High-redshift microlensing and the spatial distribution of dark matter in the form of MACHOs

A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing b...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 475; no. 2; pp. 453 - 465
Main Authors Zackrisson, E., Riehm, T.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of ≈2 for the nearby (z≈ 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account.
AbstractList A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of ≈2 for the nearby (z≈ 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account.
A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of \approx2 for the nearby ( z \approx 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account.
A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of 2 for the nearby ( z 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account
A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects as they pass through the line of sight to background light sources. So far, most attempts to model the effects of high-redshift microlensing by a cosmologically distributed population of MACHOs have assumed the compact objects to be randomly and uniformly distributed along the line of sight. Here, we present a more realistic model, in which the MACHOs are assumed to follow the spatial clustering of cold dark matter. Because of sightline-to-sightline variations in surface mass density, this scenario leads to substantial scatter in MACHO optical depths, which we quantify as a function of source redshift. We find that while optical depth estimates based on a uniform line-of-sight distribution are reasonable for the highest-redshift light sources, such estimates can be incorrect by a factor of approximate to 2 for the nearby (z approximate to 0.25) Universe. Hence, attempts to derive the cosmological density of MACHOs from microlensing observations of only a few independent sightlines can be subject to substantial uncertainties. We also apply this model to the prediction of microlensing-induced variability in quasars not subject to macrolensing, and demonstrate that relaxing the assumption of randomly and uniformly distributed MACHOs only has a modest impact on the predicted light curve amplitudes. This implies that the previously reported problems with microlensing as the dominant mechanism for the observed long-term optical variability of quasars cannot be solved by taking the large-scale clustering of dark matter into account.
Author Zackrisson, E.
Riehm, T.
Author_xml – sequence: 1
  givenname: E.
  surname: Zackrisson
  fullname: Zackrisson, E.
  organization: Tuorla Observatory, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland e-mail: ez@astro.uu.se
– sequence: 2
  givenname: T.
  surname: Riehm
  fullname: Riehm, T.
  organization: Stockholm Observatory, AlbaNova University Centre, 10691 Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19281957$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-11707$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260485$$DView record from Swedish Publication Index
BookMark eNqFkc1uEzEURi1UJNLCC7DyBjYw1H9jO-yiAE2loIIEdINkOR47MczYwfaI8vZ4SEmlLmBlXfl835XuOQUnIQYLwFOMXmHU4nOEEGs45fg1QYhzgcQDMMOMkgYJxk_A7Ag8Aqc5f6sjwZLOwNeV3-6aZLu8867AwZsUexuyD1uoQwfLzsK818XrHnY-l-Q3Y_ExwOhgp9N3OOhSbII-_EFdTMP09X6xXF3lx-Ch0322T27fM_D53dtPy1Wzvrq4XC7WjWGclkYyKbExFGkjqaCMdI5KgYyTiHdGdhbPrRBYaswJkaQ1raVsLoVhzFGx0fQMvDz05p92P27UPvlBp18qaq_e-C8LFdNWjaMiHDHZVvzF__E8KozrHSv9_EDvU_wx2lzU4LOxfa-DjWNWBFEheUsr-OwW1Nno3iUdjM_HdjwnEs_bqZAcuHrqnJN1dwhSk001yVKTLPXXZg3JeyHji55MlKR9_-9oc4hWffbmuKzKU1xQ0SqJrtXH6zWV6-UHtaK_Aaeas0E
CODEN AAEJAF
CitedBy_id crossref_primary_10_3847_2041_8213_ac4dfa
crossref_primary_10_1142_S0217732321500772
crossref_primary_10_1016_j_asr_2013_11_016
crossref_primary_10_1103_PhysRevD_89_063001
crossref_primary_10_1086_591659
crossref_primary_10_1051_0004_6361_202244978
crossref_primary_10_1093_mnras_stt498
crossref_primary_10_1103_PhysRevD_103_084001
crossref_primary_10_1103_PhysRevD_97_103507
Cites_doi 10.1093/mnras/278.3.787
10.1086/341481
10.1086/177173
10.1016/j.physletb.2005.04.034
10.1046/j.1365-8711.1999.02202.x
10.1016/S0370-2693(99)00789-3
10.1142/9789812701848_0021
10.1086/319041
10.1086/338426
10.1046/j.1365-8711.1998.01172.x
10.1046/j.1365-8711.1999.02692.x
10.1086/345717
10.1051/0004-6361:20053135
10.1051/0004-6361:20042465
10.1111/j.1365-2966.2005.09501.x
10.1086/340303
10.1086/169575
10.1086/170098
10.1086/511849
10.1086/382071
10.1086/423992
10.1071/AS99262
10.1086/498976
10.1046/j.1365-8711.1999.02456.x
10.1103/PhysRevD.62.063505
10.1103/PhysRevD.58.063501
10.1051/0004-6361:20021762
10.1051/aas:2000190
10.1086/346205
10.1051/0004-6361:20030895
10.1086/425954
10.1086/375639
10.1086/503791
10.1086/427864
10.1051/0004-6361:20034035
10.1086/305337
10.1086/504579
10.1086/160886
10.1086/311153
10.1086/162379
10.1086/175290
10.1086/304888
10.1086/342121
10.1086/512115
10.1086/491731
10.1017/S0074180900183019
10.1086/505860
10.1086/152430
10.1017/S0074180900183287
10.1086/513700
10.1111/j.1365-2966.2004.08360.x
10.1103/PhysRevD.75.043511
10.1086/309512
10.1086/376832
10.1016/S1387-6473(98)00031-1
10.1111/j.1365-2966.2006.10043.x
10.1103/PhysRevLett.98.071302
10.1046/j.1365-8711.2003.06828.x
10.1086/306640
10.1086/508769
10.1086/317297
10.1086/305262
10.1086/309082
10.1046/j.1365-8711.2002.05061.x
10.1086/320683
10.1086/163867
10.1111/j.1365-2966.2005.08964.x
10.1086/424914
10.1046/j.1365-8711.2001.04068.x
10.1051/0004-6361:20066017
10.1038/345478a0
10.1046/j.1365-8711.2002.04939.x
10.1086/425155
10.1086/173914
10.1086/177304
10.1086/338765
10.1086/307071
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7TG
KL.
ADTPV
AOWAS
DG7
DF2
DOI 10.1051/0004-6361:20066707
DatabaseName Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
EndPage 465
ExternalDocumentID oai_DiVA_org_uu_260485
oai_DiVA_org_su_11707
19281957
10_1051_0004_6361_20066707
ark_67375_80W_QWL38LCP_H
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
IQODW
7TG
KL.
ADTPV
AOWAS
DG7
DF2
ID FETCH-LOGICAL-c463t-84881cc30ac837342df3870cf806dc8de19e7718a1622825c5e34987c44f37ba3
ISSN 0004-6361
1432-0746
IngestDate Thu Aug 21 06:42:36 EDT 2025
Thu Aug 21 06:31:25 EDT 2025
Sun Aug 24 03:13:36 EDT 2025
Mon Jul 21 09:16:08 EDT 2025
Tue Jul 01 00:39:58 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Wed Oct 30 09:22:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quasars
Red shift
Uncertainty
Galaxies
Variability
Light curves
Gravitational lensing
Long term variation
cosmology: dark matter
Spatial distribution
Dark matter
Compact objects
galaxies: quasars: general
Cold dark matter
Microlenses
Cosmology
Models
Optical thickness
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-84881cc30ac837342df3870cf806dc8de19e7718a1622825c5e34987c44f37ba3
Notes other:2007A%26A...475..453Z
ark:/67375/80W-QWL38LCP-H
publisher-ID:aa6707-06
istex:538CE017F4EA88E96B55AA80758470F28E4537C7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2007/44/aa6707-06.pdf
PQID 20378653
PQPubID 23462
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_uu_260485
swepub_primary_oai_DiVA_org_su_11707
proquest_miscellaneous_20378653
pascalfrancis_primary_19281957
crossref_primary_10_1051_0004_6361_20066707
crossref_citationtrail_10_1051_0004_6361_20066707
istex_primary_ark_67375_80W_QWL38LCP_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-01
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2007
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Press (R62) 1973; 185
Gnedin (R25) 2004; 616
Hansson (R29) 2005; 616
Kayser (R39) 1997; 318
Koopmans (R42) 2000; 358
Minty (R50) 2002; 330
Lasserre (R44) 2000; 355
van den Bosch (R75) 2005; 359
R21
Holz (R37) 1998; 58
R20
Baltz (R3) 2005; 618
Metcalf (R49) 2007; 98
Fukugita (R22) 2004; 616
Hawkins (R30) 1996; 278
Sheth (R68) 1999; 308
Pooley (R61) 2007; 661
Wechsler (R78) 2002; 568
Shaw (R67) 2007; 659
Bullock (R8) 2001; 321
Calchi Novati (R9) 2005; 443
Tisserand (R72) 2007; 469
Dalcanton (R17) 1994; 424
R2
Totani (R73) 2003; 586
Navarro (R52) 1996; 462
Pei (R58) 1995; 440
Rahvar (R63) 2005; 438
Zurek (R88) 2007; 75
Wyithe (R81) 2002; 567
Griest (R27) 1991; 366
Spergel (R70) 2007; 170
Wyithe (R82) 2002; 575
Chen (R12) 2003; 592
Hawkins (R34) 2003; 344
Bryan (R7) 1998; 495
Keeton (R41) 2003; 584
Walker (R77) 1999; 16
Ostriker (R56) 1983; 267
Holley-Bockelmann (R35) 2005; 363
R36
R79
Wyithe (R80) 2002; 577
Baltz (R4) 2004; 610
Colín (R15) 2006; 644
Pelt (R59) 1998; 336
Kauffmann (R38) 1999; 303
Zakharov (R87) 2004; 420
Carr (R11) 1999; 516
Bergström (R5) 2000; 358
Mohapatra (R51) 1999; 462
Pooley (R60) 2006; 648
Kazantzidis (R40) 2004; 611
Lewis (R45) 2006; 645
Rauch (R64) 1991; 374
Zackrisson (R85) 2003; 408
R83
Metcalf (R48) 2005; 622
Chandra (R13) 2000; 62
Paczynski (R57) 1998; 494
Navarro (R53) 1997; 490
R86
Carr (R10) 1990; 345
Oguri (R55) 2006; 367
Loeb (R43) 1998; 495
Sellwood (R66) 2005; 634
Scheider (R65) 1993; 279
Lewis (R46) 2001; 549
Dobler (R18) 2006; 653
Hawkins (R31) 2000; 143
Schild (R69) 1996; 565
Hawkins (R32) 2001; 553
Blumenthal (R6) 1986; 301
Membrado (R47) 1998; 296
Han (R28) 1999; 305
Alcock (R1) 2000; 542
Gao (R23) 2004; 355
Dalal (R16) 2002; 572
Hawkins (R33) 2002; 329
R54
Turner (R74) 1984; 284
Colley (R14) 2003; 594
Eisenstein (R19) 1999; 511
Zackrisson (R84) 2003; 399
Wambsganss (R76) 2005; 635
Garnavich (R24) 2000; 544
Green (R26) 2000; 537
Tadros (R71) 2001; 42
References_xml – volume: 355
  start-page: L39
  year: 2000
  ident: R44
  publication-title: A&A
– volume: 318
  start-page: 680
  year: 1997
  ident: R39
  publication-title: A&A
– volume: 278
  start-page: 787
  year: 1996
  ident: R30
  publication-title: MNRAS
  doi: 10.1093/mnras/278.3.787
– volume: 575
  start-page: 650
  year: 2002
  ident: R82
  publication-title: ApJ
  doi: 10.1086/341481
– volume: 462
  start-page: 563
  year: 1996
  ident: R52
  publication-title: ApJ
  doi: 10.1086/177173
– volume: 616
  start-page: 1
  year: 2005
  ident: R29
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.04.034
– volume: 303
  start-page: 188
  year: 1999
  ident: R38
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02202.x
– volume: 462
  start-page: 302
  year: 1999
  ident: R51
  publication-title: Phys. Lett. B.
  doi: 10.1016/S0370-2693(99)00789-3
– ident: R20
  doi: 10.1142/9789812701848_0021
– volume: 549
  start-page: 46
  year: 2001
  ident: R46
  publication-title: ApJ
  doi: 10.1086/319041
– volume: 567
  start-page: 18
  year: 2002
  ident: R81
  publication-title: ApJ
  doi: 10.1086/338426
– volume: 296
  start-page: 21
  year: 1998
  ident: R47
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01172.x
– volume: 308
  start-page: 119
  year: 1999
  ident: R68
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02692.x
– ident: R79
– volume: 584
  start-page: 664
  year: 2003
  ident: R41
  publication-title: ApJ
  doi: 10.1086/345717
– volume: 443
  start-page: 911
  year: 2005
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361:20053135
– volume: 438
  start-page: 153
  year: 2005
  ident: R63
  publication-title: A&A
  doi: 10.1051/0004-6361:20042465
– volume: 363
  start-page: 991
  year: 2005
  ident: R35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09501.x
– volume: 572
  start-page: 52
  year: 2002
  ident: R16
  publication-title: ApJ
  doi: 10.1086/340303
– volume: 366
  start-page: 412
  year: 1991
  ident: R27
  publication-title: ApJ
  doi: 10.1086/169575
– volume: 374
  start-page: 83
  year: 1991
  ident: R64
  publication-title: ApJ
  doi: 10.1086/170098
– volume: 659
  start-page: 1082
  year: 2007
  ident: R67
  publication-title: ApJ
  doi: 10.1086/511849
– volume: 610
  start-page: 691
  year: 2004
  ident: R4
  publication-title: ApJ
  doi: 10.1086/382071
– volume: 611
  start-page: L73
  year: 2004
  ident: R40
  publication-title: ApJ
  doi: 10.1086/423992
– volume: 16
  start-page: 262
  year: 1999
  ident: R77
  publication-title: PASA
  doi: 10.1071/AS99262
– volume: 635
  start-page: 1
  year: 2005
  ident: R76
  publication-title: ApJ
  doi: 10.1086/498976
– volume: 305
  start-page: 795
  year: 1999
  ident: R28
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02456.x
– volume: 62
  start-page: 63505
  year: 2000
  ident: R13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.063505
– volume: 58
  start-page: 063501
  year: 1998
  ident: R37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.063501
– volume: 399
  start-page: 23
  year: 2003
  ident: R84
  publication-title: A&A
  doi: 10.1051/0004-6361:20021762
– volume: 143
  start-page: 465
  year: 2000
  ident: R31
  publication-title: A&AS
  doi: 10.1051/aas:2000190
– volume: 586
  start-page: 735
  year: 2003
  ident: R73
  publication-title: ApJ
  doi: 10.1086/346205
– volume: 408
  start-page: 17
  year: 2003
  ident: R85
  publication-title: A&A
  doi: 10.1051/0004-6361:20030895
– volume: 618
  start-page: 403
  year: 2005
  ident: R3
  publication-title: ApJ
  doi: 10.1086/425954
– volume: 592
  start-page: 24
  year: 2003
  ident: R12
  publication-title: ApJ
  doi: 10.1086/375639
– volume: 644
  start-page: 687
  year: 2006
  ident: R15
  publication-title: ApJ
  doi: 10.1086/503791
– volume: 622
  start-page: 72
  year: 2005
  ident: R48
  publication-title: ApJ
  doi: 10.1086/427864
– volume: 420
  start-page: 881
  year: 2004
  ident: R87
  publication-title: A&A
  doi: 10.1051/0004-6361:20034035
– ident: R2
– volume: 495
  start-page: 597
  year: 1998
  ident: R43
  publication-title: ApJ
  doi: 10.1086/305337
– volume: 645
  start-page: 835
  year: 2006
  ident: R45
  publication-title: ApJ
  doi: 10.1086/504579
– volume: 267
  start-page: 488
  year: 1983
  ident: R56
  publication-title: ApJ
  doi: 10.1086/160886
– volume: 494
  start-page: 23
  year: 1998
  ident: R57
  publication-title: ApJ
  doi: 10.1086/311153
– ident: R36
– volume: 284
  start-page: 1
  year: 1984
  ident: R74
  publication-title: ApJ
  doi: 10.1086/162379
– volume: 440
  start-page: 485
  year: 1995
  ident: R58
  publication-title: ApJ
  doi: 10.1086/175290
– volume: 358
  start-page: 793
  year: 2000
  ident: R42
  publication-title: A&A
– volume: 490
  start-page: 493
  year: 1997
  ident: R53
  publication-title: ApJ
  doi: 10.1086/304888
– volume: 577
  start-page: 615
  year: 2002
  ident: R80
  publication-title: ApJ
  doi: 10.1086/342121
– volume: 661
  start-page: 19
  year: 2007
  ident: R61
  publication-title: ApJ
  doi: 10.1086/512115
– volume: 634
  start-page: 70
  year: 2005
  ident: R66
  publication-title: ApJ
  doi: 10.1086/491731
– ident: R86
  doi: 10.1017/S0074180900183019
– volume: 648
  start-page: 67
  year: 2006
  ident: R60
  publication-title: ApJ
  doi: 10.1086/505860
– volume: 185
  start-page: 397
  year: 1973
  ident: R62
  publication-title: ApJ
  doi: 10.1086/152430
– ident: R21
  doi: 10.1017/S0074180900183287
– volume: 170
  start-page: 377
  year: 2007
  ident: R70
  publication-title: ApJS
  doi: 10.1086/513700
– volume: 355
  start-page: 819
  year: 2004
  ident: R23
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08360.x
– volume: 75
  start-page: 043511
  year: 2007
  ident: R88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.043511
– volume: 542
  start-page: 281
  year: 2000
  ident: R1
  publication-title: ApJ
  doi: 10.1086/309512
– volume: 594
  start-page: 97
  year: 2003
  ident: R14
  publication-title: ApJ
  doi: 10.1086/376832
– volume: 42
  start-page: 115
  year: 2001
  ident: R71
  publication-title: New Astron. Rev.
  doi: 10.1016/S1387-6473(98)00031-1
– volume: 279
  start-page: 1
  year: 1993
  ident: R65
  publication-title: A&A
– volume: 367
  start-page: 1241
  year: 2006
  ident: R55
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10043.x
– volume: 98
  start-page: 071302
  year: 2007
  ident: R49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.071302
– volume: 344
  start-page: 492
  year: 2003
  ident: R34
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06828.x
– ident: R54
– volume: 511
  start-page: 5
  year: 1999
  ident: R19
  publication-title: ApJ
  doi: 10.1086/306640
– volume: 653
  start-page: 1391
  year: 2006
  ident: R18
  publication-title: ApJ
  doi: 10.1086/508769
– volume: 544
  start-page: L11
  year: 2000
  ident: R24
  publication-title: ApJ
  doi: 10.1086/317297
– volume: 495
  start-page: 80
  year: 1998
  ident: R7
  publication-title: ApJ
  doi: 10.1086/305262
– volume: 537
  start-page: 708
  year: 2000
  ident: R26
  publication-title: ApJ
  doi: 10.1086/309082
– volume: 330
  start-page: 378
  year: 2002
  ident: R50
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05061.x
– volume: 553
  start-page: L97
  year: 2001
  ident: R32
  publication-title: ApJ
  doi: 10.1086/320683
– volume: 301
  start-page: 27
  year: 1986
  ident: R6
  publication-title: ApJ
  doi: 10.1086/163867
– volume: 359
  start-page: 1029
  year: 2005
  ident: R75
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08964.x
– volume: 336
  start-page: 829
  year: 1998
  ident: R59
  publication-title: A&A
– volume: 616
  start-page: 16
  year: 2004
  ident: R25
  publication-title: ApJ
  doi: 10.1086/424914
– ident: R83
– volume: 321
  start-page: 559
  year: 2001
  ident: R8
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04068.x
– volume: 469
  start-page: 387
  year: 2007
  ident: R72
  publication-title: A&A
  doi: 10.1051/0004-6361:20066017
– volume: 358
  start-page: 13
  year: 2000
  ident: R5
  publication-title: A&A
– volume: 345
  start-page: 478
  year: 1990
  ident: R10
  publication-title: Nature
  doi: 10.1038/345478a0
– volume: 329
  start-page: 76
  year: 2002
  ident: R33
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.04939.x
– volume: 616
  start-page: 643
  year: 2004
  ident: R22
  publication-title: ApJ
  doi: 10.1086/425155
– volume: 424
  start-page: 550
  year: 1994
  ident: R17
  publication-title: ApJ
  doi: 10.1086/173914
– volume: 565
  start-page: 125
  year: 1996
  ident: R69
  publication-title: ApJ
  doi: 10.1086/177304
– volume: 568
  start-page: 52
  year: 2002
  ident: R78
  publication-title: ApJ
  doi: 10.1086/338765
– volume: 516
  start-page: 195
  year: 1999
  ident: R11
  publication-title: ApJ
  doi: 10.1086/307071
SSID ssj0002183
Score 1.9453636
Snippet A substantial part of the dark matter of the Universe could be in the form of compact objects (MACHOs), detectable through gravitational microlensing effects...
SourceID swepub
proquest
pascalfrancis
crossref
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 453
SubjectTerms Astronomi
Astronomi och astrofysik
Astronomy
Astronomy and astrophysics
cosmology : dark matter
cosmology: dark matter -- gravitational lensing -- galaxies: quasars: general
Earth, ocean, space
Exact sciences and technology
Fysik
galaxies : quasars : general
gravitational lensing
NATURAL SCIENCES
NATURVETENSKAP
Physics
Title High-redshift microlensing and the spatial distribution of dark matter in the form of MACHOs
URI https://api.istex.fr/ark:/67375/80W-QWL38LCP-H/fulltext.pdf
https://www.proquest.com/docview/20378653
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-11707
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260485
Volume 475
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgExIvCAZo5cfww9hLlZHETuLwVhVQQQMG6tiEkCzXcVi1NUVNKiEe-Nu5s5MsEdM0eKnSxHGqfJ-vZ_u-O0J249AwrcPES7XJPZ75AuwgFx7jaT7TcRSYEMXJ7z_EkyP-7iQ6aWq21-qSaravf12qK_kfVOEc4Ioq2X9Atu0UTsAx4AufgDB8XgtjDNLwViYrT-d5NVxgbN05BqTXukP0KUuMmHYbMW1tK3QQM7U6Gy5scs0m1BHdVxsRMxpPPpZdr3VU4oL5cuFyNSn85lZE7JKty5jVWVL4qvQZ2I5aywWWtlUDfZ6bU0vA6X5vuSGpdXddE8q9mLkM6o0J5a76Sc2VsGMQuUsF_JehBlvgIhtdZ_Be7S5Q4krgXpIC-9X8y0guV9_lei1hDsZFdJNshjA3sArvt7_bv1_0-dycx3Vt5WUMQ2x5XKum4OEv2usvmwf3PJNNHGQ_MVJWlTBYclflpD8N6aaWte7I9C65U88j6MiR4h65YYotst0CRffoqAPTFrl16I7uk2891tAuayjAS4EKtGYN7bKGLnOKrKGONXRe2KbIGrzkWPOAHL15PR1PvLrGhqd5zCpPgAEPtGa-0oIljIdZzsCE61z4caZFZoLUJOC_qCAOUeasIwPDWCSa85wlM8Ueko1iWZhtQtM4A282UrPcNzwPudI84irIWGLSMIv8AQma9yt1nYAe66CcSxsIEQUYCMElYiIbTAZk2N7zw6VfubL1noWtbQovBQMXk0gK_1h-Oj5g4mB8KCcDstPD9aLv1G4sQ0_PGqAl2FvcRFOFWa5LeBZLRByxAdl1-Lf39lharjGNPv6k51c1a8n86JrtHpPbF6PyCdmoVmvzFNziarZjh8Ef_dG0Cg
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-redshift+microlensing+and+the+spatial+distribution+of+dark+matter+in+the+form+of+MACHOs&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Zackrisson%2C+Erik&rft.au=Riehm%2C+T.&rft.date=2007-11-01&rft.issn=0004-6361&rft.volume=475&rft.issue=2&rft.spage=453&rft_id=info:doi/10.1051%2F0004-6361%3A20066707&rft.externalDocID=oai_DiVA_org_uu_260485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon