Cylinders with square cross-section: wake instabilities with incidence angle variation

The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instabilit...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 630; pp. 43 - 69
Main Authors SHEARD, GREGORY J., FITZGERALD, MATTHEW J., RYAN, KRIS
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.
AbstractList The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12' and greater than 26', with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12' as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45'. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.
The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.
The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles.
The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability and dynamics up to a Reynolds number of Re = 300, based on the projected height of the inclined square cylinder. Three-dimensional instability modes are predicted and computed using a linear stability analysis technique and three-dimensional simulations, respectively. Depending on the incidence angle, the flow is found to transition to three-dimensional flow through either a mode A instability, or a subharmonic mode C instability. The mode A instability is predicted as the first-occurring instability at incidence angles smaller than 12° and greater than 26°, with the mode C instability predicted between these incidence angles. At a zero-degree angle of incidence, the wake instabilities closely match modes A, B and a quasi-periodic mode predicted in earlier studies behind square and circular cylinders. With increasing angle of incidence, the three-dimensional wake transition Reynolds number first increases from Re = 164 as the mode A instability weakens, before decreasing again beyond an incidence angle of 12° as the wake becomes increasingly unstable to the mode C instability, and then again to the mode A instability as the incidence angle approaches 45°. A spanwise autocorrelation analysis from computations over a cylinder span 20 times the square cross-section side length reveals that beyond the onset of three-dimensional instabilities, the vortex street breaks down with patterns consistent with spatio-temporal chaos. This effect was more pronounced at higher incidence angles. [PUBLICATION ABSTRACT]
Author FITZGERALD, MATTHEW J.
SHEARD, GREGORY J.
RYAN, KRIS
Author_xml – sequence: 1
  givenname: GREGORY J.
  surname: SHEARD
  fullname: SHEARD, GREGORY J.
  email: Greg.Sheard@eng.monash.edu.au
  organization: 1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
– sequence: 2
  givenname: MATTHEW J.
  surname: FITZGERALD
  fullname: FITZGERALD, MATTHEW J.
  organization: 2AMOG Consulting, Sea Technology House, 19 Business Park Drive, Monash Business Park, Notting Hill, VIC 3168, Australia
– sequence: 3
  givenname: KRIS
  surname: RYAN
  fullname: RYAN, KRIS
  organization: 1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21667995$$DView record in Pascal Francis
BookMark eNp1kMtOwzAURC1UJMrjA9hFSLAL2LFjx-yg5SUqIcRja9nODZimDrVTCn9PSiuQQKzuYs6M5s4m6vnGA0K7BB8STMTRHcZZRkiGscSYF0KuoT5hXKaCs7yH-gs5XegbaDPGF4wJxVL00ePgo3a-hBCTuWufkzid6QCJDU2MaQTbusYfJ3M9hsT52Grjatc6WNHOW1eCt5Bo_1RD8qaD0wvLNlqvdB1hZ3W30MP52f3gMh3dXFwNTkapZZy2qazAGKpZQYwRmWWyZKxi1NKiLA3FRVkZwCRnVFKDs6IsBEBFTFblhglBNd1CB8vc19BMZxBbNXHRQl1rD80sKspynnOJO3DvF_jSzILvuqmMdJsRLooOIkvo6_0AlXoNbqLDhyJYLWZWf2buPPurYB2trqugu03itzEjnAsp845Ll5yLLbx_6zqMFRdU5Ipf3KpTcSlGw-s7Nex4uuqiJya48gl-Gv_f5hMzPJ0s
CODEN JFLSA7
CitedBy_id crossref_primary_10_1007_s00521_017_3094_5
crossref_primary_10_1063_1_4941046
crossref_primary_10_1177_0954406220910176
crossref_primary_10_1017_S0022112010004520
crossref_primary_10_1017_jfm_2017_713
crossref_primary_10_1017_jfm_2021_819
crossref_primary_10_1016_j_jfluidstructs_2012_08_007
crossref_primary_10_1080_10618562_2013_813491
crossref_primary_10_1063_5_0206837
crossref_primary_10_1063_1_5050439
crossref_primary_10_1063_5_0077323
crossref_primary_10_1016_j_compfluid_2013_06_003
crossref_primary_10_1017_jfm_2017_266
crossref_primary_10_1017_jfm_2024_87
crossref_primary_10_1016_j_ijthermalsci_2018_06_012
crossref_primary_10_1063_5_0096416
crossref_primary_10_1103_PhysRevE_97_013110
crossref_primary_10_1017_jfm_2019_265
crossref_primary_10_1063_1_3368106
crossref_primary_10_1063_5_0055822
crossref_primary_10_1016_j_compfluid_2018_05_020
crossref_primary_10_1017_jfm_2018_104
crossref_primary_10_1007_s12046_017_0680_2
crossref_primary_10_1021_acs_langmuir_1c03409
crossref_primary_10_1017_jfm_2021_354
crossref_primary_10_1063_1_4883176
crossref_primary_10_1017_S0022112010006129
crossref_primary_10_1007_s00521_015_2023_8
crossref_primary_10_1016_j_jfluidstructs_2011_02_005
crossref_primary_10_1063_5_0022560
crossref_primary_10_1016_j_jfluidstructs_2014_03_010
crossref_primary_10_1017_jfm_2019_931
crossref_primary_10_1016_j_ijheatmasstransfer_2011_03_013
crossref_primary_10_1016_j_jfluidstructs_2013_01_002
crossref_primary_10_1103_PhysRevFluids_6_013901
crossref_primary_10_1017_jfm_2018_574
crossref_primary_10_1016_j_oceaneng_2022_112966
crossref_primary_10_1017_jfm_2022_712
crossref_primary_10_1063_1_4801849
crossref_primary_10_1016_j_jfluidstructs_2015_11_017
crossref_primary_10_1007_s00348_012_1273_9
crossref_primary_10_1017_jfm_2022_958
crossref_primary_10_1063_5_0078437
crossref_primary_10_1115_1_4027908
crossref_primary_10_1017_jfm_2023_492
crossref_primary_10_1063_1_3686809
crossref_primary_10_1063_1_5129744
crossref_primary_10_1016_j_jfluidstructs_2016_04_003
crossref_primary_10_1515_ijcre_2015_0109
crossref_primary_10_1016_j_oceaneng_2019_106208
crossref_primary_10_1134_S0015462822010116
crossref_primary_10_1016_j_jweia_2022_105132
crossref_primary_10_1017_jfm_2014_193
crossref_primary_10_1017_jfm_2017_366
crossref_primary_10_1016_j_oceaneng_2014_11_030
crossref_primary_10_1007_s11517_012_0891_y
crossref_primary_10_1007_s00348_014_1779_4
crossref_primary_10_1016_j_net_2016_06_011
crossref_primary_10_1017_jfm_2017_21
crossref_primary_10_1063_1_3563619
crossref_primary_10_1016_j_jsv_2011_03_008
crossref_primary_10_1017_jfm_2018_161
crossref_primary_10_1017_jfm_2022_200
crossref_primary_10_1017_jfm_2018_285
crossref_primary_10_1002_htj_21071
crossref_primary_10_1063_5_0035575
crossref_primary_10_1007_s00521_015_2168_5
crossref_primary_10_1063_5_0184634
crossref_primary_10_1063_1_5097595
crossref_primary_10_1017_jfm_2012_353
crossref_primary_10_1063_1_4820815
crossref_primary_10_22581_muet1982_2104_04
crossref_primary_10_1007_s13367_015_0022_z
crossref_primary_10_1017_jfm_2023_699
crossref_primary_10_1177_1475472X221140869
crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_053
crossref_primary_10_1016_j_jfluidstructs_2016_09_005
crossref_primary_10_1063_1_4744982
crossref_primary_10_1103_PhysRevFluids_6_053903
crossref_primary_10_1016_j_jweia_2011_10_012
crossref_primary_10_1017_jfm_2016_156
crossref_primary_10_1063_5_0169193
crossref_primary_10_1108_HFF_02_2015_0058
crossref_primary_10_1016_j_jfluidstructs_2009_07_001
crossref_primary_10_1017_jfm_2022_821
crossref_primary_10_1103_PhysRevE_91_043017
crossref_primary_10_1016_j_jfluidstructs_2014_05_016
crossref_primary_10_1016_j_oceaneng_2020_108288
crossref_primary_10_1063_5_0038229
crossref_primary_10_1063_1_4947449
crossref_primary_10_1016_j_oceaneng_2021_110034
crossref_primary_10_1063_5_0064916
crossref_primary_10_1063_1_3388857
crossref_primary_10_1063_1_5120564
crossref_primary_10_1016_j_apm_2010_09_034
crossref_primary_10_1063_1_4813628
crossref_primary_10_1002_fld_2416
crossref_primary_10_1017_jfm_2013_93
crossref_primary_10_1063_1_4914406
crossref_primary_10_1080_10618562_2012_655687
crossref_primary_10_1016_j_apm_2010_09_041
crossref_primary_10_1016_j_jfluidstructs_2015_01_006
crossref_primary_10_1063_1_5134850
crossref_primary_10_1017_jfm_2012_542
crossref_primary_10_1017_jfm_2014_671
crossref_primary_10_1016_j_compfluid_2013_09_017
crossref_primary_10_1016_j_icheatmasstransfer_2023_107134
crossref_primary_10_1063_5_0090602
crossref_primary_10_1063_5_0185138
crossref_primary_10_1007_s13369_016_2276_2
crossref_primary_10_1063_1_5042497
crossref_primary_10_1016_j_snb_2010_08_027
crossref_primary_10_1007_s12206_016_0626_3
crossref_primary_10_1063_5_0005757
crossref_primary_10_1063_1_5018844
crossref_primary_10_1007_s11802_011_1789_2
crossref_primary_10_1016_j_jfluidstructs_2015_06_015
crossref_primary_10_1063_5_0049528
crossref_primary_10_1063_1_5003114
crossref_primary_10_1017_jfm_2012_55
crossref_primary_10_1017_jfm_2016_810
crossref_primary_10_1063_1_3682373
crossref_primary_10_1103_PhysRevFluids_5_113902
Cites_doi 10.1063/1.858810
10.1103/PhysRevLett.72.3174
10.1016/S0142-727X(02)00208-4
10.1017/S0022112097007465
10.1017/S0022112004008614
10.1063/1.868939
10.1061/(ASCE)0733-9399(2008)134:9(788)
10.1063/1.869930
10.1016/0021-9991(91)90007-8
10.1016/j.jfluidstructs.2008.03.004
10.1016/0169-5983(94)90040-X
10.1017/S0022112096001978
10.1143/JPSJ.14.843
10.1017/S0022112005005082
10.1017/S0022112003005512
10.1017/S0022112097008331
10.1006/jcph.1996.0065
10.1063/1.869879
10.1016/0894-1777(95)00098-4
10.1016/j.jfluidstructs.2006.08.012
10.1016/S0169-5983(98)00027-6
10.1017/S0022112007008543
10.1006/jfls.2000.0362
10.1006/jfls.2000.0369
10.1080/10407780802424361
10.1063/1.1591771
10.1137/1.9780898719628
10.1016/j.jcp.2004.02.013
10.1063/1.866978
10.1017/S0022112005004313
10.1017/S0022112007009639
10.1063/1.2754346
10.1017/S0022112092002763
10.1063/1.866925
10.1063/1.1596413
10.1063/1.868601
10.1017/S0022112094004271
10.1017/S0022112095001145
10.1017/S0022112096002777
10.1017/S0022112096008750
10.1017/S0022112092001617
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2009
2009 INIST-CNRS
Copyright_xml – notice: Copyright © Cambridge University Press 2009
– notice: 2009 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/S0022112009006879
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest research library
ProQuest Science Journals
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Aerospace Database

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 69
ExternalDocumentID 1873636951
10_1017_S0022112009006879
21667995
ark_67375_6GQ_B7H7LDKS_D
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ABZUI
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZYDXJ
~02
-1F
-2P
-2V
-~6
-~N
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABTAH
ABVFV
ABVZP
ABXAU
ACETC
ACKIV
ACMRT
ADOVH
AEBPU
AENCP
AGLWM
AI.
ALEEW
BESQT
BMAJL
BSCLL
CCUQV
CDIZJ
CTKSN
DC4
H~9
I.7
I.9
IOO
KAFGG
LHUNA
NMFBF
VH1
VOH
ZJOSE
ZMEZD
ZY4
~V1
08R
ABBJB
ABTRL
G8K
IQODW
KC5
AAYXX
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c463t-9febb3a481bb72c49d44f43c38ddb308dfbe0154393b028d87eef1b2f5b4773a3
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Fri Oct 25 00:49:24 EDT 2024
Thu Oct 10 21:02:41 EDT 2024
Thu Sep 26 17:49:17 EDT 2024
Sun Oct 29 17:07:54 EDT 2023
Wed Oct 30 09:38:08 EDT 2024
Wed Mar 13 05:42:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Three dimensional flow
Bluff body
Reynolds number
Digital simulation
Hydrodynamic instability
Bifurcation
Wakes
Modelling
Incidence angle
Transition flow
Square section
Mesh generation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-9febb3a481bb72c49d44f43c38ddb308dfbe0154393b028d87eef1b2f5b4773a3
Notes PII:S0022112009006879
istex:D9A39F43E5811BFF8AB9A87E40C52959FD4E54B5
ark:/67375/6GQ-B7H7LDKS-D
ArticleID:00687
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 210901678
PQPubID 34769
PageCount 27
ParticipantIDs proquest_miscellaneous_34565690
proquest_journals_210901678
crossref_primary_10_1017_S0022112009006879
pascalfrancis_primary_21667995
istex_primary_ark_67375_6GQ_B7H7LDKS_D
cambridge_journals_10_1017_S0022112009006879
PublicationCentury 2000
PublicationDate 2009-07-10
PublicationDateYYYYMMDD 2009-07-10
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-10
  day: 10
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2009
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Shraiman (S0022112009006879_ref32) 1992; 57
S0022112009006879_ref40
S0022112009006879_ref41
S0022112009006879_ref28
S0022112009006879_ref29
S0022112009006879_ref1
S0022112009006879_ref42
S0022112009006879_ref43
S0022112009006879_ref21
S0022112009006879_ref44
S0022112009006879_ref22
S0022112009006879_ref23
S0022112009006879_ref45
S0022112009006879_ref24
S0022112009006879_ref25
S0022112009006879_ref27
Marques (S0022112009006879_ref20) 2004; 189
Landau (S0022112009006879_ref12) 1976
S0022112009006879_ref30
S0022112009006879_ref2
S0022112009006879_ref3
S0022112009006879_ref4
S0022112009006879_ref5
S0022112009006879_ref6
S0022112009006879_ref7
S0022112009006879_ref8
S0022112009006879_ref9
S0022112009006879_ref39
S0022112009006879_ref17
Sheard (S0022112009006879_ref26) 2009
S0022112009006879_ref18
S0022112009006879_ref19
S0022112009006879_ref31
S0022112009006879_ref10
S0022112009006879_ref33
S0022112009006879_ref11
S0022112009006879_ref34
S0022112009006879_ref13
S0022112009006879_ref35
S0022112009006879_ref14
S0022112009006879_ref36
S0022112009006879_ref37
S0022112009006879_ref15
S0022112009006879_ref16
S0022112009006879_ref38
References_xml – ident: S0022112009006879_ref43
  doi: 10.1063/1.858810
– ident: S0022112009006879_ref14
  doi: 10.1103/PhysRevLett.72.3174
– ident: S0022112009006879_ref25
  doi: 10.1016/S0142-727X(02)00208-4
– ident: S0022112009006879_ref6
  doi: 10.1017/S0022112097007465
– ident: S0022112009006879_ref30
  doi: 10.1017/S0022112004008614
– volume: 57
  start-page: 241
  year: 1992
  ident: S0022112009006879_ref32
  article-title: Spatiotemporal chaos in the one-dimensional complex Ginzburg–Landau equation
  publication-title: Physica
  contributor:
    fullname: Shraiman
– volume: 189
  start-page: 247
  year: 2004
  ident: S0022112009006879_ref20
  article-title: Bifurcations in systems with Z2 spatio-temporal and O(2) spatial symmetry
  publication-title: Physica
  contributor:
    fullname: Marques
– ident: S0022112009006879_ref7
  doi: 10.1063/1.868939
– ident: S0022112009006879_ref5
  doi: 10.1061/(ASCE)0733-9399(2008)134:9(788)
– ident: S0022112009006879_ref23
  doi: 10.1063/1.869930
– ident: S0022112009006879_ref10
  doi: 10.1016/0021-9991(91)90007-8
– ident: S0022112009006879_ref38
  doi: 10.1016/j.jfluidstructs.2008.03.004
– volume-title: Mechanics
  year: 1976
  ident: S0022112009006879_ref12
  contributor:
    fullname: Landau
– ident: S0022112009006879_ref9
  doi: 10.1016/0169-5983(94)90040-X
– ident: S0022112009006879_ref44
  doi: 10.1017/S0022112096001978
– ident: S0022112009006879_ref34
  doi: 10.1143/JPSJ.14.843
– ident: S0022112009006879_ref24
  doi: 10.1017/S0022112005005082
– ident: S0022112009006879_ref29
  doi: 10.1017/S0022112003005512
– ident: S0022112009006879_ref16
  doi: 10.1017/S0022112097008331
– ident: S0022112009006879_ref21
  doi: 10.1006/jcph.1996.0065
– ident: S0022112009006879_ref33
  doi: 10.1063/1.869879
– ident: S0022112009006879_ref35
  doi: 10.1016/0894-1777(95)00098-4
– ident: S0022112009006879_ref18
  doi: 10.1016/j.jfluidstructs.2006.08.012
– ident: S0022112009006879_ref8
  doi: 10.1016/S0169-5983(98)00027-6
– ident: S0022112009006879_ref28
  doi: 10.1017/S0022112007008543
– ident: S0022112009006879_ref36
  doi: 10.1006/jfls.2000.0362
– ident: S0022112009006879_ref37
  doi: 10.1006/jfls.2000.0369
– ident: S0022112009006879_ref22
  doi: 10.1080/10407780802424361
– ident: S0022112009006879_ref2
  doi: 10.1063/1.1591771
– ident: S0022112009006879_ref13
  doi: 10.1137/1.9780898719628
– ident: S0022112009006879_ref3
  doi: 10.1016/j.jcp.2004.02.013
– ident: S0022112009006879_ref39
  doi: 10.1063/1.866978
– ident: S0022112009006879_ref31
  doi: 10.1017/S0022112005004313
– ident: S0022112009006879_ref4
  doi: 10.1017/S0022112007009639
– ident: S0022112009006879_ref27
  doi: 10.1063/1.2754346
– ident: S0022112009006879_ref41
  doi: 10.1017/S0022112092002763
– ident: S0022112009006879_ref40
  doi: 10.1063/1.866925
– ident: S0022112009006879_ref17
  doi: 10.1063/1.1596413
– ident: S0022112009006879_ref45
  doi: 10.1063/1.868601
– ident: S0022112009006879_ref19
  doi: 10.1017/S0022112094004271
– ident: S0022112009006879_ref15
  doi: 10.1017/S0022112095001145
– ident: S0022112009006879_ref1
  doi: 10.1017/S0022112096002777
– ident: S0022112009006879_ref42
  doi: 10.1017/S0022112096008750
– volume-title: IUTAM Symposium on Unsteady Separated Flows and their Control
  year: 2009
  ident: S0022112009006879_ref26
  contributor:
    fullname: Sheard
– ident: S0022112009006879_ref11
  doi: 10.1017/S0022112092001617
SSID ssj0013097
Score 2.3936276
Snippet The wakes behind square cylinders with variation in incidence angle are computed over a range of Reynolds numbers to elucidate the three-dimensional stability...
SourceID proquest
crossref
pascalfrancis
istex
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 43
SubjectTerms Cross-sections
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Nonlinearity (including bifurcation theory)
Physics
Reynolds number
Stability analysis
Transition to turbulence
Turbulent flows, convection, and heat transfer
Wakes
Title Cylinders with square cross-section: wake instabilities with incidence angle variation
URI https://www.cambridge.org/core/product/identifier/S0022112009006879/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-B7H7LDKS-D/fulltext.pdf
https://www.proquest.com/docview/210901678
https://search.proquest.com/docview/34565690
Volume 630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BV0hwKLCASAuLD4gDwiKJHTvmguhju-JR8SrqLbJjG1Wtsm2z5fHv8TjZLFWlXh07sjzj8eeZzzMAz4UtC6G4plmeCcp9VtCSO00L5myqa14U0eH2aV_MDvj7w-Kw5-a0Pa1yaROjobbzGn3kr3NkEGbBtL49PaNYNAqDq30FjZswynIp8e5VTvdWQYRUyWWy8AArhqBmzBgdGrEt_DQVJRK5VqkVLh1RI1ztP0iZ1G1YNd-Vu7hiueNxNL0H6z2OJO86wd-HG64Zw90eU5J-x7ZjuPNfwsEx3IqEz7p9AD-2_54cxYctBF2xpD0LuuJInBFtIz-reUN-62NHjhBBRg5tuFV3vdFBH4uREt38PHHkV7hxRxE_hIPp7vftGe1rLNCaC7agyjtjmOYBvRqZ11xZzj1nNSutNSwtrTcOYRZTzAQoYkvpnM9M7gvDpWSaPYK1Zt64x0B8gGpaYV1xZrlntZFMZJkTpTKKqzxP4NWwxFW_U9qqY5nJ6opEEni5lEJ12mXeuK7ziyinoac-P0bKmiwqsfel2pIz-XHnw7dqJ4HJJUEOA4KqCkyOl8DmUrKrSQ7Kl8Cz4WvYhxhc0Y2bX7QVi9BYpRvXjt-E2104Sobz7wmsLc4v3NOAahZmEnV3AqOt3f3PX_8BxGryPQ
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4oxKgPKgfEFYU-EB-IDbvbbrv1xSh4nHKQEIHw1rTb1hDIHrCHP_572-7enoSE1267aTrTma-drzMAm8yUBRNU4SzPGKYuK3BJrcIFsSZVFS2KeOF2cMhGJ_T7WXHWcXOajlY5s4nRUJtJFe7It_PAIMy8af10dY1D0agQXO0qaDyGRUq8qw4PxYd78yBCKvgsWbiHFX1QM2aM9o2hzf80ZWUgcs1TK9xxUYthtf8EyqRq_Kq5ttzFPcsd3dHwFbzocCT63Ap-CR7ZegAvO0yJuh3bDOD5fwkHB_AkEj6rZhlOd_5enseHLShcxaLm2uuKRXFGuIn8rPoj-q0uLDoPCDJyaP2puu0dLuhjMVKk6p-XFv3yJ-4o4hU4GX493hnhrsYCrigjUyyc1Zoo6tGr5nlFhaHUUVKR0hhN0tI4bQPMIoJoD0VMya11mc5doSnnRJFVWKgntX0NyHmopkSoK04MdaTS3Msks6wUWlCR5wl86JdYdjulkS3LjMt7EklgayYFedVm3nio8_sop76nurkIlDVeSLZ3JL_wER_v7v-Quwms3xFkP8CrKgvJ8RJYm0l2Psle-RLY6L_6fRiCK6q2k9tGkgiNRfrmwfEb8HR0fDCW42-H-2vwrA1Nce8L38LC9ObWvvMIZ6rXox7_A40784U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cylinders+with+square+cross-section%3A+wake+instabilities+with+incidence+angle+variation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=SHEARD%2C+GREGORY+J&rft.au=FITZGERALD%2C+MATTHEW+J&rft.au=RYAN%2C+KRIS&rft.date=2009-07-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=630&rft.spage=43&rft_id=info:doi/10.1017%2FS0022112009006879&rft.externalDocID=1873636951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon