Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock

Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO 2 ) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here w...

Full description

Saved in:
Bibliographic Details
Published inNature geoscience Vol. 14; no. 8; pp. 545 - 549
Main Authors Goll, Daniel S., Ciais, Philippe, Amann, Thorben, Buermann, Wolfgang, Chang, Jinfeng, Eker, Sibel, Hartmann, Jens, Janssens, Ivan, Li, Wei, Obersteiner, Michael, Penuelas, Josep, Tanaka, Katsumasa, Vicca, Sara
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO 2 ) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO 2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO 2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO 2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first. The enhanced CO 2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model.
AbstractList Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first.The enhanced CO2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model.
Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first.
Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO 2 ) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO 2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO 2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO 2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first. The enhanced CO 2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model.
Author Eker, Sibel
Buermann, Wolfgang
Hartmann, Jens
Vicca, Sara
Li, Wei
Tanaka, Katsumasa
Amann, Thorben
Goll, Daniel S.
Ciais, Philippe
Chang, Jinfeng
Obersteiner, Michael
Janssens, Ivan
Penuelas, Josep
Author_xml – sequence: 1
  givenname: Daniel S.
  orcidid: 0000-0001-9246-9671
  surname: Goll
  fullname: Goll, Daniel S.
  email: dsgoll123@gmail.com
  organization: Institute of Geography, University of Augsburg, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay
– sequence: 2
  givenname: Philippe
  orcidid: 0000-0001-8560-4943
  surname: Ciais
  fullname: Ciais, Philippe
  organization: Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay
– sequence: 3
  givenname: Thorben
  orcidid: 0000-0001-9347-0615
  surname: Amann
  fullname: Amann, Thorben
  organization: Institute for Geology, Center for Earth System Research and Sustainability, University Hamburg
– sequence: 4
  givenname: Wolfgang
  surname: Buermann
  fullname: Buermann, Wolfgang
  organization: Institute of Geography, University of Augsburg
– sequence: 5
  givenname: Jinfeng
  orcidid: 0000-0003-4463-7778
  surname: Chang
  fullname: Chang, Jinfeng
  organization: College of Environmental and Resource Sciences, Zhejiang University
– sequence: 6
  givenname: Sibel
  orcidid: 0000-0003-2264-132X
  surname: Eker
  fullname: Eker, Sibel
  organization: International Institute for Applied Systems Analysis
– sequence: 7
  givenname: Jens
  orcidid: 0000-0003-1878-9321
  surname: Hartmann
  fullname: Hartmann, Jens
  organization: Institute for Geology, Center for Earth System Research and Sustainability, University Hamburg
– sequence: 8
  givenname: Ivan
  orcidid: 0000-0002-5705-1787
  surname: Janssens
  fullname: Janssens, Ivan
  organization: Plants and Ecosystems (PLECO), University of Antwerp
– sequence: 9
  givenname: Wei
  orcidid: 0000-0003-2543-2558
  surname: Li
  fullname: Li, Wei
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University
– sequence: 10
  givenname: Michael
  orcidid: 0000-0001-6981-2769
  surname: Obersteiner
  fullname: Obersteiner, Michael
  organization: Environmental Change Institute, University of Oxford
– sequence: 11
  givenname: Josep
  orcidid: 0000-0002-7215-0150
  surname: Penuelas
  fullname: Penuelas, Josep
  organization: CREAF, CSIC, Global Ecology Unit CREAF-CSIC-UAB
– sequence: 12
  givenname: Katsumasa
  orcidid: 0000-0001-9601-6442
  surname: Tanaka
  fullname: Tanaka, Katsumasa
  organization: Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ-Université Paris-Saclay, Earth System Risk Analysis Section, Earth System Division, National Institute for Environmental Studies (NIES)
– sequence: 13
  givenname: Sara
  orcidid: 0000-0001-9812-5837
  surname: Vicca
  fullname: Vicca, Sara
  organization: Plants and Ecosystems (PLECO), University of Antwerp
BackLink https://hal.science/hal-03401843$$DView record in HAL
BookMark eNp9kMtKxDAUhoMoeH0BVwVXLqonlybpUgZvMKALdRvSzqlTnUlqEi_z9masIrhwccghfN_h598lm847JOSQwgkFrk-joJWkJbA8oGpdfmyQHaoqVkINevNn17XYJrsxPgFIEKraIQ-3PqFLvV0UkxtWBFz6t7x3wS8LdHPrWpwV72jTHEPvHotmVWDr4yomXGY6Dt5FjEXyxeDfZxgyHXz7vE-2OruIePD97pH7i_O7yVU5vbm8npxNy1ZInsqqFlxJ2UlbKyWkrjnrNPC64Q1y1ViOUoEAppDPwFLeKjZrVaU7zhpJseN75Hi8O7cLM4R-acPKeNubq7OpWf8BF0C14G80s0cjOwT_8ooxmSf_GlyOZ1hVaSYrDSJTeqTa4GMM2Jm2Tzb13qVg-4WhYNaNm7Fxkxs3X42bj6yyP-pPon8lPkpxWBeM4TfVP9YnMbmU9A
CitedBy_id crossref_primary_10_1029_2023EF003698
crossref_primary_10_1139_cjes_2022_0053
crossref_primary_10_1016_j_ijggc_2024_104297
crossref_primary_10_3389_fclim_2024_1352825
crossref_primary_10_1016_j_xcrp_2023_101662
crossref_primary_10_1016_j_jenvman_2024_123477
crossref_primary_10_1016_j_agrformet_2023_109610
crossref_primary_10_5194_gmd_16_1105_2023
crossref_primary_10_1016_j_xinn_2021_100180
crossref_primary_10_1016_j_scitotenv_2024_176297
crossref_primary_10_3389_fclim_2023_1283107
crossref_primary_10_3390_ma17102336
crossref_primary_10_1016_j_clet_2022_100507
crossref_primary_10_1016_j_ibiod_2024_105958
crossref_primary_10_1016_j_jcou_2022_102085
crossref_primary_10_3389_fclim_2022_945332
crossref_primary_10_1016_j_resconrec_2022_106766
crossref_primary_10_1016_j_jclepro_2023_137625
crossref_primary_10_3389_fclim_2024_1252210
crossref_primary_10_1021_acs_est_2c03163
crossref_primary_10_1016_j_apgeochem_2024_106056
crossref_primary_10_1002_lno_12244
crossref_primary_10_1007_s10653_023_01827_x
crossref_primary_10_5194_gmd_16_5783_2023
crossref_primary_10_1016_j_grets_2025_100172
crossref_primary_10_5194_gmd_17_4515_2024
crossref_primary_10_1016_j_jseaes_2024_106370
crossref_primary_10_3390_pr12020402
crossref_primary_10_1039_D2DT04168E
crossref_primary_10_3390_land11050649
crossref_primary_10_1039_D2VA00168C
crossref_primary_10_1080_17583004_2023_2217785
crossref_primary_10_3389_feart_2024_1414437
crossref_primary_10_1093_nsr_nwac057
crossref_primary_10_1038_s43247_024_01771_3
crossref_primary_10_48130_cas_0024_0007
crossref_primary_10_1021_acs_est_2c05253
crossref_primary_10_1007_s00267_024_01945_x
crossref_primary_10_1007_s11104_024_06570_5
crossref_primary_10_1007_s11430_024_1359_9
crossref_primary_10_1360_N072024_0024
crossref_primary_10_1007_s11104_025_07299_5
crossref_primary_10_1016_j_ijggc_2023_104032
crossref_primary_10_1016_j_scitotenv_2023_168571
crossref_primary_10_1016_j_scitotenv_2024_173764
crossref_primary_10_1016_j_jclepro_2024_143458
crossref_primary_10_1111_rec_70013
crossref_primary_10_1007_s11430_024_1391_0
crossref_primary_10_1016_j_ccst_2025_100363
crossref_primary_10_1038_s41467_022_35671_x
crossref_primary_10_3389_fenvs_2022_1068656
crossref_primary_10_3389_fenvs_2023_1172621
crossref_primary_10_1111_nph_18535
crossref_primary_10_5194_bg_19_3877_2022
crossref_primary_10_1007_s10533_024_01160_0
crossref_primary_10_1016_j_apsoil_2022_104653
crossref_primary_10_1021_acs_est_3c02543
crossref_primary_10_3390_min14010075
crossref_primary_10_1016_j_ijggc_2022_103701
crossref_primary_10_1007_s11356_024_32498_5
crossref_primary_10_1021_acs_est_3c01658
crossref_primary_10_1038_s41467_024_49502_8
crossref_primary_10_1038_s41558_023_01604_9
crossref_primary_10_1360_SSTe_2024_0003
crossref_primary_10_3389_fclim_2022_849948
crossref_primary_10_1016_j_watres_2022_118907
crossref_primary_10_3389_fclim_2021_820204
crossref_primary_10_1016_j_catena_2023_107031
crossref_primary_10_3389_fclim_2022_929268
crossref_primary_10_1080_14693062_2024_2353148
crossref_primary_10_5194_gmd_15_4959_2022
crossref_primary_10_1016_j_scitotenv_2022_159229
crossref_primary_10_1002_jaa2_116
crossref_primary_10_1007_s11104_024_07175_8
crossref_primary_10_3389_fclim_2024_1346117
crossref_primary_10_1016_j_crcon_2022_04_002
crossref_primary_10_1021_acs_est_3c03609
crossref_primary_10_3389_fclim_2024_1345224
crossref_primary_10_1016_j_tibtech_2022_09_004
crossref_primary_10_1016_j_gca_2025_01_042
crossref_primary_10_1111_ejss_13343
crossref_primary_10_1016_j_scitotenv_2024_176568
crossref_primary_10_1016_j_gca_2024_02_005
crossref_primary_10_1016_j_eneco_2022_106304
crossref_primary_10_1039_D4EE03166K
crossref_primary_10_1038_s41598_023_36113_4
crossref_primary_10_3389_fclim_2022_970429
crossref_primary_10_1088_1748_9326_acacb3
crossref_primary_10_4274_jcp_2023_37431
crossref_primary_10_3389_fsufs_2023_1188133
crossref_primary_10_1111_ejss_13534
crossref_primary_10_1016_j_esd_2023_101338
crossref_primary_10_1016_j_scitotenv_2022_156524
crossref_primary_10_1146_annurev_marine_040523_014702
crossref_primary_10_1016_j_apgeochem_2024_106002
crossref_primary_10_1016_j_catena_2023_107524
Cites_doi 10.1038/nclimate2882
10.1088/1748-9326/aabf9f
10.5194/bg-16-2949-2019
10.1088/1748-9326/aaa9c4
10.1002/rog.20004
10.1016/j.jclepro.2020.120432
10.1016/j.geoderma.2008.11.038
10.5194/essd-11-1553-2019
10.3389/fclim.2020.575744
10.1038/ncomms3934
10.1038/s41477-018-0108-y
10.1073/pnas.2011990118
10.5194/bg-17-2107-2020
10.1038/ngeo1895
10.1007/s11053-019-09529-x
10.1088/1748-9326/ab6c6d
10.17221/29/2009-JFS
10.1016/j.chemgeo.2002.10.001
10.1590/S0001-37652006000400009
10.1111/j.1461-0248.2007.01113.x
10.5194/gmd-14-1987-2021
10.1016/j.jclepro.2016.11.006
10.1038/s41467-020-14492-w
10.1038/s41561-019-0530-4
10.1098/rsbl.2017.0024
10.1111/j.1365-2435.2008.01447.x
10.1146/annurev-environ-101718-033129
10.1002/2013GL057981
10.1038/s41598-018-22728-5
10.1073/pnas.1710465114
10.1111/j.2007.0030-1299.16130.x
10.1016/j.ecolecon.2017.06.041
10.1073/pnas.1000545107
10.1021/es4052022
10.1139/a05-009
10.1029/2018GL077736
10.1038/nclimate2870
10.3390/su11113191
10.13031/2013.37092
10.1038/s41586-020-2448-9
10.1038/nature19324
10.1126/science.211.4477.16
10.32942/osf.io/45cnu
10.5194/essd-11-1783-2019
10.1038/345486b0
10.1016/j.geoderma.2010.03.012
10.1111/gcb.15089
10.1002/2017GC007273
10.1002/ecm.1382
10.1038/s41558-019-0545-2
10.1111/gcb.12657
ContentType Journal Article
Copyright Springer Nature Limited 2021
Springer Nature Limited 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Limited 2021
– notice: Springer Nature Limited 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SN
7TG
7TN
7UA
8FE
8FH
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
LK8
M7P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOI 10.1038/s41561-021-00798-x
DatabaseName CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Biological Science Collection
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1752-0908
EndPage 549
ExternalDocumentID oai_HAL_hal_03401843v1
10_1038_s41561_021_00798_x
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
  grantid: ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028; ERC‐SyG‐2013‐610028
  funderid: https://doi.org/10.13039/100010662
– fundername: Agence Nationale de la Recherche (French National Research Agency)
  grantid: ANR-19-MPGA-0008; ANR-19-MPGA-0008; ANR-19-MPGA-0008
  funderid: https://doi.org/10.13039/501100001665
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 390683824; 390683824
  funderid: https://doi.org/10.13039/501100001659
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: ERC‐SyG‐2013‐610028
  funderid: https://doi.org/10.13039/100010663
GroupedDBID 0R~
123
29M
39C
5BI
5S5
70F
8FE
8FH
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ACBWK
ACGFS
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
CS3
DB5
EBS
EE.
EJD
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
LK5
M7P
M7R
N9A
NNMJJ
O9-
ODYON
P2P
PCBAR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
Y6R
~02
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7SN
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
KL.
L.G
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
NFIDA
VOOES
ID FETCH-LOGICAL-c463t-5943766f6a977468932f8039b3be37ba3e6704027e3d0a13c72dc758f32b61ef3
IEDL.DBID BENPR
ISSN 1752-0894
IngestDate Fri May 09 12:23:06 EDT 2025
Wed Jul 16 16:29:16 EDT 2025
Tue Jul 01 01:37:44 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-5943766f6a977468932f8039b3be37ba3e6704027e3d0a13c72dc758f32b61ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6981-2769
0000-0001-9601-6442
0000-0002-5705-1787
0000-0003-4463-7778
0000-0003-2264-132X
0000-0003-2543-2558
0000-0001-9347-0615
0000-0002-7215-0150
0000-0001-8560-4943
0000-0003-1878-9321
0000-0001-9246-9671
0000-0001-9812-5837
OpenAccessLink https://hal.science/hal-03401843
PQID 2558265804
PQPubID 546301
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_03401843v1
proquest_journals_2558265804
crossref_citationtrail_10_1038_s41561_021_00798_x
crossref_primary_10_1038_s41561_021_00798_x
springer_journals_10_1038_s41561_021_00798_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature geoscience
PublicationTitleAbbrev Nat. Geosci
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SeifritzWCO2 disposal by means of silicatesNature199034548610.1038/345486b0
Tchouankoue, J., Tchekambou, A., Angue, M., Ngansop, C. & Theodoro, S. in Geotherapy (eds Goreau, T. J. et al.) 445–458 (CRC Press, 2014).
CookRJBarronJCPapendickRIWilliamsGJImpact on agriculture of the Mount St. Helens eruptionsScience1981211162210.1126/science.211.4477.16
Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants4, 138–147 (2018).
Status of the World’s Soil Resources (FAO & Intergovernmental Technical Panel on Soils, 2015).
AmannTHartmannJIdeas and perspectives: synergies from co-deployment of negative emission technologiesBiogeosciences2019162949296010.5194/bg-16-2949-2019
WrightSJPlant responses to nutrient addition experiments conducted in tropical forestsEcol. Monogr.201989e0138210.1002/ecm.1382
DoughtyCEWolfAMalhiYThe legacy of the Pleistocene megafauna extinctions on nutrient availability in AmazoniaNat. Geosci.2013676176410.1038/ngeo1895
PeñuelasJHuman-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globeNat. Commun.2013410.1038/ncomms3934
SmithPLand-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goalsAnnu. Rev. Environ. Resour.20194425528610.1146/annurev-environ-101718-033129
ElserJJGlobal analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystemsEcol. Lett.2007101135114210.1111/j.1461-0248.2007.01113.x
KöhlerPAnthropogenic CO2 of high emission scenario compensated after 3500 years of ocean alkalinization with an annually constant dissolution of 5 Pg of olivineFront. Clim.2020257574410.3389/fclim.2020.575744
HartmannJEnhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidificationRev. Geophys.20135111314910.1002/rog.20004
KorhonenJHonkasaloASeppäläJCircular economy: the concept and its limitationsEcol. Econ.2018143374610.1016/j.ecolecon.2017.06.041
GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA2017114116451165010.1073/pnas.1710465114
TaylorLLEnhanced weathering strategies for stabilizing climate and averting ocean acidificationNat. Clim. Change2016640240610.1038/nclimate2882
KaspariMYanoviakSPBiogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesisFunct. Ecol.20082291992310.1111/j.1365-2435.2008.01447.x
TerrerCNitrogen and phosphorus constrain the CO2 fertilization of global plant biomassNat. Clim. Change2019968468910.1038/s41558-019-0545-2
de Oliveira GarciaWAmannTHartmannJIncreasing biomass demand enlarges negative forest nutrient budget areas in wood export regionsSci. Rep.2018810.1038/s41598-018-22728-5
IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).
MacíaYMPedreraJCastroMTVilaltaGAnalysis of energy sustainability in ore slurry pumping transport systemsSustainability201911319110.3390/su11113191
Cattaneo, A. et al. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2011990118 (2021).
BörkerJHartmannJAmannTRomero-MujalliGTerrestrial sediments of the Earth: development of a global unconsolidated sediments map database (gum)Geochem. Geophys. Geosyst.201819997102410.1002/2017GC007273
Doughty, C. E., Abraham, A. & Roman, J. The sixth R: revitalizing the natural phosphorus pump. Preprint at EcoEvoRxivhttps://doi.org/10.32942/osf.io/45cnu (2020).
Van StraatenPFarming with rocks and minerals: challenges and opportunitiesAn. Acad. Bras. Cienc.20067873174710.1590/S0001-37652006000400009
FussSNegative emissions - part 2: costs, potentials and side effectsEnviron. Res. Lett.2018132410.1088/1748-9326/aabf9f
MoosdorfNRenforthPHartmannJCarbon dioxide efficiency of terrestrial enhanced weatheringEnviron. Sci. Technol.2014484809481610.1021/es4052022
KöhlerPGeoengineering potential of artificially enhanced silicate weathering of olivineProc. Natl Acad. Sci. USA2010107202282023310.1073/pnas.1000545107
FriedlingsteinPGlobal carbon budgetEarth Syst. Sci. Data2019111783183810.5194/essd-11-1783-2019
DuEGlobal patterns of terrestrial nitrogen and phosphorus limitationNat. Geosci.20201322122610.1038/s41561-019-0530-4
GollDSA representation of the phosphorus cycle for ORCHIDEE (revision 4520)Geosci. Model Dev.2017102022820233
JonardMTree mineral nutrition is deteriorating in EuropeGlob. Chang. Biol.20152141843010.1111/gcb.12657
SunYGlobal evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)Geosci. Model Dev.2021141987201010.5194/gmd-14-1987-2021
RamosCGEvaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize cropsNat. Resour. Res.2020291583160010.1007/s11053-019-09529-x
GollDSLow phosphorus availability decreases susceptibility of tropical primary productivity to droughtsGeophys. Res. Lett.2018458231824010.1029/2018GL077736
IlyinaTAssessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidificationGeophys. Res. Lett.2013405909591410.1002/2013GL057981
DalmoraACApplication of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainabilityJ. Clean. Prod.202025612043210.1016/j.jclepro.2020.120432
Peña-RamírezVMVázquez-SelemLSiebeCSoil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835-30,500 years B.P.) in MexicoGeoderma200914922423410.1016/j.geoderma.2008.11.038
ClairTHindarALiming for the mitigation of acid rain effects in freshwater: a review of recent resultsEnviron. Rev.2005139112810.1139/a05-009
SmithPBiophysical and economic limits to negative CO2 emissionsNat. Clim. Change20166425010.1038/nclimate2870
Guidelines for Measuring and Managing CO2Emission from Freight Transport Operations (ECTA, March 2011).
GardMGlobal whole-rock geochemical database compilationEarth Syst. Sci. Data2019111553156610.5194/essd-11-1553-2019
de Oliveira GarciaWImpacts of enhanced weathering on biomass production for negative emission technologies and soil hydrologyBiogeosciences2020172107213310.5194/bg-17-2107-2020
GraftonMCEResolving the agricultural crushed limestone flow problem from fixed wing aircraftTrans. ASABE20115476977510.13031/2013.37092
Brown, T. J. et al. World Mineral Production 2013–17 (British Geological Survey, 2019).
BeerlingDJPotential for large-scale CO2 removal via enhanced rock weathering with croplandsNature202058324224810.1038/s41586-020-2448-9
StreflerJAmannTBauerNKrieglerEHartmannJPotential and costs of carbon dioxide removal by enhanced weathering of rocksEnviron. Res. Lett.20181303401010.1088/1748-9326/aaa9c4
WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x
BošeľaMŠebeňVAnalysis of the aerial application of fertilizer and dolomitic limestoneJ. For. Sci.201056475710.17221/29/2009-JFS
PaiSZerriffiHJewellJPathakJSolar has greater techno-economic resource suitability than wind for replacing coal mining jobsEnviron. Res. Lett.20201503406510.1088/1748-9326/ab6c6d
Artaxo, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2007).
KellandMEIncreased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soilGlob. Chang. Biol.2020263658367610.1111/gcb.15089
IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).
DessertCDupréBGaillardetJFrançoisLMAllègreCJBasalt weathering laws and the impact of basalt weathering on the global carbon cycleChem. Geol.200320225727310.1016/j.chemgeo.2002.10.001
HarpoleWSAddition of multiple limiting resources reduces grassland diversityNature2016537939610.1038/nature19324
FishkisOIngwersenJLamersMDenysenkoDStreckTPhytolith transport in soil: a field study using fluorescent labellingGeoderma2010157273610.1016/j.geoderma.2010.03.012
HouEGlobal meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystemsNat. Commun.20201163710.1038/s41467-020-14492-w
PidgeonNFSpenceEPerceptions of enhanced weathering as a biological negative emissions optionBiol. Lett.2017132017002410.1098/rsbl.2017.0024
RamosCGEvaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizerJ. Clean. Prod.20171422700270610.1016/j.jclepro.2016.11.006
J Hartmann (798_CR31) 2013; 51
798_CR5
798_CR1
C Terrer (798_CR27) 2019; 9
BW Griscom (798_CR2) 2017; 114
M Bošeľa (798_CR33) 2010; 56
CG Ramos (798_CR19) 2017; 142
NF Pidgeon (798_CR49) 2017; 13
P Smith (798_CR4) 2016; 6
W de Oliveira Garcia (798_CR14) 2020; 17
M Gard (798_CR28) 2019; 11
AC Dalmora (798_CR10) 2020; 256
LL Taylor (798_CR6) 2016; 6
N Moosdorf (798_CR35) 2014; 48
P Friedlingstein (798_CR54) 2019; 11
T Clair (798_CR32) 2005; 13
798_CR36
W Seifritz (798_CR11) 1990; 345
798_CR30
J Korhonen (798_CR47) 2018; 143
J Strefler (798_CR21) 2018; 13
T Ilyina (798_CR55) 2013; 40
P Köhler (798_CR50) 2010; 107
O Fishkis (798_CR56) 2010; 157
CE Doughty (798_CR38) 2013; 6
P Smith (798_CR3) 2019; 44
E Hou (798_CR25) 2020; 11
W de Oliveira Garcia (798_CR22) 2018; 8
798_CR45
ME Kelland (798_CR15) 2020; 26
798_CR44
P Van Straaten (798_CR18) 2006; 78
J Börker (798_CR8) 2018; 19
VM Peña-Ramírez (798_CR13) 2009; 149
DA Wardle (798_CR41) 2008; 117
E Du (798_CR26) 2020; 13
WS Harpole (798_CR43) 2016; 537
S Fuss (798_CR20) 2018; 13
Y Sun (798_CR53) 2021; 14
T Amann (798_CR29) 2019; 16
YM Macía (798_CR48) 2019; 11
798_CR59
798_CR17
S Pai (798_CR46) 2020; 15
DJ Beerling (798_CR7) 2020; 583
M Kaspari (798_CR42) 2008; 22
798_CR58
798_CR57
RJ Cook (798_CR37) 1981; 211
JJ Elser (798_CR23) 2007; 10
DS Goll (798_CR52) 2018; 45
P Köhler (798_CR12) 2020; 2
M Jonard (798_CR39) 2015; 21
C Dessert (798_CR9) 2003; 202
CG Ramos (798_CR16) 2020; 29
SJ Wright (798_CR24) 2019; 89
J Peñuelas (798_CR40) 2013; 4
MCE Grafton (798_CR34) 2011; 54
DS Goll (798_CR51) 2017; 10
References_xml – reference: RamosCGEvaluation of soil re-mineralizer from by-product of volcanic rock mining: experimental proof using black oats and maize cropsNat. Resour. Res.2020291583160010.1007/s11053-019-09529-x
– reference: Tchouankoue, J., Tchekambou, A., Angue, M., Ngansop, C. & Theodoro, S. in Geotherapy (eds Goreau, T. J. et al.) 445–458 (CRC Press, 2014).
– reference: WardleDABardgettRDWalkerLRPeltzerDALagerströmAThe response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequencesOikos20081179310310.1111/j.2007.0030-1299.16130.x
– reference: KöhlerPGeoengineering potential of artificially enhanced silicate weathering of olivineProc. Natl Acad. Sci. USA2010107202282023310.1073/pnas.1000545107
– reference: PeñuelasJHuman-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globeNat. Commun.2013410.1038/ncomms3934
– reference: HouEGlobal meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystemsNat. Commun.20201163710.1038/s41467-020-14492-w
– reference: KöhlerPAnthropogenic CO2 of high emission scenario compensated after 3500 years of ocean alkalinization with an annually constant dissolution of 5 Pg of olivineFront. Clim.2020257574410.3389/fclim.2020.575744
– reference: AmannTHartmannJIdeas and perspectives: synergies from co-deployment of negative emission technologiesBiogeosciences2019162949296010.5194/bg-16-2949-2019
– reference: de Oliveira GarciaWImpacts of enhanced weathering on biomass production for negative emission technologies and soil hydrologyBiogeosciences2020172107213310.5194/bg-17-2107-2020
– reference: RamosCGEvaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizerJ. Clean. Prod.20171422700270610.1016/j.jclepro.2016.11.006
– reference: GollDSA representation of the phosphorus cycle for ORCHIDEE (revision 4520)Geosci. Model Dev.2017102022820233
– reference: DalmoraACApplication of andesite rock as a clean source of fertilizer for eucalyptus crop: evidence of sustainabilityJ. Clean. Prod.202025612043210.1016/j.jclepro.2020.120432
– reference: ElserJJGlobal analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystemsEcol. Lett.2007101135114210.1111/j.1461-0248.2007.01113.x
– reference: BörkerJHartmannJAmannTRomero-MujalliGTerrestrial sediments of the Earth: development of a global unconsolidated sediments map database (gum)Geochem. Geophys. Geosyst.201819997102410.1002/2017GC007273
– reference: TerrerCNitrogen and phosphorus constrain the CO2 fertilization of global plant biomassNat. Clim. Change2019968468910.1038/s41558-019-0545-2
– reference: Guidelines for Measuring and Managing CO2Emission from Freight Transport Operations (ECTA, March 2011).
– reference: Van StraatenPFarming with rocks and minerals: challenges and opportunitiesAn. Acad. Bras. Cienc.20067873174710.1590/S0001-37652006000400009
– reference: WrightSJPlant responses to nutrient addition experiments conducted in tropical forestsEcol. Monogr.201989e0138210.1002/ecm.1382
– reference: BošeľaMŠebeňVAnalysis of the aerial application of fertilizer and dolomitic limestoneJ. For. Sci.201056475710.17221/29/2009-JFS
– reference: FishkisOIngwersenJLamersMDenysenkoDStreckTPhytolith transport in soil: a field study using fluorescent labellingGeoderma2010157273610.1016/j.geoderma.2010.03.012
– reference: SmithPLand-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goalsAnnu. Rev. Environ. Resour.20194425528610.1146/annurev-environ-101718-033129
– reference: Status of the World’s Soil Resources (FAO & Intergovernmental Technical Panel on Soils, 2015).
– reference: PidgeonNFSpenceEPerceptions of enhanced weathering as a biological negative emissions optionBiol. Lett.2017132017002410.1098/rsbl.2017.0024
– reference: SmithPBiophysical and economic limits to negative CO2 emissionsNat. Clim. Change20166425010.1038/nclimate2870
– reference: Artaxo, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2007).
– reference: de Oliveira GarciaWAmannTHartmannJIncreasing biomass demand enlarges negative forest nutrient budget areas in wood export regionsSci. Rep.2018810.1038/s41598-018-22728-5
– reference: HarpoleWSAddition of multiple limiting resources reduces grassland diversityNature2016537939610.1038/nature19324
– reference: GardMGlobal whole-rock geochemical database compilationEarth Syst. Sci. Data2019111553156610.5194/essd-11-1553-2019
– reference: HartmannJEnhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidificationRev. Geophys.20135111314910.1002/rog.20004
– reference: FriedlingsteinPGlobal carbon budgetEarth Syst. Sci. Data2019111783183810.5194/essd-11-1783-2019
– reference: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).
– reference: MoosdorfNRenforthPHartmannJCarbon dioxide efficiency of terrestrial enhanced weatheringEnviron. Sci. Technol.2014484809481610.1021/es4052022
– reference: IlyinaTAssessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidificationGeophys. Res. Lett.2013405909591410.1002/2013GL057981
– reference: FussSNegative emissions - part 2: costs, potentials and side effectsEnviron. Res. Lett.2018132410.1088/1748-9326/aabf9f
– reference: SunYGlobal evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)Geosci. Model Dev.2021141987201010.5194/gmd-14-1987-2021
– reference: SeifritzWCO2 disposal by means of silicatesNature199034548610.1038/345486b0
– reference: ClairTHindarALiming for the mitigation of acid rain effects in freshwater: a review of recent resultsEnviron. Rev.2005139112810.1139/a05-009
– reference: KaspariMYanoviakSPBiogeography of litter depth in tropical forests: evaluating the phosphorus growth rate hypothesisFunct. Ecol.20082291992310.1111/j.1365-2435.2008.01447.x
– reference: Doughty, C. E., Abraham, A. & Roman, J. The sixth R: revitalizing the natural phosphorus pump. Preprint at EcoEvoRxivhttps://doi.org/10.32942/osf.io/45cnu (2020).
– reference: BeerlingDJPotential for large-scale CO2 removal via enhanced rock weathering with croplandsNature202058324224810.1038/s41586-020-2448-9
– reference: CookRJBarronJCPapendickRIWilliamsGJImpact on agriculture of the Mount St. Helens eruptionsScience1981211162210.1126/science.211.4477.16
– reference: StreflerJAmannTBauerNKrieglerEHartmannJPotential and costs of carbon dioxide removal by enhanced weathering of rocksEnviron. Res. Lett.20181303401010.1088/1748-9326/aaa9c4
– reference: Cattaneo, A. et al. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2011990118 (2021).
– reference: GraftonMCEResolving the agricultural crushed limestone flow problem from fixed wing aircraftTrans. ASABE20115476977510.13031/2013.37092
– reference: IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).
– reference: Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants4, 138–147 (2018).
– reference: DessertCDupréBGaillardetJFrançoisLMAllègreCJBasalt weathering laws and the impact of basalt weathering on the global carbon cycleChem. Geol.200320225727310.1016/j.chemgeo.2002.10.001
– reference: JonardMTree mineral nutrition is deteriorating in EuropeGlob. Chang. Biol.20152141843010.1111/gcb.12657
– reference: KellandMEIncreased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soilGlob. Chang. Biol.2020263658367610.1111/gcb.15089
– reference: DoughtyCEWolfAMalhiYThe legacy of the Pleistocene megafauna extinctions on nutrient availability in AmazoniaNat. Geosci.2013676176410.1038/ngeo1895
– reference: DuEGlobal patterns of terrestrial nitrogen and phosphorus limitationNat. Geosci.20201322122610.1038/s41561-019-0530-4
– reference: Peña-RamírezVMVázquez-SelemLSiebeCSoil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835-30,500 years B.P.) in MexicoGeoderma200914922423410.1016/j.geoderma.2008.11.038
– reference: GollDSLow phosphorus availability decreases susceptibility of tropical primary productivity to droughtsGeophys. Res. Lett.2018458231824010.1029/2018GL077736
– reference: Brown, T. J. et al. World Mineral Production 2013–17 (British Geological Survey, 2019).
– reference: TaylorLLEnhanced weathering strategies for stabilizing climate and averting ocean acidificationNat. Clim. Change2016640240610.1038/nclimate2882
– reference: GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA2017114116451165010.1073/pnas.1710465114
– reference: KorhonenJHonkasaloASeppäläJCircular economy: the concept and its limitationsEcol. Econ.2018143374610.1016/j.ecolecon.2017.06.041
– reference: MacíaYMPedreraJCastroMTVilaltaGAnalysis of energy sustainability in ore slurry pumping transport systemsSustainability201911319110.3390/su11113191
– reference: PaiSZerriffiHJewellJPathakJSolar has greater techno-economic resource suitability than wind for replacing coal mining jobsEnviron. Res. Lett.20201503406510.1088/1748-9326/ab6c6d
– volume: 6
  start-page: 402
  year: 2016
  ident: 798_CR6
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2882
– volume: 13
  start-page: 2
  year: 2018
  ident: 798_CR20
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabf9f
– volume: 16
  start-page: 2949
  year: 2019
  ident: 798_CR29
  publication-title: Biogeosciences
  doi: 10.5194/bg-16-2949-2019
– volume: 13
  start-page: 034010
  year: 2018
  ident: 798_CR21
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaa9c4
– volume: 51
  start-page: 113
  year: 2013
  ident: 798_CR31
  publication-title: Rev. Geophys.
  doi: 10.1002/rog.20004
– volume: 256
  start-page: 120432
  year: 2020
  ident: 798_CR10
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120432
– volume: 149
  start-page: 224
  year: 2009
  ident: 798_CR13
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.11.038
– volume: 11
  start-page: 1553
  year: 2019
  ident: 798_CR28
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1553-2019
– volume: 2
  start-page: 575744
  year: 2020
  ident: 798_CR12
  publication-title: Front. Clim.
  doi: 10.3389/fclim.2020.575744
– volume: 4
  year: 2013
  ident: 798_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3934
– ident: 798_CR57
– ident: 798_CR5
  doi: 10.1038/s41477-018-0108-y
– ident: 798_CR30
  doi: 10.1073/pnas.2011990118
– volume: 17
  start-page: 2107
  year: 2020
  ident: 798_CR14
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-2107-2020
– volume: 6
  start-page: 761
  year: 2013
  ident: 798_CR38
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1895
– volume: 29
  start-page: 1583
  year: 2020
  ident: 798_CR16
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09529-x
– volume: 15
  start-page: 034065
  year: 2020
  ident: 798_CR46
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab6c6d
– volume: 56
  start-page: 47
  year: 2010
  ident: 798_CR33
  publication-title: J. For. Sci.
  doi: 10.17221/29/2009-JFS
– volume: 202
  start-page: 257
  year: 2003
  ident: 798_CR9
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2002.10.001
– volume: 78
  start-page: 731
  year: 2006
  ident: 798_CR18
  publication-title: An. Acad. Bras. Cienc.
  doi: 10.1590/S0001-37652006000400009
– volume: 10
  start-page: 1135
  year: 2007
  ident: 798_CR23
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: 798_CR45
– volume: 14
  start-page: 1987
  year: 2021
  ident: 798_CR53
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-1987-2021
– volume: 142
  start-page: 2700
  year: 2017
  ident: 798_CR19
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.006
– volume: 11
  start-page: 637
  year: 2020
  ident: 798_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14492-w
– volume: 13
  start-page: 221
  year: 2020
  ident: 798_CR26
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0530-4
– volume: 13
  start-page: 20170024
  year: 2017
  ident: 798_CR49
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2017.0024
– ident: 798_CR17
– volume: 22
  start-page: 919
  year: 2008
  ident: 798_CR42
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01447.x
– volume: 44
  start-page: 255
  year: 2019
  ident: 798_CR3
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-101718-033129
– volume: 40
  start-page: 5909
  year: 2013
  ident: 798_CR55
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL057981
– volume: 8
  year: 2018
  ident: 798_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22728-5
– volume: 114
  start-page: 11645
  year: 2017
  ident: 798_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1710465114
– volume: 10
  start-page: 20228
  year: 2017
  ident: 798_CR51
  publication-title: Geosci. Model Dev.
– ident: 798_CR59
– ident: 798_CR1
– ident: 798_CR36
– volume: 117
  start-page: 93
  year: 2008
  ident: 798_CR41
  publication-title: Oikos
  doi: 10.1111/j.2007.0030-1299.16130.x
– volume: 143
  start-page: 37
  year: 2018
  ident: 798_CR47
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2017.06.041
– volume: 107
  start-page: 20228
  year: 2010
  ident: 798_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000545107
– volume: 48
  start-page: 4809
  year: 2014
  ident: 798_CR35
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4052022
– volume: 13
  start-page: 91
  year: 2005
  ident: 798_CR32
  publication-title: Environ. Rev.
  doi: 10.1139/a05-009
– volume: 45
  start-page: 8231
  year: 2018
  ident: 798_CR52
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077736
– volume: 6
  start-page: 42
  year: 2016
  ident: 798_CR4
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2870
– ident: 798_CR58
– volume: 11
  start-page: 3191
  year: 2019
  ident: 798_CR48
  publication-title: Sustainability
  doi: 10.3390/su11113191
– volume: 54
  start-page: 769
  year: 2011
  ident: 798_CR34
  publication-title: Trans. ASABE
  doi: 10.13031/2013.37092
– volume: 583
  start-page: 242
  year: 2020
  ident: 798_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2448-9
– volume: 537
  start-page: 93
  year: 2016
  ident: 798_CR43
  publication-title: Nature
  doi: 10.1038/nature19324
– volume: 211
  start-page: 16
  year: 1981
  ident: 798_CR37
  publication-title: Science
  doi: 10.1126/science.211.4477.16
– ident: 798_CR44
  doi: 10.32942/osf.io/45cnu
– volume: 11
  start-page: 1783
  year: 2019
  ident: 798_CR54
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1783-2019
– volume: 345
  start-page: 486
  year: 1990
  ident: 798_CR11
  publication-title: Nature
  doi: 10.1038/345486b0
– volume: 157
  start-page: 27
  year: 2010
  ident: 798_CR56
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.012
– volume: 26
  start-page: 3658
  year: 2020
  ident: 798_CR15
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15089
– volume: 19
  start-page: 997
  year: 2018
  ident: 798_CR8
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2017GC007273
– volume: 89
  start-page: e01382
  year: 2019
  ident: 798_CR24
  publication-title: Ecol. Monogr.
  doi: 10.1002/ecm.1382
– volume: 9
  start-page: 684
  year: 2019
  ident: 798_CR27
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0545-2
– volume: 21
  start-page: 418
  year: 2015
  ident: 798_CR39
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12657
SSID ssj0060475
Score 2.63451
SecondaryResourceType review_article
Snippet Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms 639/4077/4057
704/106/47/4113
704/47/4113
Afforestation
Basalt
Carbon capture and storage
Carbon dioxide
Carbon dioxide removal
Carbon footprint
Carbon sequestration
Carbon sources
Climate change
Climate change mitigation
Deployment
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Emission analysis
Emissions
Feasibility studies
Fertility
Geochemistry
Geology
Geophysics/Geodesy
Land management
Land surface models
Ocean, Atmosphere
Paris Agreement
Perspective
Removal
Rocks
Sciences of the Universe
Soil
Soil amendment
Soil fertility
Soil improvement
Technology
Uptake
Weathering
Title Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock
URI https://link.springer.com/article/10.1038/s41561-021-00798-x
https://www.proquest.com/docview/2558265804
https://hal.science/hal-03401843
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLfg0CReEGND3AZThPa2RaRJLs09IUDACQFDEyDeoiZNOQl2PbiOj_8eJ5fyMWk89KV1W8l27J9jxwb4rqSTpVI9WmaloqEDFrWFlNS7UkqvfcaLsDVwdKwGZ_LgoneRNtwmqayytYnRUJe1C3vkGwh9EQn3NJOb4xsapkaF7GoaoTELc2iCte7A3Pbu8cnv1hYrJmOrXfSRnDLdl-nYDBN6YxJCFwylOV4s72v68MY1zQ5DYeQr1PlPojT6n71FWEjAkWxNJf0RZvxoCT7sx8G8j5_g_KRuQuEPkuz84uTW_6lRh0g4PUL8aBjz_OTep_N-l8Q-Egw8p32ckToWyvoJaWoyru_jAE-Cru3qM5zt7Z7uDGiamUCdVKKhvb5Ek6EqVQRgpxCN8Eoz0bfCepHbQniV47rluRclKzLhcl46jBkqwa3KfCWWoTOqR34FSJVrq6zFiEcpibBRFywrdV5w5bKCM9eFrGWXcamheJhrcW1iYltoM2WxQRabyGLz0IUfz--Mp-003qVeRyk8E4ZO2IOtQxPuMYGBoZbiLuvCaiskk9bfxLxoSxd-toJ7efz_X355_2tfYZ5HjQkVgKvQaW7_-jVEJY39llTvCbpE24E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7AESMvxp_xELUx-qQN3bbX7T0YgwgecpzEgOGtbrtdSNDbg1s87p_yb3Ta3QU1kTce9mV3djeZ-dr5pp3OALxU0slcqR7Nk1zRUAGL2kxK6l0updc-4VlYGtgdqcGB_HTYO1yAX-1ZmJBW2c6JcaLOSxfWyNeQ-iIT7mkm301OaegaFXZX2xYaNSx2_HyGIdv07fYHtO8rzrc29zcGtOkqQJ1UoqK9vsRBpQqVBeqj0F_zQjPRt8J6kdpMeJUisnnqRc6yRLiU5w5ZdSG4VYkvBH53EZakUIx3YOn95mjvSzv3KyZjaV_0yZwy3ZfNMR0m9No0hEoYunO8WNrX9OIvV7h4HBIx_2C5_2zMRn-3dRfuNESVrNfIugcLfnwfbn2MjYDnD-DrXlmFRCMU2fjMyZn_USJmSTitQvz4OOYVkJlvzhceETsnGOjWdaNROibm-impSjIpZ7FhKEFXevIQDm5Em4-gMy7H_jGQItVWWYsRllISaarOWJLrNOPKJRlnrgtJqy7jmgLmoY_GdxM30oU2tYoNqthEFZuLLry-fGdSl--4VvoFWuFSMFTeHqwPTbjHBAaiWoqfSRdWWyOZZrxPzRU6u_CmNdzV4___cuX6rz2H24P93aEZbo92nsAyj-gJ2Yer0KnOzv1TZESVfdbAkMC3m0b-bwwzFns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnUC8IH6KjgEWgiew6tiu4z4gNLaVjo1SIYb25sWOwyRGU9ZA13-Nv46zk2yAxN72kJfkkkh3n33f2ec7gGdKOpkr1ad5kisaKmBRm0lJvcul9NonPAtLA-_HanQg3x32D1fgV3sWJqRVtnNinKjz0oU18h5SX2TCfc1kr2jSIibbw9ez7zR0kAo7rW07jRoie365wPBt_mp3G239nPPhzqetEW06DFAnlahofyBxgKlCZYEGKfTdvNBMDKywXqQ2E16liHKeepGzLBEu5blDhl0IblXiC4HfXYW1NERFHVh7szOefGz9gGIylvlF_8wp0wPZHNlhQvfmIWzCMJ7jxdKBpmd_ucXV45CU-Qfj_WeTNvq-4S242ZBWslmj7Das-OkduPY2NgVe3oXPk7IKSUcosvWBk1P_rUT8knByhfjpccwxIAvfnDX8QuySYNBb15BG6Zik6-ekKsmsXMTmoQTd6td7cHAl2rwPnWk59Q-AFKm2ylqMtpSSSFl1xpJcpxlXLsk4c11IWnUZ1xQzDz01TkzcVBfa1Co2qGITVWzOuvDi_J1ZXcrjUumnaIVzwVCFe7S5b8I9JjAo1VL8TLqw0RrJNGN_bi6Q2oWXreEuHv__l-uXf-0JXEfEm_3d8d5DuMEjeEIi4gZ0qtMf_hGSo8o-blBI4Oiqgf8bO3gasA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+CO2+removal+from+enhanced+weathering+by+ecosystem+responses+to+powdered+rock&rft.jtitle=Nature+geoscience&rft.au=Goll%2C+Daniel+S&rft.au=Ciais+Philippe&rft.au=Amann+Thorben&rft.au=Buermann+Wolfgang&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1752-0894&rft.eissn=1752-0908&rft.volume=14&rft.issue=8&rft.spage=545&rft.epage=549&rft_id=info:doi/10.1038%2Fs41561-021-00798-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-0894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-0894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-0894&client=summon