Improving speech perception in noise with current focusing in cochlear implant users
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interaction...
Saved in:
Published in | Hearing research Vol. 299; pp. 29 - 36 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-5955 1878-5891 1878-5891 |
DOI | 10.1016/j.heares.2013.02.004 |
Cover
Loading…
Abstract | Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.
► Current focusing can improve speech perception in noise. ► All subjects showed a benefit with the current focused strategy. ► Experimental strategies used a long phase duration and low stimulation rate; optimization for clinical use may be beneficial. ► Experimental strategies were tested acutely; chronic testing would be useful. |
---|---|
AbstractList | Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.
► Current focusing can improve speech perception in noise. ► All subjects showed a benefit with the current focused strategy. ► Experimental strategies used a long phase duration and low stimulation rate; optimization for clinical use may be beneficial. ► Experimental strategies were tested acutely; chronic testing would be useful. Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. |
Author | Srinivasan, Arthi G. Shannon, Robert V. Padilla, Monica Landsberger, David M. |
AuthorAffiliation | a Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3 rd Street, Los Angeles, CA 90057, USA b Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA |
AuthorAffiliation_xml | – name: b Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA – name: a Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3 rd Street, Los Angeles, CA 90057, USA |
Author_xml | – sequence: 1 givenname: Arthi G. surname: Srinivasan fullname: Srinivasan, Arthi G. email: agsriniva@gmail.com organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA – sequence: 2 givenname: Monica surname: Padilla fullname: Padilla, Monica organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA – sequence: 3 givenname: Robert V. surname: Shannon fullname: Shannon, Robert V. organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA – sequence: 4 givenname: David M. surname: Landsberger fullname: Landsberger, David M. organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23467170$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctq3DAUFSUhmTz-oAQvuxlHL4-lLgIlNA8IdDN7oZGuYw225Er2hPx9ZWYS0i7SlQT3PO495wwd-eABoa8ElwST1fW2bEFHSCXFhJWYlhjzL2hBRC2WlZDkCC0wm_-yqk7RWUpbjEnFOD1Bp5TxVU1qvEDrx36IYef8c5EGANMWA0QDw-iCL5wvfHAJihc3toWZYgQ_Fk0wU5oJeWyCabu8RuH6odN5OCWI6QIdN7pLcHl4z9H67uf69mH59Ov-8fbH09LwFRuXAgMmlNNaVFZiSze0kbUVja6INJrJppG8scRoy8WGcMZYpe1GYCw5UGLZObrZyw7Tpgdr8nJRd2qIrtfxVQXt1N8T71r1HHaKrZjkdZ0Fvh0EYvg9QRpV75KBLl8CYUqKMCaYzL4z9Oqj17vJW5IZ8H0PMDGkFKFRxo16jjFbu04RrOba1Fbta1NzbQpTlWvLZP4P-U3_P7RDAJBD3jmIKhkH3oB1EcyobHCfC_wBeiu1mA |
CitedBy_id | crossref_primary_10_1097_AUD_0000000000000249 crossref_primary_10_1097_AUD_0000000000000404 crossref_primary_10_1016_j_heares_2014_12_004 crossref_primary_10_1080_14992027_2019_1601779 crossref_primary_10_1121_1_4931910 crossref_primary_10_1586_17434440_2014_862494 crossref_primary_10_7243_2052_6946_1_9 crossref_primary_10_1177_2331216518813811 crossref_primary_10_1007_s11517_020_02298_3 crossref_primary_10_1002_lio2_578 crossref_primary_10_1016_j_heares_2018_03_001 crossref_primary_10_1371_journal_pone_0257568 crossref_primary_10_1016_j_heares_2024_109027 crossref_primary_10_1016_j_ijporl_2014_08_025 crossref_primary_10_1177_2331216515569792 crossref_primary_10_1097_AUD_0000000000000374 crossref_primary_10_3390_audiolres14030038 crossref_primary_10_1038_s41598_021_89932_8 crossref_primary_10_1097_AUD_0000000000000530 crossref_primary_10_1080_14992027_2020_1822551 crossref_primary_10_3389_fpsyg_2017_00106 crossref_primary_10_1121_1_5079575 crossref_primary_10_1007_s10162_015_0549_1 crossref_primary_10_1097_AUD_0000000000000615 crossref_primary_10_1097_MAO_0000000000002061 crossref_primary_10_1121_1_5009602 crossref_primary_10_1016_j_heares_2019_03_012 crossref_primary_10_1016_j_heares_2016_01_002 crossref_primary_10_1016_j_heares_2016_11_017 crossref_primary_10_3390_brainsci13020250 crossref_primary_10_1088_1741_2560_12_3_036003 crossref_primary_10_1016_j_heares_2016_02_005 crossref_primary_10_1371_journal_pone_0121591 crossref_primary_10_1007_s10162_016_0582_8 crossref_primary_10_1007_s10162_017_0643_7 crossref_primary_10_1177_2331216518771176 crossref_primary_10_1121_1_4962230 crossref_primary_10_1177_23312165221143902 crossref_primary_10_1016_j_heares_2020_108091 crossref_primary_10_1097_MAO_0000000000000686 crossref_primary_10_1016_j_ijporl_2017_05_006 crossref_primary_10_1097_AUD_0000000000000463 crossref_primary_10_1093_cercor_bhac025 crossref_primary_10_1097_MAO_0000000000002861 crossref_primary_10_1121_1_5017530 crossref_primary_10_1080_14992027_2019_1601270 crossref_primary_10_1088_1741_2552_aad0a5 crossref_primary_10_1177_23312165231176157 crossref_primary_10_1016_j_heares_2020_107977 crossref_primary_10_1088_1741_2560_12_6_066005 crossref_primary_10_1007_s10162_019_00716_4 crossref_primary_10_1097_AUD_0000000000000827 crossref_primary_10_1109_TNSRE_2016_2624275 crossref_primary_10_1007_s10162_015_0511_2 crossref_primary_10_1016_j_ijporl_2023_111444 crossref_primary_10_1152_jn_00828_2018 crossref_primary_10_3389_fnins_2021_751599 crossref_primary_10_1007_s10162_020_00758_z crossref_primary_10_1016_j_heares_2018_10_018 crossref_primary_10_1016_j_heares_2021_108235 crossref_primary_10_1093_deafed_enz003 crossref_primary_10_3390_mi13071081 crossref_primary_10_1097_AUD_0000000000001282 crossref_primary_10_1007_s10162_014_0464_x crossref_primary_10_1097_AUD_0000000000000593 crossref_primary_10_1016_j_heares_2017_02_013 crossref_primary_10_1097_AUD_0000000000000597 crossref_primary_10_1016_j_heares_2014_08_006 crossref_primary_10_2139_ssrn_4186474 crossref_primary_10_1007_s10162_021_00811_5 crossref_primary_10_1016_j_heares_2015_01_005 crossref_primary_10_1007_s10162_024_00966_x crossref_primary_10_1080_14992027_2018_1508896 crossref_primary_10_1002_ccr3_5360 crossref_primary_10_1177_2331216516653389 crossref_primary_10_1121_10_0000566 crossref_primary_10_1080_14992027_2017_1308565 crossref_primary_10_1016_j_jneumeth_2023_109854 crossref_primary_10_1016_j_heares_2014_11_003 crossref_primary_10_1002_lio2_38 crossref_primary_10_1016_j_heares_2014_11_001 crossref_primary_10_1177_01455613241234821 crossref_primary_10_1177_2331216516659251 crossref_primary_10_1371_journal_pone_0165476 crossref_primary_10_1097_MAO_0000000000002884 crossref_primary_10_1097_MAO_0000000000003653 crossref_primary_10_1016_j_heliyon_2022_e11970 crossref_primary_10_1097_AUD_0000000000000566 crossref_primary_10_1097_MAO_0000000000002127 |
Cites_doi | 10.1016/j.heares.2010.09.004 10.1038/352236a0 10.1121/1.2163273 10.1121/1.1381538 10.1121/1.1537708 10.1097/AUD.0b013e31820dd3f0 10.1097/AUD.0b013e3181e1d15e 10.1016/j.heares.2008.03.006 10.1121/1.420401 10.1007/s10162-004-4026-5 10.1159/000319748 10.1080/14992020802075407 10.1097/AUD.0b013e3181c7daf4 10.1097/AUD.0b013e3181645336 10.1038/416087a 10.1097/01.mao.0000185060.74339.9d 10.1016/j.heares.2011.11.005 10.1121/1.423941 10.1016/j.heares.2011.12.009 10.1016/j.heares.2012.02.011 10.1121/1.422777 10.1121/1.2749414 10.1121/1.1944567 10.1177/1084713806296720 10.1121/1.428215 10.1007/s10162-004-5024-3 10.1121/1.408469 10.1121/1.419731 10.1097/00003446-200012000-00008 10.1152/jn.00212.2001 10.1016/j.heares.2009.04.007 10.1121/1.2436712 10.1121/1.1912375 10.1121/1.2749413 10.1080/03655230410017562 10.1097/AUD.0b013e31820fc821 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. 2013 Elsevier B.V. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. – notice: 2013 Elsevier B.V. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.heares.2013.02.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1878-5891 |
EndPage | 36 |
ExternalDocumentID | PMC3639477 23467170 10_1016_j_heares_2013_02_004 S0378595513000555 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC012152 – fundername: NIDCD NIH HHS grantid: R03-DC-010064 – fundername: NIDCD NIH HHS grantid: R01 DC001526 – fundername: NIDCD NIH HHS grantid: F31 DC011205 – fundername: NIDCD NIH HHS grantid: R03 DC010064 – fundername: NIDCD NIH HHS grantid: R01-DC-001526 – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R01 DC012152 || DC – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R03 DC010064 || DC – fundername: National Institute on Deafness and Other Communication Disorders : NIDCD grantid: R01 DC001526 || DC |
GroupedDBID | --- --K --M --Z .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO N9A NCXOZ O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K TEORI TN5 UNMZH WUQ ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c463t-80e01242785d90d2b2f97d8fa519ca39ff94fd1cad48b143335adb80094e21d3 |
IEDL.DBID | AIKHN |
ISSN | 0378-5955 1878-5891 |
IngestDate | Thu Aug 21 14:10:56 EDT 2025 Thu Sep 04 21:33:20 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Tue Jul 01 04:15:37 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Fri Feb 23 02:14:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MP SRT CI HINT SNR pps/e BEPS TP PSP PTP |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-80e01242785d90d2b2f97d8fa519ca39ff94fd1cad48b143335adb80094e21d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3639477 |
PMID | 23467170 |
PQID | 1338393337 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3639477 proquest_miscellaneous_1338393337 pubmed_primary_23467170 crossref_citationtrail_10_1016_j_heares_2013_02_004 crossref_primary_10_1016_j_heares_2013_02_004 elsevier_sciencedirect_doi_10_1016_j_heares_2013_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Hearing research |
PublicationTitleAlternate | Hear Res |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chan, Freed, Vermiglio, Soli (bib8) 2008; 47 Oba, Fu, Galvin (bib27) 2011; 32 Aronoff, Freed, Fisher, Pal, Soli (bib1) 2011; 32 Vermeire, Punte, Van de Heyning (bib37) 2010; 72 Litvak, Spahr, Saoji, Fridman (bib23) 2007; 122 Litvak, Spahr, Emadi (bib22) 2007; 122 Hughes, Abbas (bib17) 2006; 119 Srinivasan, Landsberger, Shannon (bib34) 2010; 270 Oba, 2012. Personal communication. Litvak, 2012. Personal communication. Bierer (bib3) 2007; 121 Burns, E.M., Sanborn, E.S., Shannon, R.V., Fu, Q.J, 2001. Perception of familiar melodies by implant users, Conference of Implantable Auditory Prosthesis, Vol. 81, Pacific Grove, CA. Hochmair, Nopp, Jolly, Schmidt, Schosser, Garnham, Anderson (bib18) 2006; 10 Saoji, Litvak (bib30) 2010; 31 Smith, Delgutte, Oxenham (bib32) 2002; 416 Vandali, Whitford, Plant, Clark (bib36) 2000; 21 Bonham, Litvak (bib6) 2008; 242 Fu, Shannon, Wang (bib15) 1998; 104 Bierer, Middlebrooks (bib5) 2002; 87 Friesen, Shannon, Baskent, Wang (bib11) 2001; 110 Frijns, 2012. Personal communication. Chatterjee, Shannon (bib9) 1998; 103 Fu, Galvin (bib13) 2003; 113 Bierer, Faulkner (bib4) 2010; 31 Snyder, Bierer, Middlebrooks (bib33) 2004; 5 Mens, Berenstein (bib25) 2005; 26 Shannon, Fu, Galvin (bib31) 2004 Levitt (bib21) 1971; 49 Landsberger, Padilla, Srinivasan (bib19) 2012; 284 Berenstein, Mens, Mulder, Vanpouke (bib2) 2008; 29 Henry, Turner, Behrens (bib16) 2005; 118 Wilson, Finley, Lawson, Wolford, Eddington, Rabinowitz (bib38) 1991; 352 Wilson, Lawson, Zerbi (bib39) 1995 Fu, Nogaki (bib14) 2005; 6 Zwolan, Collins, Wakefield (bib41) 1997; 102 Dorman, Loizou (bib10) 1997; 102 Nilsson, Soli, Sullivan (bib26) 1994; 95 Landsberger, Srinivasan (bib20) 2009; 254 Rosen, Faulkner, Wilkinson (bib29) 1999; 106 Srinivasan, Shannon, Landsberger (bib35) 2012; 286 Zhu, Tang, Zeng, Guan, Ye (bib40) 2011; 283 Fu (10.1016/j.heares.2013.02.004_bib14) 2005; 6 Smith (10.1016/j.heares.2013.02.004_bib32) 2002; 416 Bierer (10.1016/j.heares.2013.02.004_bib5) 2002; 87 Hochmair (10.1016/j.heares.2013.02.004_bib18) 2006; 10 Srinivasan (10.1016/j.heares.2013.02.004_bib34) 2010; 270 Fu (10.1016/j.heares.2013.02.004_bib13) 2003; 113 10.1016/j.heares.2013.02.004_bib7 Henry (10.1016/j.heares.2013.02.004_bib16) 2005; 118 Berenstein (10.1016/j.heares.2013.02.004_bib2) 2008; 29 Bierer (10.1016/j.heares.2013.02.004_bib3) 2007; 121 10.1016/j.heares.2013.02.004_bib12 Wilson (10.1016/j.heares.2013.02.004_bib38) 1991; 352 Chan (10.1016/j.heares.2013.02.004_bib8) 2008; 47 Litvak (10.1016/j.heares.2013.02.004_bib23) 2007; 122 Zwolan (10.1016/j.heares.2013.02.004_bib41) 1997; 102 Friesen (10.1016/j.heares.2013.02.004_bib11) 2001; 110 Zhu (10.1016/j.heares.2013.02.004_bib40) 2011; 283 Levitt (10.1016/j.heares.2013.02.004_bib21) 1971; 49 Oba (10.1016/j.heares.2013.02.004_bib27) 2011; 32 Rosen (10.1016/j.heares.2013.02.004_bib29) 1999; 106 Wilson (10.1016/j.heares.2013.02.004_bib39) 1995 Dorman (10.1016/j.heares.2013.02.004_bib10) 1997; 102 Litvak (10.1016/j.heares.2013.02.004_bib22) 2007; 122 Chatterjee (10.1016/j.heares.2013.02.004_bib9) 1998; 103 Srinivasan (10.1016/j.heares.2013.02.004_bib35) 2012; 286 Landsberger (10.1016/j.heares.2013.02.004_bib19) 2012; 284 Snyder (10.1016/j.heares.2013.02.004_bib33) 2004; 5 Landsberger (10.1016/j.heares.2013.02.004_bib20) 2009; 254 10.1016/j.heares.2013.02.004_bib28 Vandali (10.1016/j.heares.2013.02.004_bib36) 2000; 21 Bonham (10.1016/j.heares.2013.02.004_bib6) 2008; 242 Nilsson (10.1016/j.heares.2013.02.004_bib26) 1994; 95 Bierer (10.1016/j.heares.2013.02.004_bib4) 2010; 31 10.1016/j.heares.2013.02.004_bib24 Shannon (10.1016/j.heares.2013.02.004_bib31) 2004 Fu (10.1016/j.heares.2013.02.004_bib15) 1998; 104 Mens (10.1016/j.heares.2013.02.004_bib25) 2005; 26 Hughes (10.1016/j.heares.2013.02.004_bib17) 2006; 119 Saoji (10.1016/j.heares.2013.02.004_bib30) 2010; 31 Vermeire (10.1016/j.heares.2013.02.004_bib37) 2010; 72 Aronoff (10.1016/j.heares.2013.02.004_bib1) 2011; 32 8132902 - J Acoust Soc Am. 1994 Feb;95(2):1085-99 17672645 - J Acoust Soc Am. 2007 Aug;122(2):967-81 5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467 17407901 - J Acoust Soc Am. 2007 Mar;121(3):1642-53 16240829 - J Acoust Soc Am. 2005 Sep;118(3 Pt 1):1711-8 21412155 - Ear Hear. 2011 Jul-Aug;32(4):468-84 1857418 - Nature. 1991 Jul 18;352(6332):236-8 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 9228819 - J Acoust Soc Am. 1997 Jul;102(1):581-7 15735937 - J Assoc Res Otolaryngol. 2005 Mar;6(1):19-27 15492888 - J Assoc Res Otolaryngol. 2004 Sep;5(3):305-22 17172548 - Trends Amplif. 2006 Dec;10(4):201-19 11784764 - J Neurophysiol. 2002 Jan;87(1):478-92 9407659 - J Acoust Soc Am. 1997 Dec;102(6):3673-85 18569102 - Int J Audiol. 2008 Jun;47(6):296-310 22230370 - Hear Res. 2012 Feb;284(1-2):16-24 19383534 - Hear Res. 2009 Aug;254(1-2):34-41 22138630 - Hear Res. 2012 Jan;283(1-2):45-58 10615701 - J Acoust Soc Am. 1999 Dec;106(6):3629-36 11882898 - Nature. 2002 Mar 7;416(6876):87-90 20850513 - Hear Res. 2010 Dec 1;270(1-2):89-100 12597199 - J Acoust Soc Am. 2003 Feb;113(2):1065-72 20467321 - Ear Hear. 2010 Oct;31(5):693-701 16158665 - J Acoust Soc Am. 2005 Aug;118(2):1111-21 17672646 - J Acoust Soc Am. 2007 Aug;122(2):982-91 21389857 - Ear Hear. 2011 Sep-Oct;32(5):573-81 9857517 - J Acoust Soc Am. 1998 Dec;104(6):3586-96 18595189 - Ear Hear. 2008 Apr;29(2):250-60 18501539 - Hear Res. 2008 Aug;242(1-2):141-53 16583898 - J Acoust Soc Am. 2006 Mar;119(3):1527-37 20090533 - Ear Hear. 2010 Apr;31(2):247-58 20847579 - ORL J Otorhinolaryngol Relat Spec. 2010;72(6):305-11 11132787 - Ear Hear. 2000 Dec;21(6):608-24 9604350 - J Acoust Soc Am. 1998 May;103(5 Pt 1):2565-72 11519582 - J Acoust Soc Am. 2001 Aug;110(2):1150-63 22616092 - Hear Res. 2012 Apr;286(1-2):19-29 16151343 - Otol Neurotol. 2005 Sep;26(5):957-64 |
References_xml | – reference: Oba, 2012. Personal communication. – volume: 49 start-page: 467 year: 1971 ident: bib21 article-title: Transformed up-down methods in psychoacoustics publication-title: J. Acoust. Soc. Am. – volume: 26 start-page: 957 year: 2005 end-page: 964 ident: bib25 article-title: Speech perception with mono- and quadrupolar electrode configurations: a crossover study publication-title: Otol Neurotol. – volume: 31 start-page: 693 year: 2010 end-page: 701 ident: bib30 article-title: Use of “phantom electrode” technique to extend the range of pitches available through a cochlear implant publication-title: Ear Hear. – volume: 10 start-page: 201 year: 2006 end-page: 219 ident: bib18 article-title: Med-EL cochlear implants: state of the art and a glimpse into the future publication-title: Trends Amplif. – volume: 352 start-page: 236 year: 1991 end-page: 238 ident: bib38 article-title: Better speech recognition with cochlear implants publication-title: Nature – volume: 29 start-page: 250 year: 2008 end-page: 260 ident: bib2 article-title: Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations publication-title: Ear Hear. – volume: 102 start-page: 581 year: 1997 end-page: 587 ident: bib10 article-title: Mechanisms of vowel recognition for Ineraid patients fit with continuous interleaved sampling processors publication-title: J. Acoust. Soc. Am. – volume: 110 start-page: 1150 year: 2001 end-page: 1163 ident: bib11 article-title: Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants publication-title: J. Acoust. Soc. Am. – volume: 286 start-page: 19 year: 2012 end-page: 29 ident: bib35 article-title: Improving virtual channel discrimination in a multi-channel context publication-title: Hear. Res. – year: 1995 ident: bib39 article-title: Speech Processors for Auditory Prostheses – volume: 416 start-page: 87 year: 2002 end-page: 90 ident: bib32 article-title: Chimaeric sounds reveal dichotomies in auditory perception publication-title: Nature – volume: 31 start-page: 247 year: 2010 end-page: 258 ident: bib4 article-title: Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves publication-title: Ear Hear. – volume: 242 start-page: 141 year: 2008 end-page: 153 ident: bib6 article-title: Current focusing and steering: modeling, physiology, and psychophysics publication-title: Hear. Res. – volume: 21 start-page: 608 year: 2000 end-page: 624 ident: bib36 article-title: Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system publication-title: Ear Hear. – volume: 102 start-page: 3673 year: 1997 end-page: 3685 ident: bib41 article-title: Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects publication-title: J. Acoust. Soc. Am. – volume: 32 start-page: 468 year: 2011 end-page: 484 ident: bib1 article-title: The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise publication-title: Ear Hear. – volume: 47 start-page: 296 year: 2008 end-page: 310 ident: bib8 article-title: Evaluation of binaural functions in bilateral cochlear implant users publication-title: Int. J. Audiol. – volume: 6 start-page: 19 year: 2005 end-page: 27 ident: bib14 article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing publication-title: J. Assoc. Res. Otolaryngol. – reference: Litvak, 2012. Personal communication. – volume: 284 start-page: 16 year: 2012 end-page: 24 ident: bib19 article-title: Reducing current spread using current focusing in cochlear implant users publication-title: Hear. Res. – volume: 283 start-page: 45 year: 2011 end-page: 58 ident: bib40 article-title: Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation publication-title: Hear. Res. – volume: 119 start-page: 1527 year: 2006 end-page: 1537 ident: bib17 article-title: The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients publication-title: J. Acoust. Soc. Am. – volume: 122 start-page: 982 year: 2007 end-page: 991 ident: bib23 article-title: Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners publication-title: J. Acoust. Soc. Am. – volume: 5 start-page: 305 year: 2004 end-page: 322 ident: bib33 article-title: Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation publication-title: J. Assoc. Res. Otolaryngol. – volume: 72 start-page: 305 year: 2010 end-page: 311 ident: bib37 article-title: Better speech recognition in noise with the fine structure processing coding strategy publication-title: ORL J. Otorhinolaryngol. Relat. Spec. – volume: 118 start-page: 1111 year: 2005 end-page: 1121 ident: bib16 article-title: Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners publication-title: J. Acoust. Soc. Am. – volume: 95 start-page: 1085 year: 1994 end-page: 1099 ident: bib26 article-title: Development of the Hearing in noise test for the measurement of speech reception thresholds in quiet and in noise publication-title: J. Acoust. Soc. Am. – volume: 87 start-page: 478 year: 2002 end-page: 492 ident: bib5 article-title: Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration publication-title: J. Neurophysiol. – volume: 122 start-page: 967 year: 2007 end-page: 981 ident: bib22 article-title: Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners publication-title: J. Acoust. Soc. Am. – reference: Burns, E.M., Sanborn, E.S., Shannon, R.V., Fu, Q.J, 2001. Perception of familiar melodies by implant users, Conference of Implantable Auditory Prosthesis, Vol. 81, Pacific Grove, CA. – volume: 106 start-page: 3629 year: 1999 end-page: 3636 ident: bib29 article-title: Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants publication-title: J. Acoust. Soc. Am. – volume: 103 start-page: 2565 year: 1998 end-page: 2572 ident: bib9 article-title: Forward masked excitation patterns in multielectrode electrical stimulation publication-title: J. Acoust. Soc. Am. – volume: 270 start-page: 89 year: 2010 end-page: 100 ident: bib34 article-title: Current focusing sharpens local peaks of excitation in cochlear implant stimulation publication-title: Hear. Res. – volume: 121 start-page: 1642 year: 2007 end-page: 1653 ident: bib3 article-title: Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration publication-title: J. Acoust. Soc. Am. – volume: 113 start-page: 1065 year: 2003 end-page: 1072 ident: bib13 article-title: The effects of short-term training for spectrally mismatched noise-band speech publication-title: J. Acoust. Soc. Am. – volume: 104 start-page: 3586 year: 1998 end-page: 3596 ident: bib15 article-title: Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing publication-title: J. Acoust. Soc. Am. – reference: Frijns, 2012. Personal communication. – volume: 254 start-page: 34 year: 2009 end-page: 41 ident: bib20 article-title: Virtual channel discrimination is improved by current focusing in cochlear implant recipients publication-title: Hear. Res. – volume: 32 start-page: 573 year: 2011 end-page: 581 ident: bib27 article-title: Digit training in noise can improve cochlear implant users' speech understanding in noise publication-title: Ear Hear. – start-page: 50 year: 2004 end-page: 54 ident: bib31 article-title: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation publication-title: Acta Otolaryngol. Suppl. – volume: 270 start-page: 89 year: 2010 ident: 10.1016/j.heares.2013.02.004_bib34 article-title: Current focusing sharpens local peaks of excitation in cochlear implant stimulation publication-title: Hear. Res. doi: 10.1016/j.heares.2010.09.004 – volume: 352 start-page: 236 year: 1991 ident: 10.1016/j.heares.2013.02.004_bib38 article-title: Better speech recognition with cochlear implants publication-title: Nature doi: 10.1038/352236a0 – year: 1995 ident: 10.1016/j.heares.2013.02.004_bib39 – volume: 119 start-page: 1527 year: 2006 ident: 10.1016/j.heares.2013.02.004_bib17 article-title: The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2163273 – volume: 110 start-page: 1150 year: 2001 ident: 10.1016/j.heares.2013.02.004_bib11 article-title: Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1381538 – volume: 113 start-page: 1065 year: 2003 ident: 10.1016/j.heares.2013.02.004_bib13 article-title: The effects of short-term training for spectrally mismatched noise-band speech publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1537708 – volume: 32 start-page: 468 year: 2011 ident: 10.1016/j.heares.2013.02.004_bib1 article-title: The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise publication-title: Ear Hear. doi: 10.1097/AUD.0b013e31820dd3f0 – volume: 31 start-page: 693 year: 2010 ident: 10.1016/j.heares.2013.02.004_bib30 article-title: Use of “phantom electrode” technique to extend the range of pitches available through a cochlear implant publication-title: Ear Hear. doi: 10.1097/AUD.0b013e3181e1d15e – ident: 10.1016/j.heares.2013.02.004_bib7 – volume: 242 start-page: 141 year: 2008 ident: 10.1016/j.heares.2013.02.004_bib6 article-title: Current focusing and steering: modeling, physiology, and psychophysics publication-title: Hear. Res. doi: 10.1016/j.heares.2008.03.006 – volume: 102 start-page: 3673 year: 1997 ident: 10.1016/j.heares.2013.02.004_bib41 article-title: Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.420401 – volume: 5 start-page: 305 year: 2004 ident: 10.1016/j.heares.2013.02.004_bib33 article-title: Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-004-4026-5 – volume: 72 start-page: 305 year: 2010 ident: 10.1016/j.heares.2013.02.004_bib37 article-title: Better speech recognition in noise with the fine structure processing coding strategy publication-title: ORL J. Otorhinolaryngol. Relat. Spec. doi: 10.1159/000319748 – volume: 47 start-page: 296 year: 2008 ident: 10.1016/j.heares.2013.02.004_bib8 article-title: Evaluation of binaural functions in bilateral cochlear implant users publication-title: Int. J. Audiol. doi: 10.1080/14992020802075407 – volume: 31 start-page: 247 year: 2010 ident: 10.1016/j.heares.2013.02.004_bib4 article-title: Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves publication-title: Ear Hear. doi: 10.1097/AUD.0b013e3181c7daf4 – volume: 29 start-page: 250 year: 2008 ident: 10.1016/j.heares.2013.02.004_bib2 article-title: Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations publication-title: Ear Hear. doi: 10.1097/AUD.0b013e3181645336 – volume: 416 start-page: 87 year: 2002 ident: 10.1016/j.heares.2013.02.004_bib32 article-title: Chimaeric sounds reveal dichotomies in auditory perception publication-title: Nature doi: 10.1038/416087a – volume: 26 start-page: 957 year: 2005 ident: 10.1016/j.heares.2013.02.004_bib25 article-title: Speech perception with mono- and quadrupolar electrode configurations: a crossover study publication-title: Otol Neurotol. doi: 10.1097/01.mao.0000185060.74339.9d – volume: 283 start-page: 45 year: 2011 ident: 10.1016/j.heares.2013.02.004_bib40 article-title: Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation publication-title: Hear. Res. doi: 10.1016/j.heares.2011.11.005 – volume: 104 start-page: 3586 year: 1998 ident: 10.1016/j.heares.2013.02.004_bib15 article-title: Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423941 – volume: 284 start-page: 16 year: 2012 ident: 10.1016/j.heares.2013.02.004_bib19 article-title: Reducing current spread using current focusing in cochlear implant users publication-title: Hear. Res. doi: 10.1016/j.heares.2011.12.009 – volume: 286 start-page: 19 year: 2012 ident: 10.1016/j.heares.2013.02.004_bib35 article-title: Improving virtual channel discrimination in a multi-channel context publication-title: Hear. Res. doi: 10.1016/j.heares.2012.02.011 – volume: 103 start-page: 2565 year: 1998 ident: 10.1016/j.heares.2013.02.004_bib9 article-title: Forward masked excitation patterns in multielectrode electrical stimulation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.422777 – ident: 10.1016/j.heares.2013.02.004_bib12 – volume: 122 start-page: 967 year: 2007 ident: 10.1016/j.heares.2013.02.004_bib22 article-title: Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2749414 – volume: 118 start-page: 1111 year: 2005 ident: 10.1016/j.heares.2013.02.004_bib16 article-title: Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1944567 – volume: 10 start-page: 201 year: 2006 ident: 10.1016/j.heares.2013.02.004_bib18 article-title: Med-EL cochlear implants: state of the art and a glimpse into the future publication-title: Trends Amplif. doi: 10.1177/1084713806296720 – volume: 106 start-page: 3629 year: 1999 ident: 10.1016/j.heares.2013.02.004_bib29 article-title: Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.428215 – ident: 10.1016/j.heares.2013.02.004_bib24 – volume: 6 start-page: 19 year: 2005 ident: 10.1016/j.heares.2013.02.004_bib14 article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-004-5024-3 – volume: 95 start-page: 1085 year: 1994 ident: 10.1016/j.heares.2013.02.004_bib26 article-title: Development of the Hearing in noise test for the measurement of speech reception thresholds in quiet and in noise publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.408469 – volume: 102 start-page: 581 year: 1997 ident: 10.1016/j.heares.2013.02.004_bib10 article-title: Mechanisms of vowel recognition for Ineraid patients fit with continuous interleaved sampling processors publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419731 – volume: 21 start-page: 608 year: 2000 ident: 10.1016/j.heares.2013.02.004_bib36 article-title: Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system publication-title: Ear Hear. doi: 10.1097/00003446-200012000-00008 – volume: 87 start-page: 478 year: 2002 ident: 10.1016/j.heares.2013.02.004_bib5 article-title: Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration publication-title: J. Neurophysiol. doi: 10.1152/jn.00212.2001 – volume: 254 start-page: 34 year: 2009 ident: 10.1016/j.heares.2013.02.004_bib20 article-title: Virtual channel discrimination is improved by current focusing in cochlear implant recipients publication-title: Hear. Res. doi: 10.1016/j.heares.2009.04.007 – volume: 121 start-page: 1642 year: 2007 ident: 10.1016/j.heares.2013.02.004_bib3 article-title: Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2436712 – volume: 49 start-page: 467 issue: Suppl 2 year: 1971 ident: 10.1016/j.heares.2013.02.004_bib21 article-title: Transformed up-down methods in psychoacoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1912375 – volume: 122 start-page: 982 year: 2007 ident: 10.1016/j.heares.2013.02.004_bib23 article-title: Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2749413 – start-page: 50 year: 2004 ident: 10.1016/j.heares.2013.02.004_bib31 article-title: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation publication-title: Acta Otolaryngol. Suppl. doi: 10.1080/03655230410017562 – ident: 10.1016/j.heares.2013.02.004_bib28 – volume: 32 start-page: 573 year: 2011 ident: 10.1016/j.heares.2013.02.004_bib27 article-title: Digit training in noise can improve cochlear implant users' speech understanding in noise publication-title: Ear Hear. doi: 10.1097/AUD.0b013e31820fc821 – reference: 16158665 - J Acoust Soc Am. 2005 Aug;118(2):1111-21 – reference: 21412155 - Ear Hear. 2011 Jul-Aug;32(4):468-84 – reference: 17407901 - J Acoust Soc Am. 2007 Mar;121(3):1642-53 – reference: 9857517 - J Acoust Soc Am. 1998 Dec;104(6):3586-96 – reference: 20850513 - Hear Res. 2010 Dec 1;270(1-2):89-100 – reference: 20090533 - Ear Hear. 2010 Apr;31(2):247-58 – reference: 15735937 - J Assoc Res Otolaryngol. 2005 Mar;6(1):19-27 – reference: 17672645 - J Acoust Soc Am. 2007 Aug;122(2):967-81 – reference: 18569102 - Int J Audiol. 2008 Jun;47(6):296-310 – reference: 11882898 - Nature. 2002 Mar 7;416(6876):87-90 – reference: 20467321 - Ear Hear. 2010 Oct;31(5):693-701 – reference: 8132902 - J Acoust Soc Am. 1994 Feb;95(2):1085-99 – reference: 5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ – reference: 19383534 - Hear Res. 2009 Aug;254(1-2):34-41 – reference: 12597199 - J Acoust Soc Am. 2003 Feb;113(2):1065-72 – reference: 15492888 - J Assoc Res Otolaryngol. 2004 Sep;5(3):305-22 – reference: 16151343 - Otol Neurotol. 2005 Sep;26(5):957-64 – reference: 16583898 - J Acoust Soc Am. 2006 Mar;119(3):1527-37 – reference: 11519582 - J Acoust Soc Am. 2001 Aug;110(2):1150-63 – reference: 17672646 - J Acoust Soc Am. 2007 Aug;122(2):982-91 – reference: 11132787 - Ear Hear. 2000 Dec;21(6):608-24 – reference: 18595189 - Ear Hear. 2008 Apr;29(2):250-60 – reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 – reference: 9228819 - J Acoust Soc Am. 1997 Jul;102(1):581-7 – reference: 16240829 - J Acoust Soc Am. 2005 Sep;118(3 Pt 1):1711-8 – reference: 22138630 - Hear Res. 2012 Jan;283(1-2):45-58 – reference: 17172548 - Trends Amplif. 2006 Dec;10(4):201-19 – reference: 9604350 - J Acoust Soc Am. 1998 May;103(5 Pt 1):2565-72 – reference: 22616092 - Hear Res. 2012 Apr;286(1-2):19-29 – reference: 11784764 - J Neurophysiol. 2002 Jan;87(1):478-92 – reference: 9407659 - J Acoust Soc Am. 1997 Dec;102(6):3673-85 – reference: 10615701 - J Acoust Soc Am. 1999 Dec;106(6):3629-36 – reference: 1857418 - Nature. 1991 Jul 18;352(6332):236-8 – reference: 21389857 - Ear Hear. 2011 Sep-Oct;32(5):573-81 – reference: 22230370 - Hear Res. 2012 Feb;284(1-2):16-24 – reference: 18501539 - Hear Res. 2008 Aug;242(1-2):141-53 – reference: 20847579 - ORL J Otorhinolaryngol Relat Spec. 2010;72(6):305-11 |
SSID | ssj0015342 |
Score | 2.3828437 |
Snippet | Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | Acoustic Stimulation Aged Auditory Threshold Cochlear Implantation - instrumentation Cochlear Implants Correction of Hearing Impairment - instrumentation Correction of Hearing Impairment - methods Deafness - diagnosis Deafness - psychology Deafness - rehabilitation Electric Stimulation Female Humans Male Middle Aged Noise - adverse effects Perceptual Masking Persons With Hearing Impairments - psychology Persons With Hearing Impairments - rehabilitation Recognition (Psychology) Signal Processing, Computer-Assisted Speech Intelligibility Speech Perception Speech Reception Threshold Test |
Title | Improving speech perception in noise with current focusing in cochlear implant users |
URI | https://dx.doi.org/10.1016/j.heares.2013.02.004 https://www.ncbi.nlm.nih.gov/pubmed/23467170 https://www.proquest.com/docview/1338393337 https://pubmed.ncbi.nlm.nih.gov/PMC3639477 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwlxQbTlsUArIyFuYZPYefi4qlotIHphkXqzbMdmU7XZiN0euPDbmXEeYqlQJa6xnTgee2bs-fwNwLvM6tIbS7ShWkeiFBKXlIgjg71OpDG-dAEge5kvvolPV9nVHpwNd2EIVtnr_k6nB23dP5n1ozlr63r2NeYFkXNlFJAh2qp9OEi5zLMJHMw_fl5cjsGEjIsumIAbJmow3KALMK-QN5p4uxPekXeKf1mo-x7o30DKPyzTxVN40ruUbN71-hD2XHMEx_MGt9O3P9l7FkCe4fT8CB596WPpx7AczxPYpnXOrlg7glxY3bBmXW8co3NaZjsSJ-bXlnDy36kYFemKUk6w-ra9QfEwOu7YPIPlxfnybBH1ORYiK3K-RQPl0ERRvo2sknGVmtTLoiq9Rs_Oai69l8JXidWVKA36VpxnujIlARJdmlT8OUyadeNeApNV7rnLfWEcbuk0vim2hqfOZIlDveKmwIdhVbbnH6c0GDdqAJpdq04YioSh4lShMKYQja3ajn_jgfrFIDG1M48UmogHWr4dBKxwiVHcRDdufbdRYRsv8deLKbzoBD72JeVoaZIixu_uTIWxAtF375Y09SrQeHN0DkVRvPrvHr-Gx2lIzkHwyzcw2f64cyfoIm3NKex_-JWc9gvhN9nzEz0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuqA8oCwVcCXELm8TOOjlWFdUCbS9spd4s27G7qdps1N0eeuG3M-M8xIJQJa6xnTgeex72528APmZW595Yog3VOhK5KHBJiTgy2OukMMbnLgBkzyfTC_HtMrvcgOP-LgzBKjvd3-r0oK27J-NuNMdNVY1_xFwSOVdGBzJEW_UEtkTGJeH6Pv8ccB64okV7lIDhElXv788FkFfIGk2s3QlvqTvFv-zT3_7nnzDK3-zSyTa86BxKdtT2eQc2XL0Le0c1BtO3D-wTCxDPsHe-C0_PupP0PZgNuwls2Thn56wZIC6sqlm9qJaO0S4tsy2FE_MLSyj5KypGNTqnhBOsum1uUDiMNjuWL2F28mV2PI26DAuRFRO-QvPk0EBRto2sLOIyNakvZJl7jX6d1bzwvhC-TKwuRW7Qs-I806XJCY7o0qTkr2CzXtTuNbCinHjuJl4ahwGdxjfF1vDUmSxxqFXcCHg_rMp27OOUBONG9TCza9UKQ5EwVJwqFMYIoqFV07JvPFJf9hJTa7NIoYF4pOVhL2CFC4xOTXTtFvdLFYL4An9djmC_FfjQl5SjnUlkjN9dmwpDBSLvXi-pq3kg8eboGgop3_x3jz_As-ns7FSdfj3__haepyFNBwExD2BzdXfv3qGztDLvw2L4BTXeFAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+speech+perception+in+noise+with+current+focusing+in+cochlear+implant+users&rft.jtitle=Hearing+research&rft.au=Srinivasan%2C+Arthi+G.&rft.au=Padilla%2C+Monica&rft.au=Shannon%2C+Robert+V.&rft.au=Landsberger%2C+David+M.&rft.date=2013-05-01&rft.issn=0378-5955&rft.volume=299&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.heares.2013.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heares_2013_02_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon |