High-redshift microlensing and the spatial distribution of dark matter in the form of MACHOs
A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing b...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 475; no. 2; pp. 453 - 465 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.11.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of ≈2 for the nearby (z≈ 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account. |
---|---|
AbstractList | A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of ≈2 for the nearby (z≈ 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account. A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of \approx2 for the nearby ( z \approx 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account. A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of 2 for the nearby ( z 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of approximate to 2 for the nearby (z approximate to 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account. |
Author | Zackrisson, E. Riehm, T. |
Author_xml | – sequence: 1 givenname: E. surname: Zackrisson fullname: Zackrisson, E. organization: Tuorla Observatory, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland e-mail: ez@astro.uu.se – sequence: 2 givenname: T. surname: Riehm fullname: Riehm, T. organization: Stockholm Observatory, AlbaNova University Centre, 10691 Stockholm, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19281957$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-11707$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260485$$DView record from Swedish Publication Index |
BookMark | eNqFkc1uEzEURi1UJNLCC7DyBjYw1H9jO-yiAE2loIIEdINkOR47MczYwfaI8vZ4SEmlLmBlXfl835XuOQUnIQYLwFOMXmHU4nOEEGs45fg1QYhzgcQDMMOMkgYJxk_A7Ag8Aqc5f6sjwZLOwNeV3-6aZLu8867AwZsUexuyD1uoQwfLzsK818XrHnY-l-Q3Y_ExwOhgp9N3OOhSbII-_EFdTMP09X6xXF3lx-Ch0322T27fM_D53dtPy1Wzvrq4XC7WjWGclkYyKbExFGkjqaCMdI5KgYyTiHdGdhbPrRBYaswJkaQ1raVsLoVhzFGx0fQMvDz05p92P27UPvlBp18qaq_e-C8LFdNWjaMiHDHZVvzF__E8KozrHSv9_EDvU_wx2lzU4LOxfa-DjWNWBFEheUsr-OwW1Nno3iUdjM_HdjwnEs_bqZAcuHrqnJN1dwhSk001yVKTLPXXZg3JeyHji55MlKR9_-9oc4hWffbmuKzKU1xQ0SqJrtXH6zWV6-UHtaK_Aaeas0E |
CODEN | AAEJAF |
CitedBy_id | crossref_primary_10_3847_2041_8213_ac4dfa crossref_primary_10_1142_S0217732321500772 crossref_primary_10_1016_j_asr_2013_11_016 crossref_primary_10_1103_PhysRevD_89_063001 crossref_primary_10_1086_591659 crossref_primary_10_1051_0004_6361_202244978 crossref_primary_10_1093_mnras_stt498 crossref_primary_10_1103_PhysRevD_103_084001 crossref_primary_10_1103_PhysRevD_97_103507 |
Cites_doi | 10.1093/mnras/278.3.787 10.1086/341481 10.1086/177173 10.1016/j.physletb.2005.04.034 10.1046/j.1365-8711.1999.02202.x 10.1016/S0370-2693(99)00789-3 10.1142/9789812701848_0021 10.1086/319041 10.1086/338426 10.1046/j.1365-8711.1998.01172.x 10.1046/j.1365-8711.1999.02692.x 10.1086/345717 10.1051/0004-6361:20053135 10.1051/0004-6361:20042465 10.1111/j.1365-2966.2005.09501.x 10.1086/340303 10.1086/169575 10.1086/170098 10.1086/511849 10.1086/382071 10.1086/423992 10.1071/AS99262 10.1086/498976 10.1046/j.1365-8711.1999.02456.x 10.1103/PhysRevD.62.063505 10.1103/PhysRevD.58.063501 10.1051/0004-6361:20021762 10.1051/aas:2000190 10.1086/346205 10.1051/0004-6361:20030895 10.1086/425954 10.1086/375639 10.1086/503791 10.1086/427864 10.1051/0004-6361:20034035 10.1086/305337 10.1086/504579 10.1086/160886 10.1086/311153 10.1086/162379 10.1086/175290 10.1086/304888 10.1086/342121 10.1086/512115 10.1086/491731 10.1017/S0074180900183019 10.1086/505860 10.1086/152430 10.1017/S0074180900183287 10.1086/513700 10.1111/j.1365-2966.2004.08360.x 10.1103/PhysRevD.75.043511 10.1086/309512 10.1086/376832 10.1016/S1387-6473(98)00031-1 10.1111/j.1365-2966.2006.10043.x 10.1103/PhysRevLett.98.071302 10.1046/j.1365-8711.2003.06828.x 10.1086/306640 10.1086/508769 10.1086/317297 10.1086/305262 10.1086/309082 10.1046/j.1365-8711.2002.05061.x 10.1086/320683 10.1086/163867 10.1111/j.1365-2966.2005.08964.x 10.1086/424914 10.1046/j.1365-8711.2001.04068.x 10.1051/0004-6361:20066017 10.1038/345478a0 10.1046/j.1365-8711.2002.04939.x 10.1086/425155 10.1086/173914 10.1086/177304 10.1086/338765 10.1086/307071 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7TG KL. ADTPV AOWAS DG7 DF2 |
DOI | 10.1051/0004-6361:20066707 |
DatabaseName | Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic SwePub SwePub Articles SWEPUB Stockholms universitet SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
EndPage | 465 |
ExternalDocumentID | oai_DiVA_org_uu_260485 oai_DiVA_org_su_11707 19281957 10_1051_0004_6361_20066707 ark_67375_80W_QWL38LCP_H |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION IQODW 7TG KL. ADTPV AOWAS DG7 DF2 |
ID | FETCH-LOGICAL-c463t-84881cc30ac837342df3870cf806dc8de19e7718a1622825c5e34987c44f37ba3 |
ISSN | 0004-6361 1432-0746 |
IngestDate | Thu Aug 21 06:42:36 EDT 2025 Thu Aug 21 06:31:25 EDT 2025 Sun Aug 24 03:13:36 EDT 2025 Mon Jul 21 09:16:08 EDT 2025 Tue Jul 01 00:39:58 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Wed Oct 30 09:22:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Quasars Red shift Uncertainty Galaxies Variability Light curves Gravitational lensing Long term variation cosmology: dark matter Spatial distribution Dark matter Compact objects galaxies: quasars: general Cold dark matter Microlenses Cosmology Models Optical thickness |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c463t-84881cc30ac837342df3870cf806dc8de19e7718a1622825c5e34987c44f37ba3 |
Notes | other:2007A%26A...475..453Z ark:/67375/80W-QWL38LCP-H publisher-ID:aa6707-06 istex:538CE017F4EA88E96B55AA80758470F28E4537C7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2007/44/aa6707-06.pdf |
PQID | 20378653 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_260485 swepub_primary_oai_DiVA_org_su_11707 proquest_miscellaneous_20378653 pascalfrancis_primary_19281957 crossref_primary_10_1051_0004_6361_20066707 crossref_citationtrail_10_1051_0004_6361_20066707 istex_primary_ark_67375_80W_QWL38LCP_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-11-01 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2007 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Press (R62) 1973; 185 Gnedin (R25) 2004; 616 Hansson (R29) 2005; 616 Kayser (R39) 1997; 318 Koopmans (R42) 2000; 358 Minty (R50) 2002; 330 Lasserre (R44) 2000; 355 van den Bosch (R75) 2005; 359 R21 Holz (R37) 1998; 58 R20 Baltz (R3) 2005; 618 Metcalf (R49) 2007; 98 Fukugita (R22) 2004; 616 Hawkins (R30) 1996; 278 Sheth (R68) 1999; 308 Pooley (R61) 2007; 661 Wechsler (R78) 2002; 568 Shaw (R67) 2007; 659 Bullock (R8) 2001; 321 Calchi Novati (R9) 2005; 443 Tisserand (R72) 2007; 469 Dalcanton (R17) 1994; 424 R2 Totani (R73) 2003; 586 Navarro (R52) 1996; 462 Pei (R58) 1995; 440 Rahvar (R63) 2005; 438 Zurek (R88) 2007; 75 Wyithe (R81) 2002; 567 Griest (R27) 1991; 366 Spergel (R70) 2007; 170 Wyithe (R82) 2002; 575 Chen (R12) 2003; 592 Hawkins (R34) 2003; 344 Bryan (R7) 1998; 495 Keeton (R41) 2003; 584 Walker (R77) 1999; 16 Ostriker (R56) 1983; 267 Holley-Bockelmann (R35) 2005; 363 R36 R79 Wyithe (R80) 2002; 577 Baltz (R4) 2004; 610 Colín (R15) 2006; 644 Pelt (R59) 1998; 336 Kauffmann (R38) 1999; 303 Zakharov (R87) 2004; 420 Carr (R11) 1999; 516 Bergström (R5) 2000; 358 Mohapatra (R51) 1999; 462 Pooley (R60) 2006; 648 Kazantzidis (R40) 2004; 611 Lewis (R45) 2006; 645 Rauch (R64) 1991; 374 Zackrisson (R85) 2003; 408 R83 Metcalf (R48) 2005; 622 Chandra (R13) 2000; 62 Paczynski (R57) 1998; 494 Navarro (R53) 1997; 490 R86 Carr (R10) 1990; 345 Oguri (R55) 2006; 367 Loeb (R43) 1998; 495 Sellwood (R66) 2005; 634 Scheider (R65) 1993; 279 Lewis (R46) 2001; 549 Dobler (R18) 2006; 653 Hawkins (R31) 2000; 143 Schild (R69) 1996; 565 Hawkins (R32) 2001; 553 Blumenthal (R6) 1986; 301 Membrado (R47) 1998; 296 Han (R28) 1999; 305 Alcock (R1) 2000; 542 Gao (R23) 2004; 355 Dalal (R16) 2002; 572 Hawkins (R33) 2002; 329 R54 Turner (R74) 1984; 284 Colley (R14) 2003; 594 Eisenstein (R19) 1999; 511 Zackrisson (R84) 2003; 399 Wambsganss (R76) 2005; 635 Garnavich (R24) 2000; 544 Green (R26) 2000; 537 Tadros (R71) 2001; 42 |
References_xml | – volume: 355 start-page: L39 year: 2000 ident: R44 publication-title: A&A – volume: 318 start-page: 680 year: 1997 ident: R39 publication-title: A&A – volume: 278 start-page: 787 year: 1996 ident: R30 publication-title: MNRAS doi: 10.1093/mnras/278.3.787 – volume: 575 start-page: 650 year: 2002 ident: R82 publication-title: ApJ doi: 10.1086/341481 – volume: 462 start-page: 563 year: 1996 ident: R52 publication-title: ApJ doi: 10.1086/177173 – volume: 616 start-page: 1 year: 2005 ident: R29 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2005.04.034 – volume: 303 start-page: 188 year: 1999 ident: R38 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02202.x – volume: 462 start-page: 302 year: 1999 ident: R51 publication-title: Phys. Lett. B. doi: 10.1016/S0370-2693(99)00789-3 – ident: R20 doi: 10.1142/9789812701848_0021 – volume: 549 start-page: 46 year: 2001 ident: R46 publication-title: ApJ doi: 10.1086/319041 – volume: 567 start-page: 18 year: 2002 ident: R81 publication-title: ApJ doi: 10.1086/338426 – volume: 296 start-page: 21 year: 1998 ident: R47 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01172.x – volume: 308 start-page: 119 year: 1999 ident: R68 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02692.x – ident: R79 – volume: 584 start-page: 664 year: 2003 ident: R41 publication-title: ApJ doi: 10.1086/345717 – volume: 443 start-page: 911 year: 2005 ident: R9 publication-title: A&A doi: 10.1051/0004-6361:20053135 – volume: 438 start-page: 153 year: 2005 ident: R63 publication-title: A&A doi: 10.1051/0004-6361:20042465 – volume: 363 start-page: 991 year: 2005 ident: R35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09501.x – volume: 572 start-page: 52 year: 2002 ident: R16 publication-title: ApJ doi: 10.1086/340303 – volume: 366 start-page: 412 year: 1991 ident: R27 publication-title: ApJ doi: 10.1086/169575 – volume: 374 start-page: 83 year: 1991 ident: R64 publication-title: ApJ doi: 10.1086/170098 – volume: 659 start-page: 1082 year: 2007 ident: R67 publication-title: ApJ doi: 10.1086/511849 – volume: 610 start-page: 691 year: 2004 ident: R4 publication-title: ApJ doi: 10.1086/382071 – volume: 611 start-page: L73 year: 2004 ident: R40 publication-title: ApJ doi: 10.1086/423992 – volume: 16 start-page: 262 year: 1999 ident: R77 publication-title: PASA doi: 10.1071/AS99262 – volume: 635 start-page: 1 year: 2005 ident: R76 publication-title: ApJ doi: 10.1086/498976 – volume: 305 start-page: 795 year: 1999 ident: R28 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02456.x – volume: 62 start-page: 63505 year: 2000 ident: R13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.063505 – volume: 58 start-page: 063501 year: 1998 ident: R37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.063501 – volume: 399 start-page: 23 year: 2003 ident: R84 publication-title: A&A doi: 10.1051/0004-6361:20021762 – volume: 143 start-page: 465 year: 2000 ident: R31 publication-title: A&AS doi: 10.1051/aas:2000190 – volume: 586 start-page: 735 year: 2003 ident: R73 publication-title: ApJ doi: 10.1086/346205 – volume: 408 start-page: 17 year: 2003 ident: R85 publication-title: A&A doi: 10.1051/0004-6361:20030895 – volume: 618 start-page: 403 year: 2005 ident: R3 publication-title: ApJ doi: 10.1086/425954 – volume: 592 start-page: 24 year: 2003 ident: R12 publication-title: ApJ doi: 10.1086/375639 – volume: 644 start-page: 687 year: 2006 ident: R15 publication-title: ApJ doi: 10.1086/503791 – volume: 622 start-page: 72 year: 2005 ident: R48 publication-title: ApJ doi: 10.1086/427864 – volume: 420 start-page: 881 year: 2004 ident: R87 publication-title: A&A doi: 10.1051/0004-6361:20034035 – ident: R2 – volume: 495 start-page: 597 year: 1998 ident: R43 publication-title: ApJ doi: 10.1086/305337 – volume: 645 start-page: 835 year: 2006 ident: R45 publication-title: ApJ doi: 10.1086/504579 – volume: 267 start-page: 488 year: 1983 ident: R56 publication-title: ApJ doi: 10.1086/160886 – volume: 494 start-page: 23 year: 1998 ident: R57 publication-title: ApJ doi: 10.1086/311153 – ident: R36 – volume: 284 start-page: 1 year: 1984 ident: R74 publication-title: ApJ doi: 10.1086/162379 – volume: 440 start-page: 485 year: 1995 ident: R58 publication-title: ApJ doi: 10.1086/175290 – volume: 358 start-page: 793 year: 2000 ident: R42 publication-title: A&A – volume: 490 start-page: 493 year: 1997 ident: R53 publication-title: ApJ doi: 10.1086/304888 – volume: 577 start-page: 615 year: 2002 ident: R80 publication-title: ApJ doi: 10.1086/342121 – volume: 661 start-page: 19 year: 2007 ident: R61 publication-title: ApJ doi: 10.1086/512115 – volume: 634 start-page: 70 year: 2005 ident: R66 publication-title: ApJ doi: 10.1086/491731 – ident: R86 doi: 10.1017/S0074180900183019 – volume: 648 start-page: 67 year: 2006 ident: R60 publication-title: ApJ doi: 10.1086/505860 – volume: 185 start-page: 397 year: 1973 ident: R62 publication-title: ApJ doi: 10.1086/152430 – ident: R21 doi: 10.1017/S0074180900183287 – volume: 170 start-page: 377 year: 2007 ident: R70 publication-title: ApJS doi: 10.1086/513700 – volume: 355 start-page: 819 year: 2004 ident: R23 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08360.x – volume: 75 start-page: 043511 year: 2007 ident: R88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.043511 – volume: 542 start-page: 281 year: 2000 ident: R1 publication-title: ApJ doi: 10.1086/309512 – volume: 594 start-page: 97 year: 2003 ident: R14 publication-title: ApJ doi: 10.1086/376832 – volume: 42 start-page: 115 year: 2001 ident: R71 publication-title: New Astron. Rev. doi: 10.1016/S1387-6473(98)00031-1 – volume: 279 start-page: 1 year: 1993 ident: R65 publication-title: A&A – volume: 367 start-page: 1241 year: 2006 ident: R55 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10043.x – volume: 98 start-page: 071302 year: 2007 ident: R49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.071302 – volume: 344 start-page: 492 year: 2003 ident: R34 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06828.x – ident: R54 – volume: 511 start-page: 5 year: 1999 ident: R19 publication-title: ApJ doi: 10.1086/306640 – volume: 653 start-page: 1391 year: 2006 ident: R18 publication-title: ApJ doi: 10.1086/508769 – volume: 544 start-page: L11 year: 2000 ident: R24 publication-title: ApJ doi: 10.1086/317297 – volume: 495 start-page: 80 year: 1998 ident: R7 publication-title: ApJ doi: 10.1086/305262 – volume: 537 start-page: 708 year: 2000 ident: R26 publication-title: ApJ doi: 10.1086/309082 – volume: 330 start-page: 378 year: 2002 ident: R50 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05061.x – volume: 553 start-page: L97 year: 2001 ident: R32 publication-title: ApJ doi: 10.1086/320683 – volume: 301 start-page: 27 year: 1986 ident: R6 publication-title: ApJ doi: 10.1086/163867 – volume: 359 start-page: 1029 year: 2005 ident: R75 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08964.x – volume: 336 start-page: 829 year: 1998 ident: R59 publication-title: A&A – volume: 616 start-page: 16 year: 2004 ident: R25 publication-title: ApJ doi: 10.1086/424914 – ident: R83 – volume: 321 start-page: 559 year: 2001 ident: R8 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04068.x – volume: 469 start-page: 387 year: 2007 ident: R72 publication-title: A&A doi: 10.1051/0004-6361:20066017 – volume: 358 start-page: 13 year: 2000 ident: R5 publication-title: A&A – volume: 345 start-page: 478 year: 1990 ident: R10 publication-title: Nature doi: 10.1038/345478a0 – volume: 329 start-page: 76 year: 2002 ident: R33 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.04939.x – volume: 616 start-page: 643 year: 2004 ident: R22 publication-title: ApJ doi: 10.1086/425155 – volume: 424 start-page: 550 year: 1994 ident: R17 publication-title: ApJ doi: 10.1086/173914 – volume: 565 start-page: 125 year: 1996 ident: R69 publication-title: ApJ doi: 10.1086/177304 – volume: 568 start-page: 52 year: 2002 ident: R78 publication-title: ApJ doi: 10.1086/338765 – volume: 516 start-page: 195 year: 1999 ident: R11 publication-title: ApJ doi: 10.1086/307071 |
SSID | ssj0002183 |
Score | 1.9453636 |
Snippet | A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects... |
SourceID | swepub proquest pascalfrancis crossref istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 453 |
SubjectTerms | Astronomi Astronomi och astrofysik Astronomy Astronomy and astrophysics cosmology : dark matter cosmology: dark matter -- gravitational lensing -- galaxies: quasars: general Earth, ocean, space Exact sciences and technology Fysik galaxies : quasars : general gravitational lensing NATURAL SCIENCES NATURVETENSKAP Physics |
Title | High-redshift microlensing and the spatial distribution of dark matter in the form of MACHOs |
URI | https://api.istex.fr/ark:/67375/80W-QWL38LCP-H/fulltext.pdf https://www.proquest.com/docview/20378653 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-11707 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260485 |
Volume | 475 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgExIvCAZo5cfww9hLlZHETuLwVhVQQQMG6tiEkCzXcVi1NUVNKiEe-Nu5s5MsEdM0eKnSxHGqfJ-vZ_u-O0J249AwrcPES7XJPZ75AuwgFx7jaT7TcRSYEMXJ7z_EkyP-7iQ6aWq21-qSaravf12qK_kfVOEc4Ioq2X9Atu0UTsAx4AufgDB8XgtjDNLwViYrT-d5NVxgbN05BqTXukP0KUuMmHYbMW1tK3QQM7U6Gy5scs0m1BHdVxsRMxpPPpZdr3VU4oL5cuFyNSn85lZE7JKty5jVWVL4qvQZ2I5aywWWtlUDfZ6bU0vA6X5vuSGpdXddE8q9mLkM6o0J5a76Sc2VsGMQuUsF_JehBlvgIhtdZ_Be7S5Q4krgXpIC-9X8y0guV9_lei1hDsZFdJNshjA3sArvt7_bv1_0-dycx3Vt5WUMQ2x5XKum4OEv2usvmwf3PJNNHGQ_MVJWlTBYclflpD8N6aaWte7I9C65U88j6MiR4h65YYotst0CRffoqAPTFrl16I7uk2891tAuayjAS4EKtGYN7bKGLnOKrKGONXRe2KbIGrzkWPOAHL15PR1PvLrGhqd5zCpPgAEPtGa-0oIljIdZzsCE61z4caZFZoLUJOC_qCAOUeasIwPDWCSa85wlM8Ueko1iWZhtQtM4A282UrPcNzwPudI84irIWGLSMIv8AQma9yt1nYAe66CcSxsIEQUYCMElYiIbTAZk2N7zw6VfubL1noWtbQovBQMXk0gK_1h-Oj5g4mB8KCcDstPD9aLv1G4sQ0_PGqAl2FvcRFOFWa5LeBZLRByxAdl1-Lf39lharjGNPv6k51c1a8n86JrtHpPbF6PyCdmoVmvzFNziarZjh8Ef_dG0Cg |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-redshift+microlensing+and+the+spatial+distribution+of+dark+matter+in+the+form+of+MACHOs&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Zackrisson%2C+Erik&rft.au=Riehm%2C+T.&rft.date=2007-11-01&rft.issn=0004-6361&rft.volume=475&rft.issue=2&rft.spage=453&rft_id=info:doi/10.1051%2F0004-6361%3A20066707&rft.externalDocID=oai_DiVA_org_uu_260485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |