Cylinders with square cross-section: wake instabilities with incidence angle variation
The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instabilit...
Saved in:
Published in | Journal of fluid mechanics Vol. 630; pp. 43 - 69 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. |
---|---|
AbstractList | The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12' and greater than 26', with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12' as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45'. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. [PUBLICATION ABSTRACT] |
Author | FITZGERALD, MATTHEW J. SHEARD, GREGORY J. RYAN, KRIS |
Author_xml | – sequence: 1 givenname: GREGORY J. surname: SHEARD fullname: SHEARD, GREGORY J. email: Greg.Sheard@eng.monash.edu.au organization: 1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia – sequence: 2 givenname: MATTHEW J. surname: FITZGERALD fullname: FITZGERALD, MATTHEW J. organization: 2AMOG Consulting, Sea Technology House, 19 Business Park Drive, Monash Business Park, Notting Hill, VIC 3168, Australia – sequence: 3 givenname: KRIS surname: RYAN fullname: RYAN, KRIS organization: 1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21667995$$DView record in Pascal Francis |
BookMark | eNp1kMtOwzAURC1UJMrjA9hFSLAL2LFjx-yg5SUqIcRja9nODZimDrVTCn9PSiuQQKzuYs6M5s4m6vnGA0K7BB8STMTRHcZZRkiGscSYF0KuoT5hXKaCs7yH-gs5XegbaDPGF4wJxVL00ePgo3a-hBCTuWufkzid6QCJDU2MaQTbusYfJ3M9hsT52Grjatc6WNHOW1eCt5Bo_1RD8qaD0wvLNlqvdB1hZ3W30MP52f3gMh3dXFwNTkapZZy2qazAGKpZQYwRmWWyZKxi1NKiLA3FRVkZwCRnVFKDs6IsBEBFTFblhglBNd1CB8vc19BMZxBbNXHRQl1rD80sKspynnOJO3DvF_jSzILvuqmMdJsRLooOIkvo6_0AlXoNbqLDhyJYLWZWf2buPPurYB2trqugu03itzEjnAsp845Ll5yLLbx_6zqMFRdU5Ipf3KpTcSlGw-s7Nex4uuqiJya48gl-Gv_f5hMzPJ0s |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1007_s00521_017_3094_5 crossref_primary_10_1063_1_4941046 crossref_primary_10_1177_0954406220910176 crossref_primary_10_1017_S0022112010004520 crossref_primary_10_1017_jfm_2017_713 crossref_primary_10_1017_jfm_2021_819 crossref_primary_10_1016_j_jfluidstructs_2012_08_007 crossref_primary_10_1080_10618562_2013_813491 crossref_primary_10_1063_5_0206837 crossref_primary_10_1063_1_5050439 crossref_primary_10_1063_5_0077323 crossref_primary_10_1016_j_compfluid_2013_06_003 crossref_primary_10_1017_jfm_2017_266 crossref_primary_10_1017_jfm_2024_87 crossref_primary_10_1016_j_ijthermalsci_2018_06_012 crossref_primary_10_1063_5_0096416 crossref_primary_10_1103_PhysRevE_97_013110 crossref_primary_10_1017_jfm_2019_265 crossref_primary_10_1063_1_3368106 crossref_primary_10_1063_5_0055822 crossref_primary_10_1016_j_compfluid_2018_05_020 crossref_primary_10_1017_jfm_2018_104 crossref_primary_10_1007_s12046_017_0680_2 crossref_primary_10_1021_acs_langmuir_1c03409 crossref_primary_10_1017_jfm_2021_354 crossref_primary_10_1063_1_4883176 crossref_primary_10_1017_S0022112010006129 crossref_primary_10_1007_s00521_015_2023_8 crossref_primary_10_1016_j_jfluidstructs_2011_02_005 crossref_primary_10_1063_5_0022560 crossref_primary_10_1016_j_jfluidstructs_2014_03_010 crossref_primary_10_1017_jfm_2019_931 crossref_primary_10_1016_j_ijheatmasstransfer_2011_03_013 crossref_primary_10_1016_j_jfluidstructs_2013_01_002 crossref_primary_10_1103_PhysRevFluids_6_013901 crossref_primary_10_1017_jfm_2018_574 crossref_primary_10_1016_j_oceaneng_2022_112966 crossref_primary_10_1017_jfm_2022_712 crossref_primary_10_1063_1_4801849 crossref_primary_10_1016_j_jfluidstructs_2015_11_017 crossref_primary_10_1007_s00348_012_1273_9 crossref_primary_10_1017_jfm_2022_958 crossref_primary_10_1063_5_0078437 crossref_primary_10_1115_1_4027908 crossref_primary_10_1017_jfm_2023_492 crossref_primary_10_1063_1_3686809 crossref_primary_10_1063_1_5129744 crossref_primary_10_1016_j_jfluidstructs_2016_04_003 crossref_primary_10_1515_ijcre_2015_0109 crossref_primary_10_1016_j_oceaneng_2019_106208 crossref_primary_10_1134_S0015462822010116 crossref_primary_10_1016_j_jweia_2022_105132 crossref_primary_10_1017_jfm_2014_193 crossref_primary_10_1017_jfm_2017_366 crossref_primary_10_1016_j_oceaneng_2014_11_030 crossref_primary_10_1007_s11517_012_0891_y crossref_primary_10_1007_s00348_014_1779_4 crossref_primary_10_1016_j_net_2016_06_011 crossref_primary_10_1017_jfm_2017_21 crossref_primary_10_1063_1_3563619 crossref_primary_10_1016_j_jsv_2011_03_008 crossref_primary_10_1017_jfm_2018_161 crossref_primary_10_1017_jfm_2022_200 crossref_primary_10_1017_jfm_2018_285 crossref_primary_10_1002_htj_21071 crossref_primary_10_1063_5_0035575 crossref_primary_10_1007_s00521_015_2168_5 crossref_primary_10_1063_5_0184634 crossref_primary_10_1063_1_5097595 crossref_primary_10_1017_jfm_2012_353 crossref_primary_10_1063_1_4820815 crossref_primary_10_22581_muet1982_2104_04 crossref_primary_10_1007_s13367_015_0022_z crossref_primary_10_1017_jfm_2023_699 crossref_primary_10_1177_1475472X221140869 crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_053 crossref_primary_10_1016_j_jfluidstructs_2016_09_005 crossref_primary_10_1063_1_4744982 crossref_primary_10_1103_PhysRevFluids_6_053903 crossref_primary_10_1016_j_jweia_2011_10_012 crossref_primary_10_1017_jfm_2016_156 crossref_primary_10_1063_5_0169193 crossref_primary_10_1108_HFF_02_2015_0058 crossref_primary_10_1016_j_jfluidstructs_2009_07_001 crossref_primary_10_1017_jfm_2022_821 crossref_primary_10_1103_PhysRevE_91_043017 crossref_primary_10_1016_j_jfluidstructs_2014_05_016 crossref_primary_10_1016_j_oceaneng_2020_108288 crossref_primary_10_1063_5_0038229 crossref_primary_10_1063_1_4947449 crossref_primary_10_1016_j_oceaneng_2021_110034 crossref_primary_10_1063_5_0064916 crossref_primary_10_1063_1_3388857 crossref_primary_10_1063_1_5120564 crossref_primary_10_1016_j_apm_2010_09_034 crossref_primary_10_1063_1_4813628 crossref_primary_10_1002_fld_2416 crossref_primary_10_1017_jfm_2013_93 crossref_primary_10_1063_1_4914406 crossref_primary_10_1080_10618562_2012_655687 crossref_primary_10_1016_j_apm_2010_09_041 crossref_primary_10_1016_j_jfluidstructs_2015_01_006 crossref_primary_10_1063_1_5134850 crossref_primary_10_1017_jfm_2012_542 crossref_primary_10_1017_jfm_2014_671 crossref_primary_10_1016_j_compfluid_2013_09_017 crossref_primary_10_1016_j_icheatmasstransfer_2023_107134 crossref_primary_10_1063_5_0090602 crossref_primary_10_1063_5_0185138 crossref_primary_10_1007_s13369_016_2276_2 crossref_primary_10_1063_1_5042497 crossref_primary_10_1016_j_snb_2010_08_027 crossref_primary_10_1007_s12206_016_0626_3 crossref_primary_10_1063_5_0005757 crossref_primary_10_1063_1_5018844 crossref_primary_10_1007_s11802_011_1789_2 crossref_primary_10_1016_j_jfluidstructs_2015_06_015 crossref_primary_10_1063_5_0049528 crossref_primary_10_1063_1_5003114 crossref_primary_10_1017_jfm_2012_55 crossref_primary_10_1017_jfm_2016_810 crossref_primary_10_1063_1_3682373 crossref_primary_10_1103_PhysRevFluids_5_113902 |
Cites_doi | 10.1063/1.858810 10.1103/PhysRevLett.72.3174 10.1016/S0142-727X(02)00208-4 10.1017/S0022112097007465 10.1017/S0022112004008614 10.1063/1.868939 10.1061/(ASCE)0733-9399(2008)134:9(788) 10.1063/1.869930 10.1016/0021-9991(91)90007-8 10.1016/j.jfluidstructs.2008.03.004 10.1016/0169-5983(94)90040-X 10.1017/S0022112096001978 10.1143/JPSJ.14.843 10.1017/S0022112005005082 10.1017/S0022112003005512 10.1017/S0022112097008331 10.1006/jcph.1996.0065 10.1063/1.869879 10.1016/0894-1777(95)00098-4 10.1016/j.jfluidstructs.2006.08.012 10.1016/S0169-5983(98)00027-6 10.1017/S0022112007008543 10.1006/jfls.2000.0362 10.1006/jfls.2000.0369 10.1080/10407780802424361 10.1063/1.1591771 10.1137/1.9780898719628 10.1016/j.jcp.2004.02.013 10.1063/1.866978 10.1017/S0022112005004313 10.1017/S0022112007009639 10.1063/1.2754346 10.1017/S0022112092002763 10.1063/1.866925 10.1063/1.1596413 10.1063/1.868601 10.1017/S0022112094004271 10.1017/S0022112095001145 10.1017/S0022112096002777 10.1017/S0022112096008750 10.1017/S0022112092001617 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2009 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © Cambridge University Press 2009 – notice: 2009 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W |
DOI | 10.1017/S0022112009006879 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest research library ProQuest Science Journals Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aerospace Database CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 69 |
ExternalDocumentID | 1873636951 10_1017_S0022112009006879 21667995 ark_67375_6GQ_B7H7LDKS_D |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ABZUI ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZYDXJ ~02 -1F -2P -2V -~6 -~N 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABTAH ABVFV ABVZP ABXAU ACETC ACKIV ACMRT ADOVH AEBPU AENCP AGLWM AI. ALEEW BESQT BMAJL BSCLL CCUQV CDIZJ CTKSN DC4 H~9 I.7 I.9 IOO KAFGG LHUNA NMFBF VH1 VOH ZJOSE ZMEZD ZY4 ~V1 08R ABBJB ABTRL G8K IQODW KC5 AAYXX CITATION 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c463t-9febb3a481bb72c49d44f43c38ddb308dfbe0154393b028d87eef1b2f5b4773a3 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Fri Oct 25 00:49:24 EDT 2024 Thu Oct 10 21:02:41 EDT 2024 Thu Sep 26 17:49:17 EDT 2024 Sun Oct 29 17:07:54 EDT 2023 Wed Oct 30 09:38:08 EDT 2024 Wed Mar 13 05:42:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Three dimensional flow Bluff body Reynolds number Digital simulation Hydrodynamic instability Bifurcation Wakes Modelling Incidence angle Transition flow Square section Mesh generation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-9febb3a481bb72c49d44f43c38ddb308dfbe0154393b028d87eef1b2f5b4773a3 |
Notes | PII:S0022112009006879 istex:D9A39F43E5811BFF8AB9A87E40C52959FD4E54B5 ark:/67375/6GQ-B7H7LDKS-D ArticleID:00687 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 210901678 |
PQPubID | 34769 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_34565690 proquest_journals_210901678 crossref_primary_10_1017_S0022112009006879 pascalfrancis_primary_21667995 istex_primary_ark_67375_6GQ_B7H7LDKS_D cambridge_journals_10_1017_S0022112009006879 |
PublicationCentury | 2000 |
PublicationDate | 2009-07-10 |
PublicationDateYYYYMMDD | 2009-07-10 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2009 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Shraiman (S0022112009006879_ref32) 1992; 57 S0022112009006879_ref40 S0022112009006879_ref41 S0022112009006879_ref28 S0022112009006879_ref29 S0022112009006879_ref1 S0022112009006879_ref42 S0022112009006879_ref43 S0022112009006879_ref21 S0022112009006879_ref44 S0022112009006879_ref22 S0022112009006879_ref23 S0022112009006879_ref45 S0022112009006879_ref24 S0022112009006879_ref25 S0022112009006879_ref27 Marques (S0022112009006879_ref20) 2004; 189 Landau (S0022112009006879_ref12) 1976 S0022112009006879_ref30 S0022112009006879_ref2 S0022112009006879_ref3 S0022112009006879_ref4 S0022112009006879_ref5 S0022112009006879_ref6 S0022112009006879_ref7 S0022112009006879_ref8 S0022112009006879_ref9 S0022112009006879_ref39 S0022112009006879_ref17 Sheard (S0022112009006879_ref26) 2009 S0022112009006879_ref18 S0022112009006879_ref19 S0022112009006879_ref31 S0022112009006879_ref10 S0022112009006879_ref33 S0022112009006879_ref11 S0022112009006879_ref34 S0022112009006879_ref13 S0022112009006879_ref35 S0022112009006879_ref14 S0022112009006879_ref36 S0022112009006879_ref37 S0022112009006879_ref15 S0022112009006879_ref16 S0022112009006879_ref38 |
References_xml | – ident: S0022112009006879_ref43 doi: 10.1063/1.858810 – ident: S0022112009006879_ref14 doi: 10.1103/PhysRevLett.72.3174 – ident: S0022112009006879_ref25 doi: 10.1016/S0142-727X(02)00208-4 – ident: S0022112009006879_ref6 doi: 10.1017/S0022112097007465 – ident: S0022112009006879_ref30 doi: 10.1017/S0022112004008614 – volume: 57 start-page: 241 year: 1992 ident: S0022112009006879_ref32 article-title: Spatiotemporal chaos in the one-dimensional complex Ginzburg–Landau equation publication-title: Physica contributor: fullname: Shraiman – volume: 189 start-page: 247 year: 2004 ident: S0022112009006879_ref20 article-title: Bifurcations in systems with Z2 spatio-temporal and O(2) spatial symmetry publication-title: Physica contributor: fullname: Marques – ident: S0022112009006879_ref7 doi: 10.1063/1.868939 – ident: S0022112009006879_ref5 doi: 10.1061/(ASCE)0733-9399(2008)134:9(788) – ident: S0022112009006879_ref23 doi: 10.1063/1.869930 – ident: S0022112009006879_ref10 doi: 10.1016/0021-9991(91)90007-8 – ident: S0022112009006879_ref38 doi: 10.1016/j.jfluidstructs.2008.03.004 – volume-title: Mechanics year: 1976 ident: S0022112009006879_ref12 contributor: fullname: Landau – ident: S0022112009006879_ref9 doi: 10.1016/0169-5983(94)90040-X – ident: S0022112009006879_ref44 doi: 10.1017/S0022112096001978 – ident: S0022112009006879_ref34 doi: 10.1143/JPSJ.14.843 – ident: S0022112009006879_ref24 doi: 10.1017/S0022112005005082 – ident: S0022112009006879_ref29 doi: 10.1017/S0022112003005512 – ident: S0022112009006879_ref16 doi: 10.1017/S0022112097008331 – ident: S0022112009006879_ref21 doi: 10.1006/jcph.1996.0065 – ident: S0022112009006879_ref33 doi: 10.1063/1.869879 – ident: S0022112009006879_ref35 doi: 10.1016/0894-1777(95)00098-4 – ident: S0022112009006879_ref18 doi: 10.1016/j.jfluidstructs.2006.08.012 – ident: S0022112009006879_ref8 doi: 10.1016/S0169-5983(98)00027-6 – ident: S0022112009006879_ref28 doi: 10.1017/S0022112007008543 – ident: S0022112009006879_ref36 doi: 10.1006/jfls.2000.0362 – ident: S0022112009006879_ref37 doi: 10.1006/jfls.2000.0369 – ident: S0022112009006879_ref22 doi: 10.1080/10407780802424361 – ident: S0022112009006879_ref2 doi: 10.1063/1.1591771 – ident: S0022112009006879_ref13 doi: 10.1137/1.9780898719628 – ident: S0022112009006879_ref3 doi: 10.1016/j.jcp.2004.02.013 – ident: S0022112009006879_ref39 doi: 10.1063/1.866978 – ident: S0022112009006879_ref31 doi: 10.1017/S0022112005004313 – ident: S0022112009006879_ref4 doi: 10.1017/S0022112007009639 – ident: S0022112009006879_ref27 doi: 10.1063/1.2754346 – ident: S0022112009006879_ref41 doi: 10.1017/S0022112092002763 – ident: S0022112009006879_ref40 doi: 10.1063/1.866925 – ident: S0022112009006879_ref17 doi: 10.1063/1.1596413 – ident: S0022112009006879_ref45 doi: 10.1063/1.868601 – ident: S0022112009006879_ref19 doi: 10.1017/S0022112094004271 – ident: S0022112009006879_ref15 doi: 10.1017/S0022112095001145 – ident: S0022112009006879_ref1 doi: 10.1017/S0022112096002777 – ident: S0022112009006879_ref42 doi: 10.1017/S0022112096008750 – volume-title: IUTAM Symposium on Unsteady Separated Flows and their Control year: 2009 ident: S0022112009006879_ref26 contributor: fullname: Sheard – ident: S0022112009006879_ref11 doi: 10.1017/S0022112092001617 |
SSID | ssj0013097 |
Score | 2.3936276 |
Snippet | The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability... |
SourceID | proquest crossref pascalfrancis istex cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 43 |
SubjectTerms | Cross-sections Exact sciences and technology Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Nonlinearity (including bifurcation theory) Physics Reynolds number Stability analysis Transition to turbulence Turbulent flows, convection, and heat transfer Wakes |
Title | Cylinders with square cross-section: wake instabilities with incidence angle variation |
URI | https://www.cambridge.org/core/product/identifier/S0022112009006879/type/journal_article https://api.istex.fr/ark:/67375/6GQ-B7H7LDKS-D/fulltext.pdf https://www.proquest.com/docview/210901678 https://search.proquest.com/docview/34565690 |
Volume | 630 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BV0hwKLCASAuLD4gDwiKJHTvmguhju-JR8SrqLbJjG1Wtsm2z5fHv8TjZLFWlXh07sjzj8eeZzzMAz4UtC6G4plmeCcp9VtCSO00L5myqa14U0eH2aV_MDvj7w-Kw5-a0Pa1yaROjobbzGn3kr3NkEGbBtL49PaNYNAqDq30FjZswynIp8e5VTvdWQYRUyWWy8AArhqBmzBgdGrEt_DQVJRK5VqkVLh1RI1ztP0iZ1G1YNd-Vu7hiueNxNL0H6z2OJO86wd-HG64Zw90eU5J-x7ZjuPNfwsEx3IqEz7p9AD-2_54cxYctBF2xpD0LuuJInBFtIz-reUN-62NHjhBBRg5tuFV3vdFBH4uREt38PHHkV7hxRxE_hIPp7vftGe1rLNCaC7agyjtjmOYBvRqZ11xZzj1nNSutNSwtrTcOYRZTzAQoYkvpnM9M7gvDpWSaPYK1Zt64x0B8gGpaYV1xZrlntZFMZJkTpTKKqzxP4NWwxFW_U9qqY5nJ6opEEni5lEJ12mXeuK7ziyinoac-P0bKmiwqsfel2pIz-XHnw7dqJ4HJJUEOA4KqCkyOl8DmUrKrSQ7Kl8Cz4WvYhxhc0Y2bX7QVi9BYpRvXjt-E2104Sobz7wmsLc4v3NOAahZmEnV3AqOt3f3PX_8BxGryPQ |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4oxKgPKgfEFYU-EB-IDbvbbrv1xSh4nHKQEIHw1rTb1hDIHrCHP_572-7enoSE1267aTrTma-drzMAm8yUBRNU4SzPGKYuK3BJrcIFsSZVFS2KeOF2cMhGJ_T7WXHWcXOajlY5s4nRUJtJFe7It_PAIMy8af10dY1D0agQXO0qaDyGRUq8qw4PxYd78yBCKvgsWbiHFX1QM2aM9o2hzf80ZWUgcs1TK9xxUYthtf8EyqRq_Kq5ttzFPcsd3dHwFbzocCT63Ap-CR7ZegAvO0yJuh3bDOD5fwkHB_AkEj6rZhlOd_5enseHLShcxaLm2uuKRXFGuIn8rPoj-q0uLDoPCDJyaP2puu0dLuhjMVKk6p-XFv3yJ-4o4hU4GX493hnhrsYCrigjUyyc1Zoo6tGr5nlFhaHUUVKR0hhN0tI4bQPMIoJoD0VMya11mc5doSnnRJFVWKgntX0NyHmopkSoK04MdaTS3Msks6wUWlCR5wl86JdYdjulkS3LjMt7EklgayYFedVm3nio8_sop76nurkIlDVeSLZ3JL_wER_v7v-Quwms3xFkP8CrKgvJ8RJYm0l2Psle-RLY6L_6fRiCK6q2k9tGkgiNRfrmwfEb8HR0fDCW42-H-2vwrA1Nce8L38LC9ObWvvMIZ6rXox7_A40784U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cylinders+with+square+cross-section%3A+wake+instabilities+with+incidence+angle+variation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=SHEARD%2C+GREGORY+J&rft.au=FITZGERALD%2C+MATTHEW+J&rft.au=RYAN%2C+KRIS&rft.date=2009-07-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=630&rft.spage=43&rft_id=info:doi/10.1017%2FS0022112009006879&rft.externalDocID=1873636951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |