Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock
Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO 2 ) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here w...
Saved in:
Published in | Nature geoscience Vol. 14; no. 8; pp. 545 - 549 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO
2
) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO
2
and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO
2
removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO
2
removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first.
The enhanced CO
2
uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model. |
---|---|
AbstractList | Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first.The enhanced CO2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model. Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first. Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO 2 ) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO 2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO 2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO 2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first. The enhanced CO 2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model. |
Author | Eker, Sibel Buermann, Wolfgang Hartmann, Jens Vicca, Sara Li, Wei Tanaka, Katsumasa Amann, Thorben Goll, Daniel S. Ciais, Philippe Chang, Jinfeng Obersteiner, Michael Janssens, Ivan Penuelas, Josep |
Author_xml | – sequence: 1 givenname: Daniel S. orcidid: 0000-0001-9246-9671 surname: Goll fullname: Goll, Daniel S. email: dsgoll123@gmail.com organization: Institute of Geography, University of Augsburg, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay – sequence: 2 givenname: Philippe orcidid: 0000-0001-8560-4943 surname: Ciais fullname: Ciais, Philippe organization: Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay – sequence: 3 givenname: Thorben orcidid: 0000-0001-9347-0615 surname: Amann fullname: Amann, Thorben organization: Institute for Geology, Center for Earth System Research and Sustainability, University Hamburg – sequence: 4 givenname: Wolfgang surname: Buermann fullname: Buermann, Wolfgang organization: Institute of Geography, University of Augsburg – sequence: 5 givenname: Jinfeng orcidid: 0000-0003-4463-7778 surname: Chang fullname: Chang, Jinfeng organization: College of Environmental and Resource Sciences, Zhejiang University – sequence: 6 givenname: Sibel orcidid: 0000-0003-2264-132X surname: Eker fullname: Eker, Sibel organization: International Institute for Applied Systems Analysis – sequence: 7 givenname: Jens orcidid: 0000-0003-1878-9321 surname: Hartmann fullname: Hartmann, Jens organization: Institute for Geology, Center for Earth System Research and Sustainability, University Hamburg – sequence: 8 givenname: Ivan orcidid: 0000-0002-5705-1787 surname: Janssens fullname: Janssens, Ivan organization: Plants and Ecosystems (PLECO), University of Antwerp – sequence: 9 givenname: Wei orcidid: 0000-0003-2543-2558 surname: Li fullname: Li, Wei organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University – sequence: 10 givenname: Michael orcidid: 0000-0001-6981-2769 surname: Obersteiner fullname: Obersteiner, Michael organization: Environmental Change Institute, University of Oxford – sequence: 11 givenname: Josep orcidid: 0000-0002-7215-0150 surname: Penuelas fullname: Penuelas, Josep organization: CREAF, CSIC, Global Ecology Unit CREAF-CSIC-UAB – sequence: 12 givenname: Katsumasa orcidid: 0000-0001-9601-6442 surname: Tanaka fullname: Tanaka, Katsumasa organization: Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay, Earth System Risk Analysis Section, Earth System Division, National Institute for Environmental Studies (NIES) – sequence: 13 givenname: Sara orcidid: 0000-0001-9812-5837 surname: Vicca fullname: Vicca, Sara organization: Plants and Ecosystems (PLECO), University of Antwerp |
BackLink | https://hal.science/hal-03401843$$DView record in HAL |
BookMark | eNp9kMtKxDAUhoMoeH0BVwVXLqonlybpUgZvMKALdRvSzqlTnUlqEi_z9masIrhwccghfN_h598lm847JOSQwgkFrk-joJWkJbA8oGpdfmyQHaoqVkINevNn17XYJrsxPgFIEKraIQ-3PqFLvV0UkxtWBFz6t7x3wS8LdHPrWpwV72jTHEPvHotmVWDr4yomXGY6Dt5FjEXyxeDfZxgyHXz7vE-2OruIePD97pH7i_O7yVU5vbm8npxNy1ZInsqqFlxJ2UlbKyWkrjnrNPC64Q1y1ViOUoEAppDPwFLeKjZrVaU7zhpJseN75Hi8O7cLM4R-acPKeNubq7OpWf8BF0C14G80s0cjOwT_8ooxmSf_GlyOZ1hVaSYrDSJTeqTa4GMM2Jm2Tzb13qVg-4WhYNaNm7Fxkxs3X42bj6yyP-pPon8lPkpxWBeM4TfVP9YnMbmU9A |
CitedBy_id | crossref_primary_10_1029_2023EF003698 crossref_primary_10_1139_cjes_2022_0053 crossref_primary_10_1016_j_ijggc_2024_104297 crossref_primary_10_3389_fclim_2024_1352825 crossref_primary_10_1016_j_xcrp_2023_101662 crossref_primary_10_1016_j_jenvman_2024_123477 crossref_primary_10_1016_j_agrformet_2023_109610 crossref_primary_10_5194_gmd_16_1105_2023 crossref_primary_10_1016_j_xinn_2021_100180 crossref_primary_10_1016_j_scitotenv_2024_176297 crossref_primary_10_3389_fclim_2023_1283107 crossref_primary_10_3390_ma17102336 crossref_primary_10_1016_j_clet_2022_100507 crossref_primary_10_1016_j_ibiod_2024_105958 crossref_primary_10_1016_j_jcou_2022_102085 crossref_primary_10_3389_fclim_2022_945332 crossref_primary_10_1016_j_resconrec_2022_106766 crossref_primary_10_1016_j_jclepro_2023_137625 crossref_primary_10_3389_fclim_2024_1252210 crossref_primary_10_1021_acs_est_2c03163 crossref_primary_10_1016_j_apgeochem_2024_106056 crossref_primary_10_1002_lno_12244 crossref_primary_10_1007_s10653_023_01827_x crossref_primary_10_5194_gmd_16_5783_2023 crossref_primary_10_1016_j_grets_2025_100172 crossref_primary_10_5194_gmd_17_4515_2024 crossref_primary_10_1016_j_jseaes_2024_106370 crossref_primary_10_3390_pr12020402 crossref_primary_10_1039_D2DT04168E crossref_primary_10_3390_land11050649 crossref_primary_10_1039_D2VA00168C crossref_primary_10_1080_17583004_2023_2217785 crossref_primary_10_3389_feart_2024_1414437 crossref_primary_10_1093_nsr_nwac057 crossref_primary_10_1038_s43247_024_01771_3 crossref_primary_10_48130_cas_0024_0007 crossref_primary_10_1021_acs_est_2c05253 crossref_primary_10_1007_s00267_024_01945_x crossref_primary_10_1007_s11104_024_06570_5 crossref_primary_10_1007_s11430_024_1359_9 crossref_primary_10_1360_N072024_0024 crossref_primary_10_1007_s11104_025_07299_5 crossref_primary_10_1016_j_ijggc_2023_104032 crossref_primary_10_1016_j_scitotenv_2023_168571 crossref_primary_10_1016_j_scitotenv_2024_173764 crossref_primary_10_1016_j_jclepro_2024_143458 crossref_primary_10_1111_rec_70013 crossref_primary_10_1007_s11430_024_1391_0 crossref_primary_10_1016_j_ccst_2025_100363 crossref_primary_10_1038_s41467_022_35671_x crossref_primary_10_3389_fenvs_2022_1068656 crossref_primary_10_3389_fenvs_2023_1172621 crossref_primary_10_1111_nph_18535 crossref_primary_10_5194_bg_19_3877_2022 crossref_primary_10_1007_s10533_024_01160_0 crossref_primary_10_1016_j_apsoil_2022_104653 crossref_primary_10_1021_acs_est_3c02543 crossref_primary_10_3390_min14010075 crossref_primary_10_1016_j_ijggc_2022_103701 crossref_primary_10_1007_s11356_024_32498_5 crossref_primary_10_1021_acs_est_3c01658 crossref_primary_10_1038_s41467_024_49502_8 crossref_primary_10_1038_s41558_023_01604_9 crossref_primary_10_1360_SSTe_2024_0003 crossref_primary_10_3389_fclim_2022_849948 crossref_primary_10_1016_j_watres_2022_118907 crossref_primary_10_3389_fclim_2021_820204 crossref_primary_10_1016_j_catena_2023_107031 crossref_primary_10_3389_fclim_2022_929268 crossref_primary_10_1080_14693062_2024_2353148 crossref_primary_10_5194_gmd_15_4959_2022 crossref_primary_10_1016_j_scitotenv_2022_159229 crossref_primary_10_1002_jaa2_116 crossref_primary_10_1007_s11104_024_07175_8 crossref_primary_10_3389_fclim_2024_1346117 crossref_primary_10_1016_j_crcon_2022_04_002 crossref_primary_10_1021_acs_est_3c03609 crossref_primary_10_3389_fclim_2024_1345224 crossref_primary_10_1016_j_tibtech_2022_09_004 crossref_primary_10_1016_j_gca_2025_01_042 crossref_primary_10_1111_ejss_13343 crossref_primary_10_1016_j_scitotenv_2024_176568 crossref_primary_10_1016_j_gca_2024_02_005 crossref_primary_10_1016_j_eneco_2022_106304 crossref_primary_10_1039_D4EE03166K crossref_primary_10_1038_s41598_023_36113_4 crossref_primary_10_3389_fclim_2022_970429 crossref_primary_10_1088_1748_9326_acacb3 crossref_primary_10_4274_jcp_2023_37431 crossref_primary_10_3389_fsufs_2023_1188133 crossref_primary_10_1111_ejss_13534 crossref_primary_10_1016_j_esd_2023_101338 crossref_primary_10_1016_j_scitotenv_2022_156524 crossref_primary_10_1146_annurev_marine_040523_014702 crossref_primary_10_1016_j_apgeochem_2024_106002 crossref_primary_10_1016_j_catena_2023_107524 |
Cites_doi | 10.1038/nclimate2882 10.1088/1748-9326/aabf9f 10.5194/bg-16-2949-2019 10.1088/1748-9326/aaa9c4 10.1002/rog.20004 10.1016/j.jclepro.2020.120432 10.1016/j.geoderma.2008.11.038 10.5194/essd-11-1553-2019 10.3389/fclim.2020.575744 10.1038/ncomms3934 10.1038/s41477-018-0108-y 10.1073/pnas.2011990118 10.5194/bg-17-2107-2020 10.1038/ngeo1895 10.1007/s11053-019-09529-x 10.1088/1748-9326/ab6c6d 10.17221/29/2009-JFS 10.1016/j.chemgeo.2002.10.001 10.1590/S0001-37652006000400009 10.1111/j.1461-0248.2007.01113.x 10.5194/gmd-14-1987-2021 10.1016/j.jclepro.2016.11.006 10.1038/s41467-020-14492-w 10.1038/s41561-019-0530-4 10.1098/rsbl.2017.0024 10.1111/j.1365-2435.2008.01447.x 10.1146/annurev-environ-101718-033129 10.1002/2013GL057981 10.1038/s41598-018-22728-5 10.1073/pnas.1710465114 10.1111/j.2007.0030-1299.16130.x 10.1016/j.ecolecon.2017.06.041 10.1073/pnas.1000545107 10.1021/es4052022 10.1139/a05-009 10.1029/2018GL077736 10.1038/nclimate2870 10.3390/su11113191 10.13031/2013.37092 10.1038/s41586-020-2448-9 10.1038/nature19324 10.1126/science.211.4477.16 10.32942/osf.io/45cnu 10.5194/essd-11-1783-2019 10.1038/345486b0 10.1016/j.geoderma.2010.03.012 10.1111/gcb.15089 10.1002/2017GC007273 10.1002/ecm.1382 10.1038/s41558-019-0545-2 10.1111/gcb.12657 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2021 Springer Nature Limited 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Nature Limited 2021 – notice: Springer Nature Limited 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SN 7TG 7TN 7UA 8FE 8FH AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G LK8 M7P PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES |
DOI | 10.1038/s41561-021-00798-x |
DatabaseName | CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Biological Science Collection Biological Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1752-0908 |
EndPage | 549 |
ExternalDocumentID | oai_HAL_hal_03401843v1 10_1038_s41561_021_00798_x |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science) grantid: ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028 funderid: https://doi.org/10.13039/100010662 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-19-MPGA-0008; ANR-19-MPGA-0008; ANR-19-MPGA-0008 funderid: https://doi.org/10.13039/501100001665 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 390683824; 390683824 funderid: https://doi.org/10.13039/501100001659 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: ERC‐SyG‐2013‐610028 funderid: https://doi.org/10.13039/100010663 |
GroupedDBID | 0R~ 123 29M 39C 5BI 5S5 70F 8FE 8FH AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ACBWK ACGFS ACPRK ACUHS ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BKSAR CCPQU CS3 DB5 EBS EE. EJD EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ LK5 M7P M7R N9A NNMJJ O9- ODYON P2P PCBAR RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG Y6R ~02 AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7SN 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H96 KL. L.G LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC NFIDA VOOES |
ID | FETCH-LOGICAL-c463t-5943766f6a977468932f8039b3be37ba3e6704027e3d0a13c72dc758f32b61ef3 |
IEDL.DBID | BENPR |
ISSN | 1752-0894 |
IngestDate | Fri May 09 12:23:06 EDT 2025 Wed Jul 16 16:29:16 EDT 2025 Tue Jul 01 01:37:44 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-5943766f6a977468932f8039b3be37ba3e6704027e3d0a13c72dc758f32b61ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6981-2769 0000-0001-9601-6442 0000-0002-5705-1787 0000-0003-4463-7778 0000-0003-2264-132X 0000-0003-2543-2558 0000-0001-9347-0615 0000-0002-7215-0150 0000-0001-8560-4943 0000-0003-1878-9321 0000-0001-9246-9671 0000-0001-9812-5837 |
OpenAccessLink | https://hal.science/hal-03401843 |
PQID | 2558265804 |
PQPubID | 546301 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_03401843v1 proquest_journals_2558265804 crossref_citationtrail_10_1038_s41561_021_00798_x crossref_primary_10_1038_s41561_021_00798_x springer_journals_10_1038_s41561_021_00798_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature geoscience |
PublicationTitleAbbrev | Nat. Geosci |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SeifritzWCO2 disposal by means of silicatesNature199034548610.1038/345486b0 Tchouankoue, J., Tchekambou, A., Angue, M., Ngansop, C. & Theodoro, S. in Geotherapy (eds Goreau, T. J. et al.) 445–458 (CRC Press, 2014). CookRJBarronJCPapendickRIWilliamsGJImpact on agriculture of the Mount St. Helens eruptionsScience1981211162210.1126/science.211.4477.16 Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants4, 138–147 (2018). Status of the World’s Soil Resources (FAO & Intergovernmental Technical Panel on Soils, 2015). AmannTHartmannJIdeas and perspectives: synergies from co-deployment of negative emission technologiesBiogeosciences2019162949296010.5194/bg-16-2949-2019 WrightSJPlant responses to nutrient addition experiments conducted in tropical forestsEcol. Monogr.201989e0138210.1002/ecm.1382 DoughtyCEWolfAMalhiYThe legacy of the Pleistocene megafauna extinctions on nutrient availability in AmazoniaNat. Geosci.2013676176410.1038/ngeo1895 PeñuelasJHuman-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globeNat. Commun.2013410.1038/ncomms3934 SmithPLand-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goalsAnnu. Rev. Environ. Resour.20194425528610.1146/annurev-environ-101718-033129 ElserJJGlobal analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystemsEcol. Lett.2007101135114210.1111/j.1461-0248.2007.01113.x KöhlerPAnthropogenic CO2 of high emission scenario compensated after 3500 years of ocean alkalinization with an annually constant dissolution of 5 Pg of olivineFront. Clim.2020257574410.3389/fclim.2020.575744 HartmannJEnhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidificationRev. Geophys.20135111314910.1002/rog.20004 KorhonenJHonkasaloASeppäläJCircular economy: the concept and its limitationsEcol. Econ.2018143374610.1016/j.ecolecon.2017.06.041 GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA2017114116451165010.1073/pnas.1710465114 TaylorLLEnhanced weathering strategies for stabilizing climate and averting ocean acidificationNat. Clim. Change2016640240610.1038/nclimate2882 KaspariMYanoviakSPBiogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesisFunct. Ecol.20082291992310.1111/j.1365-2435.2008.01447.x TerrerCNitrogen and phosphorus constrain the CO2 fertilization of global plant biomassNat. Clim. Change2019968468910.1038/s41558-019-0545-2 de Oliveira GarciaWAmannTHartmannJIncreasing biomass demand enlarges negative forest nutrient budget areas in wood export regionsSci. Rep.2018810.1038/s41598-018-22728-5 IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). MacíaYMPedreraJCastroMTVilaltaGAnalysis of energy sustainability in ore slurry pumping transport systemsSustainability201911319110.3390/su11113191 Cattaneo, A. et al. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2011990118 (2021). BörkerJHartmannJAmannTRomero-MujalliGTerrestrial sediments of the Earth: development of a global unconsolidated sediments map database (gum)Geochem. Geophys. Geosyst.201819997102410.1002/2017GC007273 Doughty, C. E., Abraham, A. & Roman, J. The sixth R: revitalizing the natural phosphorus pump. Preprint at EcoEvoRxivhttps://doi.org/10.32942/osf.io/45cnu (2020). Van StraatenPFarming with rocks and minerals: challenges and opportunitiesAn. Acad. Bras. Cienc.20067873174710.1590/S0001-37652006000400009 FussSNegative emissions - part 2: costs, potentials and side effectsEnviron. Res. Lett.2018132410.1088/1748-9326/aabf9f MoosdorfNRenforthPHartmannJCarbon dioxide efficiency of terrestrial enhanced weatheringEnviron. Sci. Technol.2014484809481610.1021/es4052022 KöhlerPGeoengineering potential of artificially enhanced silicate weathering of olivineProc. Natl Acad. Sci. USA2010107202282023310.1073/pnas.1000545107 FriedlingsteinPGlobal carbon budgetEarth Syst. Sci. Data2019111783183810.5194/essd-11-1783-2019 DuEGlobal patterns of terrestrial nitrogen and phosphorus limitationNat. Geosci.20201322122610.1038/s41561-019-0530-4 GollDSA representation of the phosphorus cycle for ORCHIDEE (revision 4520)Geosci. Model Dev.2017102022820233 JonardMTree mineral nutrition is deteriorating in EuropeGlob. Chang. Biol.20152141843010.1111/gcb.12657 SunYGlobal evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)Geosci. Model Dev.2021141987201010.5194/gmd-14-1987-2021 RamosCGEvaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize cropsNat. Resour. Res.2020291583160010.1007/s11053-019-09529-x GollDSLow phosphorus availability decreases susceptibility of tropical primary productivity to droughtsGeophys. Res. Lett.2018458231824010.1029/2018GL077736 IlyinaTAssessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidificationGeophys. Res. Lett.2013405909591410.1002/2013GL057981 DalmoraACApplication of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainabilityJ. Clean. Prod.202025612043210.1016/j.jclepro.2020.120432 Peña-RamírezVMVázquez-SelemLSiebeCSoil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835-30,500 years B.P.) in MexicoGeoderma200914922423410.1016/j.geoderma.2008.11.038 ClairTHindarALiming for the mitigation of acid rain effects in freshwater: a review of recent resultsEnviron. Rev.2005139112810.1139/a05-009 SmithPBiophysical and economic limits to negative CO2 emissionsNat. Clim. Change20166425010.1038/nclimate2870 Guidelines for Measuring and Managing CO2Emission from Freight Transport Operations (ECTA, March 2011). GardMGlobal whole-rock geochemical database compilationEarth Syst. Sci. Data2019111553156610.5194/essd-11-1553-2019 de Oliveira GarciaWImpacts of enhanced weathering on biomass production for negative emission technologies and soil hydrologyBiogeosciences2020172107213310.5194/bg-17-2107-2020 GraftonMCEResolving the agricultural crushed limestone flow problem from fixed wing aircraftTrans. ASABE20115476977510.13031/2013.37092 Brown, T. J. et al. World Mineral Production 2013–17 (British Geological Survey, 2019). BeerlingDJPotential for large-scale CO2 removal via enhanced rock weathering with croplandsNature202058324224810.1038/s41586-020-2448-9 StreflerJAmannTBauerNKrieglerEHartmannJPotential and costs of carbon dioxide removal by enhanced weathering of rocksEnviron. Res. Lett.20181303401010.1088/1748-9326/aaa9c4 WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x BošeľaMŠebeňVAnalysis of the aerial application of fertilizer and dolomitic limestoneJ. For. Sci.201056475710.17221/29/2009-JFS PaiSZerriffiHJewellJPathakJSolar has greater techno-economic resource suitability than wind for replacing coal mining jobsEnviron. Res. Lett.20201503406510.1088/1748-9326/ab6c6d Artaxo, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2007). KellandMEIncreased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soilGlob. Chang. Biol.2020263658367610.1111/gcb.15089 IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011). DessertCDupréBGaillardetJFrançoisLMAllègreCJBasalt weathering laws and the impact of basalt weathering on the global carbon cycleChem. Geol.200320225727310.1016/j.chemgeo.2002.10.001 HarpoleWSAddition of multiple limiting resources reduces grassland diversityNature2016537939610.1038/nature19324 FishkisOIngwersenJLamersMDenysenkoDStreckTPhytolith transport in soil: a field study using fluorescent labellingGeoderma2010157273610.1016/j.geoderma.2010.03.012 HouEGlobal meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystemsNat. Commun.20201163710.1038/s41467-020-14492-w PidgeonNFSpenceEPerceptions of enhanced weathering as a biological negative emissions optionBiol. Lett.2017132017002410.1098/rsbl.2017.0024 RamosCGEvaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizerJ. Clean. Prod.20171422700270610.1016/j.jclepro.2016.11.006 J Hartmann (798_CR31) 2013; 51 798_CR5 798_CR1 C Terrer (798_CR27) 2019; 9 BW Griscom (798_CR2) 2017; 114 M Bošeľa (798_CR33) 2010; 56 CG Ramos (798_CR19) 2017; 142 NF Pidgeon (798_CR49) 2017; 13 P Smith (798_CR4) 2016; 6 W de Oliveira Garcia (798_CR14) 2020; 17 M Gard (798_CR28) 2019; 11 AC Dalmora (798_CR10) 2020; 256 LL Taylor (798_CR6) 2016; 6 N Moosdorf (798_CR35) 2014; 48 P Friedlingstein (798_CR54) 2019; 11 T Clair (798_CR32) 2005; 13 798_CR36 W Seifritz (798_CR11) 1990; 345 798_CR30 J Korhonen (798_CR47) 2018; 143 J Strefler (798_CR21) 2018; 13 T Ilyina (798_CR55) 2013; 40 P Köhler (798_CR50) 2010; 107 O Fishkis (798_CR56) 2010; 157 CE Doughty (798_CR38) 2013; 6 P Smith (798_CR3) 2019; 44 E Hou (798_CR25) 2020; 11 W de Oliveira Garcia (798_CR22) 2018; 8 798_CR45 ME Kelland (798_CR15) 2020; 26 798_CR44 P Van Straaten (798_CR18) 2006; 78 J Börker (798_CR8) 2018; 19 VM Peña-Ramírez (798_CR13) 2009; 149 DA Wardle (798_CR41) 2008; 117 E Du (798_CR26) 2020; 13 WS Harpole (798_CR43) 2016; 537 S Fuss (798_CR20) 2018; 13 Y Sun (798_CR53) 2021; 14 T Amann (798_CR29) 2019; 16 YM Macía (798_CR48) 2019; 11 798_CR59 798_CR17 S Pai (798_CR46) 2020; 15 DJ Beerling (798_CR7) 2020; 583 M Kaspari (798_CR42) 2008; 22 798_CR58 798_CR57 RJ Cook (798_CR37) 1981; 211 JJ Elser (798_CR23) 2007; 10 DS Goll (798_CR52) 2018; 45 P Köhler (798_CR12) 2020; 2 M Jonard (798_CR39) 2015; 21 C Dessert (798_CR9) 2003; 202 CG Ramos (798_CR16) 2020; 29 SJ Wright (798_CR24) 2019; 89 J Peñuelas (798_CR40) 2013; 4 MCE Grafton (798_CR34) 2011; 54 DS Goll (798_CR51) 2017; 10 |
References_xml | – reference: RamosCGEvaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize cropsNat. Resour. Res.2020291583160010.1007/s11053-019-09529-x – reference: Tchouankoue, J., Tchekambou, A., Angue, M., Ngansop, C. & Theodoro, S. in Geotherapy (eds Goreau, T. J. et al.) 445–458 (CRC Press, 2014). – reference: WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x – reference: KöhlerPGeoengineering potential of artificially enhanced silicate weathering of olivineProc. Natl Acad. Sci. USA2010107202282023310.1073/pnas.1000545107 – reference: PeñuelasJHuman-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globeNat. Commun.2013410.1038/ncomms3934 – reference: HouEGlobal meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystemsNat. Commun.20201163710.1038/s41467-020-14492-w – reference: KöhlerPAnthropogenic CO2 of high emission scenario compensated after 3500 years of ocean alkalinization with an annually constant dissolution of 5 Pg of olivineFront. Clim.2020257574410.3389/fclim.2020.575744 – reference: AmannTHartmannJIdeas and perspectives: synergies from co-deployment of negative emission technologiesBiogeosciences2019162949296010.5194/bg-16-2949-2019 – reference: de Oliveira GarciaWImpacts of enhanced weathering on biomass production for negative emission technologies and soil hydrologyBiogeosciences2020172107213310.5194/bg-17-2107-2020 – reference: RamosCGEvaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizerJ. Clean. Prod.20171422700270610.1016/j.jclepro.2016.11.006 – reference: GollDSA representation of the phosphorus cycle for ORCHIDEE (revision 4520)Geosci. Model Dev.2017102022820233 – reference: DalmoraACApplication of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainabilityJ. Clean. Prod.202025612043210.1016/j.jclepro.2020.120432 – reference: ElserJJGlobal analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystemsEcol. Lett.2007101135114210.1111/j.1461-0248.2007.01113.x – reference: BörkerJHartmannJAmannTRomero-MujalliGTerrestrial sediments of the Earth: development of a global unconsolidated sediments map database (gum)Geochem. Geophys. Geosyst.201819997102410.1002/2017GC007273 – reference: TerrerCNitrogen and phosphorus constrain the CO2 fertilization of global plant biomassNat. Clim. Change2019968468910.1038/s41558-019-0545-2 – reference: Guidelines for Measuring and Managing CO2Emission from Freight Transport Operations (ECTA, March 2011). – reference: Van StraatenPFarming with rocks and minerals: challenges and opportunitiesAn. Acad. Bras. Cienc.20067873174710.1590/S0001-37652006000400009 – reference: WrightSJPlant responses to nutrient addition experiments conducted in tropical forestsEcol. Monogr.201989e0138210.1002/ecm.1382 – reference: BošeľaMŠebeňVAnalysis of the aerial application of fertilizer and dolomitic limestoneJ. For. Sci.201056475710.17221/29/2009-JFS – reference: FishkisOIngwersenJLamersMDenysenkoDStreckTPhytolith transport in soil: a field study using fluorescent labellingGeoderma2010157273610.1016/j.geoderma.2010.03.012 – reference: SmithPLand-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goalsAnnu. Rev. Environ. Resour.20194425528610.1146/annurev-environ-101718-033129 – reference: Status of the World’s Soil Resources (FAO & Intergovernmental Technical Panel on Soils, 2015). – reference: PidgeonNFSpenceEPerceptions of enhanced weathering as a biological negative emissions optionBiol. Lett.2017132017002410.1098/rsbl.2017.0024 – reference: SmithPBiophysical and economic limits to negative CO2 emissionsNat. Clim. Change20166425010.1038/nclimate2870 – reference: Artaxo, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2007). – reference: de Oliveira GarciaWAmannTHartmannJIncreasing biomass demand enlarges negative forest nutrient budget areas in wood export regionsSci. Rep.2018810.1038/s41598-018-22728-5 – reference: HarpoleWSAddition of multiple limiting resources reduces grassland diversityNature2016537939610.1038/nature19324 – reference: GardMGlobal whole-rock geochemical database compilationEarth Syst. Sci. Data2019111553156610.5194/essd-11-1553-2019 – reference: HartmannJEnhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidificationRev. Geophys.20135111314910.1002/rog.20004 – reference: FriedlingsteinPGlobal carbon budgetEarth Syst. Sci. Data2019111783183810.5194/essd-11-1783-2019 – reference: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011). – reference: MoosdorfNRenforthPHartmannJCarbon dioxide efficiency of terrestrial enhanced weatheringEnviron. Sci. Technol.2014484809481610.1021/es4052022 – reference: IlyinaTAssessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidificationGeophys. Res. Lett.2013405909591410.1002/2013GL057981 – reference: FussSNegative emissions - part 2: costs, potentials and side effectsEnviron. Res. Lett.2018132410.1088/1748-9326/aabf9f – reference: SunYGlobal evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)Geosci. Model Dev.2021141987201010.5194/gmd-14-1987-2021 – reference: SeifritzWCO2 disposal by means of silicatesNature199034548610.1038/345486b0 – reference: ClairTHindarALiming for the mitigation of acid rain effects in freshwater: a review of recent resultsEnviron. Rev.2005139112810.1139/a05-009 – reference: KaspariMYanoviakSPBiogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesisFunct. Ecol.20082291992310.1111/j.1365-2435.2008.01447.x – reference: Doughty, C. E., Abraham, A. & Roman, J. The sixth R: revitalizing the natural phosphorus pump. Preprint at EcoEvoRxivhttps://doi.org/10.32942/osf.io/45cnu (2020). – reference: BeerlingDJPotential for large-scale CO2 removal via enhanced rock weathering with croplandsNature202058324224810.1038/s41586-020-2448-9 – reference: CookRJBarronJCPapendickRIWilliamsGJImpact on agriculture of the Mount St. Helens eruptionsScience1981211162210.1126/science.211.4477.16 – reference: StreflerJAmannTBauerNKrieglerEHartmannJPotential and costs of carbon dioxide removal by enhanced weathering of rocksEnviron. Res. Lett.20181303401010.1088/1748-9326/aaa9c4 – reference: Cattaneo, A. et al. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2011990118 (2021). – reference: GraftonMCEResolving the agricultural crushed limestone flow problem from fixed wing aircraftTrans. ASABE20115476977510.13031/2013.37092 – reference: IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). – reference: Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants4, 138–147 (2018). – reference: DessertCDupréBGaillardetJFrançoisLMAllègreCJBasalt weathering laws and the impact of basalt weathering on the global carbon cycleChem. Geol.200320225727310.1016/j.chemgeo.2002.10.001 – reference: JonardMTree mineral nutrition is deteriorating in EuropeGlob. Chang. Biol.20152141843010.1111/gcb.12657 – reference: KellandMEIncreased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soilGlob. Chang. Biol.2020263658367610.1111/gcb.15089 – reference: DoughtyCEWolfAMalhiYThe legacy of the Pleistocene megafauna extinctions on nutrient availability in AmazoniaNat. Geosci.2013676176410.1038/ngeo1895 – reference: DuEGlobal patterns of terrestrial nitrogen and phosphorus limitationNat. Geosci.20201322122610.1038/s41561-019-0530-4 – reference: Peña-RamírezVMVázquez-SelemLSiebeCSoil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835-30,500 years B.P.) in MexicoGeoderma200914922423410.1016/j.geoderma.2008.11.038 – reference: GollDSLow phosphorus availability decreases susceptibility of tropical primary productivity to droughtsGeophys. Res. Lett.2018458231824010.1029/2018GL077736 – reference: Brown, T. J. et al. World Mineral Production 2013–17 (British Geological Survey, 2019). – reference: TaylorLLEnhanced weathering strategies for stabilizing climate and averting ocean acidificationNat. Clim. Change2016640240610.1038/nclimate2882 – reference: GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA2017114116451165010.1073/pnas.1710465114 – reference: KorhonenJHonkasaloASeppäläJCircular economy: the concept and its limitationsEcol. Econ.2018143374610.1016/j.ecolecon.2017.06.041 – reference: MacíaYMPedreraJCastroMTVilaltaGAnalysis of energy sustainability in ore slurry pumping transport systemsSustainability201911319110.3390/su11113191 – reference: PaiSZerriffiHJewellJPathakJSolar has greater techno-economic resource suitability than wind for replacing coal mining jobsEnviron. Res. Lett.20201503406510.1088/1748-9326/ab6c6d – volume: 6 start-page: 402 year: 2016 ident: 798_CR6 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2882 – volume: 13 start-page: 2 year: 2018 ident: 798_CR20 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabf9f – volume: 16 start-page: 2949 year: 2019 ident: 798_CR29 publication-title: Biogeosciences doi: 10.5194/bg-16-2949-2019 – volume: 13 start-page: 034010 year: 2018 ident: 798_CR21 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaa9c4 – volume: 51 start-page: 113 year: 2013 ident: 798_CR31 publication-title: Rev. Geophys. doi: 10.1002/rog.20004 – volume: 256 start-page: 120432 year: 2020 ident: 798_CR10 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120432 – volume: 149 start-page: 224 year: 2009 ident: 798_CR13 publication-title: Geoderma doi: 10.1016/j.geoderma.2008.11.038 – volume: 11 start-page: 1553 year: 2019 ident: 798_CR28 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1553-2019 – volume: 2 start-page: 575744 year: 2020 ident: 798_CR12 publication-title: Front. Clim. doi: 10.3389/fclim.2020.575744 – volume: 4 year: 2013 ident: 798_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms3934 – ident: 798_CR57 – ident: 798_CR5 doi: 10.1038/s41477-018-0108-y – ident: 798_CR30 doi: 10.1073/pnas.2011990118 – volume: 17 start-page: 2107 year: 2020 ident: 798_CR14 publication-title: Biogeosciences doi: 10.5194/bg-17-2107-2020 – volume: 6 start-page: 761 year: 2013 ident: 798_CR38 publication-title: Nat. Geosci. doi: 10.1038/ngeo1895 – volume: 29 start-page: 1583 year: 2020 ident: 798_CR16 publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09529-x – volume: 15 start-page: 034065 year: 2020 ident: 798_CR46 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab6c6d – volume: 56 start-page: 47 year: 2010 ident: 798_CR33 publication-title: J. For. Sci. doi: 10.17221/29/2009-JFS – volume: 202 start-page: 257 year: 2003 ident: 798_CR9 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2002.10.001 – volume: 78 start-page: 731 year: 2006 ident: 798_CR18 publication-title: An. Acad. Bras. Cienc. doi: 10.1590/S0001-37652006000400009 – volume: 10 start-page: 1135 year: 2007 ident: 798_CR23 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01113.x – ident: 798_CR45 – volume: 14 start-page: 1987 year: 2021 ident: 798_CR53 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-14-1987-2021 – volume: 142 start-page: 2700 year: 2017 ident: 798_CR19 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.006 – volume: 11 start-page: 637 year: 2020 ident: 798_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14492-w – volume: 13 start-page: 221 year: 2020 ident: 798_CR26 publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0530-4 – volume: 13 start-page: 20170024 year: 2017 ident: 798_CR49 publication-title: Biol. Lett. doi: 10.1098/rsbl.2017.0024 – ident: 798_CR17 – volume: 22 start-page: 919 year: 2008 ident: 798_CR42 publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01447.x – volume: 44 start-page: 255 year: 2019 ident: 798_CR3 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-101718-033129 – volume: 40 start-page: 5909 year: 2013 ident: 798_CR55 publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL057981 – volume: 8 year: 2018 ident: 798_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22728-5 – volume: 114 start-page: 11645 year: 2017 ident: 798_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1710465114 – volume: 10 start-page: 20228 year: 2017 ident: 798_CR51 publication-title: Geosci. Model Dev. – ident: 798_CR59 – ident: 798_CR1 – ident: 798_CR36 – volume: 117 start-page: 93 year: 2008 ident: 798_CR41 publication-title: Oikos doi: 10.1111/j.2007.0030-1299.16130.x – volume: 143 start-page: 37 year: 2018 ident: 798_CR47 publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2017.06.041 – volume: 107 start-page: 20228 year: 2010 ident: 798_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000545107 – volume: 48 start-page: 4809 year: 2014 ident: 798_CR35 publication-title: Environ. Sci. Technol. doi: 10.1021/es4052022 – volume: 13 start-page: 91 year: 2005 ident: 798_CR32 publication-title: Environ. Rev. doi: 10.1139/a05-009 – volume: 45 start-page: 8231 year: 2018 ident: 798_CR52 publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077736 – volume: 6 start-page: 42 year: 2016 ident: 798_CR4 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2870 – ident: 798_CR58 – volume: 11 start-page: 3191 year: 2019 ident: 798_CR48 publication-title: Sustainability doi: 10.3390/su11113191 – volume: 54 start-page: 769 year: 2011 ident: 798_CR34 publication-title: Trans. ASABE doi: 10.13031/2013.37092 – volume: 583 start-page: 242 year: 2020 ident: 798_CR7 publication-title: Nature doi: 10.1038/s41586-020-2448-9 – volume: 537 start-page: 93 year: 2016 ident: 798_CR43 publication-title: Nature doi: 10.1038/nature19324 – volume: 211 start-page: 16 year: 1981 ident: 798_CR37 publication-title: Science doi: 10.1126/science.211.4477.16 – ident: 798_CR44 doi: 10.32942/osf.io/45cnu – volume: 11 start-page: 1783 year: 2019 ident: 798_CR54 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1783-2019 – volume: 345 start-page: 486 year: 1990 ident: 798_CR11 publication-title: Nature doi: 10.1038/345486b0 – volume: 157 start-page: 27 year: 2010 ident: 798_CR56 publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.012 – volume: 26 start-page: 3658 year: 2020 ident: 798_CR15 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15089 – volume: 19 start-page: 997 year: 2018 ident: 798_CR8 publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2017GC007273 – volume: 89 start-page: e01382 year: 2019 ident: 798_CR24 publication-title: Ecol. Monogr. doi: 10.1002/ecm.1382 – volume: 9 start-page: 684 year: 2019 ident: 798_CR27 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0545-2 – volume: 21 start-page: 418 year: 2015 ident: 798_CR39 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12657 |
SSID | ssj0060475 |
Score | 2.63451 |
SecondaryResourceType | review_article |
Snippet | Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | 639/4077/4057 704/106/47/4113 704/47/4113 Afforestation Basalt Carbon capture and storage Carbon dioxide Carbon dioxide removal Carbon footprint Carbon sequestration Carbon sources Climate change Climate change mitigation Deployment Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Emission analysis Emissions Feasibility studies Fertility Geochemistry Geology Geophysics/Geodesy Land management Land surface models Ocean, Atmosphere Paris Agreement Perspective Removal Rocks Sciences of the Universe Soil Soil amendment Soil fertility Soil improvement Technology Uptake Weathering |
Title | Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock |
URI | https://link.springer.com/article/10.1038/s41561-021-00798-x https://www.proquest.com/docview/2558265804 https://hal.science/hal-03401843 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfg0CReEGND3AZThPa2RaRJLs09IUDACQFDEyDeoiZNOQl2PbiOj_8eJ5fyMWk89KV1W8l27J9jxwb4rqSTpVI9WmaloqEDFrWFlNS7UkqvfcaLsDVwdKwGZ_LgoneRNtwmqayytYnRUJe1C3vkGwh9EQn3NJOb4xsapkaF7GoaoTELc2iCte7A3Pbu8cnv1hYrJmOrXfSRnDLdl-nYDBN6YxJCFwylOV4s72v68MY1zQ5DYeQr1PlPojT6n71FWEjAkWxNJf0RZvxoCT7sx8G8j5_g_KRuQuEPkuz84uTW_6lRh0g4PUL8aBjz_OTep_N-l8Q-Egw8p32ckToWyvoJaWoyru_jAE-Cru3qM5zt7Z7uDGiamUCdVKKhvb5Ek6EqVQRgpxCN8Eoz0bfCepHbQniV47rluRclKzLhcl46jBkqwa3KfCWWoTOqR34FSJVrq6zFiEcpibBRFywrdV5w5bKCM9eFrGWXcamheJhrcW1iYltoM2WxQRabyGLz0IUfz--Mp-003qVeRyk8E4ZO2IOtQxPuMYGBoZbiLuvCaiskk9bfxLxoSxd-toJ7efz_X355_2tfYZ5HjQkVgKvQaW7_-jVEJY39llTvCbpE24E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7AESMvxp_xELUx-qQN3bbX7T0YgwgecpzEgOGtbrtdSNDbg1s87p_yb3Ta3QU1kTce9mV3djeZ-dr5pp3OALxU0slcqR7Nk1zRUAGL2kxK6l0updc-4VlYGtgdqcGB_HTYO1yAX-1ZmJBW2c6JcaLOSxfWyNeQ-iIT7mkm301OaegaFXZX2xYaNSx2_HyGIdv07fYHtO8rzrc29zcGtOkqQJ1UoqK9vsRBpQqVBeqj0F_zQjPRt8J6kdpMeJUisnnqRc6yRLiU5w5ZdSG4VYkvBH53EZakUIx3YOn95mjvSzv3KyZjaV_0yZwy3ZfNMR0m9No0hEoYunO8WNrX9OIvV7h4HBIx_2C5_2zMRn-3dRfuNESVrNfIugcLfnwfbn2MjYDnD-DrXlmFRCMU2fjMyZn_USJmSTitQvz4OOYVkJlvzhceETsnGOjWdaNROibm-impSjIpZ7FhKEFXevIQDm5Em4-gMy7H_jGQItVWWYsRllISaarOWJLrNOPKJRlnrgtJqy7jmgLmoY_GdxM30oU2tYoNqthEFZuLLry-fGdSl--4VvoFWuFSMFTeHqwPTbjHBAaiWoqfSRdWWyOZZrxPzRU6u_CmNdzV4___cuX6rz2H24P93aEZbo92nsAyj-gJ2Yer0KnOzv1TZESVfdbAkMC3m0b-bwwzFns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnUC8IH6KjgEWgiew6tiu4z4gNLaVjo1SIYb25sWOwyRGU9ZA13-Nv46zk2yAxN72kJfkkkh3n33f2ec7gGdKOpkr1ad5kisaKmBRm0lJvcul9NonPAtLA-_HanQg3x32D1fgV3sWJqRVtnNinKjz0oU18h5SX2TCfc1kr2jSIibbw9ez7zR0kAo7rW07jRoie365wPBt_mp3G239nPPhzqetEW06DFAnlahofyBxgKlCZYEGKfTdvNBMDKywXqQ2E16liHKeepGzLBEu5blDhl0IblXiC4HfXYW1NERFHVh7szOefGz9gGIylvlF_8wp0wPZHNlhQvfmIWzCMJ7jxdKBpmd_ucXV45CU-Qfj_WeTNvq-4S242ZBWslmj7Das-OkduPY2NgVe3oXPk7IKSUcosvWBk1P_rUT8knByhfjpccwxIAvfnDX8QuySYNBb15BG6Zik6-ekKsmsXMTmoQTd6td7cHAl2rwPnWk59Q-AFKm2ylqMtpSSSFl1xpJcpxlXLsk4c11IWnUZ1xQzDz01TkzcVBfa1Co2qGITVWzOuvDi_J1ZXcrjUumnaIVzwVCFe7S5b8I9JjAo1VL8TLqw0RrJNGN_bi6Q2oWXreEuHv__l-uXf-0JXEfEm_3d8d5DuMEjeEIi4gZ0qtMf_hGSo8o-blBI4Oiqgf8bO3gasA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+CO2+removal+from+enhanced+weathering+by+ecosystem+responses+to+powdered+rock&rft.jtitle=Nature+geoscience&rft.au=Goll%2C+Daniel+S&rft.au=Ciais+Philippe&rft.au=Amann+Thorben&rft.au=Buermann+Wolfgang&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=14&rft.issue=8&rft.spage=545&rft.epage=549&rft_id=info:doi/10.1038%2Fs41561-021-00798-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon |