Improving speech perception in noise with current focusing in cochlear implant users

Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interaction...

Full description

Saved in:
Bibliographic Details
Published inHearing research Vol. 299; pp. 29 - 36
Main Authors Srinivasan, Arthi G., Padilla, Monica, Shannon, Robert V., Landsberger, David M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2013
Subjects
Online AccessGet full text
ISSN0378-5955
1878-5891
1878-5891
DOI10.1016/j.heares.2013.02.004

Cover

Loading…
Abstract Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. ► Current focusing can improve speech perception in noise. ► All subjects showed a benefit with the current focused strategy. ► Experimental strategies used a long phase duration and low stimulation rate; optimization for clinical use may be beneficial. ► Experimental strategies were tested acutely; chronic testing would be useful.
AbstractList Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. ► Current focusing can improve speech perception in noise. ► All subjects showed a benefit with the current focused strategy. ► Experimental strategies used a long phase duration and low stimulation rate; optimization for clinical use may be beneficial. ► Experimental strategies were tested acutely; chronic testing would be useful.
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical.
Author Srinivasan, Arthi G.
Shannon, Robert V.
Padilla, Monica
Landsberger, David M.
AuthorAffiliation a Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3 rd Street, Los Angeles, CA 90057, USA
b Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
AuthorAffiliation_xml – name: b Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
– name: a Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3 rd Street, Los Angeles, CA 90057, USA
Author_xml – sequence: 1
  givenname: Arthi G.
  surname: Srinivasan
  fullname: Srinivasan, Arthi G.
  email: agsriniva@gmail.com
  organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
– sequence: 2
  givenname: Monica
  surname: Padilla
  fullname: Padilla, Monica
  organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
– sequence: 3
  givenname: Robert V.
  surname: Shannon
  fullname: Shannon, Robert V.
  organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
– sequence: 4
  givenname: David M.
  surname: Landsberger
  fullname: Landsberger, David M.
  organization: Department of Communication and Auditory Neuroscience, House Research Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23467170$$D View this record in MEDLINE/PubMed
BookMark eNqFUctq3DAUFSUhmTz-oAQvuxlHL4-lLgIlNA8IdDN7oZGuYw225Er2hPx9ZWYS0i7SlQT3PO495wwd-eABoa8ElwST1fW2bEFHSCXFhJWYlhjzL2hBRC2WlZDkCC0wm_-yqk7RWUpbjEnFOD1Bp5TxVU1qvEDrx36IYef8c5EGANMWA0QDw-iCL5wvfHAJihc3toWZYgQ_Fk0wU5oJeWyCabu8RuH6odN5OCWI6QIdN7pLcHl4z9H67uf69mH59Ov-8fbH09LwFRuXAgMmlNNaVFZiSze0kbUVja6INJrJppG8scRoy8WGcMZYpe1GYCw5UGLZObrZyw7Tpgdr8nJRd2qIrtfxVQXt1N8T71r1HHaKrZjkdZ0Fvh0EYvg9QRpV75KBLl8CYUqKMCaYzL4z9Oqj17vJW5IZ8H0PMDGkFKFRxo16jjFbu04RrOba1Fbta1NzbQpTlWvLZP4P-U3_P7RDAJBD3jmIKhkH3oB1EcyobHCfC_wBeiu1mA
CitedBy_id crossref_primary_10_1097_AUD_0000000000000249
crossref_primary_10_1097_AUD_0000000000000404
crossref_primary_10_1016_j_heares_2014_12_004
crossref_primary_10_1080_14992027_2019_1601779
crossref_primary_10_1121_1_4931910
crossref_primary_10_1586_17434440_2014_862494
crossref_primary_10_7243_2052_6946_1_9
crossref_primary_10_1177_2331216518813811
crossref_primary_10_1007_s11517_020_02298_3
crossref_primary_10_1002_lio2_578
crossref_primary_10_1016_j_heares_2018_03_001
crossref_primary_10_1371_journal_pone_0257568
crossref_primary_10_1016_j_heares_2024_109027
crossref_primary_10_1016_j_ijporl_2014_08_025
crossref_primary_10_1177_2331216515569792
crossref_primary_10_1097_AUD_0000000000000374
crossref_primary_10_3390_audiolres14030038
crossref_primary_10_1038_s41598_021_89932_8
crossref_primary_10_1097_AUD_0000000000000530
crossref_primary_10_1080_14992027_2020_1822551
crossref_primary_10_3389_fpsyg_2017_00106
crossref_primary_10_1121_1_5079575
crossref_primary_10_1007_s10162_015_0549_1
crossref_primary_10_1097_AUD_0000000000000615
crossref_primary_10_1097_MAO_0000000000002061
crossref_primary_10_1121_1_5009602
crossref_primary_10_1016_j_heares_2019_03_012
crossref_primary_10_1016_j_heares_2016_01_002
crossref_primary_10_1016_j_heares_2016_11_017
crossref_primary_10_3390_brainsci13020250
crossref_primary_10_1088_1741_2560_12_3_036003
crossref_primary_10_1016_j_heares_2016_02_005
crossref_primary_10_1371_journal_pone_0121591
crossref_primary_10_1007_s10162_016_0582_8
crossref_primary_10_1007_s10162_017_0643_7
crossref_primary_10_1177_2331216518771176
crossref_primary_10_1121_1_4962230
crossref_primary_10_1177_23312165221143902
crossref_primary_10_1016_j_heares_2020_108091
crossref_primary_10_1097_MAO_0000000000000686
crossref_primary_10_1016_j_ijporl_2017_05_006
crossref_primary_10_1097_AUD_0000000000000463
crossref_primary_10_1093_cercor_bhac025
crossref_primary_10_1097_MAO_0000000000002861
crossref_primary_10_1121_1_5017530
crossref_primary_10_1080_14992027_2019_1601270
crossref_primary_10_1088_1741_2552_aad0a5
crossref_primary_10_1177_23312165231176157
crossref_primary_10_1016_j_heares_2020_107977
crossref_primary_10_1088_1741_2560_12_6_066005
crossref_primary_10_1007_s10162_019_00716_4
crossref_primary_10_1097_AUD_0000000000000827
crossref_primary_10_1109_TNSRE_2016_2624275
crossref_primary_10_1007_s10162_015_0511_2
crossref_primary_10_1016_j_ijporl_2023_111444
crossref_primary_10_1152_jn_00828_2018
crossref_primary_10_3389_fnins_2021_751599
crossref_primary_10_1007_s10162_020_00758_z
crossref_primary_10_1016_j_heares_2018_10_018
crossref_primary_10_1016_j_heares_2021_108235
crossref_primary_10_1093_deafed_enz003
crossref_primary_10_3390_mi13071081
crossref_primary_10_1097_AUD_0000000000001282
crossref_primary_10_1007_s10162_014_0464_x
crossref_primary_10_1097_AUD_0000000000000593
crossref_primary_10_1016_j_heares_2017_02_013
crossref_primary_10_1097_AUD_0000000000000597
crossref_primary_10_1016_j_heares_2014_08_006
crossref_primary_10_2139_ssrn_4186474
crossref_primary_10_1007_s10162_021_00811_5
crossref_primary_10_1016_j_heares_2015_01_005
crossref_primary_10_1007_s10162_024_00966_x
crossref_primary_10_1080_14992027_2018_1508896
crossref_primary_10_1002_ccr3_5360
crossref_primary_10_1177_2331216516653389
crossref_primary_10_1121_10_0000566
crossref_primary_10_1080_14992027_2017_1308565
crossref_primary_10_1016_j_jneumeth_2023_109854
crossref_primary_10_1016_j_heares_2014_11_003
crossref_primary_10_1002_lio2_38
crossref_primary_10_1016_j_heares_2014_11_001
crossref_primary_10_1177_01455613241234821
crossref_primary_10_1177_2331216516659251
crossref_primary_10_1371_journal_pone_0165476
crossref_primary_10_1097_MAO_0000000000002884
crossref_primary_10_1097_MAO_0000000000003653
crossref_primary_10_1016_j_heliyon_2022_e11970
crossref_primary_10_1097_AUD_0000000000000566
crossref_primary_10_1097_MAO_0000000000002127
Cites_doi 10.1016/j.heares.2010.09.004
10.1038/352236a0
10.1121/1.2163273
10.1121/1.1381538
10.1121/1.1537708
10.1097/AUD.0b013e31820dd3f0
10.1097/AUD.0b013e3181e1d15e
10.1016/j.heares.2008.03.006
10.1121/1.420401
10.1007/s10162-004-4026-5
10.1159/000319748
10.1080/14992020802075407
10.1097/AUD.0b013e3181c7daf4
10.1097/AUD.0b013e3181645336
10.1038/416087a
10.1097/01.mao.0000185060.74339.9d
10.1016/j.heares.2011.11.005
10.1121/1.423941
10.1016/j.heares.2011.12.009
10.1016/j.heares.2012.02.011
10.1121/1.422777
10.1121/1.2749414
10.1121/1.1944567
10.1177/1084713806296720
10.1121/1.428215
10.1007/s10162-004-5024-3
10.1121/1.408469
10.1121/1.419731
10.1097/00003446-200012000-00008
10.1152/jn.00212.2001
10.1016/j.heares.2009.04.007
10.1121/1.2436712
10.1121/1.1912375
10.1121/1.2749413
10.1080/03655230410017562
10.1097/AUD.0b013e31820fc821
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
2013 Elsevier B.V. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
– notice: 2013 Elsevier B.V. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.heares.2013.02.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5891
EndPage 36
ExternalDocumentID PMC3639477
23467170
10_1016_j_heares_2013_02_004
S0378595513000555
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC012152
– fundername: NIDCD NIH HHS
  grantid: R03-DC-010064
– fundername: NIDCD NIH HHS
  grantid: R01 DC001526
– fundername: NIDCD NIH HHS
  grantid: F31 DC011205
– fundername: NIDCD NIH HHS
  grantid: R03 DC010064
– fundername: NIDCD NIH HHS
  grantid: R01-DC-001526
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R01 DC012152 || DC
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R03 DC010064 || DC
– fundername: National Institute on Deafness and Other Communication Disorders : NIDCD
  grantid: R01 DC001526 || DC
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TEORI
TN5
UNMZH
WUQ
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c463t-80e01242785d90d2b2f97d8fa519ca39ff94fd1cad48b143335adb80094e21d3
IEDL.DBID AIKHN
ISSN 0378-5955
1878-5891
IngestDate Thu Aug 21 14:10:56 EDT 2025
Thu Sep 04 21:33:20 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Tue Jul 01 04:15:37 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Fri Feb 23 02:14:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MP
SRT
CI
HINT
SNR
pps/e
BEPS
TP
PSP
PTP
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-80e01242785d90d2b2f97d8fa519ca39ff94fd1cad48b143335adb80094e21d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3639477
PMID 23467170
PQID 1338393337
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3639477
proquest_miscellaneous_1338393337
pubmed_primary_23467170
crossref_citationtrail_10_1016_j_heares_2013_02_004
crossref_primary_10_1016_j_heares_2013_02_004
elsevier_sciencedirect_doi_10_1016_j_heares_2013_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Hearing research
PublicationTitleAlternate Hear Res
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chan, Freed, Vermiglio, Soli (bib8) 2008; 47
Oba, Fu, Galvin (bib27) 2011; 32
Aronoff, Freed, Fisher, Pal, Soli (bib1) 2011; 32
Vermeire, Punte, Van de Heyning (bib37) 2010; 72
Litvak, Spahr, Saoji, Fridman (bib23) 2007; 122
Litvak, Spahr, Emadi (bib22) 2007; 122
Hughes, Abbas (bib17) 2006; 119
Srinivasan, Landsberger, Shannon (bib34) 2010; 270
Oba, 2012. Personal communication.
Litvak, 2012. Personal communication.
Bierer (bib3) 2007; 121
Burns, E.M., Sanborn, E.S., Shannon, R.V., Fu, Q.J, 2001. Perception of familiar melodies by implant users, Conference of Implantable Auditory Prosthesis, Vol. 81, Pacific Grove, CA.
Hochmair, Nopp, Jolly, Schmidt, Schosser, Garnham, Anderson (bib18) 2006; 10
Saoji, Litvak (bib30) 2010; 31
Smith, Delgutte, Oxenham (bib32) 2002; 416
Vandali, Whitford, Plant, Clark (bib36) 2000; 21
Bonham, Litvak (bib6) 2008; 242
Fu, Shannon, Wang (bib15) 1998; 104
Bierer, Middlebrooks (bib5) 2002; 87
Friesen, Shannon, Baskent, Wang (bib11) 2001; 110
Frijns, 2012. Personal communication.
Chatterjee, Shannon (bib9) 1998; 103
Fu, Galvin (bib13) 2003; 113
Bierer, Faulkner (bib4) 2010; 31
Snyder, Bierer, Middlebrooks (bib33) 2004; 5
Mens, Berenstein (bib25) 2005; 26
Shannon, Fu, Galvin (bib31) 2004
Levitt (bib21) 1971; 49
Landsberger, Padilla, Srinivasan (bib19) 2012; 284
Berenstein, Mens, Mulder, Vanpouke (bib2) 2008; 29
Henry, Turner, Behrens (bib16) 2005; 118
Wilson, Finley, Lawson, Wolford, Eddington, Rabinowitz (bib38) 1991; 352
Wilson, Lawson, Zerbi (bib39) 1995
Fu, Nogaki (bib14) 2005; 6
Zwolan, Collins, Wakefield (bib41) 1997; 102
Dorman, Loizou (bib10) 1997; 102
Nilsson, Soli, Sullivan (bib26) 1994; 95
Landsberger, Srinivasan (bib20) 2009; 254
Rosen, Faulkner, Wilkinson (bib29) 1999; 106
Srinivasan, Shannon, Landsberger (bib35) 2012; 286
Zhu, Tang, Zeng, Guan, Ye (bib40) 2011; 283
Fu (10.1016/j.heares.2013.02.004_bib14) 2005; 6
Smith (10.1016/j.heares.2013.02.004_bib32) 2002; 416
Bierer (10.1016/j.heares.2013.02.004_bib5) 2002; 87
Hochmair (10.1016/j.heares.2013.02.004_bib18) 2006; 10
Srinivasan (10.1016/j.heares.2013.02.004_bib34) 2010; 270
Fu (10.1016/j.heares.2013.02.004_bib13) 2003; 113
10.1016/j.heares.2013.02.004_bib7
Henry (10.1016/j.heares.2013.02.004_bib16) 2005; 118
Berenstein (10.1016/j.heares.2013.02.004_bib2) 2008; 29
Bierer (10.1016/j.heares.2013.02.004_bib3) 2007; 121
10.1016/j.heares.2013.02.004_bib12
Wilson (10.1016/j.heares.2013.02.004_bib38) 1991; 352
Chan (10.1016/j.heares.2013.02.004_bib8) 2008; 47
Litvak (10.1016/j.heares.2013.02.004_bib23) 2007; 122
Zwolan (10.1016/j.heares.2013.02.004_bib41) 1997; 102
Friesen (10.1016/j.heares.2013.02.004_bib11) 2001; 110
Zhu (10.1016/j.heares.2013.02.004_bib40) 2011; 283
Levitt (10.1016/j.heares.2013.02.004_bib21) 1971; 49
Oba (10.1016/j.heares.2013.02.004_bib27) 2011; 32
Rosen (10.1016/j.heares.2013.02.004_bib29) 1999; 106
Wilson (10.1016/j.heares.2013.02.004_bib39) 1995
Dorman (10.1016/j.heares.2013.02.004_bib10) 1997; 102
Litvak (10.1016/j.heares.2013.02.004_bib22) 2007; 122
Chatterjee (10.1016/j.heares.2013.02.004_bib9) 1998; 103
Srinivasan (10.1016/j.heares.2013.02.004_bib35) 2012; 286
Landsberger (10.1016/j.heares.2013.02.004_bib19) 2012; 284
Snyder (10.1016/j.heares.2013.02.004_bib33) 2004; 5
Landsberger (10.1016/j.heares.2013.02.004_bib20) 2009; 254
10.1016/j.heares.2013.02.004_bib28
Vandali (10.1016/j.heares.2013.02.004_bib36) 2000; 21
Bonham (10.1016/j.heares.2013.02.004_bib6) 2008; 242
Nilsson (10.1016/j.heares.2013.02.004_bib26) 1994; 95
Bierer (10.1016/j.heares.2013.02.004_bib4) 2010; 31
10.1016/j.heares.2013.02.004_bib24
Shannon (10.1016/j.heares.2013.02.004_bib31) 2004
Fu (10.1016/j.heares.2013.02.004_bib15) 1998; 104
Mens (10.1016/j.heares.2013.02.004_bib25) 2005; 26
Hughes (10.1016/j.heares.2013.02.004_bib17) 2006; 119
Saoji (10.1016/j.heares.2013.02.004_bib30) 2010; 31
Vermeire (10.1016/j.heares.2013.02.004_bib37) 2010; 72
Aronoff (10.1016/j.heares.2013.02.004_bib1) 2011; 32
8132902 - J Acoust Soc Am. 1994 Feb;95(2):1085-99
17672645 - J Acoust Soc Am. 2007 Aug;122(2):967-81
5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467
17407901 - J Acoust Soc Am. 2007 Mar;121(3):1642-53
16240829 - J Acoust Soc Am. 2005 Sep;118(3 Pt 1):1711-8
21412155 - Ear Hear. 2011 Jul-Aug;32(4):468-84
1857418 - Nature. 1991 Jul 18;352(6332):236-8
1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
9228819 - J Acoust Soc Am. 1997 Jul;102(1):581-7
15735937 - J Assoc Res Otolaryngol. 2005 Mar;6(1):19-27
15492888 - J Assoc Res Otolaryngol. 2004 Sep;5(3):305-22
17172548 - Trends Amplif. 2006 Dec;10(4):201-19
11784764 - J Neurophysiol. 2002 Jan;87(1):478-92
9407659 - J Acoust Soc Am. 1997 Dec;102(6):3673-85
18569102 - Int J Audiol. 2008 Jun;47(6):296-310
22230370 - Hear Res. 2012 Feb;284(1-2):16-24
19383534 - Hear Res. 2009 Aug;254(1-2):34-41
22138630 - Hear Res. 2012 Jan;283(1-2):45-58
10615701 - J Acoust Soc Am. 1999 Dec;106(6):3629-36
11882898 - Nature. 2002 Mar 7;416(6876):87-90
20850513 - Hear Res. 2010 Dec 1;270(1-2):89-100
12597199 - J Acoust Soc Am. 2003 Feb;113(2):1065-72
20467321 - Ear Hear. 2010 Oct;31(5):693-701
16158665 - J Acoust Soc Am. 2005 Aug;118(2):1111-21
17672646 - J Acoust Soc Am. 2007 Aug;122(2):982-91
21389857 - Ear Hear. 2011 Sep-Oct;32(5):573-81
9857517 - J Acoust Soc Am. 1998 Dec;104(6):3586-96
18595189 - Ear Hear. 2008 Apr;29(2):250-60
18501539 - Hear Res. 2008 Aug;242(1-2):141-53
16583898 - J Acoust Soc Am. 2006 Mar;119(3):1527-37
20090533 - Ear Hear. 2010 Apr;31(2):247-58
20847579 - ORL J Otorhinolaryngol Relat Spec. 2010;72(6):305-11
11132787 - Ear Hear. 2000 Dec;21(6):608-24
9604350 - J Acoust Soc Am. 1998 May;103(5 Pt 1):2565-72
11519582 - J Acoust Soc Am. 2001 Aug;110(2):1150-63
22616092 - Hear Res. 2012 Apr;286(1-2):19-29
16151343 - Otol Neurotol. 2005 Sep;26(5):957-64
References_xml – reference: Oba, 2012. Personal communication.
– volume: 49
  start-page: 467
  year: 1971
  ident: bib21
  article-title: Transformed up-down methods in psychoacoustics
  publication-title: J. Acoust. Soc. Am.
– volume: 26
  start-page: 957
  year: 2005
  end-page: 964
  ident: bib25
  article-title: Speech perception with mono- and quadrupolar electrode configurations: a crossover study
  publication-title: Otol Neurotol.
– volume: 31
  start-page: 693
  year: 2010
  end-page: 701
  ident: bib30
  article-title: Use of “phantom electrode” technique to extend the range of pitches available through a cochlear implant
  publication-title: Ear Hear.
– volume: 10
  start-page: 201
  year: 2006
  end-page: 219
  ident: bib18
  article-title: Med-EL cochlear implants: state of the art and a glimpse into the future
  publication-title: Trends Amplif.
– volume: 352
  start-page: 236
  year: 1991
  end-page: 238
  ident: bib38
  article-title: Better speech recognition with cochlear implants
  publication-title: Nature
– volume: 29
  start-page: 250
  year: 2008
  end-page: 260
  ident: bib2
  article-title: Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations
  publication-title: Ear Hear.
– volume: 102
  start-page: 581
  year: 1997
  end-page: 587
  ident: bib10
  article-title: Mechanisms of vowel recognition for Ineraid patients fit with continuous interleaved sampling processors
  publication-title: J. Acoust. Soc. Am.
– volume: 110
  start-page: 1150
  year: 2001
  end-page: 1163
  ident: bib11
  article-title: Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants
  publication-title: J. Acoust. Soc. Am.
– volume: 286
  start-page: 19
  year: 2012
  end-page: 29
  ident: bib35
  article-title: Improving virtual channel discrimination in a multi-channel context
  publication-title: Hear. Res.
– year: 1995
  ident: bib39
  article-title: Speech Processors for Auditory Prostheses
– volume: 416
  start-page: 87
  year: 2002
  end-page: 90
  ident: bib32
  article-title: Chimaeric sounds reveal dichotomies in auditory perception
  publication-title: Nature
– volume: 31
  start-page: 247
  year: 2010
  end-page: 258
  ident: bib4
  article-title: Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves
  publication-title: Ear Hear.
– volume: 242
  start-page: 141
  year: 2008
  end-page: 153
  ident: bib6
  article-title: Current focusing and steering: modeling, physiology, and psychophysics
  publication-title: Hear. Res.
– volume: 21
  start-page: 608
  year: 2000
  end-page: 624
  ident: bib36
  article-title: Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system
  publication-title: Ear Hear.
– volume: 102
  start-page: 3673
  year: 1997
  end-page: 3685
  ident: bib41
  article-title: Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects
  publication-title: J. Acoust. Soc. Am.
– volume: 32
  start-page: 468
  year: 2011
  end-page: 484
  ident: bib1
  article-title: The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise
  publication-title: Ear Hear.
– volume: 47
  start-page: 296
  year: 2008
  end-page: 310
  ident: bib8
  article-title: Evaluation of binaural functions in bilateral cochlear implant users
  publication-title: Int. J. Audiol.
– volume: 6
  start-page: 19
  year: 2005
  end-page: 27
  ident: bib14
  article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing
  publication-title: J. Assoc. Res. Otolaryngol.
– reference: Litvak, 2012. Personal communication.
– volume: 284
  start-page: 16
  year: 2012
  end-page: 24
  ident: bib19
  article-title: Reducing current spread using current focusing in cochlear implant users
  publication-title: Hear. Res.
– volume: 283
  start-page: 45
  year: 2011
  end-page: 58
  ident: bib40
  article-title: Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation
  publication-title: Hear. Res.
– volume: 119
  start-page: 1527
  year: 2006
  end-page: 1537
  ident: bib17
  article-title: The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients
  publication-title: J. Acoust. Soc. Am.
– volume: 122
  start-page: 982
  year: 2007
  end-page: 991
  ident: bib23
  article-title: Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
  publication-title: J. Acoust. Soc. Am.
– volume: 5
  start-page: 305
  year: 2004
  end-page: 322
  ident: bib33
  article-title: Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 72
  start-page: 305
  year: 2010
  end-page: 311
  ident: bib37
  article-title: Better speech recognition in noise with the fine structure processing coding strategy
  publication-title: ORL J. Otorhinolaryngol. Relat. Spec.
– volume: 118
  start-page: 1111
  year: 2005
  end-page: 1121
  ident: bib16
  article-title: Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners
  publication-title: J. Acoust. Soc. Am.
– volume: 95
  start-page: 1085
  year: 1994
  end-page: 1099
  ident: bib26
  article-title: Development of the Hearing in noise test for the measurement of speech reception thresholds in quiet and in noise
  publication-title: J. Acoust. Soc. Am.
– volume: 87
  start-page: 478
  year: 2002
  end-page: 492
  ident: bib5
  article-title: Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration
  publication-title: J. Neurophysiol.
– volume: 122
  start-page: 967
  year: 2007
  end-page: 981
  ident: bib22
  article-title: Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners
  publication-title: J. Acoust. Soc. Am.
– reference: Burns, E.M., Sanborn, E.S., Shannon, R.V., Fu, Q.J, 2001. Perception of familiar melodies by implant users, Conference of Implantable Auditory Prosthesis, Vol. 81, Pacific Grove, CA.
– volume: 106
  start-page: 3629
  year: 1999
  end-page: 3636
  ident: bib29
  article-title: Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants
  publication-title: J. Acoust. Soc. Am.
– volume: 103
  start-page: 2565
  year: 1998
  end-page: 2572
  ident: bib9
  article-title: Forward masked excitation patterns in multielectrode electrical stimulation
  publication-title: J. Acoust. Soc. Am.
– volume: 270
  start-page: 89
  year: 2010
  end-page: 100
  ident: bib34
  article-title: Current focusing sharpens local peaks of excitation in cochlear implant stimulation
  publication-title: Hear. Res.
– volume: 121
  start-page: 1642
  year: 2007
  end-page: 1653
  ident: bib3
  article-title: Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration
  publication-title: J. Acoust. Soc. Am.
– volume: 113
  start-page: 1065
  year: 2003
  end-page: 1072
  ident: bib13
  article-title: The effects of short-term training for spectrally mismatched noise-band speech
  publication-title: J. Acoust. Soc. Am.
– volume: 104
  start-page: 3586
  year: 1998
  end-page: 3596
  ident: bib15
  article-title: Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing
  publication-title: J. Acoust. Soc. Am.
– reference: Frijns, 2012. Personal communication.
– volume: 254
  start-page: 34
  year: 2009
  end-page: 41
  ident: bib20
  article-title: Virtual channel discrimination is improved by current focusing in cochlear implant recipients
  publication-title: Hear. Res.
– volume: 32
  start-page: 573
  year: 2011
  end-page: 581
  ident: bib27
  article-title: Digit training in noise can improve cochlear implant users' speech understanding in noise
  publication-title: Ear Hear.
– start-page: 50
  year: 2004
  end-page: 54
  ident: bib31
  article-title: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation
  publication-title: Acta Otolaryngol. Suppl.
– volume: 270
  start-page: 89
  year: 2010
  ident: 10.1016/j.heares.2013.02.004_bib34
  article-title: Current focusing sharpens local peaks of excitation in cochlear implant stimulation
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2010.09.004
– volume: 352
  start-page: 236
  year: 1991
  ident: 10.1016/j.heares.2013.02.004_bib38
  article-title: Better speech recognition with cochlear implants
  publication-title: Nature
  doi: 10.1038/352236a0
– year: 1995
  ident: 10.1016/j.heares.2013.02.004_bib39
– volume: 119
  start-page: 1527
  year: 2006
  ident: 10.1016/j.heares.2013.02.004_bib17
  article-title: The relation between electrophysiologic channel interaction and electrode pitch ranking in cochlear implant recipients
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2163273
– volume: 110
  start-page: 1150
  year: 2001
  ident: 10.1016/j.heares.2013.02.004_bib11
  article-title: Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1381538
– volume: 113
  start-page: 1065
  year: 2003
  ident: 10.1016/j.heares.2013.02.004_bib13
  article-title: The effects of short-term training for spectrally mismatched noise-band speech
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1537708
– volume: 32
  start-page: 468
  year: 2011
  ident: 10.1016/j.heares.2013.02.004_bib1
  article-title: The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0b013e31820dd3f0
– volume: 31
  start-page: 693
  year: 2010
  ident: 10.1016/j.heares.2013.02.004_bib30
  article-title: Use of “phantom electrode” technique to extend the range of pitches available through a cochlear implant
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0b013e3181e1d15e
– ident: 10.1016/j.heares.2013.02.004_bib7
– volume: 242
  start-page: 141
  year: 2008
  ident: 10.1016/j.heares.2013.02.004_bib6
  article-title: Current focusing and steering: modeling, physiology, and psychophysics
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2008.03.006
– volume: 102
  start-page: 3673
  year: 1997
  ident: 10.1016/j.heares.2013.02.004_bib41
  article-title: Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420401
– volume: 5
  start-page: 305
  year: 2004
  ident: 10.1016/j.heares.2013.02.004_bib33
  article-title: Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-004-4026-5
– volume: 72
  start-page: 305
  year: 2010
  ident: 10.1016/j.heares.2013.02.004_bib37
  article-title: Better speech recognition in noise with the fine structure processing coding strategy
  publication-title: ORL J. Otorhinolaryngol. Relat. Spec.
  doi: 10.1159/000319748
– volume: 47
  start-page: 296
  year: 2008
  ident: 10.1016/j.heares.2013.02.004_bib8
  article-title: Evaluation of binaural functions in bilateral cochlear implant users
  publication-title: Int. J. Audiol.
  doi: 10.1080/14992020802075407
– volume: 31
  start-page: 247
  year: 2010
  ident: 10.1016/j.heares.2013.02.004_bib4
  article-title: Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0b013e3181c7daf4
– volume: 29
  start-page: 250
  year: 2008
  ident: 10.1016/j.heares.2013.02.004_bib2
  article-title: Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0b013e3181645336
– volume: 416
  start-page: 87
  year: 2002
  ident: 10.1016/j.heares.2013.02.004_bib32
  article-title: Chimaeric sounds reveal dichotomies in auditory perception
  publication-title: Nature
  doi: 10.1038/416087a
– volume: 26
  start-page: 957
  year: 2005
  ident: 10.1016/j.heares.2013.02.004_bib25
  article-title: Speech perception with mono- and quadrupolar electrode configurations: a crossover study
  publication-title: Otol Neurotol.
  doi: 10.1097/01.mao.0000185060.74339.9d
– volume: 283
  start-page: 45
  year: 2011
  ident: 10.1016/j.heares.2013.02.004_bib40
  article-title: Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2011.11.005
– volume: 104
  start-page: 3586
  year: 1998
  ident: 10.1016/j.heares.2013.02.004_bib15
  article-title: Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423941
– volume: 284
  start-page: 16
  year: 2012
  ident: 10.1016/j.heares.2013.02.004_bib19
  article-title: Reducing current spread using current focusing in cochlear implant users
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2011.12.009
– volume: 286
  start-page: 19
  year: 2012
  ident: 10.1016/j.heares.2013.02.004_bib35
  article-title: Improving virtual channel discrimination in a multi-channel context
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2012.02.011
– volume: 103
  start-page: 2565
  year: 1998
  ident: 10.1016/j.heares.2013.02.004_bib9
  article-title: Forward masked excitation patterns in multielectrode electrical stimulation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.422777
– ident: 10.1016/j.heares.2013.02.004_bib12
– volume: 122
  start-page: 967
  year: 2007
  ident: 10.1016/j.heares.2013.02.004_bib22
  article-title: Loudness growth observed under partially tripolar stimulation: model and data from cochlear implant listeners
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2749414
– volume: 118
  start-page: 1111
  year: 2005
  ident: 10.1016/j.heares.2013.02.004_bib16
  article-title: Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1944567
– volume: 10
  start-page: 201
  year: 2006
  ident: 10.1016/j.heares.2013.02.004_bib18
  article-title: Med-EL cochlear implants: state of the art and a glimpse into the future
  publication-title: Trends Amplif.
  doi: 10.1177/1084713806296720
– volume: 106
  start-page: 3629
  year: 1999
  ident: 10.1016/j.heares.2013.02.004_bib29
  article-title: Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428215
– ident: 10.1016/j.heares.2013.02.004_bib24
– volume: 6
  start-page: 19
  year: 2005
  ident: 10.1016/j.heares.2013.02.004_bib14
  article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-004-5024-3
– volume: 95
  start-page: 1085
  year: 1994
  ident: 10.1016/j.heares.2013.02.004_bib26
  article-title: Development of the Hearing in noise test for the measurement of speech reception thresholds in quiet and in noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.408469
– volume: 102
  start-page: 581
  year: 1997
  ident: 10.1016/j.heares.2013.02.004_bib10
  article-title: Mechanisms of vowel recognition for Ineraid patients fit with continuous interleaved sampling processors
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.419731
– volume: 21
  start-page: 608
  year: 2000
  ident: 10.1016/j.heares.2013.02.004_bib36
  article-title: Speech perception as a function of electrical stimulation rate: using the Nucleus 24 cochlear implant system
  publication-title: Ear Hear.
  doi: 10.1097/00003446-200012000-00008
– volume: 87
  start-page: 478
  year: 2002
  ident: 10.1016/j.heares.2013.02.004_bib5
  article-title: Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00212.2001
– volume: 254
  start-page: 34
  year: 2009
  ident: 10.1016/j.heares.2013.02.004_bib20
  article-title: Virtual channel discrimination is improved by current focusing in cochlear implant recipients
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2009.04.007
– volume: 121
  start-page: 1642
  year: 2007
  ident: 10.1016/j.heares.2013.02.004_bib3
  article-title: Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2436712
– volume: 49
  start-page: 467
  issue: Suppl 2
  year: 1971
  ident: 10.1016/j.heares.2013.02.004_bib21
  article-title: Transformed up-down methods in psychoacoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1912375
– volume: 122
  start-page: 982
  year: 2007
  ident: 10.1016/j.heares.2013.02.004_bib23
  article-title: Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2749413
– start-page: 50
  year: 2004
  ident: 10.1016/j.heares.2013.02.004_bib31
  article-title: The number of spectral channels required for speech recognition depends on the difficulty of the listening situation
  publication-title: Acta Otolaryngol. Suppl.
  doi: 10.1080/03655230410017562
– ident: 10.1016/j.heares.2013.02.004_bib28
– volume: 32
  start-page: 573
  year: 2011
  ident: 10.1016/j.heares.2013.02.004_bib27
  article-title: Digit training in noise can improve cochlear implant users' speech understanding in noise
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0b013e31820fc821
– reference: 16158665 - J Acoust Soc Am. 2005 Aug;118(2):1111-21
– reference: 21412155 - Ear Hear. 2011 Jul-Aug;32(4):468-84
– reference: 17407901 - J Acoust Soc Am. 2007 Mar;121(3):1642-53
– reference: 9857517 - J Acoust Soc Am. 1998 Dec;104(6):3586-96
– reference: 20850513 - Hear Res. 2010 Dec 1;270(1-2):89-100
– reference: 20090533 - Ear Hear. 2010 Apr;31(2):247-58
– reference: 15735937 - J Assoc Res Otolaryngol. 2005 Mar;6(1):19-27
– reference: 17672645 - J Acoust Soc Am. 2007 Aug;122(2):967-81
– reference: 18569102 - Int J Audiol. 2008 Jun;47(6):296-310
– reference: 11882898 - Nature. 2002 Mar 7;416(6876):87-90
– reference: 20467321 - Ear Hear. 2010 Oct;31(5):693-701
– reference: 8132902 - J Acoust Soc Am. 1994 Feb;95(2):1085-99
– reference: 5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+
– reference: 19383534 - Hear Res. 2009 Aug;254(1-2):34-41
– reference: 12597199 - J Acoust Soc Am. 2003 Feb;113(2):1065-72
– reference: 15492888 - J Assoc Res Otolaryngol. 2004 Sep;5(3):305-22
– reference: 16151343 - Otol Neurotol. 2005 Sep;26(5):957-64
– reference: 16583898 - J Acoust Soc Am. 2006 Mar;119(3):1527-37
– reference: 11519582 - J Acoust Soc Am. 2001 Aug;110(2):1150-63
– reference: 17672646 - J Acoust Soc Am. 2007 Aug;122(2):982-91
– reference: 11132787 - Ear Hear. 2000 Dec;21(6):608-24
– reference: 18595189 - Ear Hear. 2008 Apr;29(2):250-60
– reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
– reference: 9228819 - J Acoust Soc Am. 1997 Jul;102(1):581-7
– reference: 16240829 - J Acoust Soc Am. 2005 Sep;118(3 Pt 1):1711-8
– reference: 22138630 - Hear Res. 2012 Jan;283(1-2):45-58
– reference: 17172548 - Trends Amplif. 2006 Dec;10(4):201-19
– reference: 9604350 - J Acoust Soc Am. 1998 May;103(5 Pt 1):2565-72
– reference: 22616092 - Hear Res. 2012 Apr;286(1-2):19-29
– reference: 11784764 - J Neurophysiol. 2002 Jan;87(1):478-92
– reference: 9407659 - J Acoust Soc Am. 1997 Dec;102(6):3673-85
– reference: 10615701 - J Acoust Soc Am. 1999 Dec;106(6):3629-36
– reference: 1857418 - Nature. 1991 Jul 18;352(6332):236-8
– reference: 21389857 - Ear Hear. 2011 Sep-Oct;32(5):573-81
– reference: 22230370 - Hear Res. 2012 Feb;284(1-2):16-24
– reference: 18501539 - Hear Res. 2008 Aug;242(1-2):141-53
– reference: 20847579 - ORL J Otorhinolaryngol Relat Spec. 2010;72(6):305-11
SSID ssj0015342
Score 2.3828437
Snippet Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms Acoustic Stimulation
Aged
Auditory Threshold
Cochlear Implantation - instrumentation
Cochlear Implants
Correction of Hearing Impairment - instrumentation
Correction of Hearing Impairment - methods
Deafness - diagnosis
Deafness - psychology
Deafness - rehabilitation
Electric Stimulation
Female
Humans
Male
Middle Aged
Noise - adverse effects
Perceptual Masking
Persons With Hearing Impairments - psychology
Persons With Hearing Impairments - rehabilitation
Recognition (Psychology)
Signal Processing, Computer-Assisted
Speech Intelligibility
Speech Perception
Speech Reception Threshold Test
Title Improving speech perception in noise with current focusing in cochlear implant users
URI https://dx.doi.org/10.1016/j.heares.2013.02.004
https://www.ncbi.nlm.nih.gov/pubmed/23467170
https://www.proquest.com/docview/1338393337
https://pubmed.ncbi.nlm.nih.gov/PMC3639477
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwlxQbTlsUArIyFuYZPYefi4qlotIHphkXqzbMdmU7XZiN0euPDbmXEeYqlQJa6xnTgee2bs-fwNwLvM6tIbS7ShWkeiFBKXlIgjg71OpDG-dAEge5kvvolPV9nVHpwNd2EIVtnr_k6nB23dP5n1ozlr63r2NeYFkXNlFJAh2qp9OEi5zLMJHMw_fl5cjsGEjIsumIAbJmow3KALMK-QN5p4uxPekXeKf1mo-x7o30DKPyzTxVN40ruUbN71-hD2XHMEx_MGt9O3P9l7FkCe4fT8CB596WPpx7AczxPYpnXOrlg7glxY3bBmXW8co3NaZjsSJ-bXlnDy36kYFemKUk6w-ra9QfEwOu7YPIPlxfnybBH1ORYiK3K-RQPl0ERRvo2sknGVmtTLoiq9Rs_Oai69l8JXidWVKA36VpxnujIlARJdmlT8OUyadeNeApNV7rnLfWEcbuk0vim2hqfOZIlDveKmwIdhVbbnH6c0GDdqAJpdq04YioSh4lShMKYQja3ajn_jgfrFIDG1M48UmogHWr4dBKxwiVHcRDdufbdRYRsv8deLKbzoBD72JeVoaZIixu_uTIWxAtF375Y09SrQeHN0DkVRvPrvHr-Gx2lIzkHwyzcw2f64cyfoIm3NKex_-JWc9gvhN9nzEz0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuqA8oCwVcCXELm8TOOjlWFdUCbS9spd4s27G7qdps1N0eeuG3M-M8xIJQJa6xnTgeex72528APmZW595Yog3VOhK5KHBJiTgy2OukMMbnLgBkzyfTC_HtMrvcgOP-LgzBKjvd3-r0oK27J-NuNMdNVY1_xFwSOVdGBzJEW_UEtkTGJeH6Pv8ccB64okV7lIDhElXv788FkFfIGk2s3QlvqTvFv-zT3_7nnzDK3-zSyTa86BxKdtT2eQc2XL0Le0c1BtO3D-wTCxDPsHe-C0_PupP0PZgNuwls2Thn56wZIC6sqlm9qJaO0S4tsy2FE_MLSyj5KypGNTqnhBOsum1uUDiMNjuWL2F28mV2PI26DAuRFRO-QvPk0EBRto2sLOIyNakvZJl7jX6d1bzwvhC-TKwuRW7Qs-I806XJCY7o0qTkr2CzXtTuNbCinHjuJl4ahwGdxjfF1vDUmSxxqFXcCHg_rMp27OOUBONG9TCza9UKQ5EwVJwqFMYIoqFV07JvPFJf9hJTa7NIoYF4pOVhL2CFC4xOTXTtFvdLFYL4An9djmC_FfjQl5SjnUlkjN9dmwpDBSLvXi-pq3kg8eboGgop3_x3jz_As-ns7FSdfj3__haepyFNBwExD2BzdXfv3qGztDLvw2L4BTXeFAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+speech+perception+in+noise+with+current+focusing+in+cochlear+implant+users&rft.jtitle=Hearing+research&rft.au=Srinivasan%2C+Arthi+G.&rft.au=Padilla%2C+Monica&rft.au=Shannon%2C+Robert+V.&rft.au=Landsberger%2C+David+M.&rft.date=2013-05-01&rft.issn=0378-5955&rft.volume=299&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.heares.2013.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_heares_2013_02_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon