Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction
Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electr...
Saved in:
Published in | Colloid and interface science communications Vol. 45; p. 100542 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.
[Display omitted]
•Photodeposition of ~10 nm silver nanoparticles on the fabric under UV irradiation•Ag0/Ag+ redox couple confirmed by TEM, SEM, XPS, UV-VIS•Washing durable up to 5 times•The fabric offers anti-microbial properties•The fabric exhibits 97% viral annihilation specific to SARS-CoV-2 |
---|---|
AbstractList | Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag
0
/Ag
+
redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to
SARS-CoV-2
. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria
Escherichia coli
and fungi
Aspergillus Niger
. The direct photodeposition provides
Ag-O-C
interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.
Unlabelled Image Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag /Ag redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to . Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria and fungi . The direct photodeposition provides interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production. [Display omitted] •Photodeposition of ~10 nm silver nanoparticles on the fabric under UV irradiation•Ag0/Ag+ redox couple confirmed by TEM, SEM, XPS, UV-VIS•Washing durable up to 5 times•The fabric offers anti-microbial properties•The fabric exhibits 97% viral annihilation specific to SARS-CoV-2 |
ArticleNumber | 100542 |
Author | Bokara, Kiran Kumar Sinhamahapatra, Apruba Nath, Kalpita Parekh, Yash Kumar, Aditya Enayathullah, M. Ghalib |
Author_xml | – sequence: 1 givenname: Aditya surname: Kumar fullname: Kumar, Aditya email: aditya@iitism.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India – sequence: 2 givenname: Kalpita surname: Nath fullname: Nath, Kalpita organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India – sequence: 3 givenname: Yash surname: Parekh fullname: Parekh, Yash organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India – sequence: 4 givenname: M. Ghalib surname: Enayathullah fullname: Enayathullah, M. Ghalib organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India – sequence: 5 givenname: Kiran Kumar surname: Bokara fullname: Bokara, Kiran Kumar email: bokarakiran@ccmb.res.in organization: CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India – sequence: 6 givenname: Apruba surname: Sinhamahapatra fullname: Sinhamahapatra, Apruba email: apurba@iitism.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34729365$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUVtrFDEUDlKxF_sPRObRl1lznc74ICyLrUJB6FZfQ-bMGZslk4xJdsF_3yy7leqDPp1w8l0433dOTnzwSMgbRheMsub9ZgHBQZgWnHJWVlRJ_oKccc5UTUXLT569T8llShtKC1JSLtpX5FTIK96JRp2R9dJnO1mIobfGVcm6HcbKGx9mE7MFh_X8EHIYcA7JZhyq0fTRQqrGEKv18m5dr8L3mlcDphy3kG3wr8nL0biEl8d5Qb5df7pffa5vv958WS1va5CNyHUvQYHqFXAjDBXjiAxa2ZseruRolJQ9jh2XAo2gXJquMVJB042MMdMOHMQF-XjQnbf9hAOgz9E4PUc7mfhLB2P1nz_ePugfYadbpSSVqgi8OwrE8HNbDtCTTYDOGY9hmzRXXbFuVLOHvn3u9dvkKckC-HAAlChTijhqsNns4yjW1mlG9b45vdGH5vS-OX1orpDlX-Qn_f_QjgFgSXlnMeoEFj3gYCNC1kOw_xZ4BCDAthU |
CitedBy_id | crossref_primary_10_1088_2632_959X_ad437b crossref_primary_10_1177_22808000241277383 crossref_primary_10_1002_slct_202400100 crossref_primary_10_1016_j_marpolbul_2023_115701 crossref_primary_10_3390_coatings13030542 crossref_primary_10_3390_v15030741 crossref_primary_10_3390_nano12060990 crossref_primary_10_1007_s10570_024_05774_3 crossref_primary_10_1002_adfm_202402607 crossref_primary_10_1039_D2TB00849A crossref_primary_10_1016_j_egycc_2025_100180 crossref_primary_10_1007_s42247_023_00520_0 crossref_primary_10_3390_polym14153066 crossref_primary_10_1016_j_cej_2022_137048 crossref_primary_10_1021_acsnano_2c08894 crossref_primary_10_1128_aem_01553_23 crossref_primary_10_3390_coatings12111679 crossref_primary_10_1016_j_apmt_2024_102203 crossref_primary_10_1142_S0219581X23300043 crossref_primary_10_1038_s41598_024_61920_8 crossref_primary_10_3390_ma15144742 crossref_primary_10_1021_acsami_4c15289 crossref_primary_10_1016_j_apsb_2023_02_010 crossref_primary_10_1016_j_colcom_2023_100724 crossref_primary_10_3390_ma16114075 crossref_primary_10_1016_j_ijbiomac_2024_136023 crossref_primary_10_36790_epistemus_v16i33_223 crossref_primary_10_1016_j_ijbiomac_2024_137961 crossref_primary_10_1177_15280837251320571 crossref_primary_10_3390_ijms23031162 |
Cites_doi | 10.1089/fpd.2015.2054 10.1080/00405000.2019.1668137 10.3390/polym13020207 10.1056/NEJMc2004973 10.1021/nn900277t 10.1155/2013/741743 10.1021/bc900215b 10.1016/j.nano.2011.05.007 10.1016/j.apcatb.2015.04.040 10.1016/j.heliyon.2021.e06456 10.1177/135965350801300210 10.1016/j.bbrc.2020.09.018 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 10.1186/1477-3155-3-6 10.1021/bi0508542 10.1016/j.antiviral.2020.104787 10.1039/C5RA22176E 10.1021/bm050462a 10.1016/j.apsusc.2011.10.038 10.1007/s12221-011-0620-4 10.1016/j.oceram.2020.100006 10.1038/srep10138 10.1021/acs.nanolett.0c03725 10.1166/jbn.2008.012 10.1088/1742-6596/187/1/012072 10.1021/acs.nanolett.5b04328 10.1046/j.1472-765X.1997.00219.x 10.3923/jm.2014.34.42 10.1186/1477-3155-8-19 10.1016/j.jviromet.2011.09.003 10.1056/NEJMp058068 10.1186/1477-3155-8-1 10.1021/acsnano.1c00629 10.1016/j.progpolymsci.2018.07.007 10.1016/j.cell.2020.02.052 10.1186/1556-276X-8-93 10.1007/s11671-008-9128-2 10.1039/C8RA08982E 10.1016/j.cell.2020.02.058 10.1016/j.jviromet.2012.03.014 10.1021/jp406148h 10.1155/2015/720654 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. 2021 Elsevier B.V. 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: 2021 Elsevier B.V. 2021 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.colcom.2021.100542 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2215-0382 |
EndPage | 100542 |
ExternalDocumentID | PMC8554045 34729365 10_1016_j_colcom_2021_100542 S2215038221001825 |
Genre | Journal Article |
GroupedDBID | --M 0R~ 0SF 4.4 457 4G. 6I. 7-5 AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GROUPED_DOAJ IXB KOM KQ8 M41 M~E NCXOZ O9- OAUVE OK1 RIG ROL SPC SPCBC SSG SSK SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c463t-b4c5c5b5c2a3a03ffe1c84babc74fa544bef9243ea3024a96a45c69f111a8d2c3 |
IEDL.DBID | IXB |
ISSN | 2215-0382 |
IngestDate | Thu Aug 21 18:24:40 EDT 2025 Fri Jul 11 03:02:31 EDT 2025 Thu Apr 03 07:06:42 EDT 2025 Tue Jul 01 01:24:29 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Fri Feb 23 02:42:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Anti-viral Anti-bacterial Anti-fungal Silver nanoparticles |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-b4c5c5b5c2a3a03ffe1c84babc74fa544bef9243ea3024a96a45c69f111a8d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215038221001825 |
PMID | 34729365 |
PQID | 2593026565 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8554045 proquest_miscellaneous_2593026565 pubmed_primary_34729365 crossref_citationtrail_10_1016_j_colcom_2021_100542 crossref_primary_10_1016_j_colcom_2021_100542 elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloid and interface science communications |
PublicationTitleAlternate | Colloid Interface Sci Commun |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | W.H. Organization (bb0145) 2020 Holt, Bard (bb0205) 2005; 44 Shrivastava, Bera, Singh, Singh, Ramachandrarao, Dash (bb0065) 2009; 3 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche, Müller, Drosten, Pöhlmann (bb0220) 2020; 181 Baram-Pinto, Shukla, Perkas, Gedanken, Sarid (bb0085) 2009; 20 Mori, Ono, Miyahira, Nguyen, Matsui, Ishihara (bb0040) 2013; 8 Roy, Bulut, Some, Mandal, Yilmaz (bb0185) 2019; 9 Abbaszadegan, Ghahramani, Gholami, Hemmateenejad, Dorostkar, Nabavizadeh, Sharghi (bb0195) 2015; 2015 Sun, Singh, Vig, Pillai, Singh (bb0090) 2008; 4 Jeremiah, Miyakawa, Morita, Yamaoka, Ryo (bb0230) 2020; 533 Deng, Nikiforov, Coenye, Cools, Aziz, Morent, De Geyter, Leys (bb0060) 2015; 5 Hu, Hu, Wang (bb0180) 2015; 176-177 Yang, Xu, Chen, Wang, Mao, Xie, Wang, Bao, Zhang (bb0160) 2015; 15 Lu, Sun, Chen, Hui, Ho, Luk, Lau, Che (bb0080) 2008; 13 Isogai, Hänninen, Fujisawa, Saito (bb0155) 2018; 86 Martí, Tuñón-Molina, Aachmann, Muramoto, Noda, Takayama, Serrano-Aroca (bb0025) 2021; 13 Pothan, Simon, Spange, Thomas (bb0165) 2006; 7 Balagna, Perero, Percivalle, Nepita, Ferraris (bb0120) 2020; 1 Firdhouse, Lalitha (bb0055) 2013; 2013 Caly, Druce, Catton, Jans, Wagstaff (bb0150) 2020; 178 Xiang, Chen, Pang, Zheng (bb0110) 2011; 178 Walls, Park, Tortorici, Wall, McGuire, Veesler (bb0215) 2020; 181 Chin, Chu, Perera, Hui, Yen, Chan, Peiris, Poon (bb0020) 2020; 1 Tawil, Sacher, Boulais, Mandeville, Meunier (bb0170) 2013; 117 Xing, Cheng, Tan, Zhou, Fang, Lin (bb0140) 2020; 111 Osterholm (bb0010) 2005; 352 Serrano-Aroca, Takayama, Tuñón-Molina, Seyran, Hassan, Pal Choudhury, Uversky, Lundstrom, Adadi, Palù, Aljabali, Chauhan, Kandimalla, Tambuwala, Lal, Abd El-Aziz, Sherchan, Barh, Redwan, Bazan, Mishra, Uhal, Brufsky (bb0035) 2021; 15 Rogers, Parkinson, Choi, Speshock, Hussain (bb0095) 2008; 3 Elechiguerra, Burt, Morones, Camacho-Bragado, Gao, Lara, Yacaman (bb0070) 2005; 3 Suresh Kumar Kailasa, Tae-Jung Park, JigneshkumarRohit (bib236) 2019 Sharmin, Rahaman, Sarkar, Atolani, Islam, Adeyemi (bb0235) 2021; 7 Jiang, Xie (bb0175) 2016; 6 Feng, Wu, Chen, Cui, Kim, Kim (bb0190) 2000; 52 Speshock, Murdock, Braydich-Stolle, Schrand, Hussain (bb0100) 2010; 8 Kumar, Karmacharya, Joshi, Gulenko, Park, Kim, Cho (bb0030) 2021; 21 Ouda (bb0210) 2014; 9 Van Doremalen, Bushmaker, Morris, Holbrook, Gamble, Williamson, Tamin, Harcourt, Thornburg, Gerber (bb0015) 2020; 382 Jiang, Liu, Yao (bb0045) 2011; 12 Thanh, Phong (bb0050) 2009; 187 Mehrbod, Motamed, Tabatabaeian, Soleymani, Amini, Shahidi, Kheyri (bb0105) 2009 Liau, Read, Pugh, Furr, Russell (bb0200) 1997; 25 Guzman, Dille, Godet (bb0135) 2012; 8 Cucinotta, Vanelli (bb0005) 2020; 91 Trefry, Wooley (bb0075) 2012; 183 Omrani, Taghavinia (bb0125) 2012; 258 Lara, Ayala-Nuñez, Ixtepan-Turrent, Rodriguez-Padilla (bb0225) 2010; 8 Bekele, Gokulan, Williams, Khare (bb0130) 2016; 13 Martí (10.1016/j.colcom.2021.100542_bb0025) 2021; 13 Hoffmann (10.1016/j.colcom.2021.100542_bb0220) 2020; 181 Serrano-Aroca (10.1016/j.colcom.2021.100542_bb0035) 2021; 15 Sun (10.1016/j.colcom.2021.100542_bb0090) 2008; 4 Balagna (10.1016/j.colcom.2021.100542_bb0120) 2020; 1 Walls (10.1016/j.colcom.2021.100542_bb0215) 2020; 181 Bekele (10.1016/j.colcom.2021.100542_bb0130) 2016; 13 Chin (10.1016/j.colcom.2021.100542_bb0020) 2020; 1 Kumar (10.1016/j.colcom.2021.100542_bb0030) 2021; 21 Jeremiah (10.1016/j.colcom.2021.100542_bb0230) 2020; 533 Guzman (10.1016/j.colcom.2021.100542_bb0135) 2012; 8 Xing (10.1016/j.colcom.2021.100542_bb0140) 2020; 111 Elechiguerra (10.1016/j.colcom.2021.100542_bb0070) 2005; 3 Xiang (10.1016/j.colcom.2021.100542_bb0110) 2011; 178 Jiang (10.1016/j.colcom.2021.100542_bb0045) 2011; 12 W.H. Organization (10.1016/j.colcom.2021.100542_bb0145) 2020 Roy (10.1016/j.colcom.2021.100542_bb0185) 2019; 9 Abbaszadegan (10.1016/j.colcom.2021.100542_bb0195) 2015; 2015 Suresh Kumar Kailasa (10.1016/j.colcom.2021.100542_bib236) 2019 Hu (10.1016/j.colcom.2021.100542_bb0180) 2015; 176-177 Caly (10.1016/j.colcom.2021.100542_bb0150) 2020; 178 Thanh (10.1016/j.colcom.2021.100542_bb0050) 2009; 187 Shrivastava (10.1016/j.colcom.2021.100542_bb0065) 2009; 3 Baram-Pinto (10.1016/j.colcom.2021.100542_bb0085) 2009; 20 Omrani (10.1016/j.colcom.2021.100542_bb0125) 2012; 258 Firdhouse (10.1016/j.colcom.2021.100542_bb0055) 2013; 2013 Jiang (10.1016/j.colcom.2021.100542_bb0175) 2016; 6 Feng (10.1016/j.colcom.2021.100542_bb0190) 2000; 52 Rogers (10.1016/j.colcom.2021.100542_bb0095) 2008; 3 Isogai (10.1016/j.colcom.2021.100542_bb0155) 2018; 86 Deng (10.1016/j.colcom.2021.100542_bb0060) 2015; 5 Yang (10.1016/j.colcom.2021.100542_bb0160) 2015; 15 Trefry (10.1016/j.colcom.2021.100542_bb0075) 2012; 183 Liau (10.1016/j.colcom.2021.100542_bb0200) 1997; 25 Osterholm (10.1016/j.colcom.2021.100542_bb0010) 2005; 352 Lara (10.1016/j.colcom.2021.100542_bb0225) 2010; 8 Holt (10.1016/j.colcom.2021.100542_bb0205) 2005; 44 Cucinotta (10.1016/j.colcom.2021.100542_bb0005) 2020; 91 Sharmin (10.1016/j.colcom.2021.100542_bb0235) 2021; 7 Ouda (10.1016/j.colcom.2021.100542_bb0210) 2014; 9 Van Doremalen (10.1016/j.colcom.2021.100542_bb0015) 2020; 382 Lu (10.1016/j.colcom.2021.100542_bb0080) 2008; 13 Mehrbod (10.1016/j.colcom.2021.100542_bb0105) 2009 Pothan (10.1016/j.colcom.2021.100542_bb0165) 2006; 7 Speshock (10.1016/j.colcom.2021.100542_bb0100) 2010; 8 Mori (10.1016/j.colcom.2021.100542_bb0040) 2013; 8 Tawil (10.1016/j.colcom.2021.100542_bb0170) 2013; 117 |
References_xml | – volume: 13 start-page: 253 year: 2008 ident: bb0080 article-title: Silver nanoparticles inhibit hepatitis B virus replication publication-title: Antivir. Ther. – volume: 20 start-page: 1497 year: 2009 end-page: 1502 ident: bb0085 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with Mercaptoethane sulfonate publication-title: Bioconjug. Chem. – volume: 533 start-page: 195 year: 2020 end-page: 200 ident: bb0230 article-title: Potent antiviral effect of silver nanoparticles on SARS-CoV-2 publication-title: Biochem. Biophys. Res. Commun. – volume: 178 start-page: 104787 year: 2020 ident: bb0150 article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro publication-title: Antivir. Res. – volume: 352 start-page: 1839 year: 2005 end-page: 1842 ident: bb0010 article-title: Preparing for the next pandemic publication-title: N. Engl. J. Med. – volume: 15 start-page: 8069 year: 2021 end-page: 8086 ident: bb0035 article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era publication-title: ACS Nano – volume: 52 start-page: 662 year: 2000 end-page: 668 ident: bb0190 article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus publication-title: J. Biomed. Mater. Res. – volume: 382 start-page: 1564 year: 2020 end-page: 1567 ident: bb0015 article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 publication-title: N. Engl. J. Med. – volume: 9 start-page: 34 year: 2014 ident: bb0210 article-title: Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea publication-title: Res. J. Microbiol. – volume: 8 start-page: 93 year: 2013 ident: bb0040 article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus publication-title: Nanoscale Res. Lett. – volume: 5 start-page: 10138 year: 2015 ident: bb0060 article-title: Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process publication-title: Sci. Rep. – start-page: 461 year: 2019 end-page: 484 ident: bib236 article-title: Janardhan Reddy Koduru,Chapter 14 - Antimicrobial activity of silver nanoparticles publication-title: Alexandru Mihai Grumezescu, Nanoparticles in Pharmacotherapy – volume: 13 start-page: 239 year: 2016 end-page: 244 ident: bb0130 article-title: Dose and size-dependent antiviral effects of silver nanoparticles on feline Calicivirus, a human norovirus surrogate publication-title: Foodborne Pathog. Dis. – volume: 15 start-page: 8397 year: 2015 end-page: 8401 ident: bb0160 article-title: Encapsulated silver nanoparticles can be directly converted to silver Nanoshell in the gas phase publication-title: Nano Lett. – volume: 183 start-page: 19 year: 2012 end-page: 24 ident: bb0075 article-title: Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay publication-title: J. Virol. Methods – volume: 258 start-page: 2373 year: 2012 end-page: 2377 ident: bb0125 article-title: Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers publication-title: Appl. Surf. Sci. – volume: 1 start-page: 100006 year: 2020 ident: bb0120 article-title: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating publication-title: Open Ceramics – volume: 13 start-page: 207 year: 2021 ident: bb0025 article-title: Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis publication-title: Polymers – volume: 8 start-page: 19 year: 2010 ident: bb0100 article-title: Interaction of silver nanoparticles with Tacaribe virus publication-title: J. Nanobiotechnol. – volume: 9 start-page: 2673 year: 2019 end-page: 2702 ident: bb0185 article-title: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity publication-title: RSC Adv. – volume: 3 start-page: 1357 year: 2009 end-page: 1364 ident: bb0065 article-title: Characterization of antiplatelet properties of silver nanoparticles publication-title: ACS Nano – volume: 3 start-page: 6 year: 2005 ident: bb0070 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J. Nanobiotechnol. – volume: 86 start-page: 122 year: 2018 end-page: 148 ident: bb0155 article-title: Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions publication-title: Prog. Polym. Sci. – volume: 176-177 start-page: 637 year: 2015 end-page: 645 ident: bb0180 article-title: Enhanced solar photodegradation of toxic pollutants by long-lived electrons in ag–Ag2O nanocomposites publication-title: Appl. Catal. B Environ. – volume: 21 start-page: 337 year: 2021 end-page: 343 ident: bb0030 article-title: Photoactive antiviral face mask with self-sterilization and reusability publication-title: Nano Lett. – volume: 178 start-page: 137 year: 2011 end-page: 142 ident: bb0110 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro publication-title: J. Virol. Methods – volume: 25 start-page: 279 year: 1997 end-page: 283 ident: bb0200 article-title: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions publication-title: Lett. Appl. Microbiol. – year: 2020 ident: bb0145 article-title: Clinical Management of Severe Acute Respiratory Infection when Novel Coronavirus (nCoV) Infection Is Suspected, Interim Guidance, 13 March 2020 – volume: 2015 start-page: 720654 year: 2015 ident: bb0195 article-title: The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study publication-title: J. Nanomater. – volume: 117 start-page: 20656 year: 2013 end-page: 20665 ident: bb0170 article-title: X-ray photoelectron spectroscopic and transmission Electron microscopic characterizations of bacteriophage–nanoparticle complexes for pathogen detection publication-title: J. Phys. Chem. C – volume: 6 start-page: 3186 year: 2016 end-page: 3197 ident: bb0175 article-title: In situ growth of ag/ag 2 O nanoparticles on gC 3 N 4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity publication-title: RSC Adv. – volume: 12 start-page: 620 year: 2011 ident: bb0045 article-title: In situ deposition of silver nanoparticles on the cotton fabrics publication-title: Fibers Polym. – volume: 8 start-page: 1 year: 2010 ident: bb0225 article-title: Mode of antiviral action of silver nanoparticles against HIV-1 publication-title: J. Nanobiotechnol. – volume: 7 year: 2021 ident: bb0235 article-title: Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study publication-title: Heliyon – volume: 3 start-page: 129 year: 2008 end-page: 133 ident: bb0095 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res. Lett. – volume: 44 start-page: 13214 year: 2005 end-page: 13223 ident: bb0205 article-title: Interaction of silver(I) ions with the respiratory chain of Escherichia coli:an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar ag+ publication-title: Biochemistry – volume: 2013 start-page: 741743 year: 2013 ident: bb0055 article-title: Fabrication of antimicrobial perspiration pads and cotton cloth using <i>Amaranthus dubius</i> mediated silver nanoparticles publication-title: J. Chem. – volume: 187 year: 2009 ident: bb0050 article-title: Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid publication-title: J. Phys. Conf. Ser. – volume: 181 year: 2020 ident: bb0215 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 181 year: 2020 ident: bb0220 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 4 start-page: 149 year: 2008 end-page: 158 ident: bb0090 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J. Biomed. Nanotechnol. – volume: 111 start-page: 855 year: 2020 end-page: 861 ident: bb0140 article-title: Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–ag complex publication-title: J. Textile Institute – volume: 1 start-page: e10 year: 2020 ident: bb0020 article-title: Stability of SARS-CoV-2 in different environmental conditions publication-title: MedRxiv – volume: 8 start-page: 37 year: 2012 end-page: 45 ident: bb0135 article-title: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria publication-title: Nanomedicine – volume: 91 start-page: 157 year: 2020 end-page: 160 ident: bb0005 article-title: WHO Declares COVID-19 a Pandemic publication-title: Acta Biomed – volume: 7 start-page: 892 year: 2006 end-page: 898 ident: bb0165 article-title: XPS studies of chemically modified Banana fibers publication-title: Biomacromolecules – year: 2009 ident: bb0105 article-title: In Vitro Antiviral Effect Of – volume: 13 start-page: 239 year: 2016 ident: 10.1016/j.colcom.2021.100542_bb0130 article-title: Dose and size-dependent antiviral effects of silver nanoparticles on feline Calicivirus, a human norovirus surrogate publication-title: Foodborne Pathog. Dis. doi: 10.1089/fpd.2015.2054 – volume: 111 start-page: 855 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0140 article-title: Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–ag complex publication-title: J. Textile Institute doi: 10.1080/00405000.2019.1668137 – year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0145 – volume: 13 start-page: 207 year: 2021 ident: 10.1016/j.colcom.2021.100542_bb0025 article-title: Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis publication-title: Polymers doi: 10.3390/polym13020207 – start-page: 461 year: 2019 ident: 10.1016/j.colcom.2021.100542_bib236 article-title: Janardhan Reddy Koduru,Chapter 14 - Antimicrobial activity of silver nanoparticles – volume: 382 start-page: 1564 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0015 article-title: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2004973 – volume: 3 start-page: 1357 year: 2009 ident: 10.1016/j.colcom.2021.100542_bb0065 article-title: Characterization of antiplatelet properties of silver nanoparticles publication-title: ACS Nano doi: 10.1021/nn900277t – volume: 2013 start-page: 741743 year: 2013 ident: 10.1016/j.colcom.2021.100542_bb0055 article-title: Fabrication of antimicrobial perspiration pads and cotton cloth using Amaranthus dubius mediated silver nanoparticles publication-title: J. Chem. doi: 10.1155/2013/741743 – year: 2009 ident: 10.1016/j.colcom.2021.100542_bb0105 – volume: 20 start-page: 1497 year: 2009 ident: 10.1016/j.colcom.2021.100542_bb0085 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with Mercaptoethane sulfonate publication-title: Bioconjug. Chem. doi: 10.1021/bc900215b – volume: 8 start-page: 37 year: 2012 ident: 10.1016/j.colcom.2021.100542_bb0135 article-title: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria publication-title: Nanomedicine doi: 10.1016/j.nano.2011.05.007 – volume: 176-177 start-page: 637 year: 2015 ident: 10.1016/j.colcom.2021.100542_bb0180 article-title: Enhanced solar photodegradation of toxic pollutants by long-lived electrons in ag–Ag2O nanocomposites publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.04.040 – volume: 7 year: 2021 ident: 10.1016/j.colcom.2021.100542_bb0235 article-title: Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06456 – volume: 13 start-page: 253 year: 2008 ident: 10.1016/j.colcom.2021.100542_bb0080 article-title: Silver nanoparticles inhibit hepatitis B virus replication publication-title: Antivir. Ther. doi: 10.1177/135965350801300210 – volume: 533 start-page: 195 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0230 article-title: Potent antiviral effect of silver nanoparticles on SARS-CoV-2 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.09.018 – volume: 52 start-page: 662 year: 2000 ident: 10.1016/j.colcom.2021.100542_bb0190 article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 – volume: 3 start-page: 6 year: 2005 ident: 10.1016/j.colcom.2021.100542_bb0070 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-3-6 – volume: 44 start-page: 13214 year: 2005 ident: 10.1016/j.colcom.2021.100542_bb0205 article-title: Interaction of silver(I) ions with the respiratory chain of Escherichia coli:an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar ag+ publication-title: Biochemistry doi: 10.1021/bi0508542 – volume: 178 start-page: 104787 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0150 article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2020.104787 – volume: 6 start-page: 3186 year: 2016 ident: 10.1016/j.colcom.2021.100542_bb0175 article-title: In situ growth of ag/ag 2 O nanoparticles on gC 3 N 4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity publication-title: RSC Adv. doi: 10.1039/C5RA22176E – volume: 7 start-page: 892 year: 2006 ident: 10.1016/j.colcom.2021.100542_bb0165 article-title: XPS studies of chemically modified Banana fibers publication-title: Biomacromolecules doi: 10.1021/bm050462a – volume: 258 start-page: 2373 year: 2012 ident: 10.1016/j.colcom.2021.100542_bb0125 article-title: Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.10.038 – volume: 12 start-page: 620 year: 2011 ident: 10.1016/j.colcom.2021.100542_bb0045 article-title: In situ deposition of silver nanoparticles on the cotton fabrics publication-title: Fibers Polym. doi: 10.1007/s12221-011-0620-4 – volume: 1 start-page: 100006 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0120 article-title: Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating publication-title: Open Ceramics doi: 10.1016/j.oceram.2020.100006 – volume: 1 start-page: e10 issue: 1 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0020 article-title: Stability of SARS-CoV-2 in different environmental conditions publication-title: MedRxiv – volume: 5 start-page: 10138 year: 2015 ident: 10.1016/j.colcom.2021.100542_bb0060 article-title: Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process publication-title: Sci. Rep. doi: 10.1038/srep10138 – volume: 21 start-page: 337 year: 2021 ident: 10.1016/j.colcom.2021.100542_bb0030 article-title: Photoactive antiviral face mask with self-sterilization and reusability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03725 – volume: 4 start-page: 149 year: 2008 ident: 10.1016/j.colcom.2021.100542_bb0090 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2008.012 – volume: 187 year: 2009 ident: 10.1016/j.colcom.2021.100542_bb0050 article-title: Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/187/1/012072 – volume: 15 start-page: 8397 year: 2015 ident: 10.1016/j.colcom.2021.100542_bb0160 article-title: Encapsulated silver nanoparticles can be directly converted to silver Nanoshell in the gas phase publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04328 – volume: 25 start-page: 279 year: 1997 ident: 10.1016/j.colcom.2021.100542_bb0200 article-title: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions publication-title: Lett. Appl. Microbiol. doi: 10.1046/j.1472-765X.1997.00219.x – volume: 9 start-page: 34 year: 2014 ident: 10.1016/j.colcom.2021.100542_bb0210 article-title: Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea publication-title: Res. J. Microbiol. doi: 10.3923/jm.2014.34.42 – volume: 8 start-page: 19 year: 2010 ident: 10.1016/j.colcom.2021.100542_bb0100 article-title: Interaction of silver nanoparticles with Tacaribe virus publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-8-19 – volume: 178 start-page: 137 year: 2011 ident: 10.1016/j.colcom.2021.100542_bb0110 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2011.09.003 – volume: 352 start-page: 1839 year: 2005 ident: 10.1016/j.colcom.2021.100542_bb0010 article-title: Preparing for the next pandemic publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp058068 – volume: 8 start-page: 1 year: 2010 ident: 10.1016/j.colcom.2021.100542_bb0225 article-title: Mode of antiviral action of silver nanoparticles against HIV-1 publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-8-1 – volume: 91 start-page: 157 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0005 article-title: WHO Declares COVID-19 a Pandemic publication-title: Acta Biomed – volume: 15 start-page: 8069 year: 2021 ident: 10.1016/j.colcom.2021.100542_bb0035 article-title: Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era publication-title: ACS Nano doi: 10.1021/acsnano.1c00629 – volume: 86 start-page: 122 year: 2018 ident: 10.1016/j.colcom.2021.100542_bb0155 article-title: Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.07.007 – volume: 181 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0220 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 8 start-page: 93 year: 2013 ident: 10.1016/j.colcom.2021.100542_bb0040 article-title: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-93 – volume: 3 start-page: 129 year: 2008 ident: 10.1016/j.colcom.2021.100542_bb0095 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-008-9128-2 – volume: 9 start-page: 2673 year: 2019 ident: 10.1016/j.colcom.2021.100542_bb0185 article-title: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity publication-title: RSC Adv. doi: 10.1039/C8RA08982E – volume: 181 year: 2020 ident: 10.1016/j.colcom.2021.100542_bb0215 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 183 start-page: 19 year: 2012 ident: 10.1016/j.colcom.2021.100542_bb0075 article-title: Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2012.03.014 – volume: 117 start-page: 20656 year: 2013 ident: 10.1016/j.colcom.2021.100542_bb0170 article-title: X-ray photoelectron spectroscopic and transmission Electron microscopic characterizations of bacteriophage–nanoparticle complexes for pathogen detection publication-title: J. Phys. Chem. C doi: 10.1021/jp406148h – volume: 2015 start-page: 720654 year: 2015 ident: 10.1016/j.colcom.2021.100542_bb0195 article-title: The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study publication-title: J. Nanomater. doi: 10.1155/2015/720654 |
SSID | ssj0002140238 |
Score | 2.355288 |
Snippet | Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100542 |
SubjectTerms | Anti-bacterial Anti-fungal Anti-viral COVID-19 Rapid Communication Silver nanoparticles |
Title | Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction |
URI | https://dx.doi.org/10.1016/j.colcom.2021.100542 https://www.ncbi.nlm.nih.gov/pubmed/34729365 https://www.proquest.com/docview/2593026565 https://pubmed.ncbi.nlm.nih.gov/PMC8554045 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBahe9nL6NjWpV2LB30VcaSTkjymoSVboA9Ju-VNnGSZurR2INn_38myTdNSCn0ytk4g38l331mfToydY5qimEDGtU-RA0VkbqUCri0MrUOwKrJ8r_X8Fn6v1brHZu1emECrbHx_9Om1t26eDBptDjZFMVgJilappAAXyghRokN-WMK43sS3vuj-swjKIER9oHWQ56FDu4OupnmRugNtRJBgYAwoEK9FqJcI9DmR8klkujpknxpImUzjqD-zni-_sNW03BWPRV1miRq3RWBAJyWWlCRHQb65q3ZV5mvals-SHC35xG1CKDZZTZcrPqv-cJFkvisx-5XdXl3ezOa8OUCBO9Byxy045ZRVTqDEVOa5H7oxWLRuBDkqAOtzyr-kR0mhGicaQTk9ycn_4TgTTn5jB2VV-u8swaHOM5HqsAxHGCBFRCDwkQ69Vuid6DPZKs24prp4OOTiwbQ0snsTVW2Cqk1UdZ_xrtcmVtd4Q37U2sPszRJDAeCNnj9b8xn6gMKqCJa--rc1lP_R2xOsVX12FM3ZjUUC5R4ytIz2DN0JhOLc-y1lcVcX6Q70P4LLx-8e8Qn7GO7ivscf7IBs7U8JAO3sGfsw_bWYX4frYvl3cVbP-P9F7wfe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLBeK1LdAgwdHarF_bPXBYSqtdWnpgW7Q3M3YcNRUkK-1WVX8Xf5BxnERsK1QJqdeMHTkz9sw38ecxwHtMU-QjmTHtU2SSIjKzQkmmrRxYh9KqyPI90ZMz-WWu5hvwuz0LE2iVje-PPr321s2TfqPN_qIo-jNO0SoVFOBCGSFKdBpm5ZG_vqK8bflx-pmM_IHzw4PT_QlrrhZgTmqxYlY65ZRVjqPAVOS5H7g9adG6ocxRSWl9TpmJ8CgoiOFIo1ROj3LyDLiXcSfovQ_gIaGPYfAG0_mn7scOp5SF1zdohwGyMML2yF7NKyP7Bp4Kp4aBoqAk_1dIvA15bzI3_wqFh09gq8GwyTiq6Sls-PIZzMblqvhV1HWdSLgsAuU6KbGkrDw2ZIvzalVlvuaJ-SzJ0ZITXiYEm5PZ-NuM7VffGU8y39W0fQ5n96LWF7BZVqV_BQkOdJ7xVId9PwIdKSJKQjvpwGuF3vEeiFZpxjXlzMOtGj9Ny1u7MFHVJqjaRFX3gHW9FrGcxx3th609zNq0NBRx7uj5rjWfoRUbtmGw9NXl0lDCSV9POFr14GU0ZzcWISnZEUEyXDN01yBUA1-XlMV5XRU88A0Jn2__94h34dHk9OuxOZ6eHO3A4yCJhy5fwybZ3b8h9LWyb-vZnsCP-15efwD2wUNL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+silver+nanoparticle-photodeposited+fabrics+for+SARS-CoV-2+destruction&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Kumar%2C+Aditya&rft.au=Nath%2C+Kalpita&rft.au=Parekh%2C+Yash&rft.au=Enayathullah%2C+M.+Ghalib&rft.date=2021-11-01&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=45&rft.spage=100542&rft_id=info:doi/10.1016%2Fj.colcom.2021.100542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colcom_2021_100542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon |