Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has tri...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 152; p. 113223 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.08.2022
The Authors. Published by Elsevier Masson SAS |
Subjects | |
Online Access | Get full text |
ISSN | 0753-3322 1950-6007 1950-6007 |
DOI | 10.1016/j.biopha.2022.113223 |
Cover
Loading…
Abstract | The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
•Metformin glycinate inhibits SARS-CoV-2 viral replication after 48 h of exposure.•MG increased survival in cells exposed to VOI (alpha, delta, and epsilon).•Patients treated with metformin glycinate reduces SARS-CoV2 viral load in 3.3 days. |
---|---|
AbstractList | The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
•Metformin glycinate inhibits SARS-CoV-2 viral replication after 48 h of exposure.•MG increased survival in cells exposed to VOI (alpha, delta, and epsilon).•Patients treated with metformin glycinate reduces SARS-CoV2 viral load in 3.3 days. The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients. The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients. The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients. |
ArticleNumber | 113223 |
Author | Licea-Navarro, Alexei F. Flores-Caballero, Juan C. Lugo-Sánchez, Laura A. Alvarez-Delgado, Carolina Bernaldez-Sarabia, Johanna Cervantes-Luevano, Karla Rodríguez-Vázquez, Ileana C. Romero-Antonio, Yulia Aguirre-Sánchez, Janet S. Ventura-López, Claudia Sánchez-Campos, Noemí Sander-Padilla, Jose G. Arguedas-Núñez, María M. González-Canudas, Jorge |
Author_xml | – sequence: 1 givenname: Claudia surname: Ventura-López fullname: Ventura-López, Claudia email: cventura@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico – sequence: 2 givenname: Karla surname: Cervantes-Luevano fullname: Cervantes-Luevano, Karla email: kcervates@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico – sequence: 3 givenname: Janet S. surname: Aguirre-Sánchez fullname: Aguirre-Sánchez, Janet S. email: janetaguirre@yahoo.com organization: The American British Cowdray Medical Center I.A.P. (Centro Médico ABC), Mexico – sequence: 4 givenname: Juan C. surname: Flores-Caballero fullname: Flores-Caballero, Juan C. email: juancarlosfl18@hotmail.com organization: The American British Cowdray Medical Center I.A.P. (Centro Médico ABC), Mexico – sequence: 5 givenname: Carolina surname: Alvarez-Delgado fullname: Alvarez-Delgado, Carolina email: alvarezc@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico – sequence: 6 givenname: Johanna surname: Bernaldez-Sarabia fullname: Bernaldez-Sarabia, Johanna email: jbernald@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico – sequence: 7 givenname: Noemí surname: Sánchez-Campos fullname: Sánchez-Campos, Noemí email: lsanchez@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico – sequence: 8 givenname: Laura A. surname: Lugo-Sánchez fullname: Lugo-Sánchez, Laura A. email: llugo@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 9 givenname: Ileana C. surname: Rodríguez-Vázquez fullname: Rodríguez-Vázquez, Ileana C. email: icrodriguez@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 10 givenname: Jose G. surname: Sander-Padilla fullname: Sander-Padilla, Jose G. email: jgsander@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 11 givenname: Yulia surname: Romero-Antonio fullname: Romero-Antonio, Yulia email: yromero@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 12 givenname: María M. surname: Arguedas-Núñez fullname: Arguedas-Núñez, María M. email: marguedas@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 13 givenname: Jorge surname: González-Canudas fullname: González-Canudas, Jorge email: jogonzalez@silanes.com.mx organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico – sequence: 14 givenname: Alexei F. surname: Licea-Navarro fullname: Licea-Navarro, Alexei F. email: alicea@cicese.mx organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35709650$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctuEzEUtVARTQt_gJCXLDrBj4wn0wVSFEEbqRKIFraWx77TOPLYwfYElU_gq3GUFAELkCxb9j0P33vO0IkPHhB6ScmUEirebKadDdu1mjLC2JRSzhh_gia0rUklCGlO0IQ0Na94KZyis5Q2hJBa8PkzdMrrhrSiJhP04y6CygP4jL_ZvMYD5D7EwXp87x609SoDjmBGDQnfLj7dVsvwpWJ4Z6Ny2AVlLvHC4wLf2RwDHoIBh5U3OJYtDPY7mAtswtg5qDpnfbl9XKsEeLXqsC4PVhehHK1yz9HTXrkEL47nOfr8_t3d8rq6-XC1Wi5uKj0TPFeiNaTWSjV91-pmPmtU23czpXomgBFeGqTzft6IRnNOialnHW87Njd9zXoieMvP0duD7nbsBjC69F6akdtoBxUfZFBW_lnxdi3vw062tG5b0RSB10eBGL6OkLIcbNLgnPIQxiSZKN_itKwCffW71y-TxwAK4PIA0DGkFKGX2maVbdhbWycpkfu05UYe0pb7tOUh7UKe_UV-1P8P7TgAKFPeWYgyaQteg7ERdJYm2H8L_ATO5saa |
CitedBy_id | crossref_primary_10_1016_j_imj_2025_100162 crossref_primary_10_1093_cid_ciae159 crossref_primary_10_1007_s11357_023_01058_z crossref_primary_10_2337_dca24_0032 crossref_primary_10_3390_ijms24044113 crossref_primary_10_3390_cimb45010003 crossref_primary_10_12923_2083_4829_2024_0011 crossref_primary_10_1016_S1473_3099_23_00557_1 crossref_primary_10_14341_DM13106 crossref_primary_10_1038_s41598_025_87537_z crossref_primary_10_3390_v16121938 crossref_primary_10_2147_CLEP_S458901 crossref_primary_10_2337_dc22_2539 crossref_primary_10_3803_EnM_2023_1857 crossref_primary_10_1016_j_tips_2022_09_005 crossref_primary_10_1080_14656566_2023_2215385 crossref_primary_10_1007_s40618_022_01951_y crossref_primary_10_1093_eurjpc_zwae070 crossref_primary_10_3390_ijms241310458 crossref_primary_10_1093_cid_ciae284 crossref_primary_10_3389_fmolb_2023_1260633 crossref_primary_10_3390_v16020281 crossref_primary_10_3390_biomedicines12061223 crossref_primary_10_3390_microorganisms12020383 crossref_primary_10_3389_fragi_2023_1272336 crossref_primary_10_1016_S1473_3099_23_00299_2 crossref_primary_10_1016_j_arr_2024_102400 crossref_primary_10_3390_v16040651 crossref_primary_10_1021_acs_orglett_3c01103 crossref_primary_10_1016_j_tem_2023_08_010 |
Cites_doi | 10.7705/biomedica.5834 10.1146/annurev-micro-020518-115759 10.1159/000503030 10.3727/095535491820873191 10.1128/JVI.76.12.5974-5984.2002 10.1038/nrm3311 10.1016/j.jbiotec.2009.02.014 10.1016/j.tcb.2016.09.011 10.1016/j.fct.2018.11.019 10.3390/v6072826 10.1002/jmv.26097 10.1093/oxfordjournals.aje.a118408 10.1242/jcs.028696 10.1111/dom.14648 10.3390/v8050142 10.1074/jbc.M110.182097 10.5501/wjv.v5.i2.85 10.1074/jbc.M605032200 10.1042/BJ20150125 10.1074/jbc.M002769200 10.1128/JVI.01080-20 10.1080/19336950.2020.1837439 10.1371/journal.ppat.1009634 10.2807/1560-7917.ES.2020.25.3.2000045 10.1007/s11010-012-1344-5 10.1016/j.diabres.2020.108383 10.1016/j.jviromet.2010.10.027 10.3389/fimmu.2018.02860 10.1016/j.tim.2021.03.004 10.1186/s40560-020-00466-z 10.1034/j.1600-0854.2000.010609.x 10.1016/j.chom.2017.07.012 10.1074/jbc.M707691200 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.biopha.2022.113223 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1950-6007 |
EndPage | 113223 |
ExternalDocumentID | PMC9159967 35709650 10_1016_j_biopha_2022_113223 S0753332222006126 |
Genre | Randomized Controlled Trial Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 0SF 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABBQC ABFNM ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFKWA AFPKN AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMT HVGLF HZ~ IHE J1W KOM LCYCR M34 M41 MO0 N9A NCXOZ O-L O9- OAUVE OD~ OGGZJ OK1 OO0 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEM SES SEW SPT SSH SSP SSZ T5K VH1 WUQ Z5R ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c463t-69d05caa7fb9c7847a9fb4aaf26e20363818f8767c3310d54b39b28df52f06393 |
IEDL.DBID | .~1 |
ISSN | 0753-3322 1950-6007 |
IngestDate | Thu Aug 21 13:57:21 EDT 2025 Mon Jul 21 11:46:59 EDT 2025 Wed Feb 19 02:25:46 EST 2025 Tue Jul 01 04:13:05 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:37:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SARS-CoV-2 variants COVID-19 treatment Metformin glycinate SARS-CoV-2 viral load |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-69d05caa7fb9c7847a9fb4aaf26e20363818f8767c3310d54b39b28df52f06393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 These authors contribute equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0753332222006126 |
PMID | 35709650 |
PQID | 2678431431 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9159967 proquest_miscellaneous_2678431431 pubmed_primary_35709650 crossref_citationtrail_10_1016_j_biopha_2022_113223 crossref_primary_10_1016_j_biopha_2022_113223 elsevier_sciencedirect_doi_10_1016_j_biopha_2022_113223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Biomedicine & pharmacotherapy |
PublicationTitleAlternate | Biomed Pharmacother |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS The Authors. Published by Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS – name: The Authors. Published by Elsevier Masson SAS |
References | Saito, Matsui, Kawano, Kumagai, Tomishige, Hanada, Echigo, Tamura, Kobayashi (bib12) 2008; 283 Prosser, Tran, Gougeon, Verly, Ngsee (bib13) 2008; 121 Díaz, Aguilar-Jiménez, Flórez-Álvarez, Valencia, Laiton-Donato, Franco-Muñoz, Álvarez-Díaz, Mercado-Reyes, Rugeles (bib15) 2020; 40 Ford, Fullerton, Pinkosky, Day, Scott, Oakhill, Bujak, Smith, Crane, Blümer, Marcinko, Kemp, Gerstein, Steinberg (bib3) 2015; 468 Ceriello (bib37) 2020; 167 Raya, Revert-Ros, Martinez-Martinez, Navarro, Rosello, Vieites, Granero, Forteza, Saus (bib10) 2000; 275 Egger, Wolk, Gosert, Bianchi, Blum, Moradpour, Bienz (bib27) 2002; 76 Kikkert (bib29) 2020; 12 Garcia-Sastre (bib31) 2017; 22 Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt, Mulders, Haagmans, Van der Veer, Van den Brink, Wijsman, Goderski, Romette, Ellis, Zambon, Peiris, Goossens, Reusken, Koopmans, Drosten (bib19) 2020; 25 Sachs, Schnurr, Yagi, Lachowicz-Scroggins, Widdicombe (bib17) 2011; 171 Yao, Cao, Wang, Shi, Liu, Luo, Chen, Chen, Yu, Hang (bib35) 2020; 8 Florin, Pegel, Becker, Hausser, Olayioye, Kaufmann (bib9) 2009; 141 Ali (bib36) 2020; 92 Fung, Liu (bib2) 2019; 73 Altan-Bonnet (bib25) 2017; 27 Kawano, Kumagai, Nishijima, Hanada (bib11) 2006; 281 National Library of Medicine (U.S.), Metformin Glycinate on Metabolic Control and Inflammatory Mediators in Type 2 Diabetes (COMET), Identifier NCT01386671, 2018. Available from Alothaid, Aldughaim, El Bakkouri, AlMashhadi, Al-Qahtani (bib26) 2020; 14 Cory, Owen, Barltrop, Cory (bib20) 1991; 3 Varghese, Samuel, Liskova, Kubatka, Büsselberg (bib24) 2021; 17 González-Canudas, Comet Group (bib5) 2019 Hardie, Ross, Hawley (bib7) 2012; 13 Wang, Tai (bib28) 2016; 8 Samuel, Varghese, Büsselberg (bib23) 2021; 29 Reed, Muench (bib16) 1983; 27 . Zhang, Wang, Bao, Xu, Shen, Chen, Yan, Chen (bib14) 2012; 368 Romero-Brey, Bartenschlager (bib30) 2014; 6 Ramakrishnan (bib18) 2016; 5 Foster, Weir, Lim, Liu, Trimble, Klip (bib8) 2000; 1 (Accessed 27 April 2022). Gewaid, Aoyagi, Arita, Watashi, Suzuki, Sakai, Kumagai, Yamaji, Fukasawa, Kato, Hishiki, Mimata, Sakamaki, Ichinose, Hanada, Muramatsu, Wakita, Aizaki (bib34) 2020; 94 Riss, Moravec (bib21) 1992; 3 Rada, Mosquera, Mutané, Ferrandiz, Rodríguez-Mañas, de Pablo, González-Canudas, Malverde (bib6) 2019; 123 Amako, Syed, Siddiqui (bib33) 2011; 286 Kao, Lai, Yu (bib32) 2018; 7 World Health Organization, Coronavirus disease situation, 2022. Ojeda-Fernández, Foresta, Macaluso, Colacioppo, Tettamanti, Zambon, Genovese, Fortino, Leoni, Roncaglioni, Baviera (bib22) 2022; 24 Cory (10.1016/j.biopha.2022.113223_bib20) 1991; 3 Ali (10.1016/j.biopha.2022.113223_bib36) 2020; 92 González-Canudas (10.1016/j.biopha.2022.113223_bib5) 2019 Prosser (10.1016/j.biopha.2022.113223_bib13) 2008; 121 Ramakrishnan (10.1016/j.biopha.2022.113223_bib18) 2016; 5 Kawano (10.1016/j.biopha.2022.113223_bib11) 2006; 281 Garcia-Sastre (10.1016/j.biopha.2022.113223_bib31) 2017; 22 Ford (10.1016/j.biopha.2022.113223_bib3) 2015; 468 Kao (10.1016/j.biopha.2022.113223_bib32) 2018; 7 10.1016/j.biopha.2022.113223_bib4 10.1016/j.biopha.2022.113223_bib1 Ojeda-Fernández (10.1016/j.biopha.2022.113223_bib22) 2022; 24 Rada (10.1016/j.biopha.2022.113223_bib6) 2019; 123 Varghese (10.1016/j.biopha.2022.113223_bib24) 2021; 17 Wang (10.1016/j.biopha.2022.113223_bib28) 2016; 8 Zhang (10.1016/j.biopha.2022.113223_bib14) 2012; 368 Riss (10.1016/j.biopha.2022.113223_bib21) 1992; 3 Kikkert (10.1016/j.biopha.2022.113223_bib29) 2020; 12 Foster (10.1016/j.biopha.2022.113223_bib8) 2000; 1 Hardie (10.1016/j.biopha.2022.113223_bib7) 2012; 13 Díaz (10.1016/j.biopha.2022.113223_bib15) 2020; 40 Gewaid (10.1016/j.biopha.2022.113223_bib34) 2020; 94 Altan-Bonnet (10.1016/j.biopha.2022.113223_bib25) 2017; 27 Egger (10.1016/j.biopha.2022.113223_bib27) 2002; 76 Fung (10.1016/j.biopha.2022.113223_bib2) 2019; 73 Raya (10.1016/j.biopha.2022.113223_bib10) 2000; 275 Corman (10.1016/j.biopha.2022.113223_bib19) 2020; 25 Yao (10.1016/j.biopha.2022.113223_bib35) 2020; 8 Ceriello (10.1016/j.biopha.2022.113223_bib37) 2020; 167 Amako (10.1016/j.biopha.2022.113223_bib33) 2011; 286 Samuel (10.1016/j.biopha.2022.113223_bib23) 2021; 29 Alothaid (10.1016/j.biopha.2022.113223_bib26) 2020; 14 Sachs (10.1016/j.biopha.2022.113223_bib17) 2011; 171 Romero-Brey (10.1016/j.biopha.2022.113223_bib30) 2014; 6 Florin (10.1016/j.biopha.2022.113223_bib9) 2009; 141 Saito (10.1016/j.biopha.2022.113223_bib12) 2008; 283 Reed (10.1016/j.biopha.2022.113223_bib16) 1983; 27 |
References_xml | – volume: 25 year: 2020 ident: bib19 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eur. Surveill. – volume: 6 start-page: 2826 year: 2014 end-page: 2857 ident: bib30 article-title: Membranous replication factories induced by plus-strand RNA viruses publication-title: Viruses – reference: , (Accessed 27 April 2022). – volume: 29 start-page: 894 year: 2021 end-page: 907 ident: bib23 article-title: Therapeutic potential of metformin in COVID-19: reasoning for its protective role publication-title: Trends Microbiol. – volume: 27 start-page: 201 year: 2017 end-page: 213 ident: bib25 article-title: Lipid tales of viral replication and transmission publication-title: Trends Cell Biol. – reference: National Library of Medicine (U.S.), Metformin Glycinate on Metabolic Control and Inflammatory Mediators in Type 2 Diabetes (COMET), Identifier NCT01386671, 2018. Available from: – volume: 121 start-page: 3052 year: 2008 end-page: 3061 ident: bib13 article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation publication-title: J. Cell Sci. – volume: 167 year: 2020 ident: bib37 article-title: Hyperglycemia and COVID-19: what was known and what is really new? publication-title: Diabetes Res. Clin. Pract. – reference: World Health Organization, Coronavirus disease situation, 2022. – volume: 283 start-page: 6584 year: 2008 end-page: 6593 ident: bib12 article-title: Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes publication-title: J. Biol. Chem. – volume: 12 start-page: 4 year: 2020 end-page: 20 ident: bib29 article-title: Innate immune evasion by human respiratory RNA viruses publication-title: J. Innate Immun. – volume: 73 start-page: 529 year: 2019 end-page: 557 ident: bib2 article-title: Human coronavirus: host-pathogen interaction publication-title: Annu. Rev. Microbiol. – volume: 27 start-page: 493 year: 1983 end-page: 497 ident: bib16 article-title: A simple method of estimating fifty per cent endpoints publication-title: Am. J. Epidemiol. – volume: 94 year: 2020 ident: bib34 article-title: Sphingomyelin is essential for the structure and function of the double-membrane vesicles in hepatitis C virus RNA replication factories publication-title: J. Virol. – volume: 123 start-page: 470 year: 2019 end-page: 480 ident: bib6 article-title: Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice publication-title: Food Chem. Toxicol. – volume: 141 start-page: 84 year: 2009 end-page: 90 ident: bib9 article-title: Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells publication-title: J. Biotechnol. – volume: 281 start-page: 30279 year: 2006 end-page: 30288 ident: bib11 article-title: Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT publication-title: J. Biol. Chem. – volume: 1 start-page: 512 year: 2000 end-page: 521 ident: bib8 article-title: A functional role for VAP-33 in insulin-stimulated GLUT4 traffic publication-title: Traffic – volume: 275 start-page: 40392 year: 2000 end-page: 40399 ident: bib10 article-title: Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis publication-title: J. Biol. Chem. – volume: 76 start-page: 5974 year: 2002 end-page: 5984 ident: bib27 article-title: Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex publication-title: J. Virol. – start-page: 68 year: 2019 ident: bib5 article-title: 146-LB: efficacy and safety of metformin glycinate vs. metformin hydrochloride in metabolic control and inflammatory mediators in Type 2 diabetes mellitus patients (T2DM) publication-title: ADA – volume: 92 start-page: 2409 year: 2020 end-page: 2411 ident: bib36 article-title: Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19 publication-title: J. Med. Virol. – volume: 14 start-page: 403 year: 2020 end-page: 412 ident: bib26 article-title: Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment publication-title: Channels – volume: 171 start-page: 212 year: 2011 end-page: 218 ident: bib17 article-title: Quantitative real-time PCR for rhinovirus, and its use in determining the relationship between TCID50 and the number of viral particles publication-title: J. Virol. Methods – volume: 24 start-page: 891 year: 2022 end-page: 898 ident: bib22 article-title: Metformin use is associated with a decrease in the risk of hospitalization and mortality in COVID-19 patients with diabetes: a population-based study in Lombardy publication-title: Diabetes Obes. Metab. – volume: 8 start-page: 142 year: 2016 ident: bib28 article-title: Mechanisms of cellular membrane reorganization to support hepatitis C virus replication publication-title: Viruses – reference: . – volume: 368 start-page: 69 year: 2012 end-page: 76 ident: bib14 article-title: Metformin interacts with AMPK through binding to gamma subunit publication-title: Mol. Cell. Biochem. – volume: 5 start-page: 85 year: 2016 end-page: 86 ident: bib18 article-title: Determination of 50 % endpoint titer using a simple formula publication-title: World J. Virol. – volume: 3 start-page: S184a year: 1992 ident: bib21 article-title: Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for publication-title: Mol. Biol. Cell – volume: 286 start-page: 11265 year: 2011 end-page: 11274 ident: bib33 article-title: Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein publication-title: J. Biol. Chem. – volume: 7 start-page: 2860 year: 2018 ident: bib32 article-title: How dengue virus circumvents innate immunity publication-title: Front. Immunol. – volume: 13 start-page: 251 year: 2012 end-page: 262 ident: bib7 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 3 start-page: 207 year: 1991 end-page: 212 ident: bib20 article-title: Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture publication-title: Cancer Commun. – volume: 8 start-page: 49 year: 2020 ident: bib35 article-title: D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study publication-title: J. Intensive Care – volume: 468 start-page: 125 year: 2015 end-page: 132 ident: bib3 article-title: Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity publication-title: Biochem. J. – volume: 22 start-page: 176 year: 2017 end-page: 184 ident: bib31 article-title: Ten strategies of interferon evasion by viruses publication-title: Cell Host Microbe – volume: 40 start-page: 148 year: 2020 end-page: 158 ident: bib15 article-title: Isolation and characterization of an early SARS-CoV-2 isolate from the 2020 epidemic in Medellín, Colombia. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia publication-title: Biomed.: Rev. Inst. Nac. Salud – volume: 17 year: 2021 ident: bib24 article-title: Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing publication-title: PLoS Pathog. – volume: 40 start-page: 148 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib15 article-title: Isolation and characterization of an early SARS-CoV-2 isolate from the 2020 epidemic in Medellín, Colombia. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia publication-title: Biomed.: Rev. Inst. Nac. Salud doi: 10.7705/biomedica.5834 – volume: 73 start-page: 529 year: 2019 ident: 10.1016/j.biopha.2022.113223_bib2 article-title: Human coronavirus: host-pathogen interaction publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-020518-115759 – volume: 12 start-page: 4 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib29 article-title: Innate immune evasion by human respiratory RNA viruses publication-title: J. Innate Immun. doi: 10.1159/000503030 – volume: 3 start-page: 207 year: 1991 ident: 10.1016/j.biopha.2022.113223_bib20 article-title: Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture publication-title: Cancer Commun. doi: 10.3727/095535491820873191 – volume: 76 start-page: 5974 year: 2002 ident: 10.1016/j.biopha.2022.113223_bib27 article-title: Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex publication-title: J. Virol. doi: 10.1128/JVI.76.12.5974-5984.2002 – volume: 13 start-page: 251 year: 2012 ident: 10.1016/j.biopha.2022.113223_bib7 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3311 – volume: 141 start-page: 84 year: 2009 ident: 10.1016/j.biopha.2022.113223_bib9 article-title: Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2009.02.014 – volume: 27 start-page: 201 year: 2017 ident: 10.1016/j.biopha.2022.113223_bib25 article-title: Lipid tales of viral replication and transmission publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.09.011 – volume: 123 start-page: 470 year: 2019 ident: 10.1016/j.biopha.2022.113223_bib6 article-title: Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.11.019 – volume: 6 start-page: 2826 year: 2014 ident: 10.1016/j.biopha.2022.113223_bib30 article-title: Membranous replication factories induced by plus-strand RNA viruses publication-title: Viruses doi: 10.3390/v6072826 – volume: 92 start-page: 2409 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib36 article-title: Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19 publication-title: J. Med. Virol. doi: 10.1002/jmv.26097 – volume: 27 start-page: 493 year: 1983 ident: 10.1016/j.biopha.2022.113223_bib16 article-title: A simple method of estimating fifty per cent endpoints publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a118408 – volume: 121 start-page: 3052 year: 2008 ident: 10.1016/j.biopha.2022.113223_bib13 article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation publication-title: J. Cell Sci. doi: 10.1242/jcs.028696 – volume: 24 start-page: 891 issue: 5 year: 2022 ident: 10.1016/j.biopha.2022.113223_bib22 article-title: Metformin use is associated with a decrease in the risk of hospitalization and mortality in COVID-19 patients with diabetes: a population-based study in Lombardy publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14648 – volume: 8 start-page: 142 year: 2016 ident: 10.1016/j.biopha.2022.113223_bib28 article-title: Mechanisms of cellular membrane reorganization to support hepatitis C virus replication publication-title: Viruses doi: 10.3390/v8050142 – volume: 286 start-page: 11265 year: 2011 ident: 10.1016/j.biopha.2022.113223_bib33 article-title: Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.182097 – volume: 5 start-page: 85 year: 2016 ident: 10.1016/j.biopha.2022.113223_bib18 article-title: Determination of 50 % endpoint titer using a simple formula publication-title: World J. Virol. doi: 10.5501/wjv.v5.i2.85 – volume: 281 start-page: 30279 year: 2006 ident: 10.1016/j.biopha.2022.113223_bib11 article-title: Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605032200 – volume: 468 start-page: 125 year: 2015 ident: 10.1016/j.biopha.2022.113223_bib3 article-title: Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity publication-title: Biochem. J. doi: 10.1042/BJ20150125 – ident: 10.1016/j.biopha.2022.113223_bib4 – volume: 3 start-page: S184a issue: Suppl. year: 1992 ident: 10.1016/j.biopha.2022.113223_bib21 article-title: Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays publication-title: Mol. Biol. Cell – volume: 275 start-page: 40392 year: 2000 ident: 10.1016/j.biopha.2022.113223_bib10 article-title: Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002769200 – volume: 94 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib34 article-title: Sphingomyelin is essential for the structure and function of the double-membrane vesicles in hepatitis C virus RNA replication factories publication-title: J. Virol. doi: 10.1128/JVI.01080-20 – volume: 14 start-page: 403 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib26 article-title: Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment publication-title: Channels doi: 10.1080/19336950.2020.1837439 – volume: 17 issue: 6 year: 2021 ident: 10.1016/j.biopha.2022.113223_bib24 article-title: Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009634 – volume: 25 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib19 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eur. Surveill. doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – volume: 368 start-page: 69 year: 2012 ident: 10.1016/j.biopha.2022.113223_bib14 article-title: Metformin interacts with AMPK through binding to gamma subunit publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-012-1344-5 – volume: 167 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib37 article-title: Hyperglycemia and COVID-19: what was known and what is really new? publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2020.108383 – start-page: 68 year: 2019 ident: 10.1016/j.biopha.2022.113223_bib5 article-title: 146-LB: efficacy and safety of metformin glycinate vs. metformin hydrochloride in metabolic control and inflammatory mediators in Type 2 diabetes mellitus patients (T2DM) publication-title: ADA – volume: 171 start-page: 212 year: 2011 ident: 10.1016/j.biopha.2022.113223_bib17 article-title: Quantitative real-time PCR for rhinovirus, and its use in determining the relationship between TCID50 and the number of viral particles publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2010.10.027 – volume: 7 start-page: 2860 year: 2018 ident: 10.1016/j.biopha.2022.113223_bib32 article-title: How dengue virus circumvents innate immunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02860 – volume: 29 start-page: 894 issue: 10 year: 2021 ident: 10.1016/j.biopha.2022.113223_bib23 article-title: Therapeutic potential of metformin in COVID-19: reasoning for its protective role publication-title: Trends Microbiol. doi: 10.1016/j.tim.2021.03.004 – volume: 8 start-page: 49 year: 2020 ident: 10.1016/j.biopha.2022.113223_bib35 article-title: D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study publication-title: J. Intensive Care doi: 10.1186/s40560-020-00466-z – volume: 1 start-page: 512 year: 2000 ident: 10.1016/j.biopha.2022.113223_bib8 article-title: A functional role for VAP-33 in insulin-stimulated GLUT4 traffic publication-title: Traffic doi: 10.1034/j.1600-0854.2000.010609.x – ident: 10.1016/j.biopha.2022.113223_bib1 – volume: 22 start-page: 176 year: 2017 ident: 10.1016/j.biopha.2022.113223_bib31 article-title: Ten strategies of interferon evasion by viruses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.07.012 – volume: 283 start-page: 6584 year: 2008 ident: 10.1016/j.biopha.2022.113223_bib12 article-title: Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707691200 |
SSID | ssj0005638 |
Score | 2.4886594 |
Snippet | The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113223 |
SubjectTerms | COVID-19 Drug Treatment COVID-19 treatment Humans Metformin - pharmacology Metformin - therapeutic use Metformin glycinate Prospective Studies RNA, Viral SARS-CoV-2 SARS-CoV-2 variants SARS-CoV-2 viral load Viral Load |
Title | Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial |
URI | https://dx.doi.org/10.1016/j.biopha.2022.113223 https://www.ncbi.nlm.nih.gov/pubmed/35709650 https://www.proquest.com/docview/2678431431 https://pubmed.ncbi.nlm.nih.gov/PMC9159967 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KBfFFtN7WSzmC9GnHTWcymca3ZbHsKpbibqVvYSYzqZE0KXsR1gd_gL_ac3LZdhUpCHlJcpIMOSfnfGS--Q5jb5z2oVOB45lKHQ-F8TyOreE-0prE8CLja7bFSTQ-Cz-cq_MdNurWwhCtss39TU6vs3V7ZNC-zcFVng-mWOykpIkCUddpkt0m9TqM6bc_b9A8orqbNRlzsu6Wz9UcL5tXJMoksJBRcxMh5L_K09_w808W5Y2ydPyA3W_xJAybIT9kO77cY3c_tTPme-zgtNGmXvdhdr3UatGHAzi9Vq1eP2K_Zh3lHOjfLFz6JeHZvISLYo33QkwKc9J59QuYDj9P-aj6wgUQR7iAojLuHQxLQPPv-XJeQd1hB0zpAIuhqy7zH971wVUrW3huEdviHg5g4WEysdCtz4S6ichjdnb8fjYa87ZRA0_DSC55FLtApcbozMapxnpn4syGxmQi8jTRSaggw7SrU4lo0qnQytiKI5cpkRFEkk_YblmV_hmDVPksMNapowyxhgqMlgZzsot1HPn0UPeY7PyTpK2KOTXTKJKOrvYtabyakFeTxqs9xjdXXTUqHrfY6871yVY0JlhobrnydRcpCX6oNPtiSl-tFolAWIBoDbcee9pEzmYsUmlS4QnwuVsxtTEgEfDtM2X-tRYDjw9JYEc__-8Rv2D3aK8hNb5ku8v5yr9CoLW0-_WXtM_uDCcfxye_AQgMKVY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEvCAZs5echoT3VapbE8cJbVTG1bKsm2qG9RXbsQKYsmdoUqfwJ_NXc5UdLQWgSUl4S28kp59x9ij9_x9h7I61vhGN4ImLDfVdZHoZacRtISWJ4gbIV22ISjC79T1fiaocN270wRKtsYn8d06to3VzpN2-zf5um_SkmO8-jhQK3ytPBPbZL6lR-h-0OxqejyYbpEVQFrak_pwHtDrqK5qXTgnSZXMxlVN_Edb1_Zai_EeifRMrfMtPJY_aogZQwqK1-wnZsvsfunzeL5nvs8KKWp171YLbZbbXowSFcbISrV0_Zz1nLOgf6PQs3tiRIm-bwNVvhvRCWwpykXu0CpoPPUz4svnAXiCacQVYo8wEGOWD372k5L6AqsgMqN4D50BQ36Q9remCKpc4s1whv8QwNWFgYjzW0WzShqiPyjF2efJwNR7yp1cBjP_BKHoTGEbFSMtFhLDHlqTDRvlKJG1ha6yRgkGDklbGHgNIIX3uhdo9NItyEUJL3nHXyIrcHDGJhE0dpI44ThBvCUdJTGJZNKMPAxkeyy7zWP1HcCJlTPY0sahlr11Ht1Yi8GtVe7TK-HnVbC3nc0V-2ro-2JmSEueaOke_amRLht0oLMCq3xXIRuYgMELDh0WX79cxZ2-IJSUI8Dj53a06tO5AO-HZLnn6r9MDDI9LYkS_-2-K37MFodn4WnY0npy_ZQ2qpOY6vWKecL-1rxF2lftN8V78AHWAsBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+with+metformin+glycinate+reduces+SARS-CoV-2+viral+load%3A+An+in+vitro+model+and+randomized%2C+double-blind%2C+Phase+IIb+clinical+trial&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Ventura-L%C3%B3pez%2C+Claudia&rft.au=Cervantes-Luevano%2C+Karla&rft.au=Aguirre-S%C3%A1nchez%2C+Janet+S.&rft.au=Flores-Caballero%2C+Juan+C.&rft.date=2022-08-01&rft.issn=0753-3322&rft.volume=152&rft.spage=113223&rft_id=info:doi/10.1016%2Fj.biopha.2022.113223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biopha_2022_113223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon |