Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of at...
Saved in:
Published in | Pattern recognition Vol. 63; pp. 531 - 541 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2016.09.019 |
Cover
Abstract | It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
•We fuse the brain atlas from real diagnostic MR images with high inter-slice thickness.•All images are processed through the two-stage learning-based super-resolution.•Groupwise registration is applied for unbiased atlas fusion. |
---|---|
AbstractList | It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. •We fuse the brain atlas from real diagnostic MR images with high inter-slice thickness.•All images are processed through the two-stage learning-based super-resolution.•Groupwise registration is applied for unbiased atlas fusion. |
Author | Wu, Guorong Zhang, Jinpeng Zhang, Lichi Shen, Dinggang Wang, Qian Shao, Yeqin Xiang, Lei Zhou, Xiaodong |
AuthorAffiliation | e Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea d Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China b Nantong University, Nantong, Jiangsu 226019, China a Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States |
AuthorAffiliation_xml | – name: b Nantong University, Nantong, Jiangsu 226019, China – name: a Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – name: e Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea – name: d Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China – name: c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States |
Author_xml | – sequence: 1 givenname: Jinpeng surname: Zhang fullname: Zhang, Jinpeng organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Lichi surname: Zhang fullname: Zhang, Lichi organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Lei surname: Xiang fullname: Xiang, Lei organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Yeqin surname: Shao fullname: Shao, Yeqin organization: Nantong University, Nantong, Jiangsu 226019, China – sequence: 5 givenname: Guorong surname: Wu fullname: Wu, Guorong organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States – sequence: 6 givenname: Xiaodong surname: Zhou fullname: Zhou, Xiaodong organization: Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201815, China – sequence: 7 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States – sequence: 8 givenname: Qian surname: Wang fullname: Wang, Qian email: wang.qian@sjtu.edu.cn organization: Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29062159$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcuOFCEUJWaM0zP6B8awdFMlj6KqcWGiE1_JJG50TSi4VNNWQwvUJPP3Uukeoy50xYV7HuScK3QRYgCEnlPSUkL7V_v2qIuJU8vqrSWyJVQ-Qhu6HXgjaMcu0IYQThvOCL9EVznvCaFDXTxBl0ySnlEhNyi8S9oHrMusM3ZL9jFgl-IB7_y0a8rOm-8BcsbW6ynEXLzBhzrBOiTIMehgAPv6BhmP93gGnYIPUzPqDBbn5QipWYHzUqr2U_TY6TnDs_N5jb59eP_15lNz--Xj55u3t43pel6akTgCmnSCab5lHbNSS8eE6QZtpNSjs5ZbaYWzfGtHML0cnJCD7YXe9pJwfo3enHSPy3gAayCUpGd1TPWn6V5F7dWfm-B3aop3SvSCsE5WgZdngRR_LJCLOvhsYJ51gLhkRaUQNUPG-gp98bvXL5OHkCvg9QlgUsw5gVPGF73GUa39rChRa6Nqr06NqrVRRaSqjVZy9xf5Qf8_tHMAUFO-85BUNh5qV9YnMEXZ6P8t8BMSdsC0 |
CitedBy_id | crossref_primary_10_1016_j_compmedimag_2018_04_002 crossref_primary_10_3390_electronics8050553 crossref_primary_10_1016_j_patcog_2021_108103 crossref_primary_10_1016_j_mri_2017_07_008 crossref_primary_10_1016_j_patcog_2019_01_032 crossref_primary_10_1109_JBHI_2019_2945373 crossref_primary_10_1016_j_patcog_2018_01_002 crossref_primary_10_1016_j_patcog_2021_107931 crossref_primary_10_1016_j_mri_2017_03_008 crossref_primary_10_1016_j_neuroimage_2021_118687 crossref_primary_10_1016_j_patcog_2020_107798 crossref_primary_10_1016_j_jksuci_2022_03_024 crossref_primary_10_4103_1673_5374_247468 crossref_primary_10_1016_j_bspc_2017_08_007 crossref_primary_10_1016_j_eswa_2024_126241 crossref_primary_10_1016_j_media_2018_10_012 crossref_primary_10_1109_ACCESS_2019_2929773 crossref_primary_10_1016_j_media_2024_103158 |
Cites_doi | 10.1001/jama.283.8.1007 10.1117/12.430979 10.1109/MSP.2003.1203207 10.1016/S0361-9230(00)00434-2 10.1006/nimg.2001.0978 10.1212/01.WNL.0000110315.26026.EF 10.1007/978-3-319-10581-9_40 10.1016/j.neuroimage.2008.10.052 10.1016/S0262-8856(00)00055-X 10.1016/j.neuroimage.2010.03.010 10.1109/TIP.2010.2050625 10.1038/nrneurol.2009.215 10.1016/j.neuroimage.2010.01.040 10.1016/S0301-0511(00)00058-2 10.1109/TMI.2015.2436693 10.1023/A:1026501619075 10.1016/S0730-725X(02)00511-8 10.1109/TPAMI.2006.34 10.1093/cercor/bhi044 10.1109/TMI.2015.2461533 10.1109/TMI.2010.2046908 10.1109/TIP.2003.819861 10.1038/35004593 10.1109/JPROC.2010.2044470 10.1016/j.media.2010.06.001 10.1016/j.neuroimage.2011.03.050 10.1016/j.neuroimage.2004.07.068 10.1109/ICCV.2013.231 10.1016/j.media.2015.06.007 10.1109/TPAMI.2015.2439281 10.1016/j.neuroimage.2008.03.056 10.1118/1.4941011 10.1002/ana.22366 10.1016/j.media.2014.10.007 10.1109/38.988747 10.1023/A:1010933404324 10.1093/cercor/10.5.464 10.1109/TPAMI.2009.186 10.1038/13154 10.1016/j.neuroimage.2014.11.025 10.1006/nimg.1995.1012 10.1016/j.neubiorev.2006.06.001 10.1016/j.neuroimage.2008.10.040 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.patcog.2016.09.019 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 541 |
ExternalDocumentID | PMC5650249 29062159 10_1016_j_patcog_2016_09_019 S0031320316302825 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB022880 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIMH NIH HHS grantid: R21 MH108914 – fundername: NIA NIH HHS grantid: R01 AG049371 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 – fundername: NIA NIH HHS grantid: RF1 AG053867 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c463t-b0f0ea0452a38242d9a9f25c47ac99abfdd3d9d5fd38dbec697f597d65a869033 |
IEDL.DBID | AIKHN |
ISSN | 0031-3203 |
IngestDate | Thu Aug 21 14:03:03 EDT 2025 Thu Sep 04 21:04:23 EDT 2025 Wed Feb 19 02:44:15 EST 2025 Tue Jul 01 02:36:24 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain atlas Sparsity learning Super-resolution Image enhancement Random forest regression Groupwise registration image enhancement sparsity learning random forest regression super-resolution groupwise registration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-b0f0ea0452a38242d9a9f25c47ac99abfdd3d9d5fd38dbec697f597d65a869033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Email addresses: jinpengzhangsjtu@gmail.com (Jinpeng Zhang#), lichizhang@sjtu.edu.cn (Lichi Zhang#), dgshen@med.unc.edu (Dinggang Shen*), wang.qian@sjtu.edu.cn (Qian Wang*) |
OpenAccessLink | http://doi.org/10.1016/j.patcog.2016.09.019 |
PMID | 29062159 |
PQID | 1955062226 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5650249 proquest_miscellaneous_1955062226 pubmed_primary_29062159 crossref_citationtrail_10_1016_j_patcog_2016_09_019 crossref_primary_10_1016_j_patcog_2016_09_019 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_09_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pattern recognition |
PublicationTitleAlternate | Pattern Recognit |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Vercauteren, Pennec, Perchant, Ayache (bib34) 2009; 45 Wang, Bovik, Sheikh, Simoncelli (bib38) 2004; 13 Greenspan, Oz, Kiryati, Peled (bib10) 2002; 20 Zhang, Wang, Gao, Wu, Shen (bib45) 2016 Polman, Reingold, Banwell, Clanet, Cohen, Filippi, Fujihara, Havrdova, Hutchinson, Kappos (bib23) 2011; 69 Lenroot, Giedd (bib17) 2006; 30 Shao, Gao, Wang, Yang, Shen (bib26) 2015; 26 Freeman, Jones, Pasztor (bib7) 2002; 22 Learned-Miller (bib16) 2006; 28 Yang, Wright, Huang, Ma (bib42) 2010; 19 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib33) 2002; 15 L. Zhang, Q. Wang, Y. Gao, G. Wu, D. Shen, Learning of atlas forest hierarchy for automatic labeling of mr brain images, in: International Workshop on Machine Learning in Medical Imaging, Springer, Boston, 2014, pp. 323–330. Mazziotta, Toga, Evans, Fox, Lancaster (bib19) 1995; 2 Ma, Miller, Trouvé, Younes (bib18) 2008; 42 Toga, Thompson (bib30) 2001; 19 Wang, Lu, Wu, El-Zehiry, Zheng, Shen, Zhou (bib36) 2015; 34 Jack, Shiung, Gunter, Obrien, Weigand, Knopman, Boeve, Ivnik, Smith, Cha (bib13) 2004; 62 Hamm, Ye, Verma, Davatzikos (bib11) 2010; 14 Tu, Bai (bib31) 2010; 32 Joshi, Davis, Jomier, Gerig (bib15) 2004; 23 Wang, Wu, Yap, Shen (bib37) 2010; 50 Wu, Jia, Wang, Shen (bib40) 2011; 56 P. Dollár, C.L. Zitnick, 2013. Structured forests for fast edge detection, in: 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, 2013. IEEE, pp. 1841–1848. Breiman (bib2) 2001; 45 Mulnard, Cotman, Kawas, van Dyck, Sano, Doody, Koss, Pfeiffer, Jin, Gamst (bib20) 2000; 283 J.G. Tamez-Pena, S. Totterman, K.J. Parker, Mri isotropic resolution reconstruction from two orthogonal scans, in: Medical Imaging 2001, International Society for Optics and Photonics, San Diego, 2001, pp. 87–97. Zhang, Wang, Gao, Wu, Shen (bib44) 2016; 43 Jia, Wu, Wang, Shen (bib14) 2010; 51 Park, Park, Kang (bib21) 2003; 20 Casey, Giedd, Thomas (bib3) 2000; 54 Wang, Kim, Shi, Wu, Shen, Initiative (bib35) 2015; 20 Wu, Kim, Sanroma, Wang, Munsell, Shen, Initiative (bib41) 2015; 106 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib32) 2010; 29 Huynh, Gao, Kang, Wang, Zhang, Lian, Shen (bib12) 2016; 35 Paus, Collins, Evans, Leonard, Pike, Zijdenbos (bib22) 2001; 54 Thompson, Giedd, Woods, MacDonald, Evans, Toga (bib29) 2000; 404 Frisoni, Fox, Jack, Scheltens, Thompson (bib9) 2010; 6 Resnick, Goldszal, Davatzikos, Golski, Kraut, Metter, Bryan, Zonderman (bib25) 2000; 10 Wright, Ma, Mairal, Sapiro, Huang, Yan (bib39) 2010; 98 Dong, Loy, He, Tang (bib5) 2016; 38 Raz, Lindenberger, Rodrigue, Kennedy, Head, Williamson, Dahle, Gerstorf, Acker (bib24) 2005; 15 Sowell, Thompson, Holmes, Jernigan, Toga (bib27) 1999; 2 Y. Bai, X. Han, J.L. Prince, Super-resolution reconstruction of mr brain images, in: Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS04), 2004, pp. 1358–1363. Fletcher, Venkatasubramanian, Joshi (bib6) 2009; 45 Freeman, Pasztor, Carmichael (bib8) 2000; 40 Fletcher (10.1016/j.patcog.2016.09.019_bib6) 2009; 45 Greenspan (10.1016/j.patcog.2016.09.019_bib10) 2002; 20 Learned-Miller (10.1016/j.patcog.2016.09.019_bib16) 2006; 28 Vercauteren (10.1016/j.patcog.2016.09.019_bib34) 2009; 45 Breiman (10.1016/j.patcog.2016.09.019_bib2) 2001; 45 10.1016/j.patcog.2016.09.019_bib4 Freeman (10.1016/j.patcog.2016.09.019_bib8) 2000; 40 Wang (10.1016/j.patcog.2016.09.019_bib35) 2015; 20 Freeman (10.1016/j.patcog.2016.09.019_bib7) 2002; 22 Tustison (10.1016/j.patcog.2016.09.019_bib32) 2010; 29 Wu (10.1016/j.patcog.2016.09.019_bib40) 2011; 56 Wu (10.1016/j.patcog.2016.09.019_bib41) 2015; 106 Mulnard (10.1016/j.patcog.2016.09.019_bib20) 2000; 283 Huynh (10.1016/j.patcog.2016.09.019_bib12) 2016; 35 Lenroot (10.1016/j.patcog.2016.09.019_bib17) 2006; 30 Wang (10.1016/j.patcog.2016.09.019_bib36) 2015; 34 Tu (10.1016/j.patcog.2016.09.019_bib31) 2010; 32 10.1016/j.patcog.2016.09.019_bib1 Wright (10.1016/j.patcog.2016.09.019_bib39) 2010; 98 Raz (10.1016/j.patcog.2016.09.019_bib24) 2005; 15 Thompson (10.1016/j.patcog.2016.09.019_bib29) 2000; 404 Frisoni (10.1016/j.patcog.2016.09.019_bib9) 2010; 6 Yang (10.1016/j.patcog.2016.09.019_bib42) 2010; 19 Zhang (10.1016/j.patcog.2016.09.019_bib44) 2016; 43 Toga (10.1016/j.patcog.2016.09.019_bib30) 2001; 19 Casey (10.1016/j.patcog.2016.09.019_bib3) 2000; 54 Jack (10.1016/j.patcog.2016.09.019_bib13) 2004; 62 Paus (10.1016/j.patcog.2016.09.019_bib22) 2001; 54 Shao (10.1016/j.patcog.2016.09.019_bib26) 2015; 26 Sowell (10.1016/j.patcog.2016.09.019_bib27) 1999; 2 Hamm (10.1016/j.patcog.2016.09.019_bib11) 2010; 14 Joshi (10.1016/j.patcog.2016.09.019_bib15) 2004; 23 Wang (10.1016/j.patcog.2016.09.019_bib37) 2010; 50 Mazziotta (10.1016/j.patcog.2016.09.019_bib19) 1995; 2 10.1016/j.patcog.2016.09.019_bib43 Park (10.1016/j.patcog.2016.09.019_bib21) 2003; 20 Polman (10.1016/j.patcog.2016.09.019_bib23) 2011; 69 10.1016/j.patcog.2016.09.019_bib28 Dong (10.1016/j.patcog.2016.09.019_bib5) 2016; 38 Zhang (10.1016/j.patcog.2016.09.019_bib45) 2016 Tzourio-Mazoyer (10.1016/j.patcog.2016.09.019_bib33) 2002; 15 Wang (10.1016/j.patcog.2016.09.019_bib38) 2004; 13 Resnick (10.1016/j.patcog.2016.09.019_bib25) 2000; 10 Jia (10.1016/j.patcog.2016.09.019_bib14) 2010; 51 Ma (10.1016/j.patcog.2016.09.019_bib18) 2008; 42 26936703 - Med Phys. 2016 Mar;43(3):1175-86 14981176 - Neurology. 2004 Feb 24;62(4):591-600 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 16468620 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):236-50 20226255 - Neuroimage. 2010 Jul 1;51(3):1057-70 19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72 20580597 - Med Image Anal. 2010 Oct;14(5):633-42 11287130 - Brain Res Bull. 2001 Feb;54(3):255-66 20724753 - IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57 10724172 - Nature. 2000 Mar 9;404(6774):190-3 12206870 - Magn Reson Imaging. 2002 Jun;20(5):437-46 26241768 - IEEE Trans Med Imaging. 2015 Aug;34(8):1694-704 20139996 - Nat Rev Neurol. 2010 Feb;6(2):67-77 19056498 - Neuroimage. 2009 Mar;45(1 Suppl):S143-52 20097291 - Neuroimage. 2010 May 1;50(4):1485-96 11035225 - Biol Psychol. 2000 Oct;54(1-3):241-57 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73 15501084 - Neuroimage. 2004;23 Suppl 1:S151-60 10491602 - Nat Neurosci. 1999 Oct;2(10):859-61 15703252 - Cereb Cortex. 2005 Nov;15(11):1676-89 10847596 - Cereb Cortex. 2000 May;10 (5):464-72 19890483 - Image Vis Comput. 2001 Jan 1;19(1-2):3-24 25476412 - Med Image Anal. 2015 Feb;20(1):61-75 16887188 - Neurosci Biobehav Rev. 2006;30(6):718-29 26761735 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307 25463474 - Neuroimage. 2015 Feb 1;106:34-46 21387374 - Ann Neurol. 2011 Feb;69(2):292-302 18514544 - Neuroimage. 2008 Aug 1;42(1):252-61 26439938 - Med Image Anal. 2015 Dec;26(1):345-56 10697060 - JAMA. 2000 Feb 23;283(8):1007-15 9343592 - Neuroimage. 1995 Jun;2(2):89-101 26241970 - IEEE Trans Med Imaging. 2016 Jan;35(1):174-83 15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12 11771995 - Neuroimage. 2002 Jan;15(1):273-89 28133417 - Neurocomputing. 2017 Mar 15;229:3-12 21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81 |
References_xml | – volume: 62 start-page: 591 year: 2004 end-page: 600 ident: bib13 article-title: Comparison of different mri brain atrophy rate measures with clinical disease progression in AD publication-title: Neurology – volume: 26 start-page: 345 year: 2015 end-page: 356 ident: bib26 article-title: Locally-constrained boundary regression for segmentation of prostate and rectum in the planning ct images publication-title: Med. Image Anal. – volume: 22 start-page: 56 year: 2002 end-page: 65 ident: bib7 article-title: Example-based super-resolution publication-title: IEEE Comput. Graph. Appl. – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: bib9 article-title: The clinical use of structural mri in Alzheimer disease publication-title: Nat. Rev. Neurol. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib32 article-title: N4itk publication-title: IEEE Trans. Med. Imag. – volume: 34 start-page: 1694 year: 2015 end-page: 1704 ident: bib36 article-title: Automatic segmentation of spinal canals in ct images via iterative topology refinement publication-title: IEEE Trans. Med. Imag. – volume: 69 start-page: 292 year: 2011 end-page: 302 ident: bib23 article-title: Diagnostic criteria for multiple sclerosis publication-title: Ann. Neurol. – volume: 40 start-page: 25 year: 2000 end-page: 47 ident: bib8 article-title: Learning low-level vision publication-title: Int. J. Comput. Vis. – volume: 23 start-page: S151 year: 2004 end-page: S160 ident: bib15 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage – volume: 404 start-page: 190 year: 2000 end-page: 193 ident: bib29 article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps publication-title: Nature – volume: 54 start-page: 241 year: 2000 end-page: 257 ident: bib3 article-title: Structural and functional brain development and its relation to cognitive development publication-title: Biol. Psychol. – volume: 19 start-page: 3 year: 2001 end-page: 24 ident: bib30 article-title: The role of image registration in brain mapping publication-title: Image Vis. Comput. – reference: Y. Bai, X. Han, J.L. Prince, Super-resolution reconstruction of mr brain images, in: Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS04), 2004, pp. 1358–1363. – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib5 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 98 start-page: 1031 year: 2010 end-page: 1044 ident: bib39 article-title: Sparse representation for computer vision and pattern recognition publication-title: Proc. IEEE – volume: 15 start-page: 1676 year: 2005 end-page: 1689 ident: bib24 article-title: Regional brain changes in aging healthy adults publication-title: Cereb. Cortex – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib33 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage – volume: 14 start-page: 633 year: 2010 end-page: 642 ident: bib11 article-title: Gram publication-title: Med. Image Anal. – volume: 50 start-page: 1485 year: 2010 end-page: 1496 ident: bib37 article-title: Attribute vector guided groupwise registration publication-title: NeuroImage – volume: 51 start-page: 1057 year: 2010 end-page: 1070 ident: bib14 article-title: Absorb publication-title: NeuroImage – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib2 article-title: Random forests publication-title: Mach. Learn. – volume: 2 start-page: 859 year: 1999 end-page: 861 ident: bib27 article-title: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions publication-title: Nat. Neurosci. – volume: 45 start-page: S61 year: 2009 end-page: S72 ident: bib34 article-title: Diffeomorphic demons publication-title: NeuroImage – volume: 20 start-page: 21 year: 2003 end-page: 36 ident: bib21 article-title: Super-resolution image reconstruction publication-title: IEEE Signal Process. Mag. – volume: 20 start-page: 437 year: 2002 end-page: 446 ident: bib10 article-title: Mri inter-slice reconstruction using super-resolution publication-title: Magn. Reson. Imag. – volume: 35 start-page: 174 year: 2016 end-page: 183 ident: bib12 article-title: Estimating ct image from mri data using structured random forest and auto-context model publication-title: IEEE Trans. Med. Imag. – volume: 32 start-page: 1744 year: 2010 end-page: 1757 ident: bib31 article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 464 year: 2000 end-page: 472 ident: bib25 article-title: One-year age changes in mri brain volumes in older adults publication-title: Cereb. Cortex – volume: 106 start-page: 34 year: 2015 end-page: 46 ident: bib41 article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition publication-title: NeuroImage – volume: 54 start-page: 255 year: 2001 end-page: 266 ident: bib22 article-title: Maturation of white matter in the human brain publication-title: Brain Res. Bull. – volume: 2 start-page: 89 year: 1995 end-page: 101 ident: bib19 article-title: A probabilistic atlas of the human brain publication-title: Neuroimage – volume: 56 start-page: 1968 year: 2011 end-page: 1981 ident: bib40 article-title: Sharpmean publication-title: NeuroImage – volume: 19 start-page: 2861 year: 2010 end-page: 2873 ident: bib42 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. – volume: 42 start-page: 252 year: 2008 end-page: 261 ident: bib18 article-title: Bayesian template estimation in computational anatomy publication-title: NeuroImage – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib38 article-title: Image quality assessment publication-title: IEEE Trans. Image Process. – reference: L. Zhang, Q. Wang, Y. Gao, G. Wu, D. Shen, Learning of atlas forest hierarchy for automatic labeling of mr brain images, in: International Workshop on Machine Learning in Medical Imaging, Springer, Boston, 2014, pp. 323–330. – volume: 28 start-page: 236 year: 2006 end-page: 250 ident: bib16 article-title: Data driven image models through continuous joint alignment publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Dollár, C.L. Zitnick, 2013. Structured forests for fast edge detection, in: 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, 2013. IEEE, pp. 1841–1848. – volume: 283 start-page: 1007 year: 2000 end-page: 1015 ident: bib20 article-title: Estrogen replacement therapy for treatment of mild to moderate alzheimer disease publication-title: JAMA – volume: 20 start-page: 61 year: 2015 end-page: 75 ident: bib35 article-title: Predict brain mr image registration via sparse learning of appearance and transformation publication-title: Med. Image Anal. – reference: J.G. Tamez-Pena, S. Totterman, K.J. Parker, Mri isotropic resolution reconstruction from two orthogonal scans, in: Medical Imaging 2001, International Society for Optics and Photonics, San Diego, 2001, pp. 87–97. – volume: 45 start-page: S143 year: 2009 end-page: S152 ident: bib6 article-title: The geometric median on Riemannian manifolds 537 with application to robust atlas estimation publication-title: NeuroImage – volume: 30 start-page: 718 year: 2006 end-page: 729 ident: bib17 article-title: Brain development in children and adolescents publication-title: Neurosci. Biobehav. Rev. – volume: 43 start-page: 1175 year: 2016 end-page: 1186 ident: bib44 article-title: Automatic labeling of mr brain images by hierarchical learning of atlas forests publication-title: Med. Phys. – year: 2016 ident: bib45 article-title: Concatenated spatially-localized random forests for hippocampus labeling in adult and infant mr brain images publication-title: Neurocomputing – volume: 283 start-page: 1007 year: 2000 ident: 10.1016/j.patcog.2016.09.019_bib20 article-title: Estrogen replacement therapy for treatment of mild to moderate alzheimer disease publication-title: JAMA doi: 10.1001/jama.283.8.1007 – ident: 10.1016/j.patcog.2016.09.019_bib28 doi: 10.1117/12.430979 – volume: 20 start-page: 21 year: 2003 ident: 10.1016/j.patcog.2016.09.019_bib21 article-title: Super-resolution image reconstruction publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2003.1203207 – volume: 54 start-page: 255 year: 2001 ident: 10.1016/j.patcog.2016.09.019_bib22 article-title: Maturation of white matter in the human brain publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(00)00434-2 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.patcog.2016.09.019_bib33 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 62 start-page: 591 year: 2004 ident: 10.1016/j.patcog.2016.09.019_bib13 article-title: Comparison of different mri brain atrophy rate measures with clinical disease progression in AD publication-title: Neurology doi: 10.1212/01.WNL.0000110315.26026.EF – ident: 10.1016/j.patcog.2016.09.019_bib43 doi: 10.1007/978-3-319-10581-9_40 – volume: 45 start-page: S143 year: 2009 ident: 10.1016/j.patcog.2016.09.019_bib6 article-title: The geometric median on Riemannian manifolds 537 with application to robust atlas estimation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.052 – ident: 10.1016/j.patcog.2016.09.019_bib1 – volume: 19 start-page: 3 year: 2001 ident: 10.1016/j.patcog.2016.09.019_bib30 article-title: The role of image registration in brain mapping publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(00)00055-X – volume: 51 start-page: 1057 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib14 article-title: Absorb publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.010 – volume: 19 start-page: 2861 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib42 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2050625 – volume: 6 start-page: 67 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib9 article-title: The clinical use of structural mri in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – volume: 50 start-page: 1485 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib37 article-title: Attribute vector guided groupwise registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.040 – volume: 54 start-page: 241 year: 2000 ident: 10.1016/j.patcog.2016.09.019_bib3 article-title: Structural and functional brain development and its relation to cognitive development publication-title: Biol. Psychol. doi: 10.1016/S0301-0511(00)00058-2 – volume: 34 start-page: 1694 year: 2015 ident: 10.1016/j.patcog.2016.09.019_bib36 article-title: Automatic segmentation of spinal canals in ct images via iterative topology refinement publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2436693 – volume: 40 start-page: 25 year: 2000 ident: 10.1016/j.patcog.2016.09.019_bib8 article-title: Learning low-level vision publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1026501619075 – volume: 20 start-page: 437 year: 2002 ident: 10.1016/j.patcog.2016.09.019_bib10 article-title: Mri inter-slice reconstruction using super-resolution publication-title: Magn. Reson. Imag. doi: 10.1016/S0730-725X(02)00511-8 – volume: 28 start-page: 236 year: 2006 ident: 10.1016/j.patcog.2016.09.019_bib16 article-title: Data driven image models through continuous joint alignment publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.34 – volume: 15 start-page: 1676 year: 2005 ident: 10.1016/j.patcog.2016.09.019_bib24 article-title: Regional brain changes in aging healthy adults publication-title: Cereb. Cortex doi: 10.1093/cercor/bhi044 – volume: 35 start-page: 174 year: 2016 ident: 10.1016/j.patcog.2016.09.019_bib12 article-title: Estimating ct image from mri data using structured random forest and auto-context model publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2461533 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib32 article-title: N4itk publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2010.2046908 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.patcog.2016.09.019_bib38 article-title: Image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 404 start-page: 190 year: 2000 ident: 10.1016/j.patcog.2016.09.019_bib29 article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps publication-title: Nature doi: 10.1038/35004593 – volume: 98 start-page: 1031 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib39 article-title: Sparse representation for computer vision and pattern recognition publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2044470 – volume: 14 start-page: 633 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib11 article-title: Gram publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.06.001 – volume: 56 start-page: 1968 year: 2011 ident: 10.1016/j.patcog.2016.09.019_bib40 article-title: Sharpmean publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.050 – volume: 23 start-page: S151 year: 2004 ident: 10.1016/j.patcog.2016.09.019_bib15 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.068 – ident: 10.1016/j.patcog.2016.09.019_bib4 doi: 10.1109/ICCV.2013.231 – volume: 26 start-page: 345 year: 2015 ident: 10.1016/j.patcog.2016.09.019_bib26 article-title: Locally-constrained boundary regression for segmentation of prostate and rectum in the planning ct images publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.06.007 – volume: 38 start-page: 295 year: 2016 ident: 10.1016/j.patcog.2016.09.019_bib5 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 42 start-page: 252 year: 2008 ident: 10.1016/j.patcog.2016.09.019_bib18 article-title: Bayesian template estimation in computational anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.056 – volume: 43 start-page: 1175 year: 2016 ident: 10.1016/j.patcog.2016.09.019_bib44 article-title: Automatic labeling of mr brain images by hierarchical learning of atlas forests publication-title: Med. Phys. doi: 10.1118/1.4941011 – year: 2016 ident: 10.1016/j.patcog.2016.09.019_bib45 article-title: Concatenated spatially-localized random forests for hippocampus labeling in adult and infant mr brain images publication-title: Neurocomputing – volume: 69 start-page: 292 year: 2011 ident: 10.1016/j.patcog.2016.09.019_bib23 article-title: Diagnostic criteria for multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.22366 – volume: 20 start-page: 61 year: 2015 ident: 10.1016/j.patcog.2016.09.019_bib35 article-title: Predict brain mr image registration via sparse learning of appearance and transformation publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.10.007 – volume: 22 start-page: 56 year: 2002 ident: 10.1016/j.patcog.2016.09.019_bib7 article-title: Example-based super-resolution publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.988747 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.patcog.2016.09.019_bib2 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 10 start-page: 464 year: 2000 ident: 10.1016/j.patcog.2016.09.019_bib25 article-title: One-year age changes in mri brain volumes in older adults publication-title: Cereb. Cortex doi: 10.1093/cercor/10.5.464 – volume: 32 start-page: 1744 year: 2010 ident: 10.1016/j.patcog.2016.09.019_bib31 article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.186 – volume: 2 start-page: 859 year: 1999 ident: 10.1016/j.patcog.2016.09.019_bib27 article-title: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions publication-title: Nat. Neurosci. doi: 10.1038/13154 – volume: 106 start-page: 34 year: 2015 ident: 10.1016/j.patcog.2016.09.019_bib41 article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.025 – volume: 2 start-page: 89 year: 1995 ident: 10.1016/j.patcog.2016.09.019_bib19 article-title: A probabilistic atlas of the human brain publication-title: Neuroimage doi: 10.1006/nimg.1995.1012 – volume: 30 start-page: 718 year: 2006 ident: 10.1016/j.patcog.2016.09.019_bib17 article-title: Brain development in children and adolescents publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2006.06.001 – volume: 45 start-page: S61 year: 2009 ident: 10.1016/j.patcog.2016.09.019_bib34 article-title: Diffeomorphic demons publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.040 – reference: 19056498 - Neuroimage. 2009 Mar;45(1 Suppl):S143-52 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 20097291 - Neuroimage. 2010 May 1;50(4):1485-96 – reference: 16468620 - IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):236-50 – reference: 26936703 - Med Phys. 2016 Mar;43(3):1175-86 – reference: 11287130 - Brain Res Bull. 2001 Feb;54(3):255-66 – reference: 21387374 - Ann Neurol. 2011 Feb;69(2):292-302 – reference: 10491602 - Nat Neurosci. 1999 Oct;2(10):859-61 – reference: 15501084 - Neuroimage. 2004;23 Suppl 1:S151-60 – reference: 10724172 - Nature. 2000 Mar 9;404(6774):190-3 – reference: 25476412 - Med Image Anal. 2015 Feb;20(1):61-75 – reference: 18514544 - Neuroimage. 2008 Aug 1;42(1):252-61 – reference: 28133417 - Neurocomputing. 2017 Mar 15;229:3-12 – reference: 16887188 - Neurosci Biobehav Rev. 2006;30(6):718-29 – reference: 26241768 - IEEE Trans Med Imaging. 2015 Aug;34(8):1694-704 – reference: 20483687 - IEEE Trans Image Process. 2010 Nov;19(11):2861-73 – reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 – reference: 20226255 - Neuroimage. 2010 Jul 1;51(3):1057-70 – reference: 15703252 - Cereb Cortex. 2005 Nov;15(11):1676-89 – reference: 25463474 - Neuroimage. 2015 Feb 1;106:34-46 – reference: 19890483 - Image Vis Comput. 2001 Jan 1;19(1-2):3-24 – reference: 19041946 - Neuroimage. 2009 Mar;45(1 Suppl):S61-72 – reference: 20139996 - Nat Rev Neurol. 2010 Feb;6(2):67-77 – reference: 21440646 - Neuroimage. 2011 Jun 15;56(4):1968-81 – reference: 11035225 - Biol Psychol. 2000 Oct;54(1-3):241-57 – reference: 26241970 - IEEE Trans Med Imaging. 2016 Jan;35(1):174-83 – reference: 20724753 - IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1744-57 – reference: 9343592 - Neuroimage. 1995 Jun;2(2):89-101 – reference: 14981176 - Neurology. 2004 Feb 24;62(4):591-600 – reference: 20580597 - Med Image Anal. 2010 Oct;14(5):633-42 – reference: 10847596 - Cereb Cortex. 2000 May;10 (5):464-72 – reference: 15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12 – reference: 12206870 - Magn Reson Imaging. 2002 Jun;20(5):437-46 – reference: 26439938 - Med Image Anal. 2015 Dec;26(1):345-56 – reference: 10697060 - JAMA. 2000 Feb 23;283(8):1007-15 – reference: 26761735 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307 |
SSID | ssj0017142 |
Score | 2.3275454 |
Snippet | It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 531 |
SubjectTerms | Brain atlas Groupwise registration Image enhancement Random forest regression Sparsity learning Super-resolution |
Title | Brain atlas fusion from high-thickness diagnostic magnetic resonance images by learning-based super-resolution |
URI | https://dx.doi.org/10.1016/j.patcog.2016.09.019 https://www.ncbi.nlm.nih.gov/pubmed/29062159 https://www.proquest.com/docview/1955062226 https://pubmed.ncbi.nlm.nih.gov/PMC5650249 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsXWt5boDISV9Mkfq2PbUW1gOiJSr1Zjh2X5ZFddXcPvfS3M5M4KxaQKnGJIsdOLI898zme-QbgrZ7EwiRbcq_LRCnMKm6DtFxJY5QNSaqOSPvzhZ5eyo9X6moHzoZYGHKrzLq_1-mdts4lx3k0jxezGcX4Eu0gXrToIjB3Ya8SVqsR7J18-DS92BwmmFL2pOGi5NRgiKDr3LwWqPHm1-TjpTvCU6Lc-beF-huB_ulI-ZtlOj-AhxlSspO-149gp2kfw_6QroHl1fsE2lNKB8H8CgEzS2v6TcYouoQRZTEnv_fvpPdY7L3v8G3sJ95RlCPDTfmcqDkaNsOyZsnqW5YTTlxzsoSRLdeL5oZTxX4yP4XL8_dfzqY8p1vgQWqx4nWRisYTxboXE7Tc0XqbKhWk8cFaX6cYRbRRpSgmEUWvrUm4HYlaeUprJcQzGLXztnkBrE5JIRCqRbJSVoX1PigdbBIyTIw19RjEMMQuZC5ySonxww1OZ99cLxhHgnGFdSiYMfBNq0XPxXFPfTNIz23NKYfm4p6WbwZhO1xudIbi22a-XrrS4pZOI6jSY3jeC3_TF2LORwRF392aFpsKROW9_aSdfe0ovRFWE3fj4X_3-CU8qAhwdN5xr2C0ulk3rxEureoj2H13Vx7lRfELU7cYRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcoBLW15tKIVF4rrEyb6yxzZqFKDtKZV6W613vSUUnKhJDr30tzPjR0SgUiUulmWv7ZVnd-Zb-5tvAD7pQcxMsj3udS9RCbM-t0FarqQxyoYkVSWkfX6hx5fy65W62oJhmwtDtMrG99c-vfLWzZFu8za78-mUcnxJdhA3WlQZmE_gqVTCEK_v8_2a50EFvmvJcNHj1LzNn6tIXnP0d7NrYnjpSu6UBHcejk__4s-_aZR_xKXRHuw0gJId131-AVtF-RJ222INrJm7r6A8oWIQzC8RLrO0oo9kjHJLGAkWc2K935DXY7Hm3uHd2C_coxxHhkvyGQlzFGyKx4oFy-9YU27imlMcjGyxmhe3nBrWQ_k1XI5OJ8Mxb4ot8CC1WPI8S1nhSWDdiwHG7Wi9TX0VpPHBWp-nGEW0UaUoBhENr61JuBiJWnkqaiXEG9guZ2VxACxPSSEMykWyUvYz631QOtgkZBgYa_IOiPYVu9AokVNBjJ-upZz9cLVhHBnGZdahYTrA11fNayWOR9qb1npuY0Q5DBaPXPmxNbbDyUZ_UHxZzFYL17O4oNMIqXQH9mvjr_tCuvmIn-i5G8Ni3YCEvDfPlNPvlaA3gmpSbnz73z3-AM_Gk_Mzd_bl4tshPO8T9Kh4cu9ge3m7Ko4QOC3z99XE-A2_rRkP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Atlas+Fusion+from+High-Thickness+Diagnostic+Magnetic+Resonance+Images+by+Learning-Based+Super-Resolution&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Jinpeng&rft.au=Zhang%2C+Lichi&rft.au=Xiang%2C+Lei&rft.au=Shao%2C+Yeqin&rft.date=2017-03-01&rft.issn=0031-3203&rft.volume=63&rft.spage=531&rft_id=info:doi/10.1016%2Fj.patcog.2016.09.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |