication-title: MedRxiv
– volume: 5
  start-page: 10138
  year: 2015
  ident: 10.1016/j.colcom.2021.100542_bb0060
  article-title: Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process
  publication-title: Sci. Rep.
  doi: 10.1038/srep10138
– volume: 21
  start-page: 337
  year: 2021
  ident: 10.1016/j.colcom.2021.100542_bb0030
  article-title: Photoactive antiviral face mask with self-sterilization and reusability
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c03725
– volume: 4
  start-page: 149
  year: 2008
  ident: 10.1016/j.colcom.2021.100542_bb0090
  article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2008.012
– volume: 187
  year: 2009
  ident: 10.1016/j.colcom.2021.100542_bb0050
  article-title: Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/187/1/012072
– volume: 15
  start-page: 8397
  year: 2015
  ident: 10.1016/j.colcom.2021.100542_bb0160
  article-title: Encapsulated silver nanoparticles can be directly converted to silver Nanoshell in the gas phase
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04328
– volume: 25
  start-page: 279
  year: 1997
  ident: 10.1016/j.colcom.2021.100542_bb0200
  article-title: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1046/j.1472-765X.1997.00219.x
– volume: 9
  start-page: 34
  year: 2014
  ident: 10.1016/j.colcom.2021.100542_bb0210
  article-title: Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea
  publication-title: Res. J. Microbiol.
  doi: 10.3923/jm.2014.34.42
– volume: 8
  start-page: 19
  year: 2010
  ident: 10.1016/j.colcom.2021.100542_bb0100
  article-title: Interaction of silver nanoparticles with Tacaribe virus
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-8-19
– volume: 178
  start-page: 137
  year: 2011
  ident: 10.1016/j.colcom.2021.100542_bb0110
  article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2011.09.003
– volume: 352
  start-page: 1839
  year: 2005
  ident: 10.1016/j.colcom.2021.100542_bb0010
  article-title: Preparing for the next pandemic
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp058068
– volume: 8
  start-page: 1
  year: 2010
  ident: 10.1016/j.colcom.2021.100542_bb0225
  article-title: Mode of antiviral action of silver nanoparticles against HIV-1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-8-1
– volume: 91
  start-page: 157
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0005
  article-title: WHO Declares COVID-19 a Pandemic
  publication-title: Acta Biomed
– volume: 15
  start-page: 8069
  year: 2021
  ident: 10.1016/j.colcom.2021.100542_bb0035
  article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00629
– volume: 86
  start-page: 122
  year: 2018
  ident: 10.1016/j.colcom.2021.100542_bb0155
  article-title: Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.07.007
– volume: 181
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0220
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 8
  start-page: 93
  year: 2013
  ident: 10.1016/j.colcom.2021.100542_bb0040
  article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-93
– volume: 3
  start-page: 129
  year: 2008
  ident: 10.1016/j.colcom.2021.100542_bb0095
  article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-008-9128-2
– volume: 9
  start-page: 2673
  year: 2019
  ident: 10.1016/j.colcom.2021.100542_bb0185
  article-title: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08982E
– volume: 181
  year: 2020
  ident: 10.1016/j.colcom.2021.100542_bb0215
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 183
  start-page: 19
  year: 2012
  ident: 10.1016/j.colcom.2021.100542_bb0075
  article-title: Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2012.03.014
– volume: 117
  start-page: 20656
  year: 2013
  ident: 10.1016/j.colcom.2021.100542_bb0170
  article-title: X-ray photoelectron spectroscopic and transmission Electron microscopic characterizations of bacteriophage–nanoparticle complexes for pathogen detection
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp406148h
– volume: 2015
  start-page: 720654
  year: 2015
  ident: 10.1016/j.colcom.2021.100542_bb0195
  article-title: The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study
  publication-title: J. Nanomater.
  doi: 10.1155/2015/720654
SSID ssj0002140238
Score 2.355288
Snippet Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100542
SubjectTerms Anti-bacterial
Anti-fungal
Anti-viral
COVID-19
Rapid Communication
Silver nanoparticles
Title Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction
URI https://dx.doi.org/10.1016/j.colcom.2021.100542
https://www.ncbi.nlm.nih.gov/pubmed/34729365
https://www.proquest.com/docview/2593026565
https://pubmed.ncbi.nlm.nih.gov/PMC8554045
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBahe9nL6NjWpV2LB30VcaSTkjymoSVboA9Ju-VNnGSZurR2INn_38myTdNSCn0ytk4g38l331mfToydY5qimEDGtU-RA0VkbqUCri0MrUOwKrJ8r_X8Fn6v1brHZu1emECrbHx_9Om1t26eDBptDjZFMVgJilappAAXyghRokN-WMK43sS3vuj-swjKIER9oHWQ56FDu4OupnmRugNtRJBgYAwoEK9FqJcI9DmR8klkujpknxpImUzjqD-zni-_sNW03BWPRV1miRq3RWBAJyWWlCRHQb65q3ZV5mvals-SHC35xG1CKDZZTZcrPqv-cJFkvisx-5XdXl3ezOa8OUCBO9Byxy045ZRVTqDEVOa5H7oxWLRuBDkqAOtzyr-kR0mhGicaQTk9ycn_4TgTTn5jB2VV-u8swaHOM5HqsAxHGCBFRCDwkQ69Vuid6DPZKs24prp4OOTiwbQ0snsTVW2Cqk1UdZ_xrtcmVtd4Q37U2sPszRJDAeCNnj9b8xn6gMKqCJa--rc1lP_R2xOsVX12FM3ZjUUC5R4ytIz2DN0JhOLc-y1lcVcX6Q70P4LLx-8e8Qn7GO7ivscf7IBs7U8JAO3sGfsw_bWYX4frYvl3cVbP-P9F7wfe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLBeK1LdAgwdHarF_bPXBYSqtdWnpgW7Q3M3YcNRUkK-1WVX8Xf5BxnERsK1QJqdeMHTkz9sw38ecxwHtMU-QjmTHtU2SSIjKzQkmmrRxYh9KqyPI90ZMz-WWu5hvwuz0LE2iVje-PPr321s2TfqPN_qIo-jNO0SoVFOBCGSFKdBpm5ZG_vqK8bflx-pmM_IHzw4PT_QlrrhZgTmqxYlY65ZRVjqPAVOS5H7g9adG6ocxRSWl9TpmJ8CgoiOFIo1ROj3LyDLiXcSfovQ_gIaGPYfAG0_mn7scOp5SF1zdohwGyMML2yF7NKyP7Bp4Kp4aBoqAk_1dIvA15bzI3_wqFh09gq8GwyTiq6Sls-PIZzMblqvhV1HWdSLgsAuU6KbGkrDw2ZIvzalVlvuaJ-SzJ0ZITXiYEm5PZ-NuM7VffGU8y39W0fQ5n96LWF7BZVqV_BQkOdJ7xVId9PwIdKSJKQjvpwGuF3vEeiFZpxjXlzMOtGj9Ny1u7MFHVJqjaRFX3gHW9FrGcxx3th609zNq0NBRx7uj5rjWfoRUbtmGw9NXl0lDCSV9POFr14GU0ZzcWISnZEUEyXDN01yBUA1-XlMV5XRU88A0Jn2__94h34dHk9OuxOZ6eHO3A4yCJhy5fwybZ3b8h9LWyb-vZnsCP-15efwD2wUNL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+silver+nanoparticle-photodeposited+fabrics+for+SARS-CoV-2+destruction&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Kumar%2C+Aditya&rft.au=Nath%2C+Kalpita&rft.au=Parekh%2C+Yash&rft.au=Enayathullah%2C+M.+Ghalib&rft.date=2021-11-01&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=45&rft.spage=100542&rft_id=info:doi/10.1016%2Fj.colcom.2021.100542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colcom_2021_100542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon