Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK

The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical co...

Full description

Saved in:
Bibliographic Details
Published inApplied geochemistry Vol. 147; p. 105482
Main Authors Buckingham, F.L., Henderson, G.M., Holdship, P., Renforth, P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth. This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha−1) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha−1 yr−1 and could remove 10.2 ± 0.8 kgCO2 ha−1 yr−1. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO2 yr−1 which is equivalent to 3% of current UK agricultural CO2 emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO2 removal. •Crushed basalt was applied to a UK agricultural soil in a 14-month soil core study.•Five years of basalt application over UK cropland could remove 1.3 ± 0.1 MtCO2 yr−1.•Enhanced weathering removes CO2 considerably slower than model predictions.•Low water flux limits drawdown from enhanced weathering in dry UK cropland.
AbstractList The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth. This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha−1) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha−1 yr−1 and could remove 10.2 ± 0.8 kgCO2 ha−1 yr−1. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO2 yr−1 which is equivalent to 3% of current UK agricultural CO2 emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO2 removal. •Crushed basalt was applied to a UK agricultural soil in a 14-month soil core study.•Five years of basalt application over UK cropland could remove 1.3 ± 0.1 MtCO2 yr−1.•Enhanced weathering removes CO2 considerably slower than model predictions.•Low water flux limits drawdown from enhanced weathering in dry UK cropland.
The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO₂ drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO₂ removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth. This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha⁻¹) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha⁻¹ yr⁻¹ and could remove 10.2 ± 0.8 kgCO₂ ha⁻¹ yr⁻¹. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO₂ yr⁻¹ which is equivalent to 3% of current UK agricultural CO₂ emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO₂ removal.
ArticleNumber 105482
Author Renforth, P.
Buckingham, F.L.
Henderson, G.M.
Holdship, P.
Author_xml – sequence: 1
  givenname: F.L.
  surname: Buckingham
  fullname: Buckingham, F.L.
  email: frances.buckingham@earth.ox.ac.uk
  organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
– sequence: 2
  givenname: G.M.
  surname: Henderson
  fullname: Henderson, G.M.
  organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
– sequence: 3
  givenname: P.
  surname: Holdship
  fullname: Holdship, P.
  organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
– sequence: 4
  givenname: P.
  surname: Renforth
  fullname: Renforth, P.
  organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
BookMark eNqNkL1OwzAYRS1UJErhGfDIkmI7f87AUFX8iUodoLPl2l9aV0kcbLcob4-rIgYWmCxd33P16VyiUWc7QOiGkikltLjbTWW_Aau20E4ZYSymecbZGRpTXrKkomk2QmPCeZqwipUX6NL7HSEkLwkbI_FmTYOVdYB92OsBm04bJQN43JjWBNB4vmTYQWsPssHrAUO3lZ2K-SfIsAVnuk2EsHYDVs72jey0PwbxD69er9B5LRsP19_vBK0eH97nz8li-fQyny0SlRVpSCRLeV5qXteFqhQpONEsVbIoKrZWmhUyzcqKaaI40Joymq0LWklSVpHgPE5M0O1pt3f2Yw8-iNZ4BU08B-zei5TmKc9itYrV-1M1nuu9g1ooE2QwtgtOmkZQIo5ixU78iBVHseIkNvLlL753ppVu-Ac5O5EQTRwMOOGVgaNM40AFoa35c-MLImyZpQ
CitedBy_id crossref_primary_10_1029_2023EF003698
crossref_primary_10_1016_j_apgeochem_2024_106054
crossref_primary_10_1016_j_jhydrol_2024_131738
crossref_primary_10_1016_j_agrformet_2023_109610
crossref_primary_10_3389_feart_2023_1215930
crossref_primary_10_3390_min14010075
crossref_primary_10_1017_sus_2023_25
crossref_primary_10_1029_2024MS004224
crossref_primary_10_3389_fclim_2024_1510747
crossref_primary_10_1038_s41558_023_01604_9
crossref_primary_10_1016_j_scitotenv_2023_167701
crossref_primary_10_1016_j_resconrec_2022_106766
crossref_primary_10_1111_gcb_17511
crossref_primary_10_1016_j_apgeochem_2024_105940
crossref_primary_10_3389_fclim_2024_1252210
crossref_primary_10_1016_j_apgeochem_2023_105622
crossref_primary_10_1016_j_apgeochem_2024_106056
crossref_primary_10_1103_PRXEnergy_4_017001
crossref_primary_10_1088_2515_7620_acfd89
crossref_primary_10_1016_j_apgeochem_2023_105591
crossref_primary_10_1016_j_scitotenv_2024_177458
crossref_primary_10_3389_fclim_2023_1203043
crossref_primary_10_1029_2024JF007774
crossref_primary_10_1039_D4EE03166K
crossref_primary_10_1088_1748_9326_ad085e
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_1016_j_mex_2024_102971
crossref_primary_10_3389_fclim_2024_1524998
crossref_primary_10_48130_cas_0024_0007
crossref_primary_10_1038_s42004_024_01361_6
crossref_primary_10_1007_s12583_024_0101_5
crossref_primary_10_1016_j_catena_2023_107524
Cites_doi 10.1002/rog.20004
10.2166/wcc.2013.014
10.1016/j.ijggc.2009.07.001
10.1088/1748-9326/aaa9c4
10.1016/j.jclepro.2019.06.099
10.1180/claymin.1963.005.29.08
10.1111/gcb.15089
10.1038/s41477-018-0108-y
10.3390/su8070700
10.5194/bg-17-103-2020
10.1021/es4052022
10.1098/rsbl.2016.0715
10.1016/j.chemgeo.2003.03.001
10.1016/j.catena.2019.104184
10.1088/1748-9326/aabf9f
10.1038/s41467-019-09475-5
10.3389/fclim.2022.869456
10.1029/JC086iC10p09776
10.1016/j.jcis.2004.04.005
10.1016/j.apgeochem.2015.05.016
10.1038/345486b0
10.1016/j.jhazmat.2020.124200
10.1371/journal.pone.0042098
10.1016/j.chemgeo.2020.119628
10.1180/minmag.2008.072.2.639
10.2138/am-2000-11-1220
10.1038/s41561-022-00925-2
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apgeochem.2022.105482
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9134
ExternalDocumentID 10_1016_j_apgeochem_2022_105482
S0883292722002864
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c463t-a23857d8ff6c9c0680d23ca6692bcd26a34792d0c8e1f1214b619a0798ff88463
IEDL.DBID .~1
ISSN 0883-2927
IngestDate Fri Jul 11 11:02:29 EDT 2025
Tue Jul 01 01:59:44 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Fri Feb 23 02:38:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Enhanced weathering
Negative emissions
Carbon dioxide removal
Terrestrial weathering
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-a23857d8ff6c9c0680d23ca6692bcd26a34792d0c8e1f1214b619a0798ff88463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0883292722002864
PQID 3153848849
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153848849
crossref_citationtrail_10_1016_j_apgeochem_2022_105482
crossref_primary_10_1016_j_apgeochem_2022_105482
elsevier_sciencedirect_doi_10_1016_j_apgeochem_2022_105482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Applied geochemistry
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Amann (bib1) 2020; 17
Renforth (bib28) 2019; 10
Hangx, Spiers (bib46) 2009; 3
(bib37) 2021
Vienne, Poblador, Portillo-Estrada, Hartman (bib38) 2022
Lefebvre (bib22) 2019; 233
Beerling (bib3) 2020
Durn (bib12) 2019; 183
White, Brantley (bib40) 2003; 202
Kay (bib42) 2013; 4
Tester (bib43) 1993
Strefler (bib33) 2018; 13
Beerling (bib41) 2018; 4
Moosdorf, Renforth, Hartmann (bib24) 2014; 48
Hartmann (bib17) 2013; 51
Kelemen (bib45) 2020; 550
Bradl (bib7) 2004; 277
(bib14) 2009
Swoboda, Döring, Hamer (bib35) 2021
Jackson, Macaky, Bloomfield (bib19) 2013
Smith (bib32) 2015; 6
Edwards (bib13) 2017; 13
Berner (bib6) 1999; 9
Renforth, Pogge von Strandmann, Henderson (bib29) 2015; 61
Brantley, Mellot (bib44) 2000; 85
(bib9) 2020
Fuss (bib15) 2018; 13
Igbokwe, Ugwu (bib18) 2018; vol. 2
Sumner (bib34) 1963; 5
NRFA (bib25) 2022
Singh, Kalamdhad (bib31) 2011; 1
ten Berge (bib4) 2012; 7
Drever (bib11) 1997
(bib36) 2018
Manning (bib23) 2008; 72
Kelland (bib21) 2020; 26
Walker, Hays, Kasting (bib39) 1981; 86
(bib10) 2021
Chen (bib8) 2021; 405
Kantzas (bib20) 2022
Palandri, Kharaka (bib26) 2004; vols. 2004–1068
Panhwar (bib27) 2016; 8
Gautam (bib16) 2014
SEIFRITZ (bib30) 1990
Berner, Berner (bib5) 2012
Basak (bib2) 2016
Jackson (10.1016/j.apgeochem.2022.105482_bib19) 2013
Drever (10.1016/j.apgeochem.2022.105482_bib11) 1997
Beerling (10.1016/j.apgeochem.2022.105482_bib3) 2020
Tester (10.1016/j.apgeochem.2022.105482_bib43) 1993
(10.1016/j.apgeochem.2022.105482_bib36) 2018
Vienne (10.1016/j.apgeochem.2022.105482_bib38) 2022
Strefler (10.1016/j.apgeochem.2022.105482_bib33) 2018; 13
Fuss (10.1016/j.apgeochem.2022.105482_bib15) 2018; 13
Manning (10.1016/j.apgeochem.2022.105482_bib23) 2008; 72
Panhwar (10.1016/j.apgeochem.2022.105482_bib27) 2016; 8
Smith (10.1016/j.apgeochem.2022.105482_bib32) 2015; 6
Edwards (10.1016/j.apgeochem.2022.105482_bib13) 2017; 13
Hangx (10.1016/j.apgeochem.2022.105482_bib46) 2009; 3
Berner (10.1016/j.apgeochem.2022.105482_bib6) 1999; 9
NRFA (10.1016/j.apgeochem.2022.105482_bib25)
SEIFRITZ (10.1016/j.apgeochem.2022.105482_bib30) 1990
Palandri (10.1016/j.apgeochem.2022.105482_bib26) 2004; vols. 2004–1068
Kelemen (10.1016/j.apgeochem.2022.105482_bib45) 2020; 550
Sumner (10.1016/j.apgeochem.2022.105482_bib34) 1963; 5
Durn (10.1016/j.apgeochem.2022.105482_bib12) 2019; 183
White (10.1016/j.apgeochem.2022.105482_bib40) 2003; 202
Chen (10.1016/j.apgeochem.2022.105482_bib8) 2021; 405
Kantzas (10.1016/j.apgeochem.2022.105482_bib20) 2022
Basak (10.1016/j.apgeochem.2022.105482_bib2) 2016
Walker (10.1016/j.apgeochem.2022.105482_bib39) 1981; 86
(10.1016/j.apgeochem.2022.105482_bib9) 2020
Moosdorf (10.1016/j.apgeochem.2022.105482_bib24) 2014; 48
ten Berge (10.1016/j.apgeochem.2022.105482_bib4) 2012; 7
Beerling (10.1016/j.apgeochem.2022.105482_bib41) 2018; 4
Igbokwe (10.1016/j.apgeochem.2022.105482_bib18) 2018; vol. 2
Singh (10.1016/j.apgeochem.2022.105482_bib31) 2011; 1
Kay (10.1016/j.apgeochem.2022.105482_bib42) 2013; 4
Hartmann (10.1016/j.apgeochem.2022.105482_bib17) 2013; 51
Kelland (10.1016/j.apgeochem.2022.105482_bib21) 2020; 26
Renforth (10.1016/j.apgeochem.2022.105482_bib28) 2019; 10
Swoboda (10.1016/j.apgeochem.2022.105482_bib35) 2021
Renforth (10.1016/j.apgeochem.2022.105482_bib29) 2015; 61
Berner (10.1016/j.apgeochem.2022.105482_bib5) 2012
(10.1016/j.apgeochem.2022.105482_bib14) 2009
Amann (10.1016/j.apgeochem.2022.105482_bib1) 2020; 17
Bradl (10.1016/j.apgeochem.2022.105482_bib7) 2004; 277
Brantley (10.1016/j.apgeochem.2022.105482_bib44) 2000; 85
Gautam (10.1016/j.apgeochem.2022.105482_bib16) 2014
Lefebvre (10.1016/j.apgeochem.2022.105482_bib22) 2019; 233
References_xml – volume: 9
  start-page: 1
  year: 1999
  end-page: 6
  ident: bib6
  article-title: A new look at the long-term carbon cycle
  publication-title: GSA Today (Geol. Soc. Am.)
– volume: 72
  start-page: 639
  year: 2008
  end-page: 649
  ident: bib23
  article-title: Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2
  publication-title: Mineral. Mag.
– volume: 17
  start-page: 103
  year: 2020
  end-page: 119
  ident: bib1
  article-title: Enhanced Weathering and related element fluxes - a cropland mesocosm approach
  publication-title: Biogeosciences
– year: 1990
  ident: bib30
  article-title: CO2 disposal by means of silicates
  publication-title: Nature
– volume: 405
  year: 2021
  ident: bib8
  article-title: Vanadium in soil-plant system: source, fate, toxicity, and bioremediation
  publication-title: J. Hazard Mater.
– volume: 3
  start-page: 757
  year: 2009
  end-page: 767
  ident: bib46
  article-title: Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability
  publication-title: Int. J. Greenh. Gas Control
– volume: 4
  start-page: 138
  year: 2018
  end-page: 147
  ident: bib41
  article-title: Farming with crops and rocks to address global climate, food and soil security
  publication-title: Nat. Plants
– volume: 48
  start-page: 4809
  year: 2014
  end-page: 4816
  ident: bib24
  article-title: Carbon dioxide efficiency of terrestrial enhanced weathering
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 15
  year: 2011
  end-page: 21
  ident: bib31
  article-title: Effects of heavy metals on soil, plants, human health and aquatic life
  publication-title: Int. J. Res. Chem. Environ.
– volume: 277
  start-page: 1
  year: 2004
  end-page: 18
  ident: bib7
  article-title: Adsorption of heavy metal ions on soils and soils constituents
  publication-title: J. Colloid Interface Sci.
– volume: 51
  start-page: 113
  year: 2013
  end-page: 149
  ident: bib17
  article-title: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification
  publication-title: Rev. Geophys.
– volume: 202
  start-page: 479
  year: 2003
  end-page: 506
  ident: bib40
  article-title: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?
  publication-title: Chem. Geol.
– volume: 4
  start-page: 193
  year: 2013
  end-page: 208
  ident: bib42
  article-title: A hydrological perspective on evaporation: historical trends and future projections in Britain
  publication-title: J. Water Clim. Change
– volume: 7
  year: 2012
  ident: bib4
  article-title: Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment
  publication-title: PLoS One
– year: 2020
  ident: bib9
  article-title: Farming Statistics – Provisional Arable Crop Areas, Yields and Livestock Populations at 1 June 2020 United Kingdom
– volume: 13
  year: 2018
  ident: bib15
  article-title: Negative emissions - Part 2: costs, potentials and side effects
  publication-title: Environ. Res. Lett.
– volume: 8
  year: 2016
  ident: bib27
  article-title: Applying limestone or basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia
  publication-title: Sustainability
– year: 2021
  ident: bib35
  article-title: ‘Remineralizing Soils? the Agricultural Usage of Silicate Rock Powders: A Review’,
– year: 2012
  ident: bib5
  article-title: Chemical weathering: minerals, plants and water chemistry
  publication-title: Global Environment: Water, Air, and Geochemical Cycles
– year: 1997
  ident: bib11
  article-title: The Geochemistry of Natural Waters: Surface and Groundwater Environments
– year: 2022
  ident: bib20
  article-title: Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom
  publication-title: Nat. Geosci.
– volume: 233
  start-page: 468
  year: 2019
  end-page: 481
  ident: bib22
  article-title: Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil
  publication-title: J. Clean. Prod.
– volume: 86
  start-page: 9776
  year: 1981
  end-page: 9782
  ident: bib39
  article-title: A negative feedback mechanism for the long-term stabilization of EARTH’S surface temperature
  publication-title: J. Geophys. Res.
– volume: 85
  start-page: 1767
  year: 2000
  end-page: 1783
  ident: bib44
  article-title: Surface area and porosity of silicates
  publication-title: Am. Mineral.
– year: 2021
  ident: bib10
  article-title: Agri-climate report
– year: 2018
  ident: bib36
  article-title: Greenhouse Gas Removal
– start-page: 1
  year: 2014
  end-page: 24
  ident: bib16
  article-title: Heavy Metals in Water: Presence, Removal and Safety
– volume: vol. 2
  start-page: 64
  year: 2018
  ident: bib18
  publication-title: Sorption of Heavy Metals on Clay Minerals and Oxides: A Review
– volume: 13
  year: 2017
  ident: bib13
  article-title: Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture
  publication-title: Biol. Lett.
– volume: 6
  start-page: 42
  year: 2015
  end-page: 50
  ident: bib32
  article-title: Biophysical and economic limits to negative CO2 emissions',
  publication-title: Nat. Publ. Group
– start-page: 213
  year: 1993
  end-page: 224
  ident: bib43
  article-title: Correlating quartz dissolution kinetics in pure water from 25" to 625°C
  publication-title: Proceedings, Eighteenth Workshop on Geothermal Reservoir Engineering
– year: 2022
  ident: bib38
  article-title: Enhanced weathering using basalt rock powder: carbon sequestration, Co-benefits and risks in a mesocosm study with Solanum tuberosum
  publication-title: Front. Clim.
– start-page: 75
  year: 2009
  end-page: 80
  ident: bib14
  article-title: Selected Water Quality Standards
– year: 2022
  ident: bib25
  article-title: UK National River flow archive
– volume: 13
  year: 2018
  ident: bib33
  article-title: Potential and costs of carbon dioxide removal by enhanced weathering of rocks
  publication-title: Environ. Res. Lett.
– volume: vols. 2004–1068
  start-page: 71
  year: 2004
  ident: bib26
  publication-title: A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling
– volume: 10
  start-page: 1
  year: 2019
  end-page: 29
  ident: bib28
  article-title: The negative emission potential of alkaline materials
  publication-title: Nat. Commun.
– start-page: 583
  year: 2020
  ident: bib3
  article-title: Potential for large-scale CO 2 removal via enhanced rock weathering with croplands
  publication-title: Nature
– volume: 61
  start-page: 109
  year: 2015
  end-page: 118
  ident: bib29
  article-title: The dissolution of olivine added to soil: implications for enhanced weathering
  publication-title: Appl. Geochem.
– year: 2021
  ident: bib37
  article-title: Potential evaporation and precipitation, Chimney meadows
– volume: 5
  start-page: 218
  year: 1963
  end-page: 226
  ident: bib34
  article-title: Effect of iron oxides on positive and negative charges in clays and soils
  publication-title: Clay Miner.
– volume: 550
  year: 2020
  ident: bib45
  article-title: Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights
  publication-title: Chem. Geol.
– volume: 183
  year: 2019
  ident: bib12
  article-title: Impact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia)
  publication-title: Catena
– start-page: 1
  year: 2013
  end-page: 14
  ident: bib19
  publication-title: A climate change report card for water Working Technical Paper 1 . Changes in groundwater levels , temperature and quality in the UK over the 20 th century : an assessment of evidence of impacts from climate change
– volume: 26
  start-page: 3658
  year: 2020
  end-page: 3676
  ident: bib21
  article-title: Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil
  publication-title: Global Change Biol.
– year: 2016
  ident: bib2
  article-title: Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities
  publication-title: Adv. Agron.
– volume: 9
  start-page: 1
  issue: 11
  year: 1999
  ident: 10.1016/j.apgeochem.2022.105482_bib6
  article-title: A new look at the long-term carbon cycle
  publication-title: GSA Today (Geol. Soc. Am.)
– year: 1997
  ident: 10.1016/j.apgeochem.2022.105482_bib11
– volume: 51
  start-page: 113
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105482_bib17
  article-title: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification
  publication-title: Rev. Geophys.
  doi: 10.1002/rog.20004
– volume: 4
  start-page: 193
  issue: 3
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105482_bib42
  article-title: A hydrological perspective on evaporation: historical trends and future projections in Britain
  publication-title: J. Water Clim. Change
  doi: 10.2166/wcc.2013.014
– volume: 3
  start-page: 757
  issue: 6
  year: 2009
  ident: 10.1016/j.apgeochem.2022.105482_bib46
  article-title: Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2009.07.001
– volume: 13
  issue: 3
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105482_bib33
  article-title: Potential and costs of carbon dioxide removal by enhanced weathering of rocks
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaa9c4
– volume: 233
  start-page: 468
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105482_bib22
  article-title: Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.06.099
– start-page: 583
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105482_bib3
  article-title: Potential for large-scale CO 2 removal via enhanced rock weathering with croplands
  publication-title: Nature
– year: 2020
  ident: 10.1016/j.apgeochem.2022.105482_bib9
– start-page: 75
  year: 2009
  ident: 10.1016/j.apgeochem.2022.105482_bib14
– volume: 5
  start-page: 218
  issue: 29
  year: 1963
  ident: 10.1016/j.apgeochem.2022.105482_bib34
  article-title: Effect of iron oxides on positive and negative charges in clays and soils
  publication-title: Clay Miner.
  doi: 10.1180/claymin.1963.005.29.08
– ident: 10.1016/j.apgeochem.2022.105482_bib25
– start-page: 1
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105482_bib16
– volume: 26
  start-page: 3658
  issue: 6
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105482_bib21
  article-title: Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.15089
– volume: 4
  start-page: 138
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105482_bib41
  article-title: Farming with crops and rocks to address global climate, food and soil security
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0108-y
– volume: 8
  issue: 7
  year: 2016
  ident: 10.1016/j.apgeochem.2022.105482_bib27
  article-title: Applying limestone or basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia
  publication-title: Sustainability
  doi: 10.3390/su8070700
– year: 2018
  ident: 10.1016/j.apgeochem.2022.105482_bib36
– volume: 17
  start-page: 103
  issue: 1
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105482_bib1
  article-title: Enhanced Weathering and related element fluxes - a cropland mesocosm approach
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-103-2020
– volume: 48
  start-page: 4809
  issue: 9
  year: 2014
  ident: 10.1016/j.apgeochem.2022.105482_bib24
  article-title: Carbon dioxide efficiency of terrestrial enhanced weathering
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4052022
– volume: 13
  issue: 4
  year: 2017
  ident: 10.1016/j.apgeochem.2022.105482_bib13
  article-title: Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2016.0715
– volume: 202
  start-page: 479
  issue: 3–4
  year: 2003
  ident: 10.1016/j.apgeochem.2022.105482_bib40
  article-title: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2003.03.001
– volume: 183
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105482_bib12
  article-title: Impact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia)
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104184
– volume: 13
  issue: 6
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105482_bib15
  article-title: Negative emissions - Part 2: costs, potentials and side effects
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabf9f
– volume: 1
  start-page: 15
  issue: 2
  year: 2011
  ident: 10.1016/j.apgeochem.2022.105482_bib31
  article-title: Effects of heavy metals on soil, plants, human health and aquatic life
  publication-title: Int. J. Res. Chem. Environ.
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.apgeochem.2022.105482_bib28
  article-title: The negative emission potential of alkaline materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09475-5
– start-page: 1
  year: 2013
  ident: 10.1016/j.apgeochem.2022.105482_bib19
– volume: vol. 2
  start-page: 64
  year: 2018
  ident: 10.1016/j.apgeochem.2022.105482_bib18
– year: 2022
  ident: 10.1016/j.apgeochem.2022.105482_bib38
  article-title: Enhanced weathering using basalt rock powder: carbon sequestration, Co-benefits and risks in a mesocosm study with Solanum tuberosum
  publication-title: Front. Clim.
  doi: 10.3389/fclim.2022.869456
– start-page: 213
  year: 1993
  ident: 10.1016/j.apgeochem.2022.105482_bib43
  article-title: Correlating quartz dissolution kinetics in pure water from 25" to 625°C
– year: 2012
  ident: 10.1016/j.apgeochem.2022.105482_bib5
  article-title: Chemical weathering: minerals, plants and water chemistry
– volume: 86
  start-page: 9776
  issue: 20
  year: 1981
  ident: 10.1016/j.apgeochem.2022.105482_bib39
  article-title: A negative feedback mechanism for the long-term stabilization of EARTH’S surface temperature
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC086iC10p09776
– volume: 6
  start-page: 42
  issue: 1
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105482_bib32
  article-title: Biophysical and economic limits to negative CO2 emissions', Nature Climate Change
  publication-title: Nat. Publ. Group
– volume: 277
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.apgeochem.2022.105482_bib7
  article-title: Adsorption of heavy metal ions on soils and soils constituents
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.04.005
– volume: 61
  start-page: 109
  year: 2015
  ident: 10.1016/j.apgeochem.2022.105482_bib29
  article-title: The dissolution of olivine added to soil: implications for enhanced weathering
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2015.05.016
– year: 1990
  ident: 10.1016/j.apgeochem.2022.105482_bib30
  article-title: CO2 disposal by means of silicates
  publication-title: Nature
  doi: 10.1038/345486b0
– volume: 405
  year: 2021
  ident: 10.1016/j.apgeochem.2022.105482_bib8
  article-title: Vanadium in soil-plant system: source, fate, toxicity, and bioremediation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.124200
– volume: 7
  issue: 8
  year: 2012
  ident: 10.1016/j.apgeochem.2022.105482_bib4
  article-title: Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042098
– volume: 550
  year: 2020
  ident: 10.1016/j.apgeochem.2022.105482_bib45
  article-title: Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2020.119628
– volume: 72
  start-page: 639
  issue: 2
  year: 2008
  ident: 10.1016/j.apgeochem.2022.105482_bib23
  article-title: Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2
  publication-title: Mineral. Mag.
  doi: 10.1180/minmag.2008.072.2.639
– volume: 85
  start-page: 1767
  issue: 1990
  year: 2000
  ident: 10.1016/j.apgeochem.2022.105482_bib44
  article-title: Surface area and porosity of silicates
  publication-title: Am. Mineral.
  doi: 10.2138/am-2000-11-1220
– year: 2022
  ident: 10.1016/j.apgeochem.2022.105482_bib20
  article-title: Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-022-00925-2
– volume: vols. 2004–1068
  start-page: 71
  year: 2004
  ident: 10.1016/j.apgeochem.2022.105482_bib26
– year: 2016
  ident: 10.1016/j.apgeochem.2022.105482_bib2
  article-title: Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities
  publication-title: Adv. Agron.
– year: 2021
  ident: 10.1016/j.apgeochem.2022.105482_bib35
SSID ssj0005702
Score 2.515219
Snippet The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown....
The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO₂ drawdown....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105482
SubjectTerms alkalinity
application rate
arable soils
basalt
carbon dioxide
Carbon dioxide removal
cropland
drawdown
Enhanced weathering
geochemistry
Negative emissions
silicates
soil depth
soil solution
Terrestrial weathering
time series analysis
weather
Title Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK
URI https://dx.doi.org/10.1016/j.apgeochem.2022.105482
https://www.proquest.com/docview/3153848849
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jIvgifuL8GBF8rWvTNGl8G8M5Hc6HOdhbaNN0TmY79oHsxb_dXD-GE2QPPjbN0XK53F3I73eH0I2vAxGHrm0JT5kDSuxFlu9xQO4IRZmrWRwBwfm5xzoD-jT0hhXUKrkwAKssfH_u0zNvXYw0Cm02puNxo2_2h0sE4QRwBj6DmqCUcrDy268fMA-e4Q5hsgWzNzBewXSkoTEVUNIJgZ631Cd_RahfvjoLQO0DtF9kjriZ_9whqujkCO0-ZJ15V8dI9tPxBENRSpyVjMVwGQ1wpzme5CQm3HoheKY_UmNcOFxhnbxl1__4Uxc0wJERwtFshaGvV0YChgHzDg-6J2jQvn9tdayie4IFSl5YgQnGHo_8OGZKKGixERFXBYwJEqqIsAA4pCSyla-d2CEODc1ZKrC5MBK-yUrcU1RN0kSfIWwzc4riyuSSVFOt49DRJtHygkjFlFPl1BArNSZVUVocOlxMZIkhe5drVUtQtcxVXUP2WnCaV9fYLnJXLoncMBRpYsB24etyEaXZRnA3EiQ6Xc6lC57fODMqzv_zgQu0B0853uUSVRezpb4yWcsirGdmWUc7zcdup_cNfTTsEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxOjF-Ixv18RrQ7vdbltvhIggDw9Iwm3TbreIwUIQYvj37vSB0cRw8LrbSZvZ3ZnZ9PvmA7jzVODHoW0aviP1BSV2IsNzXETu-JJxW_E4QoJzt8ebA_Y0dIYlqBdcGIRV5rE_i-lptM5Hqrk3q7PxuNrX58OmPnUp4gw8zraggt2pnDJUaq12s_eN9HBT6CE-b6DBD5hXMBsp1KZCVjqlKHvLPPpXkvoVrtMc1NiHvbx4JLXs-w6gpJJD2H5MxXlXRyD60_GEYF9KknaNJfg_GhFPH2SS8ZhI_ZmSuXqf6v1FwhVRyWuKACCfKmcCjrQRieYrgtJeKQ8YB_QcGbSPYdB4eKk3jVxAwUA_L4xA52PHjbw45tKXqLIRUVsGnPs0lBHlAdJIaWRKT1mxRS0W6utUYLq-tvB0YWKfQDmZJuoUiMn1RcqVupxkiikVh5bStZYTRDJmLpPWGfDCY0Lm3cVR5GIiChjZm1i7WqCrRebqMzDXhrOswcZmk_tiScSPvSJ0GthsfFssotAnCX-PBImaLj-EjcFfxzPmn__nBTew03zpdkSn1WtfwC7OZPCXSygv5kt1pYuYRXidb9IvmNbuwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+core+study+indicates+limited+CO2+removal+by+enhanced+weathering+in+dry+croplands+in+the+UK&rft.jtitle=Applied+geochemistry&rft.au=Buckingham%2C+F.L.&rft.au=Henderson%2C+G.M.&rft.au=Holdship%2C+P.&rft.au=Renforth%2C+P.&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=147&rft_id=info:doi/10.1016%2Fj.apgeochem.2022.105482&rft.externalDocID=S0883292722002864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon