Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution

It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of at...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 63; pp. 531 - 541
Main Authors Zhang, Jinpeng, Zhang, Lichi, Xiang, Lei, Shao, Yeqin, Wu, Guorong, Zhou, Xiaodong, Shen, Dinggang, Wang, Qian
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2017
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2016.09.019

Cover

Abstract It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. •We fuse the brain atlas from real diagnostic MR images with high inter-slice thickness.•All images are processed through the two-stage learning-based super-resolution.•Groupwise registration is applied for unbiased atlas fusion.
AbstractList It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. •We fuse the brain atlas from real diagnostic MR images with high inter-slice thickness.•All images are processed through the two-stage learning-based super-resolution.•Groupwise registration is applied for unbiased atlas fusion.
Author Wu, Guorong
Zhang, Jinpeng
Zhang, Lichi
Shen, Dinggang
Wang, Qian
Shao, Yeqin
Xiang, Lei
Zhou, Xiaodong
AuthorAffiliation e Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
d Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China
b Nantong University, Nantong, Jiangsu 226019, China
a Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
AuthorAffiliation_xml – name: b Nantong University, Nantong, Jiangsu 226019, China
– name: a Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– name: e Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
– name: d Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China
– name: c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
Author_xml – sequence: 1
  givenname: Jinpeng
  surname: Zhang
  fullname: Zhang, Jinpeng
  organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Lichi
  surname: Zhang
  fullname: Zhang, Lichi
  organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Lei
  surname: Xiang
  fullname: Xiang, Lei
  organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Yeqin
  surname: Shao
  fullname: Shao, Yeqin
  organization: Nantong University, Nantong, Jiangsu 226019, China
– sequence: 5
  givenname: Guorong
  surname: Wu
  fullname: Wu, Guorong
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 6
  givenname: Xiaodong
  surname: Zhou
  fullname: Zhou, Xiaodong
  organization: Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China
– sequence: 7
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
– sequence: 8
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: wang.qian@sjtu.edu.cn
  organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29062159$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuOFCEUJWaM0zP6B8awdFMlj6KqcWGiE1_JJG50TSi4VNNWQwvUJPP3Uukeoy50xYV7HuScK3QRYgCEnlPSUkL7V_v2qIuJU8vqrSWyJVQ-Qhu6HXgjaMcu0IYQThvOCL9EVznvCaFDXTxBl0ySnlEhNyi8S9oHrMusM3ZL9jFgl-IB7_y0a8rOm-8BcsbW6ynEXLzBhzrBOiTIMehgAPv6BhmP93gGnYIPUzPqDBbn5QipWYHzUqr2U_TY6TnDs_N5jb59eP_15lNz--Xj55u3t43pel6akTgCmnSCab5lHbNSS8eE6QZtpNSjs5ZbaYWzfGtHML0cnJCD7YXe9pJwfo3enHSPy3gAayCUpGd1TPWn6V5F7dWfm-B3aop3SvSCsE5WgZdngRR_LJCLOvhsYJ51gLhkRaUQNUPG-gp98bvXL5OHkCvg9QlgUsw5gVPGF73GUa39rChRa6Nqr06NqrVRRaSqjVZy9xf5Qf8_tHMAUFO-85BUNh5qV9YnMEXZ6P8t8BMSdsC0
CitedBy_id crossref_primary_10_1016_j_compmedimag_2018_04_002
crossref_primary_10_3390_electronics8050553
crossref_primary_10_1016_j_patcog_2021_108103
crossref_primary_10_1016_j_mri_2017_07_008
crossref_primary_10_1016_j_patcog_2019_01_032
crossref_primary_10_1109_JBHI_2019_2945373
crossref_primary_10_1016_j_patcog_2018_01_002
crossref_primary_10_1016_j_patcog_2021_107931
crossref_primary_10_1016_j_mri_2017_03_008
crossref_primary_10_1016_j_neuroimage_2021_118687
crossref_primary_10_1016_j_patcog_2020_107798
crossref_primary_10_1016_j_jksuci_2022_03_024
crossref_primary_10_4103_1673_5374_247468
crossref_primary_10_1016_j_bspc_2017_08_007
crossref_primary_10_1016_j_eswa_2024_126241
crossref_primary_10_1016_j_media_2018_10_012
crossref_primary_10_1109_ACCESS_2019_2929773
crossref_primary_10_1016_j_media_2024_103158
Cites_doi 10.1001/jama.283.8.1007
10.1117/12.430979
10.1109/MSP.2003.1203207
10.1016/S0361-9230(00)00434-2
10.1006/nimg.2001.0978
10.1212/01.WNL.0000110315.26026.EF
10.1007/978-3-319-10581-9_40
10.1016/j.neuroimage.2008.10.052
10.1016/S0262-8856(00)00055-X
10.1016/j.neuroimage.2010.03.010
10.1109/TIP.2010.2050625
10.1038/nrneurol.2009.215
10.1016/j.neuroimage.2010.01.040
10.1016/S0301-0511(00)00058-2
10.1109/TMI.2015.2436693
10.1023/A:1026501619075
10.1016/S0730-725X(02)00511-8
10.1109/TPAMI.2006.34
10.1093/cercor/bhi044
10.1109/TMI.2015.2461533
10.1109/TMI.2010.2046908
10.1109/TIP.2003.819861
10.1038/35004593
10.1109/JPROC.2010.2044470
10.1016/j.media.2010.06.001
10.1016/j.neuroimage.2011.03.050
10.1016/j.neuroimage.2004.07.068
10.1109/ICCV.2013.231
10.1016/j.media.2015.06.007
10.1109/TPAMI.2015.2439281
10.1016/j.neuroimage.2008.03.056
10.1118/1.4941011
10.1002/ana.22366
10.1016/j.media.2014.10.007
10.1109/38.988747
10.1023/A:1010933404324
10.1093/cercor/10.5.464
10.1109/TPAMI.2009.186
10.1038/13154
10.1016/j.neuroimage.2014.11.025
10.1006/nimg.1995.1012
10.1016/j.neubiorev.2006.06.001
10.1016/j.neuroimage.2008.10.040
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.patcog.2016.09.019
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 541
ExternalDocumentID PMC5650249
29062159
10_1016_j_patcog_2016_09_019
S0031320316302825
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB022880
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIMH NIH HHS
  grantid: R21 MH108914
– fundername: NIA NIH HHS
  grantid: R01 AG049371
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: RF1 AG053867
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
PKN
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-b0f0ea0452a38242d9a9f25c47ac99abfdd3d9d5fd38dbec697f597d65a869033
IEDL.DBID AIKHN
ISSN 0031-3203
IngestDate Thu Aug 21 14:03:03 EDT 2025
Thu Sep 04 21:04:23 EDT 2025
Wed Feb 19 02:44:15 EST 2025
Tue Jul 01 02:36:24 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Fri Feb 23 02:25:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain atlas
Sparsity learning
Super-resolution
Image enhancement
Random forest regression
Groupwise registration
image enhancement
sparsity learning
random forest regression
super-resolution
groupwise registration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-b0f0ea0452a38242d9a9f25c47ac99abfdd3d9d5fd38dbec697f597d65a869033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Email addresses: jinpengzhangsjtu@gmail.com (Jinpeng Zhang#), lichizhang@sjtu.edu.cn (Lichi Zhang#), dgshen@med.unc.edu (Dinggang Shen*), wang.qian@sjtu.edu.cn (Qian Wang*)
OpenAccessLink http://doi.org/10.1016/j.patcog.2016.09.019
PMID 29062159
PQID 1955062226
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5650249
proquest_miscellaneous_1955062226
pubmed_primary_29062159
crossref_citationtrail_10_1016_j_patcog_2016_09_019
crossref_primary_10_1016_j_patcog_2016_09_019
elsevier_sciencedirect_doi_10_1016_j_patcog_2016_09_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pattern recognition
PublicationTitleAlternate Pattern Recognit
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vercauteren, Pennec, Perchant, Ayache (bib34) 2009; 45
Wang, Bovik, Sheikh, Simoncelli (bib38) 2004; 13
Greenspan, Oz, Kiryati, Peled (bib10) 2002; 20
Zhang, Wang, Gao, Wu, Shen (bib45) 2016
Polman, Reingold, Banwell, Clanet, Cohen, Filippi, Fujihara, Havrdova, Hutchinson, Kappos (bib23) 2011; 69
Lenroot, Giedd (bib17) 2006; 30
Shao, Gao, Wang, Yang, Shen (bib26) 2015; 26
Freeman, Jones, Pasztor (bib7) 2002; 22
Learned-Miller (bib16) 2006; 28
Yang, Wright, Huang, Ma (bib42) 2010; 19
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib33) 2002; 15
L. Zhang, Q. Wang, Y. Gao, G. Wu, D. Shen, Learning of atlas forest hierarchy for automatic labeling of mr brain images, in: International Workshop on Machine Learning in Medical Imaging, Springer, Boston, 2014, pp. 323–330.
Mazziotta, Toga, Evans, Fox, Lancaster (bib19) 1995; 2
Ma, Miller, Trouvé, Younes (bib18) 2008; 42
Toga, Thompson (bib30) 2001; 19
Wang, Lu, Wu, El-Zehiry, Zheng, Shen, Zhou (bib36) 2015; 34
Jack, Shiung, Gunter, Obrien, Weigand, Knopman, Boeve, Ivnik, Smith, Cha (bib13) 2004; 62
Hamm, Ye, Verma, Davatzikos (bib11) 2010; 14
Tu, Bai (bib31) 2010; 32
Joshi, Davis, Jomier, Gerig (bib15) 2004; 23
Wang, Wu, Yap, Shen (bib37) 2010; 50
Wu, Jia, Wang, Shen (bib40) 2011; 56
P. Dollár, C.L. Zitnick, 2013. Structured forests for fast edge detection, in: 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, 2013. IEEE, pp. 1841–1848.
Breiman (bib2) 2001; 45
Mulnard, Cotman, Kawas, van Dyck, Sano, Doody, Koss, Pfeiffer, Jin, Gamst (bib20) 2000; 283
J.G. Tamez-Pena, S. Totterman, K.J. Parker, Mri isotropic resolution reconstruction from two orthogonal scans, in: Medical Imaging 2001, International Society for Optics and Photonics, San Diego, 2001, pp. 87–97.
Zhang, Wang, Gao, Wu, Shen (bib44) 2016; 43
Jia, Wu, Wang, Shen (bib14) 2010; 51
Park, Park, Kang (bib21) 2003; 20
Casey, Giedd, Thomas (bib3) 2000; 54
Wang, Kim, Shi, Wu, Shen, Initiative (bib35) 2015; 20
Wu, Kim, Sanroma, Wang, Munsell, Shen, Initiative (bib41) 2015; 106
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib32) 2010; 29
Huynh, Gao, Kang, Wang, Zhang, Lian, Shen (bib12) 2016; 35
Paus, Collins, Evans, Leonard, Pike, Zijdenbos (bib22) 2001; 54
Thompson, Giedd, Woods, MacDonald, Evans, Toga (bib29) 2000; 404
Frisoni, Fox, Jack, Scheltens, Thompson (bib9) 2010; 6
Resnick, Goldszal, Davatzikos, Golski, Kraut, Metter, Bryan, Zonderman (bib25) 2000; 10
Wright, Ma, Mairal, Sapiro, Huang, Yan (bib39) 2010; 98
Dong, Loy, He, Tang (bib5) 2016; 38
Raz, Lindenberger, Rodrigue, Kennedy, Head, Williamson, Dahle, Gerstorf, Acker (bib24) 2005; 15
Sowell, Thompson, Holmes, Jernigan, Toga (bib27) 1999; 2
Y. Bai, X. Han, J.L. Prince, Super-resolution reconstruction of mr brain images, in: Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS04), 2004, pp. 1358–1363.
Fletcher, Venkatasubramanian, Joshi (bib6) 2009; 45
Freeman, Pasztor, Carmichael (bib8) 2000; 40
Fletcher (10.1016/j.patcog.2016.09.019_bib6) 2009; 45
Greenspan (10.1016/j.patcog.2016.09.019_bib10) 2002; 20
Learned-Miller (10.1016/j.patcog.2016.09.019_bib16) 2006; 28
Vercauteren (10.1016/j.patcog.2016.09.019_bib34) 2009; 45
Breiman (10.1016/j.patcog.2016.09.019_bib2) 2001; 45
10.1016/j.patcog.2016.09.019_bib4
Freeman (10.1016/j.patcog.2016.09.019_bib8) 2000; 40
Wang (10.1016/j.patcog.2016.09.019_bib35) 2015; 20
Freeman (10.1016/j.patcog.2016.09.019_bib7) 2002; 22
Tustison (10.1016/j.patcog.2016.09.019_bib32) 2010; 29
Wu (10.1016/j.patcog.2016.09.019_bib40) 2011; 56
Wu (10.1016/j.patcog.2016.09.019_bib41) 2015; 106
Mulnard (10.1016/j.patcog.2016.09.019_bib20) 2000; 283
Huynh (10.1016/j.patcog.2016.09.019_bib12) 2016; 35
Lenroot (10.1016/j.patcog.2016.09.019_bib17) 2006; 30
Wang (10.1016/j.patcog.2016.09.019_bib36) 2015; 34
Tu (10.1016/j.patcog.2016.09.019_bib31) 2010; 32
10.1016/j.patcog.2016.09.019_bib1
Wright (10.1016/j.patcog.2016.09.019_bib39) 2010; 98
Raz (10.1016/j.patcog.2016.09.019_bib24) 2005; 15
Thompson (10.1016/j.patcog.2016.09.019_bib29) 2000; 404
Frisoni (10.1016/j.patcog.2016.09.019_bib9) 2010; 6
Yang (10.1016/j.patcog.2016.09.019_bib42) 2010; 19
Zhang (10.1016/j.patcog.2016.09.019_bib44) 2016; 43
Toga (10.1016/j.patcog.2016.09.019_bib30) 2001; 19
Casey (10.1016/j.patcog.2016.09.019_bib3) 2000; 54
Jack (10.1016/j.patcog.2016.09.019_bib13) 2004; 62
Paus (10.1016/j.patcog.2016.09.019_bib22) 2001; 54
Shao (10.1016/j.patcog.2016.09.019_bib26) 2015; 26
Sowell (10.1016/j.patcog.2016.09.019_bib27) 1999; 2
Hamm (10.1016/j.patcog.2016.09.019_bib11) 2010; 14
Joshi (10.1016/j.patcog.2016.09.019_bib15) 2004; 23
Wang (10.1016/j.patcog.2016.09.019_bib37) 2010; 50
Mazziotta (10.1016/j.patcog.2016.09.019_bib19) 1995; 2
10.1016/j.patcog.2016.09.019_bib43
Park (10.1016/j.patcog.2016.09.019_bib21) 2003; 20
Polman (10.1016/j.patcog.2016.09.019_bib23) 2011; 69
10.1016/j.patcog.2016.09.019_bib28
Dong (10.1016/j.patcog.2016.09.019_bib5) 2016; 38
Zhang (10.1016/j.patcog.2016.09.019_bib45) 2016
Tzourio-Mazoyer (10.1016/j.patcog.2016.09.019_bib33) 2002; 15
Wang (10.1016/j.patcog.2016.09.019_bib38) 2004; 13
Resnick (10.1016/j.patcog.2016.09.019_bib25) 2000; 10
Jia (10.1016/j.patcog.2016.09.019_bib14) 2010; 51
Ma (10.1016/j.patcog.2016.09.019_bib18) 2008; 42
26936703 - Med Phys. 2016 Mar;43(3):1175-86
14981176 - Neurology. 2004 Feb 24;62(4):591-600
20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
16468620 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):236-50
20226255 - Neuroimage. 2010 Jul 1;51(3):1057-70
19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72
20580597 - Med Image Anal. 2010 Oct;14(5):633-42
11287130 - Brain Res Bull. 2001 Feb;54(3):255-66
20724753 - IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57
10724172 - Nature. 2000 Mar 9;404(6774):190-3
12206870 - Magn Reson Imaging. 2002 Jun;20(5):437-46
26241768 - IEEE Trans Med Imaging. 2015 Aug;34(8):1694-704
20139996 - Nat Rev Neurol. 2010 Feb;6(2):67-77
19056498 - Neuroimage. 2009 Mar;45(1 Suppl):S143-52
20097291 - Neuroimage. 2010 May 1;50(4):1485-96
11035225 - Biol Psychol. 2000 Oct;54(1-3):241-57
20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73
15501084 - Neuroimage. 2004;23 Suppl 1:S151-60
10491602 - Nat Neurosci. 1999 Oct;2(10):859-61
15703252 - Cereb Cortex. 2005 Nov;15(11):1676-89
10847596 - Cereb Cortex. 2000 May;10 (5):464-72
19890483 - Image Vis Comput. 2001 Jan 1;19(1-2):3-24
25476412 - Med Image Anal. 2015 Feb;20(1):61-75
16887188 - Neurosci Biobehav Rev. 2006;30(6):718-29
26761735 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307
25463474 - Neuroimage. 2015 Feb 1;106:34-46
21387374 - Ann Neurol. 2011 Feb;69(2):292-302
18514544 - Neuroimage. 2008 Aug 1;42(1):252-61
26439938 - Med Image Anal. 2015 Dec;26(1):345-56
10697060 - JAMA. 2000 Feb 23;283(8):1007-15
9343592 - Neuroimage. 1995 Jun;2(2):89-101
26241970 - IEEE Trans Med Imaging. 2016 Jan;35(1):174-83
15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12
11771995 - Neuroimage. 2002 Jan;15(1):273-89
28133417 - Neurocomputing. 2017 Mar 15;229:3-12
21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81
References_xml – volume: 62
  start-page: 591
  year: 2004
  end-page: 600
  ident: bib13
  article-title: Comparison of different mri brain atrophy rate measures with clinical disease progression in AD
  publication-title: Neurology
– volume: 26
  start-page: 345
  year: 2015
  end-page: 356
  ident: bib26
  article-title: Locally-constrained boundary regression for segmentation of prostate and rectum in the planning ct images
  publication-title: Med. Image Anal.
– volume: 22
  start-page: 56
  year: 2002
  end-page: 65
  ident: bib7
  article-title: Example-based super-resolution
  publication-title: IEEE Comput. Graph. Appl.
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: bib9
  article-title: The clinical use of structural mri in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib32
  article-title: N4itk
  publication-title: IEEE Trans. Med. Imag.
– volume: 34
  start-page: 1694
  year: 2015
  end-page: 1704
  ident: bib36
  article-title: Automatic segmentation of spinal canals in ct images via iterative topology refinement
  publication-title: IEEE Trans. Med. Imag.
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib23
  article-title: Diagnostic criteria for multiple sclerosis
  publication-title: Ann. Neurol.
– volume: 40
  start-page: 25
  year: 2000
  end-page: 47
  ident: bib8
  article-title: Learning low-level vision
  publication-title: Int. J. Comput. Vis.
– volume: 23
  start-page: S151
  year: 2004
  end-page: S160
  ident: bib15
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
– volume: 404
  start-page: 190
  year: 2000
  end-page: 193
  ident: bib29
  article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps
  publication-title: Nature
– volume: 54
  start-page: 241
  year: 2000
  end-page: 257
  ident: bib3
  article-title: Structural and functional brain development and its relation to cognitive development
  publication-title: Biol. Psychol.
– volume: 19
  start-page: 3
  year: 2001
  end-page: 24
  ident: bib30
  article-title: The role of image registration in brain mapping
  publication-title: Image Vis. Comput.
– reference: Y. Bai, X. Han, J.L. Prince, Super-resolution reconstruction of mr brain images, in: Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS04), 2004, pp. 1358–1363.
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib5
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 98
  start-page: 1031
  year: 2010
  end-page: 1044
  ident: bib39
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proc. IEEE
– volume: 15
  start-page: 1676
  year: 2005
  end-page: 1689
  ident: bib24
  article-title: Regional brain changes in aging healthy adults
  publication-title: Cereb. Cortex
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib33
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
– volume: 14
  start-page: 633
  year: 2010
  end-page: 642
  ident: bib11
  article-title: Gram
  publication-title: Med. Image Anal.
– volume: 50
  start-page: 1485
  year: 2010
  end-page: 1496
  ident: bib37
  article-title: Attribute vector guided groupwise registration
  publication-title: NeuroImage
– volume: 51
  start-page: 1057
  year: 2010
  end-page: 1070
  ident: bib14
  article-title: Absorb
  publication-title: NeuroImage
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib2
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 2
  start-page: 859
  year: 1999
  end-page: 861
  ident: bib27
  article-title: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions
  publication-title: Nat. Neurosci.
– volume: 45
  start-page: S61
  year: 2009
  end-page: S72
  ident: bib34
  article-title: Diffeomorphic demons
  publication-title: NeuroImage
– volume: 20
  start-page: 21
  year: 2003
  end-page: 36
  ident: bib21
  article-title: Super-resolution image reconstruction
  publication-title: IEEE Signal Process. Mag.
– volume: 20
  start-page: 437
  year: 2002
  end-page: 446
  ident: bib10
  article-title: Mri inter-slice reconstruction using super-resolution
  publication-title: Magn. Reson. Imag.
– volume: 35
  start-page: 174
  year: 2016
  end-page: 183
  ident: bib12
  article-title: Estimating ct image from mri data using structured random forest and auto-context model
  publication-title: IEEE Trans. Med. Imag.
– volume: 32
  start-page: 1744
  year: 2010
  end-page: 1757
  ident: bib31
  article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 464
  year: 2000
  end-page: 472
  ident: bib25
  article-title: One-year age changes in mri brain volumes in older adults
  publication-title: Cereb. Cortex
– volume: 106
  start-page: 34
  year: 2015
  end-page: 46
  ident: bib41
  article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition
  publication-title: NeuroImage
– volume: 54
  start-page: 255
  year: 2001
  end-page: 266
  ident: bib22
  article-title: Maturation of white matter in the human brain
  publication-title: Brain Res. Bull.
– volume: 2
  start-page: 89
  year: 1995
  end-page: 101
  ident: bib19
  article-title: A probabilistic atlas of the human brain
  publication-title: Neuroimage
– volume: 56
  start-page: 1968
  year: 2011
  end-page: 1981
  ident: bib40
  article-title: Sharpmean
  publication-title: NeuroImage
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: bib42
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 42
  start-page: 252
  year: 2008
  end-page: 261
  ident: bib18
  article-title: Bayesian template estimation in computational anatomy
  publication-title: NeuroImage
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib38
  article-title: Image quality assessment
  publication-title: IEEE Trans. Image Process.
– reference: L. Zhang, Q. Wang, Y. Gao, G. Wu, D. Shen, Learning of atlas forest hierarchy for automatic labeling of mr brain images, in: International Workshop on Machine Learning in Medical Imaging, Springer, Boston, 2014, pp. 323–330.
– volume: 28
  start-page: 236
  year: 2006
  end-page: 250
  ident: bib16
  article-title: Data driven image models through continuous joint alignment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. Dollár, C.L. Zitnick, 2013. Structured forests for fast edge detection, in: 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, 2013. IEEE, pp. 1841–1848.
– volume: 283
  start-page: 1007
  year: 2000
  end-page: 1015
  ident: bib20
  article-title: Estrogen replacement therapy for treatment of mild to moderate alzheimer disease
  publication-title: JAMA
– volume: 20
  start-page: 61
  year: 2015
  end-page: 75
  ident: bib35
  article-title: Predict brain mr image registration via sparse learning of appearance and transformation
  publication-title: Med. Image Anal.
– reference: J.G. Tamez-Pena, S. Totterman, K.J. Parker, Mri isotropic resolution reconstruction from two orthogonal scans, in: Medical Imaging 2001, International Society for Optics and Photonics, San Diego, 2001, pp. 87–97.
– volume: 45
  start-page: S143
  year: 2009
  end-page: S152
  ident: bib6
  article-title: The geometric median on Riemannian manifolds 537 with application to robust atlas estimation
  publication-title: NeuroImage
– volume: 30
  start-page: 718
  year: 2006
  end-page: 729
  ident: bib17
  article-title: Brain development in children and adolescents
  publication-title: Neurosci. Biobehav. Rev.
– volume: 43
  start-page: 1175
  year: 2016
  end-page: 1186
  ident: bib44
  article-title: Automatic labeling of mr brain images by hierarchical learning of atlas forests
  publication-title: Med. Phys.
– year: 2016
  ident: bib45
  article-title: Concatenated spatially-localized random forests for hippocampus labeling in adult and infant mr brain images
  publication-title: Neurocomputing
– volume: 283
  start-page: 1007
  year: 2000
  ident: 10.1016/j.patcog.2016.09.019_bib20
  article-title: Estrogen replacement therapy for treatment of mild to moderate alzheimer disease
  publication-title: JAMA
  doi: 10.1001/jama.283.8.1007
– ident: 10.1016/j.patcog.2016.09.019_bib28
  doi: 10.1117/12.430979
– volume: 20
  start-page: 21
  year: 2003
  ident: 10.1016/j.patcog.2016.09.019_bib21
  article-title: Super-resolution image reconstruction
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2003.1203207
– volume: 54
  start-page: 255
  year: 2001
  ident: 10.1016/j.patcog.2016.09.019_bib22
  article-title: Maturation of white matter in the human brain
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(00)00434-2
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.patcog.2016.09.019_bib33
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 62
  start-page: 591
  year: 2004
  ident: 10.1016/j.patcog.2016.09.019_bib13
  article-title: Comparison of different mri brain atrophy rate measures with clinical disease progression in AD
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000110315.26026.EF
– ident: 10.1016/j.patcog.2016.09.019_bib43
  doi: 10.1007/978-3-319-10581-9_40
– volume: 45
  start-page: S143
  year: 2009
  ident: 10.1016/j.patcog.2016.09.019_bib6
  article-title: The geometric median on Riemannian manifolds 537 with application to robust atlas estimation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.052
– ident: 10.1016/j.patcog.2016.09.019_bib1
– volume: 19
  start-page: 3
  year: 2001
  ident: 10.1016/j.patcog.2016.09.019_bib30
  article-title: The role of image registration in brain mapping
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(00)00055-X
– volume: 51
  start-page: 1057
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib14
  article-title: Absorb
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.010
– volume: 19
  start-page: 2861
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib42
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– volume: 6
  start-page: 67
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib9
  article-title: The clinical use of structural mri in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– volume: 50
  start-page: 1485
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib37
  article-title: Attribute vector guided groupwise registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.040
– volume: 54
  start-page: 241
  year: 2000
  ident: 10.1016/j.patcog.2016.09.019_bib3
  article-title: Structural and functional brain development and its relation to cognitive development
  publication-title: Biol. Psychol.
  doi: 10.1016/S0301-0511(00)00058-2
– volume: 34
  start-page: 1694
  year: 2015
  ident: 10.1016/j.patcog.2016.09.019_bib36
  article-title: Automatic segmentation of spinal canals in ct images via iterative topology refinement
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2436693
– volume: 40
  start-page: 25
  year: 2000
  ident: 10.1016/j.patcog.2016.09.019_bib8
  article-title: Learning low-level vision
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1026501619075
– volume: 20
  start-page: 437
  year: 2002
  ident: 10.1016/j.patcog.2016.09.019_bib10
  article-title: Mri inter-slice reconstruction using super-resolution
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/S0730-725X(02)00511-8
– volume: 28
  start-page: 236
  year: 2006
  ident: 10.1016/j.patcog.2016.09.019_bib16
  article-title: Data driven image models through continuous joint alignment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.34
– volume: 15
  start-page: 1676
  year: 2005
  ident: 10.1016/j.patcog.2016.09.019_bib24
  article-title: Regional brain changes in aging healthy adults
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhi044
– volume: 35
  start-page: 174
  year: 2016
  ident: 10.1016/j.patcog.2016.09.019_bib12
  article-title: Estimating ct image from mri data using structured random forest and auto-context model
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2461533
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib32
  article-title: N4itk
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2046908
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.patcog.2016.09.019_bib38
  article-title: Image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 404
  start-page: 190
  year: 2000
  ident: 10.1016/j.patcog.2016.09.019_bib29
  article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps
  publication-title: Nature
  doi: 10.1038/35004593
– volume: 98
  start-page: 1031
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib39
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044470
– volume: 14
  start-page: 633
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib11
  article-title: Gram
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.06.001
– volume: 56
  start-page: 1968
  year: 2011
  ident: 10.1016/j.patcog.2016.09.019_bib40
  article-title: Sharpmean
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.050
– volume: 23
  start-page: S151
  year: 2004
  ident: 10.1016/j.patcog.2016.09.019_bib15
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.068
– ident: 10.1016/j.patcog.2016.09.019_bib4
  doi: 10.1109/ICCV.2013.231
– volume: 26
  start-page: 345
  year: 2015
  ident: 10.1016/j.patcog.2016.09.019_bib26
  article-title: Locally-constrained boundary regression for segmentation of prostate and rectum in the planning ct images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.06.007
– volume: 38
  start-page: 295
  year: 2016
  ident: 10.1016/j.patcog.2016.09.019_bib5
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 42
  start-page: 252
  year: 2008
  ident: 10.1016/j.patcog.2016.09.019_bib18
  article-title: Bayesian template estimation in computational anatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.056
– volume: 43
  start-page: 1175
  year: 2016
  ident: 10.1016/j.patcog.2016.09.019_bib44
  article-title: Automatic labeling of mr brain images by hierarchical learning of atlas forests
  publication-title: Med. Phys.
  doi: 10.1118/1.4941011
– year: 2016
  ident: 10.1016/j.patcog.2016.09.019_bib45
  article-title: Concatenated spatially-localized random forests for hippocampus labeling in adult and infant mr brain images
  publication-title: Neurocomputing
– volume: 69
  start-page: 292
  year: 2011
  ident: 10.1016/j.patcog.2016.09.019_bib23
  article-title: Diagnostic criteria for multiple sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22366
– volume: 20
  start-page: 61
  year: 2015
  ident: 10.1016/j.patcog.2016.09.019_bib35
  article-title: Predict brain mr image registration via sparse learning of appearance and transformation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.10.007
– volume: 22
  start-page: 56
  year: 2002
  ident: 10.1016/j.patcog.2016.09.019_bib7
  article-title: Example-based super-resolution
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.988747
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.patcog.2016.09.019_bib2
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  start-page: 464
  year: 2000
  ident: 10.1016/j.patcog.2016.09.019_bib25
  article-title: One-year age changes in mri brain volumes in older adults
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.5.464
– volume: 32
  start-page: 1744
  year: 2010
  ident: 10.1016/j.patcog.2016.09.019_bib31
  article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.186
– volume: 2
  start-page: 859
  year: 1999
  ident: 10.1016/j.patcog.2016.09.019_bib27
  article-title: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions
  publication-title: Nat. Neurosci.
  doi: 10.1038/13154
– volume: 106
  start-page: 34
  year: 2015
  ident: 10.1016/j.patcog.2016.09.019_bib41
  article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.025
– volume: 2
  start-page: 89
  year: 1995
  ident: 10.1016/j.patcog.2016.09.019_bib19
  article-title: A probabilistic atlas of the human brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1012
– volume: 30
  start-page: 718
  year: 2006
  ident: 10.1016/j.patcog.2016.09.019_bib17
  article-title: Brain development in children and adolescents
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.001
– volume: 45
  start-page: S61
  year: 2009
  ident: 10.1016/j.patcog.2016.09.019_bib34
  article-title: Diffeomorphic demons
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.040
– reference: 19056498 - Neuroimage. 2009 Mar;45(1 Suppl):S143-52
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 20097291 - Neuroimage. 2010 May 1;50(4):1485-96
– reference: 16468620 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):236-50
– reference: 26936703 - Med Phys. 2016 Mar;43(3):1175-86
– reference: 11287130 - Brain Res Bull. 2001 Feb;54(3):255-66
– reference: 21387374 - Ann Neurol. 2011 Feb;69(2):292-302
– reference: 10491602 - Nat Neurosci. 1999 Oct;2(10):859-61
– reference: 15501084 - Neuroimage. 2004;23 Suppl 1:S151-60
– reference: 10724172 - Nature. 2000 Mar 9;404(6774):190-3
– reference: 25476412 - Med Image Anal. 2015 Feb;20(1):61-75
– reference: 18514544 - Neuroimage. 2008 Aug 1;42(1):252-61
– reference: 28133417 - Neurocomputing. 2017 Mar 15;229:3-12
– reference: 16887188 - Neurosci Biobehav Rev. 2006;30(6):718-29
– reference: 26241768 - IEEE Trans Med Imaging. 2015 Aug;34(8):1694-704
– reference: 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73
– reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
– reference: 20226255 - Neuroimage. 2010 Jul 1;51(3):1057-70
– reference: 15703252 - Cereb Cortex. 2005 Nov;15(11):1676-89
– reference: 25463474 - Neuroimage. 2015 Feb 1;106:34-46
– reference: 19890483 - Image Vis Comput. 2001 Jan 1;19(1-2):3-24
– reference: 19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72
– reference: 20139996 - Nat Rev Neurol. 2010 Feb;6(2):67-77
– reference: 21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81
– reference: 11035225 - Biol Psychol. 2000 Oct;54(1-3):241-57
– reference: 26241970 - IEEE Trans Med Imaging. 2016 Jan;35(1):174-83
– reference: 20724753 - IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57
– reference: 9343592 - Neuroimage. 1995 Jun;2(2):89-101
– reference: 14981176 - Neurology. 2004 Feb 24;62(4):591-600
– reference: 20580597 - Med Image Anal. 2010 Oct;14(5):633-42
– reference: 10847596 - Cereb Cortex. 2000 May;10 (5):464-72
– reference: 15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12
– reference: 12206870 - Magn Reson Imaging. 2002 Jun;20(5):437-46
– reference: 26439938 - Med Image Anal. 2015 Dec;26(1):345-56
– reference: 10697060 - JAMA. 2000 Feb 23;283(8):1007-15
– reference: 26761735 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307
SSID ssj0017142
Score 2.3275454
Snippet It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 531
SubjectTerms Brain atlas
Groupwise registration
Image enhancement
Random forest regression
Sparsity learning
Super-resolution
Title Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution
URI https://dx.doi.org/10.1016/j.patcog.2016.09.019
https://www.ncbi.nlm.nih.gov/pubmed/29062159
https://www.proquest.com/docview/1955062226
https://pubmed.ncbi.nlm.nih.gov/PMC5650249
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsXWt5boDISV9Mkfq2PbUW1gOiJSr1Zjh2X5ZFddXcPvfS3M5M4KxaQKnGJIsdOLI898zme-QbgrZ7EwiRbcq_LRCnMKm6DtFxJY5QNSaqOSPvzhZ5eyo9X6moHzoZYGHKrzLq_1-mdts4lx3k0jxezGcX4Eu0gXrToIjB3Ya8SVqsR7J18-DS92BwmmFL2pOGi5NRgiKDr3LwWqPHm1-TjpTvCU6Lc-beF-huB_ulI-ZtlOj-AhxlSspO-149gp2kfw_6QroHl1fsE2lNKB8H8CgEzS2v6TcYouoQRZTEnv_fvpPdY7L3v8G3sJ95RlCPDTfmcqDkaNsOyZsnqW5YTTlxzsoSRLdeL5oZTxX4yP4XL8_dfzqY8p1vgQWqx4nWRisYTxboXE7Tc0XqbKhWk8cFaX6cYRbRRpSgmEUWvrUm4HYlaeUprJcQzGLXztnkBrE5JIRCqRbJSVoX1PigdbBIyTIw19RjEMMQuZC5ySonxww1OZ99cLxhHgnGFdSiYMfBNq0XPxXFPfTNIz23NKYfm4p6WbwZhO1xudIbi22a-XrrS4pZOI6jSY3jeC3_TF2LORwRF392aFpsKROW9_aSdfe0ovRFWE3fj4X_3-CU8qAhwdN5xr2C0ulk3rxEureoj2H13Vx7lRfELU7cYRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoBLW15tKIVF4rrEyb6yxzZqFKDtKZV6W613vSUUnKhJDr30tzPjR0SgUiUulmWv7ZVnd-Zb-5tvAD7pQcxMsj3udS9RCbM-t0FarqQxyoYkVSWkfX6hx5fy65W62oJhmwtDtMrG99c-vfLWzZFu8za78-mUcnxJdhA3WlQZmE_gqVTCEK_v8_2a50EFvmvJcNHj1LzNn6tIXnP0d7NrYnjpSu6UBHcejk__4s-_aZR_xKXRHuw0gJId131-AVtF-RJ222INrJm7r6A8oWIQzC8RLrO0oo9kjHJLGAkWc2K935DXY7Hm3uHd2C_coxxHhkvyGQlzFGyKx4oFy-9YU27imlMcjGyxmhe3nBrWQ_k1XI5OJ8Mxb4ot8CC1WPI8S1nhSWDdiwHG7Wi9TX0VpPHBWp-nGEW0UaUoBhENr61JuBiJWnkqaiXEG9guZ2VxACxPSSEMykWyUvYz631QOtgkZBgYa_IOiPYVu9AokVNBjJ-upZz9cLVhHBnGZdahYTrA11fNayWOR9qb1npuY0Q5DBaPXPmxNbbDyUZ_UHxZzFYL17O4oNMIqXQH9mvjr_tCuvmIn-i5G8Ni3YCEvDfPlNPvlaA3gmpSbnz73z3-AM_Gk_Mzd_bl4tshPO8T9Kh4cu9ge3m7Ko4QOC3z99XE-A2_rRkP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Atlas+Fusion+from+High-Thickness+Diagnostic+Magnetic+Resonance+Images+by+Learning-Based+Super-Resolution&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Jinpeng&rft.au=Zhang%2C+Lichi&rft.au=Xiang%2C+Lei&rft.au=Shao%2C+Yeqin&rft.date=2017-03-01&rft.issn=0031-3203&rft.volume=63&rft.spage=531&rft_id=info:doi/10.1016%2Fj.patcog.2016.09.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon