Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial

The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has tri...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 152; p. 113223
Main Authors Ventura-López, Claudia, Cervantes-Luevano, Karla, Aguirre-Sánchez, Janet S., Flores-Caballero, Juan C., Alvarez-Delgado, Carolina, Bernaldez-Sarabia, Johanna, Sánchez-Campos, Noemí, Lugo-Sánchez, Laura A., Rodríguez-Vázquez, Ileana C., Sander-Padilla, Jose G., Romero-Antonio, Yulia, Arguedas-Núñez, María M., González-Canudas, Jorge, Licea-Navarro, Alexei F.
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.08.2022
The Authors. Published by Elsevier Masson SAS
Subjects
Online AccessGet full text
ISSN0753-3322
1950-6007
1950-6007
DOI10.1016/j.biopha.2022.113223

Cover

Loading…
Abstract The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients. •Metformin glycinate inhibits SARS-CoV-2 viral replication after 48 h of exposure.•MG increased survival in cells exposed to VOI (alpha, delta, and epsilon).•Patients treated with metformin glycinate reduces SARS-CoV2 viral load in 3.3 days.
AbstractList The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients. •Metformin glycinate inhibits SARS-CoV-2 viral replication after 48 h of exposure.•MG increased survival in cells exposed to VOI (alpha, delta, and epsilon).•Patients treated with metformin glycinate reduces SARS-CoV2 viral load in 3.3 days.
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
ArticleNumber 113223
Author Licea-Navarro, Alexei F.
Flores-Caballero, Juan C.
Lugo-Sánchez, Laura A.
Alvarez-Delgado, Carolina
Bernaldez-Sarabia, Johanna
Cervantes-Luevano, Karla
Rodríguez-Vázquez, Ileana C.
Romero-Antonio, Yulia
Aguirre-Sánchez, Janet S.
Ventura-López, Claudia
Sánchez-Campos, Noemí
Sander-Padilla, Jose G.
Arguedas-Núñez, María M.
González-Canudas, Jorge
Author_xml – sequence: 1
  givenname: Claudia
  surname: Ventura-López
  fullname: Ventura-López, Claudia
  email: cventura@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
– sequence: 2
  givenname: Karla
  surname: Cervantes-Luevano
  fullname: Cervantes-Luevano, Karla
  email: kcervates@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
– sequence: 3
  givenname: Janet S.
  surname: Aguirre-Sánchez
  fullname: Aguirre-Sánchez, Janet S.
  email: janetaguirre@yahoo.com
  organization: The American British Cowdray Medical Center I.A.P. (Centro Médico ABC), Mexico
– sequence: 4
  givenname: Juan C.
  surname: Flores-Caballero
  fullname: Flores-Caballero, Juan C.
  email: juancarlosfl18@hotmail.com
  organization: The American British Cowdray Medical Center I.A.P. (Centro Médico ABC), Mexico
– sequence: 5
  givenname: Carolina
  surname: Alvarez-Delgado
  fullname: Alvarez-Delgado, Carolina
  email: alvarezc@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
– sequence: 6
  givenname: Johanna
  surname: Bernaldez-Sarabia
  fullname: Bernaldez-Sarabia, Johanna
  email: jbernald@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
– sequence: 7
  givenname: Noemí
  surname: Sánchez-Campos
  fullname: Sánchez-Campos, Noemí
  email: lsanchez@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
– sequence: 8
  givenname: Laura A.
  surname: Lugo-Sánchez
  fullname: Lugo-Sánchez, Laura A.
  email: llugo@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 9
  givenname: Ileana C.
  surname: Rodríguez-Vázquez
  fullname: Rodríguez-Vázquez, Ileana C.
  email: icrodriguez@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 10
  givenname: Jose G.
  surname: Sander-Padilla
  fullname: Sander-Padilla, Jose G.
  email: jgsander@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 11
  givenname: Yulia
  surname: Romero-Antonio
  fullname: Romero-Antonio, Yulia
  email: yromero@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 12
  givenname: María M.
  surname: Arguedas-Núñez
  fullname: Arguedas-Núñez, María M.
  email: marguedas@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 13
  givenname: Jorge
  surname: González-Canudas
  fullname: González-Canudas, Jorge
  email: jogonzalez@silanes.com.mx
  organization: Laboratorio Silanes S.A. de C.V., CdMx, Mexico
– sequence: 14
  givenname: Alexei F.
  surname: Licea-Navarro
  fullname: Licea-Navarro, Alexei F.
  email: alicea@cicese.mx
  organization: Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35709650$$D View this record in MEDLINE/PubMed
BookMark eNqFUctuEzEUtVARTQt_gJCXLDrBj4wn0wVSFEEbqRKIFraWx77TOPLYwfYElU_gq3GUFAELkCxb9j0P33vO0IkPHhB6ScmUEirebKadDdu1mjLC2JRSzhh_gia0rUklCGlO0IQ0Na94KZyis5Q2hJBa8PkzdMrrhrSiJhP04y6CygP4jL_ZvMYD5D7EwXp87x609SoDjmBGDQnfLj7dVsvwpWJ4Z6Ny2AVlLvHC4wLf2RwDHoIBh5U3OJYtDPY7mAtswtg5qDpnfbl9XKsEeLXqsC4PVhehHK1yz9HTXrkEL47nOfr8_t3d8rq6-XC1Wi5uKj0TPFeiNaTWSjV91-pmPmtU23czpXomgBFeGqTzft6IRnNOialnHW87Njd9zXoieMvP0duD7nbsBjC69F6akdtoBxUfZFBW_lnxdi3vw062tG5b0RSB10eBGL6OkLIcbNLgnPIQxiSZKN_itKwCffW71y-TxwAK4PIA0DGkFKGX2maVbdhbWycpkfu05UYe0pb7tOUh7UKe_UV-1P8P7TgAKFPeWYgyaQteg7ERdJYm2H8L_ATO5saa
CitedBy_id crossref_primary_10_1016_j_imj_2025_100162
crossref_primary_10_1093_cid_ciae159
crossref_primary_10_1007_s11357_023_01058_z
crossref_primary_10_2337_dca24_0032
crossref_primary_10_3390_ijms24044113
crossref_primary_10_3390_cimb45010003
crossref_primary_10_12923_2083_4829_2024_0011
crossref_primary_10_1016_S1473_3099_23_00557_1
crossref_primary_10_14341_DM13106
crossref_primary_10_1038_s41598_025_87537_z
crossref_primary_10_3390_v16121938
crossref_primary_10_2147_CLEP_S458901
crossref_primary_10_2337_dc22_2539
crossref_primary_10_3803_EnM_2023_1857
crossref_primary_10_1016_j_tips_2022_09_005
crossref_primary_10_1080_14656566_2023_2215385
crossref_primary_10_1007_s40618_022_01951_y
crossref_primary_10_1093_eurjpc_zwae070
crossref_primary_10_3390_ijms241310458
crossref_primary_10_1093_cid_ciae284
crossref_primary_10_3389_fmolb_2023_1260633
crossref_primary_10_3390_v16020281
crossref_primary_10_3390_biomedicines12061223
crossref_primary_10_3390_microorganisms12020383
crossref_primary_10_3389_fragi_2023_1272336
crossref_primary_10_1016_S1473_3099_23_00299_2
crossref_primary_10_1016_j_arr_2024_102400
crossref_primary_10_3390_v16040651
crossref_primary_10_1021_acs_orglett_3c01103
crossref_primary_10_1016_j_tem_2023_08_010
Cites_doi 10.7705/biomedica.5834
10.1146/annurev-micro-020518-115759
10.1159/000503030
10.3727/095535491820873191
10.1128/JVI.76.12.5974-5984.2002
10.1038/nrm3311
10.1016/j.jbiotec.2009.02.014
10.1016/j.tcb.2016.09.011
10.1016/j.fct.2018.11.019
10.3390/v6072826
10.1002/jmv.26097
10.1093/oxfordjournals.aje.a118408
10.1242/jcs.028696
10.1111/dom.14648
10.3390/v8050142
10.1074/jbc.M110.182097
10.5501/wjv.v5.i2.85
10.1074/jbc.M605032200
10.1042/BJ20150125
10.1074/jbc.M002769200
10.1128/JVI.01080-20
10.1080/19336950.2020.1837439
10.1371/journal.ppat.1009634
10.2807/1560-7917.ES.2020.25.3.2000045
10.1007/s11010-012-1344-5
10.1016/j.diabres.2020.108383
10.1016/j.jviromet.2010.10.027
10.3389/fimmu.2018.02860
10.1016/j.tim.2021.03.004
10.1186/s40560-020-00466-z
10.1034/j.1600-0854.2000.010609.x
10.1016/j.chom.2017.07.012
10.1074/jbc.M707691200
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.biopha.2022.113223
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1950-6007
EndPage 113223
ExternalDocumentID PMC9159967
35709650
10_1016_j_biopha_2022_113223
S0753332222006126
Genre Randomized Controlled Trial
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
0SF
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABBQC
ABFNM
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFKWA
AFPKN
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMT
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M34
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OD~
OGGZJ
OK1
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEM
SES
SEW
SPT
SSH
SSP
SSZ
T5K
VH1
WUQ
Z5R
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-69d05caa7fb9c7847a9fb4aaf26e20363818f8767c3310d54b39b28df52f06393
IEDL.DBID .~1
ISSN 0753-3322
1950-6007
IngestDate Thu Aug 21 13:57:21 EDT 2025
Mon Jul 21 11:46:59 EDT 2025
Wed Feb 19 02:25:46 EST 2025
Tue Jul 01 04:13:05 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SARS-CoV-2 variants
COVID-19 treatment
Metformin glycinate
SARS-CoV-2 viral load
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-69d05caa7fb9c7847a9fb4aaf26e20363818f8767c3310d54b39b28df52f06393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
These authors contribute equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0753332222006126
PMID 35709650
PQID 2678431431
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9159967
proquest_miscellaneous_2678431431
pubmed_primary_35709650
crossref_citationtrail_10_1016_j_biopha_2022_113223
crossref_primary_10_1016_j_biopha_2022_113223
elsevier_sciencedirect_doi_10_1016_j_biopha_2022_113223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biomedicine & pharmacotherapy
PublicationTitleAlternate Biomed Pharmacother
PublicationYear 2022
Publisher Elsevier Masson SAS
The Authors. Published by Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
– name: The Authors. Published by Elsevier Masson SAS
References Saito, Matsui, Kawano, Kumagai, Tomishige, Hanada, Echigo, Tamura, Kobayashi (bib12) 2008; 283
Prosser, Tran, Gougeon, Verly, Ngsee (bib13) 2008; 121
Díaz, Aguilar-Jiménez, Flórez-Álvarez, Valencia, Laiton-Donato, Franco-Muñoz, Álvarez-Díaz, Mercado-Reyes, Rugeles (bib15) 2020; 40
Ford, Fullerton, Pinkosky, Day, Scott, Oakhill, Bujak, Smith, Crane, Blümer, Marcinko, Kemp, Gerstein, Steinberg (bib3) 2015; 468
Ceriello (bib37) 2020; 167
Raya, Revert-Ros, Martinez-Martinez, Navarro, Rosello, Vieites, Granero, Forteza, Saus (bib10) 2000; 275
Egger, Wolk, Gosert, Bianchi, Blum, Moradpour, Bienz (bib27) 2002; 76
Kikkert (bib29) 2020; 12
Garcia-Sastre (bib31) 2017; 22
Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt, Mulders, Haagmans, Van der Veer, Van den Brink, Wijsman, Goderski, Romette, Ellis, Zambon, Peiris, Goossens, Reusken, Koopmans, Drosten (bib19) 2020; 25
Sachs, Schnurr, Yagi, Lachowicz-Scroggins, Widdicombe (bib17) 2011; 171
Yao, Cao, Wang, Shi, Liu, Luo, Chen, Chen, Yu, Hang (bib35) 2020; 8
Florin, Pegel, Becker, Hausser, Olayioye, Kaufmann (bib9) 2009; 141
Ali (bib36) 2020; 92
Fung, Liu (bib2) 2019; 73
Altan-Bonnet (bib25) 2017; 27
Kawano, Kumagai, Nishijima, Hanada (bib11) 2006; 281
National Library of Medicine (U.S.), Metformin Glycinate on Metabolic Control and Inflammatory Mediators in Type 2 Diabetes (COMET), Identifier NCT01386671, 2018. Available from
Alothaid, Aldughaim, El Bakkouri, AlMashhadi, Al-Qahtani (bib26) 2020; 14
Cory, Owen, Barltrop, Cory (bib20) 1991; 3
Varghese, Samuel, Liskova, Kubatka, Büsselberg (bib24) 2021; 17
González-Canudas, Comet Group (bib5) 2019
Hardie, Ross, Hawley (bib7) 2012; 13
Wang, Tai (bib28) 2016; 8
Samuel, Varghese, Büsselberg (bib23) 2021; 29
Reed, Muench (bib16) 1983; 27
.
Zhang, Wang, Bao, Xu, Shen, Chen, Yan, Chen (bib14) 2012; 368
Romero-Brey, Bartenschlager (bib30) 2014; 6
Ramakrishnan (bib18) 2016; 5
Foster, Weir, Lim, Liu, Trimble, Klip (bib8) 2000; 1
(Accessed 27 April 2022).
Gewaid, Aoyagi, Arita, Watashi, Suzuki, Sakai, Kumagai, Yamaji, Fukasawa, Kato, Hishiki, Mimata, Sakamaki, Ichinose, Hanada, Muramatsu, Wakita, Aizaki (bib34) 2020; 94
Riss, Moravec (bib21) 1992; 3
Rada, Mosquera, Mutané, Ferrandiz, Rodríguez-Mañas, de Pablo, González-Canudas, Malverde (bib6) 2019; 123
Amako, Syed, Siddiqui (bib33) 2011; 286
Kao, Lai, Yu (bib32) 2018; 7
World Health Organization, Coronavirus disease situation, 2022.
Ojeda-Fernández, Foresta, Macaluso, Colacioppo, Tettamanti, Zambon, Genovese, Fortino, Leoni, Roncaglioni, Baviera (bib22) 2022; 24
Cory (10.1016/j.biopha.2022.113223_bib20) 1991; 3
Ali (10.1016/j.biopha.2022.113223_bib36) 2020; 92
González-Canudas (10.1016/j.biopha.2022.113223_bib5) 2019
Prosser (10.1016/j.biopha.2022.113223_bib13) 2008; 121
Ramakrishnan (10.1016/j.biopha.2022.113223_bib18) 2016; 5
Kawano (10.1016/j.biopha.2022.113223_bib11) 2006; 281
Garcia-Sastre (10.1016/j.biopha.2022.113223_bib31) 2017; 22
Ford (10.1016/j.biopha.2022.113223_bib3) 2015; 468
Kao (10.1016/j.biopha.2022.113223_bib32) 2018; 7
10.1016/j.biopha.2022.113223_bib4
10.1016/j.biopha.2022.113223_bib1
Ojeda-Fernández (10.1016/j.biopha.2022.113223_bib22) 2022; 24
Rada (10.1016/j.biopha.2022.113223_bib6) 2019; 123
Varghese (10.1016/j.biopha.2022.113223_bib24) 2021; 17
Wang (10.1016/j.biopha.2022.113223_bib28) 2016; 8
Zhang (10.1016/j.biopha.2022.113223_bib14) 2012; 368
Riss (10.1016/j.biopha.2022.113223_bib21) 1992; 3
Kikkert (10.1016/j.biopha.2022.113223_bib29) 2020; 12
Foster (10.1016/j.biopha.2022.113223_bib8) 2000; 1
Hardie (10.1016/j.biopha.2022.113223_bib7) 2012; 13
Díaz (10.1016/j.biopha.2022.113223_bib15) 2020; 40
Gewaid (10.1016/j.biopha.2022.113223_bib34) 2020; 94
Altan-Bonnet (10.1016/j.biopha.2022.113223_bib25) 2017; 27
Egger (10.1016/j.biopha.2022.113223_bib27) 2002; 76
Fung (10.1016/j.biopha.2022.113223_bib2) 2019; 73
Raya (10.1016/j.biopha.2022.113223_bib10) 2000; 275
Corman (10.1016/j.biopha.2022.113223_bib19) 2020; 25
Yao (10.1016/j.biopha.2022.113223_bib35) 2020; 8
Ceriello (10.1016/j.biopha.2022.113223_bib37) 2020; 167
Amako (10.1016/j.biopha.2022.113223_bib33) 2011; 286
Samuel (10.1016/j.biopha.2022.113223_bib23) 2021; 29
Alothaid (10.1016/j.biopha.2022.113223_bib26) 2020; 14
Sachs (10.1016/j.biopha.2022.113223_bib17) 2011; 171
Romero-Brey (10.1016/j.biopha.2022.113223_bib30) 2014; 6
Florin (10.1016/j.biopha.2022.113223_bib9) 2009; 141
Saito (10.1016/j.biopha.2022.113223_bib12) 2008; 283
Reed (10.1016/j.biopha.2022.113223_bib16) 1983; 27
References_xml – volume: 25
  year: 2020
  ident: bib19
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eur. Surveill.
– volume: 6
  start-page: 2826
  year: 2014
  end-page: 2857
  ident: bib30
  article-title: Membranous replication factories induced by plus-strand RNA viruses
  publication-title: Viruses
– reference: , (Accessed 27 April 2022).
– volume: 29
  start-page: 894
  year: 2021
  end-page: 907
  ident: bib23
  article-title: Therapeutic potential of metformin in COVID-19: reasoning for its protective role
  publication-title: Trends Microbiol.
– volume: 27
  start-page: 201
  year: 2017
  end-page: 213
  ident: bib25
  article-title: Lipid tales of viral replication and transmission
  publication-title: Trends Cell Biol.
– reference: National Library of Medicine (U.S.), Metformin Glycinate on Metabolic Control and Inflammatory Mediators in Type 2 Diabetes (COMET), Identifier NCT01386671, 2018. Available from:
– volume: 121
  start-page: 3052
  year: 2008
  end-page: 3061
  ident: bib13
  article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation
  publication-title: J. Cell Sci.
– volume: 167
  year: 2020
  ident: bib37
  article-title: Hyperglycemia and COVID-19: what was known and what is really new?
  publication-title: Diabetes Res. Clin. Pract.
– reference: World Health Organization, Coronavirus disease situation, 2022.
– volume: 283
  start-page: 6584
  year: 2008
  end-page: 6593
  ident: bib12
  article-title: Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 4
  year: 2020
  end-page: 20
  ident: bib29
  article-title: Innate immune evasion by human respiratory RNA viruses
  publication-title: J. Innate Immun.
– volume: 73
  start-page: 529
  year: 2019
  end-page: 557
  ident: bib2
  article-title: Human coronavirus: host-pathogen interaction
  publication-title: Annu. Rev. Microbiol.
– volume: 27
  start-page: 493
  year: 1983
  end-page: 497
  ident: bib16
  article-title: A simple method of estimating fifty per cent endpoints
  publication-title: Am. J. Epidemiol.
– volume: 94
  year: 2020
  ident: bib34
  article-title: Sphingomyelin is essential for the structure and function of the double-membrane vesicles in hepatitis C virus RNA replication factories
  publication-title: J. Virol.
– volume: 123
  start-page: 470
  year: 2019
  end-page: 480
  ident: bib6
  article-title: Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice
  publication-title: Food Chem. Toxicol.
– volume: 141
  start-page: 84
  year: 2009
  end-page: 90
  ident: bib9
  article-title: Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells
  publication-title: J. Biotechnol.
– volume: 281
  start-page: 30279
  year: 2006
  end-page: 30288
  ident: bib11
  article-title: Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 512
  year: 2000
  end-page: 521
  ident: bib8
  article-title: A functional role for VAP-33 in insulin-stimulated GLUT4 traffic
  publication-title: Traffic
– volume: 275
  start-page: 40392
  year: 2000
  end-page: 40399
  ident: bib10
  article-title: Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 5974
  year: 2002
  end-page: 5984
  ident: bib27
  article-title: Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex
  publication-title: J. Virol.
– start-page: 68
  year: 2019
  ident: bib5
  article-title: 146-LB: efficacy and safety of metformin glycinate vs. metformin hydrochloride in metabolic control and inflammatory mediators in Type 2 diabetes mellitus patients (T2DM)
  publication-title: ADA
– volume: 92
  start-page: 2409
  year: 2020
  end-page: 2411
  ident: bib36
  article-title: Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19
  publication-title: J. Med. Virol.
– volume: 14
  start-page: 403
  year: 2020
  end-page: 412
  ident: bib26
  article-title: Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment
  publication-title: Channels
– volume: 171
  start-page: 212
  year: 2011
  end-page: 218
  ident: bib17
  article-title: Quantitative real-time PCR for rhinovirus, and its use in determining the relationship between TCID50 and the number of viral particles
  publication-title: J. Virol. Methods
– volume: 24
  start-page: 891
  year: 2022
  end-page: 898
  ident: bib22
  article-title: Metformin use is associated with a decrease in the risk of hospitalization and mortality in COVID-19 patients with diabetes: a population-based study in Lombardy
  publication-title: Diabetes Obes. Metab.
– volume: 8
  start-page: 142
  year: 2016
  ident: bib28
  article-title: Mechanisms of cellular membrane reorganization to support hepatitis C virus replication
  publication-title: Viruses
– reference: .
– volume: 368
  start-page: 69
  year: 2012
  end-page: 76
  ident: bib14
  article-title: Metformin interacts with AMPK through binding to gamma subunit
  publication-title: Mol. Cell. Biochem.
– volume: 5
  start-page: 85
  year: 2016
  end-page: 86
  ident: bib18
  article-title: Determination of 50 % endpoint titer using a simple formula
  publication-title: World J. Virol.
– volume: 3
  start-page: S184a
  year: 1992
  ident: bib21
  article-title: Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for
  publication-title: Mol. Biol. Cell
– volume: 286
  start-page: 11265
  year: 2011
  end-page: 11274
  ident: bib33
  article-title: Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 2860
  year: 2018
  ident: bib32
  article-title: How dengue virus circumvents innate immunity
  publication-title: Front. Immunol.
– volume: 13
  start-page: 251
  year: 2012
  end-page: 262
  ident: bib7
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 3
  start-page: 207
  year: 1991
  end-page: 212
  ident: bib20
  article-title: Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture
  publication-title: Cancer Commun.
– volume: 8
  start-page: 49
  year: 2020
  ident: bib35
  article-title: D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study
  publication-title: J. Intensive Care
– volume: 468
  start-page: 125
  year: 2015
  end-page: 132
  ident: bib3
  article-title: Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
  publication-title: Biochem. J.
– volume: 22
  start-page: 176
  year: 2017
  end-page: 184
  ident: bib31
  article-title: Ten strategies of interferon evasion by viruses
  publication-title: Cell Host Microbe
– volume: 40
  start-page: 148
  year: 2020
  end-page: 158
  ident: bib15
  article-title: Isolation and characterization of an early SARS-CoV-2 isolate from the 2020 epidemic in Medellín, Colombia. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia
  publication-title: Biomed.: Rev. Inst. Nac. Salud
– volume: 17
  year: 2021
  ident: bib24
  article-title: Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing
  publication-title: PLoS Pathog.
– volume: 40
  start-page: 148
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib15
  article-title: Isolation and characterization of an early SARS-CoV-2 isolate from the 2020 epidemic in Medellín, Colombia. Aislamiento y caracterización de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medellín, Colombia
  publication-title: Biomed.: Rev. Inst. Nac. Salud
  doi: 10.7705/biomedica.5834
– volume: 73
  start-page: 529
  year: 2019
  ident: 10.1016/j.biopha.2022.113223_bib2
  article-title: Human coronavirus: host-pathogen interaction
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-020518-115759
– volume: 12
  start-page: 4
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib29
  article-title: Innate immune evasion by human respiratory RNA viruses
  publication-title: J. Innate Immun.
  doi: 10.1159/000503030
– volume: 3
  start-page: 207
  year: 1991
  ident: 10.1016/j.biopha.2022.113223_bib20
  article-title: Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture
  publication-title: Cancer Commun.
  doi: 10.3727/095535491820873191
– volume: 76
  start-page: 5974
  year: 2002
  ident: 10.1016/j.biopha.2022.113223_bib27
  article-title: Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.12.5974-5984.2002
– volume: 13
  start-page: 251
  year: 2012
  ident: 10.1016/j.biopha.2022.113223_bib7
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3311
– volume: 141
  start-page: 84
  year: 2009
  ident: 10.1016/j.biopha.2022.113223_bib9
  article-title: Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2009.02.014
– volume: 27
  start-page: 201
  year: 2017
  ident: 10.1016/j.biopha.2022.113223_bib25
  article-title: Lipid tales of viral replication and transmission
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.09.011
– volume: 123
  start-page: 470
  year: 2019
  ident: 10.1016/j.biopha.2022.113223_bib6
  article-title: Differential effects of metformin glycinate and hydrochloride in glucose production, AMPK phosphorylation and insulin sensitivity in hepatocytes from non-diabetic and diabetic mice
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2018.11.019
– volume: 6
  start-page: 2826
  year: 2014
  ident: 10.1016/j.biopha.2022.113223_bib30
  article-title: Membranous replication factories induced by plus-strand RNA viruses
  publication-title: Viruses
  doi: 10.3390/v6072826
– volume: 92
  start-page: 2409
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib36
  article-title: Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26097
– volume: 27
  start-page: 493
  year: 1983
  ident: 10.1016/j.biopha.2022.113223_bib16
  article-title: A simple method of estimating fifty per cent endpoints
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a118408
– volume: 121
  start-page: 3052
  year: 2008
  ident: 10.1016/j.biopha.2022.113223_bib13
  article-title: FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.028696
– volume: 24
  start-page: 891
  issue: 5
  year: 2022
  ident: 10.1016/j.biopha.2022.113223_bib22
  article-title: Metformin use is associated with a decrease in the risk of hospitalization and mortality in COVID-19 patients with diabetes: a population-based study in Lombardy
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14648
– volume: 8
  start-page: 142
  year: 2016
  ident: 10.1016/j.biopha.2022.113223_bib28
  article-title: Mechanisms of cellular membrane reorganization to support hepatitis C virus replication
  publication-title: Viruses
  doi: 10.3390/v8050142
– volume: 286
  start-page: 11265
  year: 2011
  ident: 10.1016/j.biopha.2022.113223_bib33
  article-title: Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.182097
– volume: 5
  start-page: 85
  year: 2016
  ident: 10.1016/j.biopha.2022.113223_bib18
  article-title: Determination of 50 % endpoint titer using a simple formula
  publication-title: World J. Virol.
  doi: 10.5501/wjv.v5.i2.85
– volume: 281
  start-page: 30279
  year: 2006
  ident: 10.1016/j.biopha.2022.113223_bib11
  article-title: Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605032200
– volume: 468
  start-page: 125
  year: 2015
  ident: 10.1016/j.biopha.2022.113223_bib3
  article-title: Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150125
– ident: 10.1016/j.biopha.2022.113223_bib4
– volume: 3
  start-page: S184a
  issue: Suppl.
  year: 1992
  ident: 10.1016/j.biopha.2022.113223_bib21
  article-title: Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays
  publication-title: Mol. Biol. Cell
– volume: 275
  start-page: 40392
  year: 2000
  ident: 10.1016/j.biopha.2022.113223_bib10
  article-title: Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoimmune pathogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002769200
– volume: 94
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib34
  article-title: Sphingomyelin is essential for the structure and function of the double-membrane vesicles in hepatitis C virus RNA replication factories
  publication-title: J. Virol.
  doi: 10.1128/JVI.01080-20
– volume: 14
  start-page: 403
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib26
  article-title: Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment
  publication-title: Channels
  doi: 10.1080/19336950.2020.1837439
– volume: 17
  issue: 6
  year: 2021
  ident: 10.1016/j.biopha.2022.113223_bib24
  article-title: Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009634
– volume: 25
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib19
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eur. Surveill.
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
– volume: 368
  start-page: 69
  year: 2012
  ident: 10.1016/j.biopha.2022.113223_bib14
  article-title: Metformin interacts with AMPK through binding to gamma subunit
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-012-1344-5
– volume: 167
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib37
  article-title: Hyperglycemia and COVID-19: what was known and what is really new?
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2020.108383
– start-page: 68
  year: 2019
  ident: 10.1016/j.biopha.2022.113223_bib5
  article-title: 146-LB: efficacy and safety of metformin glycinate vs. metformin hydrochloride in metabolic control and inflammatory mediators in Type 2 diabetes mellitus patients (T2DM)
  publication-title: ADA
– volume: 171
  start-page: 212
  year: 2011
  ident: 10.1016/j.biopha.2022.113223_bib17
  article-title: Quantitative real-time PCR for rhinovirus, and its use in determining the relationship between TCID50 and the number of viral particles
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2010.10.027
– volume: 7
  start-page: 2860
  year: 2018
  ident: 10.1016/j.biopha.2022.113223_bib32
  article-title: How dengue virus circumvents innate immunity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02860
– volume: 29
  start-page: 894
  issue: 10
  year: 2021
  ident: 10.1016/j.biopha.2022.113223_bib23
  article-title: Therapeutic potential of metformin in COVID-19: reasoning for its protective role
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2021.03.004
– volume: 8
  start-page: 49
  year: 2020
  ident: 10.1016/j.biopha.2022.113223_bib35
  article-title: D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-020-00466-z
– volume: 1
  start-page: 512
  year: 2000
  ident: 10.1016/j.biopha.2022.113223_bib8
  article-title: A functional role for VAP-33 in insulin-stimulated GLUT4 traffic
  publication-title: Traffic
  doi: 10.1034/j.1600-0854.2000.010609.x
– ident: 10.1016/j.biopha.2022.113223_bib1
– volume: 22
  start-page: 176
  year: 2017
  ident: 10.1016/j.biopha.2022.113223_bib31
  article-title: Ten strategies of interferon evasion by viruses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.012
– volume: 283
  start-page: 6584
  year: 2008
  ident: 10.1016/j.biopha.2022.113223_bib12
  article-title: Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M707691200
SSID ssj0005638
Score 2.4886594
Snippet The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113223
SubjectTerms COVID-19 Drug Treatment
COVID-19 treatment
Humans
Metformin - pharmacology
Metformin - therapeutic use
Metformin glycinate
Prospective Studies
RNA, Viral
SARS-CoV-2
SARS-CoV-2 variants
SARS-CoV-2 viral load
Viral Load
Title Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial
URI https://dx.doi.org/10.1016/j.biopha.2022.113223
https://www.ncbi.nlm.nih.gov/pubmed/35709650
https://www.proquest.com/docview/2678431431
https://pubmed.ncbi.nlm.nih.gov/PMC9159967
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KBfFFtN7WSzmC9GnHTWcymca3ZbHsKpbibqVvYSYzqZE0KXsR1gd_gL_ac3LZdhUpCHlJcpIMOSfnfGS--Q5jb5z2oVOB45lKHQ-F8TyOreE-0prE8CLja7bFSTQ-Cz-cq_MdNurWwhCtss39TU6vs3V7ZNC-zcFVng-mWOykpIkCUddpkt0m9TqM6bc_b9A8orqbNRlzsu6Wz9UcL5tXJMoksJBRcxMh5L_K09_w808W5Y2ydPyA3W_xJAybIT9kO77cY3c_tTPme-zgtNGmXvdhdr3UatGHAzi9Vq1eP2K_Zh3lHOjfLFz6JeHZvISLYo33QkwKc9J59QuYDj9P-aj6wgUQR7iAojLuHQxLQPPv-XJeQd1hB0zpAIuhqy7zH971wVUrW3huEdviHg5g4WEysdCtz4S6ichjdnb8fjYa87ZRA0_DSC55FLtApcbozMapxnpn4syGxmQi8jTRSaggw7SrU4lo0qnQytiKI5cpkRFEkk_YblmV_hmDVPksMNapowyxhgqMlgZzsot1HPn0UPeY7PyTpK2KOTXTKJKOrvYtabyakFeTxqs9xjdXXTUqHrfY6871yVY0JlhobrnydRcpCX6oNPtiSl-tFolAWIBoDbcee9pEzmYsUmlS4QnwuVsxtTEgEfDtM2X-tRYDjw9JYEc__-8Rv2D3aK8hNb5ku8v5yr9CoLW0-_WXtM_uDCcfxye_AQgMKVY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGJwEvCAZs5echoT3VapbE8cJbVTG1bKsm2qG9RXbsQKYsmdoUqfwJ_NXc5UdLQWgSUl4S28kp59x9ij9_x9h7I61vhGN4ImLDfVdZHoZacRtISWJ4gbIV22ISjC79T1fiaocN270wRKtsYn8d06to3VzpN2-zf5um_SkmO8-jhQK3ytPBPbZL6lR-h-0OxqejyYbpEVQFrak_pwHtDrqK5qXTgnSZXMxlVN_Edb1_Zai_EeifRMrfMtPJY_aogZQwqK1-wnZsvsfunzeL5nvs8KKWp171YLbZbbXowSFcbISrV0_Zz1nLOgf6PQs3tiRIm-bwNVvhvRCWwpykXu0CpoPPUz4svnAXiCacQVYo8wEGOWD372k5L6AqsgMqN4D50BQ36Q9remCKpc4s1whv8QwNWFgYjzW0WzShqiPyjF2efJwNR7yp1cBjP_BKHoTGEbFSMtFhLDHlqTDRvlKJG1ha6yRgkGDklbGHgNIIX3uhdo9NItyEUJL3nHXyIrcHDGJhE0dpI44ThBvCUdJTGJZNKMPAxkeyy7zWP1HcCJlTPY0sahlr11Ht1Yi8GtVe7TK-HnVbC3nc0V-2ro-2JmSEueaOke_amRLht0oLMCq3xXIRuYgMELDh0WX79cxZ2-IJSUI8Dj53a06tO5AO-HZLnn6r9MDDI9LYkS_-2-K37MFodn4WnY0npy_ZQ2qpOY6vWKecL-1rxF2lftN8V78AHWAsBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+with+metformin+glycinate+reduces+SARS-CoV-2+viral+load%3A+An+in+vitro+model+and+randomized%2C+double-blind%2C+Phase+IIb+clinical+trial&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Ventura-L%C3%B3pez%2C+Claudia&rft.au=Cervantes-Luevano%2C+Karla&rft.au=Aguirre-S%C3%A1nchez%2C+Janet+S.&rft.au=Flores-Caballero%2C+Juan+C.&rft.date=2022-08-01&rft.issn=0753-3322&rft.volume=152&rft.spage=113223&rft_id=info:doi/10.1016%2Fj.biopha.2022.113223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biopha_2022_113223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon