Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK
The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical co...
Saved in:
Published in | Applied geochemistry Vol. 147; p. 105482 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth.
This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha−1) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha−1 yr−1 and could remove 10.2 ± 0.8 kgCO2 ha−1 yr−1. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO2 yr−1 which is equivalent to 3% of current UK agricultural CO2 emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO2 removal.
•Crushed basalt was applied to a UK agricultural soil in a 14-month soil core study.•Five years of basalt application over UK cropland could remove 1.3 ± 0.1 MtCO2 yr−1.•Enhanced weathering removes CO2 considerably slower than model predictions.•Low water flux limits drawdown from enhanced weathering in dry UK cropland. |
---|---|
AbstractList | The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO2 removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth.
This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha−1) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha−1 yr−1 and could remove 10.2 ± 0.8 kgCO2 ha−1 yr−1. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO2 yr−1 which is equivalent to 3% of current UK agricultural CO2 emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO2 removal.
•Crushed basalt was applied to a UK agricultural soil in a 14-month soil core study.•Five years of basalt application over UK cropland could remove 1.3 ± 0.1 MtCO2 yr−1.•Enhanced weathering removes CO2 considerably slower than model predictions.•Low water flux limits drawdown from enhanced weathering in dry UK cropland. The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO₂ drawdown. Laboratory studies have attempted to evaluate the potential of enhanced weathering as a CO₂ removal technique but do not simulate the geochemical complexity of soil environments, and studies in the field are limited in the nature of data they can collect. To overcome these limitations, this study uses an experimental set-up which fully encapsulates field conditions in a controlled setting using soil cores removed from UK cropland and treated with crushed basalt. Cores were exposed to natural weather conditions throughout a 14-month time series, and soil solution was sampled in 10–20 cm intervals in the core to provide insight into the fate of dissolution products with soil depth. This study assessed the rate and chemistry of basalt dissolution 8 months after addition at a high application rate (100 t basalt ha⁻¹) using direct measurements from a UK soil. Assuming conclusions drawn from this study are representative of field-scale enhanced weathering, findings indicate that a set application of basalt to lime-rich, unirrigated UK soils releases alkalinity at a rate of 310 ± 30 eq ha⁻¹ yr⁻¹ and could remove 10.2 ± 0.8 kgCO₂ ha⁻¹ yr⁻¹. Accumulation of undissolved basalt may also lead to large and irreversible changes to soil compositions following repeated application. When considering variation in hydrology around the UK, we assess the drawdown potential of application of basalt to all UK arable land as 1.3 ± 0.1 MtCO₂ yr⁻¹ which is equivalent to 3% of current UK agricultural CO₂ emissions. This is 5- to 25- fold slower than previous modelled assessments, likely due to complexities of soil systems and to water limitation on alkalinity release. Further research is needed to fully assess controls on the potential of enhanced weathering in the real-world environment, across a range of hydrological and soil environments, before the approach is substantively scaled-up for CO₂ removal. |
ArticleNumber | 105482 |
Author | Renforth, P. Buckingham, F.L. Henderson, G.M. Holdship, P. |
Author_xml | – sequence: 1 givenname: F.L. surname: Buckingham fullname: Buckingham, F.L. email: frances.buckingham@earth.ox.ac.uk organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK – sequence: 2 givenname: G.M. surname: Henderson fullname: Henderson, G.M. organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK – sequence: 3 givenname: P. surname: Holdship fullname: Holdship, P. organization: Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK – sequence: 4 givenname: P. surname: Renforth fullname: Renforth, P. organization: School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK |
BookMark | eNqNkL1OwzAYRS1UJErhGfDIkmI7f87AUFX8iUodoLPl2l9aV0kcbLcob4-rIgYWmCxd33P16VyiUWc7QOiGkikltLjbTWW_Aau20E4ZYSymecbZGRpTXrKkomk2QmPCeZqwipUX6NL7HSEkLwkbI_FmTYOVdYB92OsBm04bJQN43JjWBNB4vmTYQWsPssHrAUO3lZ2K-SfIsAVnuk2EsHYDVs72jey0PwbxD69er9B5LRsP19_vBK0eH97nz8li-fQyny0SlRVpSCRLeV5qXteFqhQpONEsVbIoKrZWmhUyzcqKaaI40Joymq0LWklSVpHgPE5M0O1pt3f2Yw8-iNZ4BU08B-zei5TmKc9itYrV-1M1nuu9g1ooE2QwtgtOmkZQIo5ixU78iBVHseIkNvLlL753ppVu-Ac5O5EQTRwMOOGVgaNM40AFoa35c-MLImyZpQ |
CitedBy_id | crossref_primary_10_1029_2023EF003698 crossref_primary_10_1016_j_apgeochem_2024_106054 crossref_primary_10_1016_j_jhydrol_2024_131738 crossref_primary_10_1016_j_agrformet_2023_109610 crossref_primary_10_3389_feart_2023_1215930 crossref_primary_10_3390_min14010075 crossref_primary_10_1017_sus_2023_25 crossref_primary_10_1029_2024MS004224 crossref_primary_10_3389_fclim_2024_1510747 crossref_primary_10_1038_s41558_023_01604_9 crossref_primary_10_1016_j_scitotenv_2023_167701 crossref_primary_10_1016_j_resconrec_2022_106766 crossref_primary_10_1111_gcb_17511 crossref_primary_10_1016_j_apgeochem_2024_105940 crossref_primary_10_3389_fclim_2024_1252210 crossref_primary_10_1016_j_apgeochem_2023_105622 crossref_primary_10_1016_j_apgeochem_2024_106056 crossref_primary_10_1103_PRXEnergy_4_017001 crossref_primary_10_1088_2515_7620_acfd89 crossref_primary_10_1016_j_apgeochem_2023_105591 crossref_primary_10_1016_j_scitotenv_2024_177458 crossref_primary_10_3389_fclim_2023_1203043 crossref_primary_10_1029_2024JF007774 crossref_primary_10_1039_D4EE03166K crossref_primary_10_1088_1748_9326_ad085e crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_1016_j_mex_2024_102971 crossref_primary_10_3389_fclim_2024_1524998 crossref_primary_10_48130_cas_0024_0007 crossref_primary_10_1038_s42004_024_01361_6 crossref_primary_10_1007_s12583_024_0101_5 crossref_primary_10_1016_j_catena_2023_107524 |
Cites_doi | 10.1002/rog.20004 10.2166/wcc.2013.014 10.1016/j.ijggc.2009.07.001 10.1088/1748-9326/aaa9c4 10.1016/j.jclepro.2019.06.099 10.1180/claymin.1963.005.29.08 10.1111/gcb.15089 10.1038/s41477-018-0108-y 10.3390/su8070700 10.5194/bg-17-103-2020 10.1021/es4052022 10.1098/rsbl.2016.0715 10.1016/j.chemgeo.2003.03.001 10.1016/j.catena.2019.104184 10.1088/1748-9326/aabf9f 10.1038/s41467-019-09475-5 10.3389/fclim.2022.869456 10.1029/JC086iC10p09776 10.1016/j.jcis.2004.04.005 10.1016/j.apgeochem.2015.05.016 10.1038/345486b0 10.1016/j.jhazmat.2020.124200 10.1371/journal.pone.0042098 10.1016/j.chemgeo.2020.119628 10.1180/minmag.2008.072.2.639 10.2138/am-2000-11-1220 10.1038/s41561-022-00925-2 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apgeochem.2022.105482 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9134 |
ExternalDocumentID | 10_1016_j_apgeochem_2022_105482 S0883292722002864 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XPP ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c463t-a23857d8ff6c9c0680d23ca6692bcd26a34792d0c8e1f1214b619a0798ff88463 |
IEDL.DBID | .~1 |
ISSN | 0883-2927 |
IngestDate | Fri Jul 11 11:02:29 EDT 2025 Tue Jul 01 01:59:44 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Fri Feb 23 02:38:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Enhanced weathering Negative emissions Carbon dioxide removal Terrestrial weathering |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-a23857d8ff6c9c0680d23ca6692bcd26a34792d0c8e1f1214b619a0798ff88463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0883292722002864 |
PQID | 3153848849 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153848849 crossref_citationtrail_10_1016_j_apgeochem_2022_105482 crossref_primary_10_1016_j_apgeochem_2022_105482 elsevier_sciencedirect_doi_10_1016_j_apgeochem_2022_105482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied geochemistry |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Amann (bib1) 2020; 17 Renforth (bib28) 2019; 10 Hangx, Spiers (bib46) 2009; 3 (bib37) 2021 Vienne, Poblador, Portillo-Estrada, Hartman (bib38) 2022 Lefebvre (bib22) 2019; 233 Beerling (bib3) 2020 Durn (bib12) 2019; 183 White, Brantley (bib40) 2003; 202 Kay (bib42) 2013; 4 Tester (bib43) 1993 Strefler (bib33) 2018; 13 Beerling (bib41) 2018; 4 Moosdorf, Renforth, Hartmann (bib24) 2014; 48 Hartmann (bib17) 2013; 51 Kelemen (bib45) 2020; 550 Bradl (bib7) 2004; 277 (bib14) 2009 Swoboda, Döring, Hamer (bib35) 2021 Jackson, Macaky, Bloomfield (bib19) 2013 Smith (bib32) 2015; 6 Edwards (bib13) 2017; 13 Berner (bib6) 1999; 9 Renforth, Pogge von Strandmann, Henderson (bib29) 2015; 61 Brantley, Mellot (bib44) 2000; 85 (bib9) 2020 Fuss (bib15) 2018; 13 Igbokwe, Ugwu (bib18) 2018; vol. 2 Sumner (bib34) 1963; 5 NRFA (bib25) 2022 Singh, Kalamdhad (bib31) 2011; 1 ten Berge (bib4) 2012; 7 Drever (bib11) 1997 (bib36) 2018 Manning (bib23) 2008; 72 Kelland (bib21) 2020; 26 Walker, Hays, Kasting (bib39) 1981; 86 (bib10) 2021 Chen (bib8) 2021; 405 Kantzas (bib20) 2022 Palandri, Kharaka (bib26) 2004; vols. 2004–1068 Panhwar (bib27) 2016; 8 Gautam (bib16) 2014 SEIFRITZ (bib30) 1990 Berner, Berner (bib5) 2012 Basak (bib2) 2016 Jackson (10.1016/j.apgeochem.2022.105482_bib19) 2013 Drever (10.1016/j.apgeochem.2022.105482_bib11) 1997 Beerling (10.1016/j.apgeochem.2022.105482_bib3) 2020 Tester (10.1016/j.apgeochem.2022.105482_bib43) 1993 (10.1016/j.apgeochem.2022.105482_bib36) 2018 Vienne (10.1016/j.apgeochem.2022.105482_bib38) 2022 Strefler (10.1016/j.apgeochem.2022.105482_bib33) 2018; 13 Fuss (10.1016/j.apgeochem.2022.105482_bib15) 2018; 13 Manning (10.1016/j.apgeochem.2022.105482_bib23) 2008; 72 Panhwar (10.1016/j.apgeochem.2022.105482_bib27) 2016; 8 Smith (10.1016/j.apgeochem.2022.105482_bib32) 2015; 6 Edwards (10.1016/j.apgeochem.2022.105482_bib13) 2017; 13 Hangx (10.1016/j.apgeochem.2022.105482_bib46) 2009; 3 Berner (10.1016/j.apgeochem.2022.105482_bib6) 1999; 9 NRFA (10.1016/j.apgeochem.2022.105482_bib25) SEIFRITZ (10.1016/j.apgeochem.2022.105482_bib30) 1990 Palandri (10.1016/j.apgeochem.2022.105482_bib26) 2004; vols. 2004–1068 Kelemen (10.1016/j.apgeochem.2022.105482_bib45) 2020; 550 Sumner (10.1016/j.apgeochem.2022.105482_bib34) 1963; 5 Durn (10.1016/j.apgeochem.2022.105482_bib12) 2019; 183 White (10.1016/j.apgeochem.2022.105482_bib40) 2003; 202 Chen (10.1016/j.apgeochem.2022.105482_bib8) 2021; 405 Kantzas (10.1016/j.apgeochem.2022.105482_bib20) 2022 Basak (10.1016/j.apgeochem.2022.105482_bib2) 2016 Walker (10.1016/j.apgeochem.2022.105482_bib39) 1981; 86 (10.1016/j.apgeochem.2022.105482_bib9) 2020 Moosdorf (10.1016/j.apgeochem.2022.105482_bib24) 2014; 48 ten Berge (10.1016/j.apgeochem.2022.105482_bib4) 2012; 7 Beerling (10.1016/j.apgeochem.2022.105482_bib41) 2018; 4 Igbokwe (10.1016/j.apgeochem.2022.105482_bib18) 2018; vol. 2 Singh (10.1016/j.apgeochem.2022.105482_bib31) 2011; 1 Kay (10.1016/j.apgeochem.2022.105482_bib42) 2013; 4 Hartmann (10.1016/j.apgeochem.2022.105482_bib17) 2013; 51 Kelland (10.1016/j.apgeochem.2022.105482_bib21) 2020; 26 Renforth (10.1016/j.apgeochem.2022.105482_bib28) 2019; 10 Swoboda (10.1016/j.apgeochem.2022.105482_bib35) 2021 Renforth (10.1016/j.apgeochem.2022.105482_bib29) 2015; 61 Berner (10.1016/j.apgeochem.2022.105482_bib5) 2012 (10.1016/j.apgeochem.2022.105482_bib14) 2009 Amann (10.1016/j.apgeochem.2022.105482_bib1) 2020; 17 Bradl (10.1016/j.apgeochem.2022.105482_bib7) 2004; 277 Brantley (10.1016/j.apgeochem.2022.105482_bib44) 2000; 85 Gautam (10.1016/j.apgeochem.2022.105482_bib16) 2014 Lefebvre (10.1016/j.apgeochem.2022.105482_bib22) 2019; 233 |
References_xml | – volume: 9 start-page: 1 year: 1999 end-page: 6 ident: bib6 article-title: A new look at the long-term carbon cycle publication-title: GSA Today (Geol. Soc. Am.) – volume: 72 start-page: 639 year: 2008 end-page: 649 ident: bib23 article-title: Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2 publication-title: Mineral. Mag. – volume: 17 start-page: 103 year: 2020 end-page: 119 ident: bib1 article-title: Enhanced Weathering and related element fluxes - a cropland mesocosm approach publication-title: Biogeosciences – year: 1990 ident: bib30 article-title: CO2 disposal by means of silicates publication-title: Nature – volume: 405 year: 2021 ident: bib8 article-title: Vanadium in soil-plant system: source, fate, toxicity, and bioremediation publication-title: J. Hazard Mater. – volume: 3 start-page: 757 year: 2009 end-page: 767 ident: bib46 article-title: Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability publication-title: Int. J. Greenh. Gas Control – volume: 4 start-page: 138 year: 2018 end-page: 147 ident: bib41 article-title: Farming with crops and rocks to address global climate, food and soil security publication-title: Nat. Plants – volume: 48 start-page: 4809 year: 2014 end-page: 4816 ident: bib24 article-title: Carbon dioxide efficiency of terrestrial enhanced weathering publication-title: Environ. Sci. Technol. – volume: 1 start-page: 15 year: 2011 end-page: 21 ident: bib31 article-title: Effects of heavy metals on soil, plants, human health and aquatic life publication-title: Int. J. Res. Chem. Environ. – volume: 277 start-page: 1 year: 2004 end-page: 18 ident: bib7 article-title: Adsorption of heavy metal ions on soils and soils constituents publication-title: J. Colloid Interface Sci. – volume: 51 start-page: 113 year: 2013 end-page: 149 ident: bib17 article-title: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification publication-title: Rev. Geophys. – volume: 202 start-page: 479 year: 2003 end-page: 506 ident: bib40 article-title: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? publication-title: Chem. Geol. – volume: 4 start-page: 193 year: 2013 end-page: 208 ident: bib42 article-title: A hydrological perspective on evaporation: historical trends and future projections in Britain publication-title: J. Water Clim. Change – volume: 7 year: 2012 ident: bib4 article-title: Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment publication-title: PLoS One – year: 2020 ident: bib9 article-title: Farming Statistics – Provisional Arable Crop Areas, Yields and Livestock Populations at 1 June 2020 United Kingdom – volume: 13 year: 2018 ident: bib15 article-title: Negative emissions - Part 2: costs, potentials and side effects publication-title: Environ. Res. Lett. – volume: 8 year: 2016 ident: bib27 article-title: Applying limestone or basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia publication-title: Sustainability – year: 2021 ident: bib35 article-title: ‘Remineralizing Soils? the Agricultural Usage of Silicate Rock Powders: A Review’, – year: 2012 ident: bib5 article-title: Chemical weathering: minerals, plants and water chemistry publication-title: Global Environment: Water, Air, and Geochemical Cycles – year: 1997 ident: bib11 article-title: The Geochemistry of Natural Waters: Surface and Groundwater Environments – year: 2022 ident: bib20 article-title: Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom publication-title: Nat. Geosci. – volume: 233 start-page: 468 year: 2019 end-page: 481 ident: bib22 article-title: Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil publication-title: J. Clean. Prod. – volume: 86 start-page: 9776 year: 1981 end-page: 9782 ident: bib39 article-title: A negative feedback mechanism for the long-term stabilization of EARTH’S surface temperature publication-title: J. Geophys. Res. – volume: 85 start-page: 1767 year: 2000 end-page: 1783 ident: bib44 article-title: Surface area and porosity of silicates publication-title: Am. Mineral. – year: 2021 ident: bib10 article-title: Agri-climate report – year: 2018 ident: bib36 article-title: Greenhouse Gas Removal – start-page: 1 year: 2014 end-page: 24 ident: bib16 article-title: Heavy Metals in Water: Presence, Removal and Safety – volume: vol. 2 start-page: 64 year: 2018 ident: bib18 publication-title: Sorption of Heavy Metals on Clay Minerals and Oxides: A Review – volume: 13 year: 2017 ident: bib13 article-title: Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture publication-title: Biol. Lett. – volume: 6 start-page: 42 year: 2015 end-page: 50 ident: bib32 article-title: Biophysical and economic limits to negative CO2 emissions', publication-title: Nat. Publ. Group – start-page: 213 year: 1993 end-page: 224 ident: bib43 article-title: Correlating quartz dissolution kinetics in pure water from 25" to 625°C publication-title: Proceedings, Eighteenth Workshop on Geothermal Reservoir Engineering – year: 2022 ident: bib38 article-title: Enhanced weathering using basalt rock powder: carbon sequestration, Co-benefits and risks in a mesocosm study with Solanum tuberosum publication-title: Front. Clim. – start-page: 75 year: 2009 end-page: 80 ident: bib14 article-title: Selected Water Quality Standards – year: 2022 ident: bib25 article-title: UK National River flow archive – volume: 13 year: 2018 ident: bib33 article-title: Potential and costs of carbon dioxide removal by enhanced weathering of rocks publication-title: Environ. Res. Lett. – volume: vols. 2004–1068 start-page: 71 year: 2004 ident: bib26 publication-title: A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling – volume: 10 start-page: 1 year: 2019 end-page: 29 ident: bib28 article-title: The negative emission potential of alkaline materials publication-title: Nat. Commun. – start-page: 583 year: 2020 ident: bib3 article-title: Potential for large-scale CO 2 removal via enhanced rock weathering with croplands publication-title: Nature – volume: 61 start-page: 109 year: 2015 end-page: 118 ident: bib29 article-title: The dissolution of olivine added to soil: implications for enhanced weathering publication-title: Appl. Geochem. – year: 2021 ident: bib37 article-title: Potential evaporation and precipitation, Chimney meadows – volume: 5 start-page: 218 year: 1963 end-page: 226 ident: bib34 article-title: Effect of iron oxides on positive and negative charges in clays and soils publication-title: Clay Miner. – volume: 550 year: 2020 ident: bib45 article-title: Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights publication-title: Chem. Geol. – volume: 183 year: 2019 ident: bib12 article-title: Impact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia) publication-title: Catena – start-page: 1 year: 2013 end-page: 14 ident: bib19 publication-title: A climate change report card for water Working Technical Paper 1 . Changes in groundwater levels , temperature and quality in the UK over the 20 th century : an assessment of evidence of impacts from climate change – volume: 26 start-page: 3658 year: 2020 end-page: 3676 ident: bib21 article-title: Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil publication-title: Global Change Biol. – year: 2016 ident: bib2 article-title: Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities publication-title: Adv. Agron. – volume: 9 start-page: 1 issue: 11 year: 1999 ident: 10.1016/j.apgeochem.2022.105482_bib6 article-title: A new look at the long-term carbon cycle publication-title: GSA Today (Geol. Soc. Am.) – year: 1997 ident: 10.1016/j.apgeochem.2022.105482_bib11 – volume: 51 start-page: 113 year: 2013 ident: 10.1016/j.apgeochem.2022.105482_bib17 article-title: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification publication-title: Rev. Geophys. doi: 10.1002/rog.20004 – volume: 4 start-page: 193 issue: 3 year: 2013 ident: 10.1016/j.apgeochem.2022.105482_bib42 article-title: A hydrological perspective on evaporation: historical trends and future projections in Britain publication-title: J. Water Clim. Change doi: 10.2166/wcc.2013.014 – volume: 3 start-page: 757 issue: 6 year: 2009 ident: 10.1016/j.apgeochem.2022.105482_bib46 article-title: Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2009.07.001 – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.apgeochem.2022.105482_bib33 article-title: Potential and costs of carbon dioxide removal by enhanced weathering of rocks publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaa9c4 – volume: 233 start-page: 468 year: 2019 ident: 10.1016/j.apgeochem.2022.105482_bib22 article-title: Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.06.099 – start-page: 583 year: 2020 ident: 10.1016/j.apgeochem.2022.105482_bib3 article-title: Potential for large-scale CO 2 removal via enhanced rock weathering with croplands publication-title: Nature – year: 2020 ident: 10.1016/j.apgeochem.2022.105482_bib9 – start-page: 75 year: 2009 ident: 10.1016/j.apgeochem.2022.105482_bib14 – volume: 5 start-page: 218 issue: 29 year: 1963 ident: 10.1016/j.apgeochem.2022.105482_bib34 article-title: Effect of iron oxides on positive and negative charges in clays and soils publication-title: Clay Miner. doi: 10.1180/claymin.1963.005.29.08 – ident: 10.1016/j.apgeochem.2022.105482_bib25 – start-page: 1 year: 2014 ident: 10.1016/j.apgeochem.2022.105482_bib16 – volume: 26 start-page: 3658 issue: 6 year: 2020 ident: 10.1016/j.apgeochem.2022.105482_bib21 article-title: Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil publication-title: Global Change Biol. doi: 10.1111/gcb.15089 – volume: 4 start-page: 138 year: 2018 ident: 10.1016/j.apgeochem.2022.105482_bib41 article-title: Farming with crops and rocks to address global climate, food and soil security publication-title: Nat. Plants doi: 10.1038/s41477-018-0108-y – volume: 8 issue: 7 year: 2016 ident: 10.1016/j.apgeochem.2022.105482_bib27 article-title: Applying limestone or basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia publication-title: Sustainability doi: 10.3390/su8070700 – year: 2018 ident: 10.1016/j.apgeochem.2022.105482_bib36 – volume: 17 start-page: 103 issue: 1 year: 2020 ident: 10.1016/j.apgeochem.2022.105482_bib1 article-title: Enhanced Weathering and related element fluxes - a cropland mesocosm approach publication-title: Biogeosciences doi: 10.5194/bg-17-103-2020 – volume: 48 start-page: 4809 issue: 9 year: 2014 ident: 10.1016/j.apgeochem.2022.105482_bib24 article-title: Carbon dioxide efficiency of terrestrial enhanced weathering publication-title: Environ. Sci. Technol. doi: 10.1021/es4052022 – volume: 13 issue: 4 year: 2017 ident: 10.1016/j.apgeochem.2022.105482_bib13 article-title: Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture publication-title: Biol. Lett. doi: 10.1098/rsbl.2016.0715 – volume: 202 start-page: 479 issue: 3–4 year: 2003 ident: 10.1016/j.apgeochem.2022.105482_bib40 article-title: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2003.03.001 – volume: 183 year: 2019 ident: 10.1016/j.apgeochem.2022.105482_bib12 article-title: Impact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia) publication-title: Catena doi: 10.1016/j.catena.2019.104184 – volume: 13 issue: 6 year: 2018 ident: 10.1016/j.apgeochem.2022.105482_bib15 article-title: Negative emissions - Part 2: costs, potentials and side effects publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabf9f – volume: 1 start-page: 15 issue: 2 year: 2011 ident: 10.1016/j.apgeochem.2022.105482_bib31 article-title: Effects of heavy metals on soil, plants, human health and aquatic life publication-title: Int. J. Res. Chem. Environ. – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.apgeochem.2022.105482_bib28 article-title: The negative emission potential of alkaline materials publication-title: Nat. Commun. doi: 10.1038/s41467-019-09475-5 – start-page: 1 year: 2013 ident: 10.1016/j.apgeochem.2022.105482_bib19 – volume: vol. 2 start-page: 64 year: 2018 ident: 10.1016/j.apgeochem.2022.105482_bib18 – year: 2022 ident: 10.1016/j.apgeochem.2022.105482_bib38 article-title: Enhanced weathering using basalt rock powder: carbon sequestration, Co-benefits and risks in a mesocosm study with Solanum tuberosum publication-title: Front. Clim. doi: 10.3389/fclim.2022.869456 – start-page: 213 year: 1993 ident: 10.1016/j.apgeochem.2022.105482_bib43 article-title: Correlating quartz dissolution kinetics in pure water from 25" to 625°C – year: 2012 ident: 10.1016/j.apgeochem.2022.105482_bib5 article-title: Chemical weathering: minerals, plants and water chemistry – volume: 86 start-page: 9776 issue: 20 year: 1981 ident: 10.1016/j.apgeochem.2022.105482_bib39 article-title: A negative feedback mechanism for the long-term stabilization of EARTH’S surface temperature publication-title: J. Geophys. Res. doi: 10.1029/JC086iC10p09776 – volume: 6 start-page: 42 issue: 1 year: 2015 ident: 10.1016/j.apgeochem.2022.105482_bib32 article-title: Biophysical and economic limits to negative CO2 emissions', Nature Climate Change publication-title: Nat. Publ. Group – volume: 277 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.apgeochem.2022.105482_bib7 article-title: Adsorption of heavy metal ions on soils and soils constituents publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.04.005 – volume: 61 start-page: 109 year: 2015 ident: 10.1016/j.apgeochem.2022.105482_bib29 article-title: The dissolution of olivine added to soil: implications for enhanced weathering publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2015.05.016 – year: 1990 ident: 10.1016/j.apgeochem.2022.105482_bib30 article-title: CO2 disposal by means of silicates publication-title: Nature doi: 10.1038/345486b0 – volume: 405 year: 2021 ident: 10.1016/j.apgeochem.2022.105482_bib8 article-title: Vanadium in soil-plant system: source, fate, toxicity, and bioremediation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124200 – volume: 7 issue: 8 year: 2012 ident: 10.1016/j.apgeochem.2022.105482_bib4 article-title: Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment publication-title: PLoS One doi: 10.1371/journal.pone.0042098 – volume: 550 year: 2020 ident: 10.1016/j.apgeochem.2022.105482_bib45 article-title: Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2020.119628 – volume: 72 start-page: 639 issue: 2 year: 2008 ident: 10.1016/j.apgeochem.2022.105482_bib23 article-title: Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2 publication-title: Mineral. Mag. doi: 10.1180/minmag.2008.072.2.639 – volume: 85 start-page: 1767 issue: 1990 year: 2000 ident: 10.1016/j.apgeochem.2022.105482_bib44 article-title: Surface area and porosity of silicates publication-title: Am. Mineral. doi: 10.2138/am-2000-11-1220 – year: 2022 ident: 10.1016/j.apgeochem.2022.105482_bib20 article-title: Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom publication-title: Nat. Geosci. doi: 10.1038/s41561-022-00925-2 – volume: vols. 2004–1068 start-page: 71 year: 2004 ident: 10.1016/j.apgeochem.2022.105482_bib26 – year: 2016 ident: 10.1016/j.apgeochem.2022.105482_bib2 article-title: Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities publication-title: Adv. Agron. – year: 2021 ident: 10.1016/j.apgeochem.2022.105482_bib35 |
SSID | ssj0005702 |
Score | 2.515219 |
Snippet | The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO2 drawdown.... The application of crushed silicate minerals to agricultural soils has been suggested as a route to enhance weathering rates and increase CO₂ drawdown.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105482 |
SubjectTerms | alkalinity application rate arable soils basalt carbon dioxide Carbon dioxide removal cropland drawdown Enhanced weathering geochemistry Negative emissions silicates soil depth soil solution Terrestrial weathering time series analysis weather |
Title | Soil core study indicates limited CO2 removal by enhanced weathering in dry croplands in the UK |
URI | https://dx.doi.org/10.1016/j.apgeochem.2022.105482 https://www.proquest.com/docview/3153848849 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jIvgifuL8GBF8rWvTNGl8G8M5Hc6HOdhbaNN0TmY79oHsxb_dXD-GE2QPPjbN0XK53F3I73eH0I2vAxGHrm0JT5kDSuxFlu9xQO4IRZmrWRwBwfm5xzoD-jT0hhXUKrkwAKssfH_u0zNvXYw0Cm02puNxo2_2h0sE4QRwBj6DmqCUcrDy268fMA-e4Q5hsgWzNzBewXSkoTEVUNIJgZ631Cd_RahfvjoLQO0DtF9kjriZ_9whqujkCO0-ZJ15V8dI9tPxBENRSpyVjMVwGQ1wpzme5CQm3HoheKY_UmNcOFxhnbxl1__4Uxc0wJERwtFshaGvV0YChgHzDg-6J2jQvn9tdayie4IFSl5YgQnGHo_8OGZKKGixERFXBYwJEqqIsAA4pCSyla-d2CEODc1ZKrC5MBK-yUrcU1RN0kSfIWwzc4riyuSSVFOt49DRJtHygkjFlFPl1BArNSZVUVocOlxMZIkhe5drVUtQtcxVXUP2WnCaV9fYLnJXLoncMBRpYsB24etyEaXZRnA3EiQ6Xc6lC57fODMqzv_zgQu0B0853uUSVRezpb4yWcsirGdmWUc7zcdup_cNfTTsEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxOjF-Ixv18RrQ7vdbltvhIggDw9Iwm3TbreIwUIQYvj37vSB0cRw8LrbSZvZ3ZnZ9PvmA7jzVODHoW0aviP1BSV2IsNzXETu-JJxW_E4QoJzt8ebA_Y0dIYlqBdcGIRV5rE_i-lptM5Hqrk3q7PxuNrX58OmPnUp4gw8zraggt2pnDJUaq12s_eN9HBT6CE-b6DBD5hXMBsp1KZCVjqlKHvLPPpXkvoVrtMc1NiHvbx4JLXs-w6gpJJD2H5MxXlXRyD60_GEYF9KknaNJfg_GhFPH2SS8ZhI_ZmSuXqf6v1FwhVRyWuKACCfKmcCjrQRieYrgtJeKQ8YB_QcGbSPYdB4eKk3jVxAwUA_L4xA52PHjbw45tKXqLIRUVsGnPs0lBHlAdJIaWRKT1mxRS0W6utUYLq-tvB0YWKfQDmZJuoUiMn1RcqVupxkiikVh5bStZYTRDJmLpPWGfDCY0Lm3cVR5GIiChjZm1i7WqCrRebqMzDXhrOswcZmk_tiScSPvSJ0GthsfFssotAnCX-PBImaLj-EjcFfxzPmn__nBTew03zpdkSn1WtfwC7OZPCXSygv5kt1pYuYRXidb9IvmNbuwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+core+study+indicates+limited+CO2+removal+by+enhanced+weathering+in+dry+croplands+in+the+UK&rft.jtitle=Applied+geochemistry&rft.au=Buckingham%2C+F.L.&rft.au=Henderson%2C+G.M.&rft.au=Holdship%2C+P.&rft.au=Renforth%2C+P.&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0883-2927&rft.eissn=1872-9134&rft.volume=147&rft_id=info:doi/10.1016%2Fj.apgeochem.2022.105482&rft.externalDocID=S0883292722002864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-2927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-2927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-2927&client=summon |