Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury
Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of RO...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 46; no. 5; pp. 2103 - 2113 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2018
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury. |
---|---|
AbstractList | Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation.
Sprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively.
I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells.
Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury. Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury. Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation.BACKGROUND/AIMSIschemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation.Sprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively.METHODSSprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively.I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells.RESULTSI/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells.Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.CONCLUSIONSOur studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury. |
Author | Wang, Ai-Ping Duan, Xiao-Ming Hu, Guo-Huang Zuo, Mei-Ling Song, Gui-Lin Lou, Zheng Yang, Zhong-Bao |
Author_xml | – sequence: 1 givenname: Zheng surname: Lou fullname: Lou, Zheng – sequence: 2 givenname: Ai-Ping surname: Wang fullname: Wang, Ai-Ping – sequence: 3 givenname: Xiao-Ming surname: Duan fullname: Duan, Xiao-Ming – sequence: 4 givenname: Guo-Huang surname: Hu fullname: Hu, Guo-Huang email: yzb55@yahoo.com – sequence: 5 givenname: Gui-Lin surname: Song fullname: Song, Gui-Lin – sequence: 6 givenname: Mei-Ling surname: Zuo fullname: Zuo, Mei-Ling – sequence: 7 givenname: Zhong-Bao surname: Yang fullname: Yang, Zhong-Bao email: yzb55@yahoo.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29723859$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAQxy1URNuFA3eELPVCD2FtJ47jY1m1ZaXCVrSVuEUTe7z1kk0WO6HdO0_Eg_BMZLtlD1VPHnt-8x_PxyHZa9oGCXnL2UfOpR4zxrJCZ5K9IAc8EzzRShV7g824TApdqH1yGOOCDVelxSuyL7QSaSH1Afl9swo472vofNvQ1tGvs--CQmM3Rka_oPXQoaXVml6fnyV__9ArP2-g9s2cXkJ3ewdrenoPBkM1cJFOMGAVoKbTaG5x6WH8DVcYXB83-rN7b4dMv5BedQFjpNNm0Yf1a_LSQR3xzeM5Ijdnp9eTz8nF7Hw6OblITJanXSKlKlJQVhiZ67RyWWolU8YhWobSyBRza4ABE1IrJ61SuRFVITjPOBMK0hGZbnVtC4tyFfwSwrpswZcPD22YlxA6b2osc55n1kjUKKqsQlGgcpXKndQ8zx24QevDVmsV2p89xq5c-miwrqHBto-lYKkUmUi5HtCjJ-ii7cPQxIHiXHGVi6G-EXn_SPXVEu3ue_9nNQDHW8CENsaAbodwVm72oNztwcCOn7DGdw8z7gL4-tmId9uIHxDmGHbaO_fRs-7J5actUa6sS_8BzN7Hzw |
CitedBy_id | crossref_primary_10_1016_j_biochi_2021_04_010 crossref_primary_10_1016_j_lfs_2019_116821 crossref_primary_10_1007_s10495_023_01902_9 crossref_primary_10_1016_j_phrs_2022_106230 crossref_primary_10_3390_antiox10010107 crossref_primary_10_1186_s12864_018_5039_5 crossref_primary_10_1016_j_bbrc_2020_06_034 crossref_primary_10_1038_s44321_024_00035_z crossref_primary_10_18632_aging_102997 crossref_primary_10_3390_antiox9040324 crossref_primary_10_1089_ars_2021_0040 crossref_primary_10_1186_s12974_019_1478_4 crossref_primary_10_1016_j_arr_2025_102735 crossref_primary_10_3390_antiox11101966 crossref_primary_10_3390_antiox9101013 crossref_primary_10_1016_j_biopha_2020_109990 crossref_primary_10_1007_s12035_024_04433_9 crossref_primary_10_1590_acb360707 crossref_primary_10_4103_1673_5374_250568 crossref_primary_10_1038_s41598_022_13918_3 crossref_primary_10_1590_acb360903 crossref_primary_10_1016_j_phrs_2020_105103 crossref_primary_10_3390_antiox8090404 crossref_primary_10_1093_hmg_ddaa278 crossref_primary_10_2174_1573406417666210628144849 crossref_primary_10_1007_s11064_018_2646_0 crossref_primary_10_3389_fimmu_2021_594376 crossref_primary_10_1016_j_molmet_2022_101502 crossref_primary_10_3390_antiox11102012 crossref_primary_10_4103_1673_5374_386398 crossref_primary_10_1007_s11064_024_04212_x crossref_primary_10_1155_2022_1296816 crossref_primary_10_2174_1871527321666220324115848 crossref_primary_10_1093_ijnp_pyab096 crossref_primary_10_2147_JIR_S325678 crossref_primary_10_3390_antiox9090877 crossref_primary_10_3390_antiox11020408 crossref_primary_10_3389_fimmu_2021_740260 crossref_primary_10_1007_s00424_024_02981_6 crossref_primary_10_1111_bjh_17941 crossref_primary_10_1155_2024_5534135 crossref_primary_10_1016_j_retram_2020_103271 crossref_primary_10_1016_j_ajpath_2021_04_009 crossref_primary_10_1016_j_cbi_2020_109249 crossref_primary_10_1038_s41392_019_0075_4 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106187 crossref_primary_10_1080_21655979_2021_1999551 crossref_primary_10_1186_s12974_022_02551_6 crossref_primary_10_1080_0886022X_2020_1729189 crossref_primary_10_1016_j_brainresbull_2022_11_007 crossref_primary_10_2174_0115672026267629230920062917 crossref_primary_10_3171_2019_9_JNS191789 crossref_primary_10_1016_j_nbd_2021_105607 crossref_primary_10_3390_cells10092315 crossref_primary_10_1016_j_jbc_2021_100537 crossref_primary_10_1016_j_brainresbull_2021_12_003 crossref_primary_10_3390_biomedicines10020291 crossref_primary_10_1007_s12262_023_03695_2 crossref_primary_10_3892_etm_2021_10342 crossref_primary_10_1016_j_psj_2020_12_029 crossref_primary_10_3389_fphar_2018_01034 crossref_primary_10_1016_j_jgr_2021_08_001 crossref_primary_10_1093_nar_gkaa599 crossref_primary_10_1590_fst_36820 crossref_primary_10_1007_s10456_021_09787_5 crossref_primary_10_3389_fnmol_2020_00028 crossref_primary_10_1155_2022_1148874 crossref_primary_10_1016_j_biopha_2020_109860 crossref_primary_10_1016_j_ejphar_2024_176706 crossref_primary_10_1007_s12035_021_02632_2 crossref_primary_10_1155_2022_3494262 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by S. Karger AG, Basel 2018 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2018 The Author(s). Published by S. Karger AG, Basel – notice: 2018 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1159/000489450 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 2113 |
ExternalDocumentID | oai_doaj_org_article_6164dc5e9e2b4be28e7fb76f59166faf 29723859 10_1159_000489450 489450 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PQQKQ PROAC PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO CAG CITATION COF ITC PHGZM PHGZT RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c463t-55783a7d2c5693bf43d507cfeed0e5c53e6dca0a02597f5d776c2b821141027a3 |
IEDL.DBID | DOA |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:28:10 EDT 2025 Fri Jul 11 09:38:29 EDT 2025 Fri Jul 25 23:11:37 EDT 2025 Wed Feb 19 02:34:37 EST 2025 Tue Jul 01 05:10:16 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Thu Aug 29 12:04:40 EDT 2024 Thu Sep 05 17:57:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | NOX4 Cerebral ischemia/reperfusion injury ALK5 TGF-β signaling ROS NOX2 |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2018 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-55783a7d2c5693bf43d507cfeed0e5c53e6dca0a02597f5d776c2b821141027a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/6164dc5e9e2b4be28e7fb76f59166faf |
PMID | 29723859 |
PQID | 2117176246 |
PQPubID | 2047990 |
PageCount | 11 |
ParticipantIDs | karger_primary_489450 proquest_miscellaneous_2035242319 doaj_primary_oai_doaj_org_article_6164dc5e9e2b4be28e7fb76f59166faf crossref_primary_10_1159_000489450 pubmed_primary_29723859 proquest_journals_2117176246 crossref_citationtrail_10_1159_000489450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2018 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Tsai CF, Thomas B, Sudlow CL: Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013; 81: 264-272.2385840810.1212/WNL.0b013e31829bfde3 Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q: Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 2015; 110: 138.2598288010.1007/s00395-015-0494-5 Guo C, Sun L, Chen X, Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8: 2003-2014.2520650910.3969/j.issn.1673-5374.2013.21.009 Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A: The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 2013; 28: 311–318.2343672010.1002/mds.25292 Wu P, Zuo X, Ji A. Stroke-induced microRNAs: The potential therapeutic role for stroke. Exp Ther Med 2012; 3: 571-576.2296993110.3892/etm.2012.452 Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia—reperfusion. J Cereb Blood Flow Metab 2009; 29: 1262-1272.1941775710.1038/jcbfm.2009.47 Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ: Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 2015; 21: 516-522.2508189710.1007/s11655-014-1791-1 Wang W, Rigueur D, Lyons KM: TGF-β signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 2014; 102: 37-51.2467772210.1002/bdrc.21058 Gomes FC, Sousa, Vde O, Romão L: Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 2005; 23: 413-424.1593692010.1016/j.ijdevneu.2005.04.001 Zhang HF, Li TB, Liu B, Lou Z, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Peng J, Luo XJ: Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 953-963.2592093410.1007/s00210-015-1125-2 Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12: 7.2809592310.1186/s13024-017-0150-7 Vivien D, Ali C: Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev 2006; 17: 121-128.1627150010.1016/j.cytogfr.2005.09.011 Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M,Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH: Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8.pii: e1000479.2087771510.1371/journal.pbio.1000479 Weiss A, Attisano L: The TGF-beta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2: 47-63.2379963010.1002/wdev.86 Hsieh HL, Wang HH, Wu WB, Chu PJ,Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-κB pathways. J Neuroinflammation 2010; 7: 88.2113428810.1186/1742-2094-7-88 Grivennikova, VG, Vinogradov AD: Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta 2013; 1827: 446-454.2331341310.1016/j.bbabio.2013.01.002 Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ: Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2– and systolic blood pressure in mice. Circulation research 2001; 89: 408-414.1153290110.1161/hh1701.096037 Manea SA, Constantin A, Manda G, Sasson S, Manea A: Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5: 358-366.2613326110.1016/j.redox.2015.06.012 Glatt H, Rost K, Frank H, Seidel A, Kollock R: Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch Biochem Biophys 2008; 477: 196-205.1862101710.1016/j.abb.2008.06.020 Massagué J: How cells read TGF-β signals. Nat Rev Mol Cell Biol 2000; 1: 169-178.1125289210.1038/35043051 Ying W, Xiong ZG: Oxidative stress and NAD in ischemic brain injury: current advances and future perspectives. Curr Med Chem 2010; 17: 2152-2158.20423305 Bennett DA, Krishnamurthi RV, Barker-Collo S, Forouzanfar MH, Naghavi M, Connor M, Lawes CM, Moran AE, Anderson LM, Roth GA, Mensah GA, Ezzati M, Murray CJ, Feigin VL: The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart 2014; 9: 107–112.2543212010.1016/j.gheart.2014.01.001 Maraldi T: Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013: 271602.2438171410.1155/2013/271602 Shyu KG, Chang CC, Yeh YC, Sheu JR, Chou DS: Mechanisms of ascorbyl radical formation in human platelet-rich plasma. Biomed Res Int 2014; 2014: 614506.2469685910.1155/2014/614506 Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM: TGF beta-1 induced CD44v6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 2017; 292: 10490-10519.2838956110.1074/jbc.M116.752469 Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005 Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 2009; 156: 680-688.1917560410.1111/j.1476-5381.2008.00073.x Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, Suri RM, Miller JD: TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res 2013; 99: 175-184.2355445710.1093/cvr/cvt083 Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 2008; 154: 556-562.1851120510.1016/j.neuroscience.2008.03.090 Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH: Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-1517.2081286910.1089/ars.2010.3576 |
References_xml | – reference: Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, Suri RM, Miller JD: TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res 2013; 99: 175-184.2355445710.1093/cvr/cvt083 – reference: Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ: Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 2015; 21: 516-522.2508189710.1007/s11655-014-1791-1 – reference: Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12: 7.2809592310.1186/s13024-017-0150-7 – reference: Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 2008; 154: 556-562.1851120510.1016/j.neuroscience.2008.03.090 – reference: Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005 – reference: Wu P, Zuo X, Ji A. Stroke-induced microRNAs: The potential therapeutic role for stroke. Exp Ther Med 2012; 3: 571-576.2296993110.3892/etm.2012.452 – reference: Wang W, Rigueur D, Lyons KM: TGF-β signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 2014; 102: 37-51.2467772210.1002/bdrc.21058 – reference: Gomes FC, Sousa, Vde O, Romão L: Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 2005; 23: 413-424.1593692010.1016/j.ijdevneu.2005.04.001 – reference: Manea SA, Constantin A, Manda G, Sasson S, Manea A: Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5: 358-366.2613326110.1016/j.redox.2015.06.012 – reference: Guo C, Sun L, Chen X, Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8: 2003-2014.2520650910.3969/j.issn.1673-5374.2013.21.009 – reference: Ying W, Xiong ZG: Oxidative stress and NAD in ischemic brain injury: current advances and future perspectives. Curr Med Chem 2010; 17: 2152-2158.20423305 – reference: Vivien D, Ali C: Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev 2006; 17: 121-128.1627150010.1016/j.cytogfr.2005.09.011 – reference: Glatt H, Rost K, Frank H, Seidel A, Kollock R: Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch Biochem Biophys 2008; 477: 196-205.1862101710.1016/j.abb.2008.06.020 – reference: Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 2009; 156: 680-688.1917560410.1111/j.1476-5381.2008.00073.x – reference: Massagué J: How cells read TGF-β signals. Nat Rev Mol Cell Biol 2000; 1: 169-178.1125289210.1038/35043051 – reference: Hsieh HL, Wang HH, Wu WB, Chu PJ,Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-κB pathways. J Neuroinflammation 2010; 7: 88.2113428810.1186/1742-2094-7-88 – reference: Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM: TGF beta-1 induced CD44v6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 2017; 292: 10490-10519.2838956110.1074/jbc.M116.752469 – reference: Tsai CF, Thomas B, Sudlow CL: Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013; 81: 264-272.2385840810.1212/WNL.0b013e31829bfde3 – reference: Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia—reperfusion. J Cereb Blood Flow Metab 2009; 29: 1262-1272.1941775710.1038/jcbfm.2009.47 – reference: Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A: The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 2013; 28: 311–318.2343672010.1002/mds.25292 – reference: Bennett DA, Krishnamurthi RV, Barker-Collo S, Forouzanfar MH, Naghavi M, Connor M, Lawes CM, Moran AE, Anderson LM, Roth GA, Mensah GA, Ezzati M, Murray CJ, Feigin VL: The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart 2014; 9: 107–112.2543212010.1016/j.gheart.2014.01.001 – reference: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M,Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH: Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8.pii: e1000479.2087771510.1371/journal.pbio.1000479 – reference: Weiss A, Attisano L: The TGF-beta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2: 47-63.2379963010.1002/wdev.86 – reference: Grivennikova, VG, Vinogradov AD: Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta 2013; 1827: 446-454.2331341310.1016/j.bbabio.2013.01.002 – reference: Maraldi T: Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013: 271602.2438171410.1155/2013/271602 – reference: Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q: Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 2015; 110: 138.2598288010.1007/s00395-015-0494-5 – reference: Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ: Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2– and systolic blood pressure in mice. Circulation research 2001; 89: 408-414.1153290110.1161/hh1701.096037 – reference: Zhang HF, Li TB, Liu B, Lou Z, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Peng J, Luo XJ: Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 953-963.2592093410.1007/s00210-015-1125-2 – reference: Shyu KG, Chang CC, Yeh YC, Sheu JR, Chou DS: Mechanisms of ascorbyl radical formation in human platelet-rich plasma. Biomed Res Int 2014; 2014: 614506.2469685910.1155/2014/614506 – reference: Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH: Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-1517.2081286910.1089/ars.2010.3576 |
SSID | ssj0015792 |
Score | 2.4665341 |
Snippet | Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive... Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS)... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2103 |
SubjectTerms | ALK5 Animals Benzodioxoles - therapeutic use Brain Brain Ischemia - drug therapy Brain Ischemia - genetics Brain Ischemia - metabolism Brain Ischemia - pathology Carotid arteries Cerebral ischemia/reperfusion injury Growth factors Hypoxia Imidazoles - therapeutic use Ischemia Kinases Laboratory animals Male NADPH Oxidase 2 - genetics NADPH Oxidase 2 - metabolism NADPH Oxidase 4 - genetics NADPH Oxidase 4 - metabolism Neurodegeneration Neurosciences NOX2 NOX4 Original Paper Oxidative stress Oxidative Stress - drug effects Pathogenesis PC12 Cells Proteins Pyridines - therapeutic use Rats Rats, Sprague-Dawley Reactive oxygen species Reperfusion Injury - drug therapy Reperfusion Injury - genetics Reperfusion Injury - metabolism Reperfusion Injury - pathology Rodents ROS Signal Transduction TGF-β signaling Transforming Growth Factor beta - metabolism Up-Regulation Veins & arteries |
SummonAdditionalLinks | – databaseName: Karger Open Access Journals dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Nb9QwELVQEYILglIgdKkM4sDFajeOneRIV922SNtWalfaW-TPVUuVXYVd0b33F_FD-E3M2EkEiN6sxLGjGVvznj_eEPJp6ADTa40JTbhmUMxYMZSeKW4LrVKlvMalgcmZPJlmX2di1q534F2Yb3j-OUij9toCEHD3w93nMkNy_hh4FMfDexPG-v0CkZdxX3MoWAE0utUQ-utT1P0NObZQl_SPIBS0-iEAxa4fRpoh4oxfkOctVKRfom9fkkeu3iZPYvLIzTZ5Oupytb0i99NlE5PKg5npwtOz81lKVW2xkNFJyMfhLNUbenU8Zr9-0svrOULwek4vAAP-UBt6dKcM2BixJx25BjeUb-kpkF_oRe0DUHeNX-PaGj2_u7ZBL5xehpsm9LS-AdfskOn46Gp0wtr8Csxkkq-YgNnKVW5TI2TJtc-4BXRoPITNAyeM4E5aow4UwKIy98LmuTSpLoAyZgBLcsVfk616Ubu3hJZprgujdCEVKp4Z4EWaG3C9AQIHJk_I587glWnFxzEHxm0VSIgoq95NCfnYV11GxY3_VTpEr_UVUCQ7PFg086qdc5UEKmiNcKVLdaZdWrjc61x6AZBYeuUTshN93jfTNT745_no4jC-qpYWPht0I6RqJ_z3CowCxFimmUzIh_41jALcf1G1W6yhDmrPAnwdlgl5E0dW30M3Mt898E-75BlAtSIu_gzI1qpZu_cAh1Z6L8yE30khAL0 priority: 102 providerName: Karger AG – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQSklsCCDOHCxtnnYTk6Irrq0SH1I7Up7i_xcFapkSXdF984v4ofwm5hxHiAE3KLEcSTPOPPN2P4-Qt7EDjC91ihokmoGlxnLY-GZSm2uVaKU11gaOD4Rh7Ps45zPu4Lbdbetsv8nhh-1rQ3WyMeQqEDmIZJMvFt-YagahaurnYTGbXIHqcvQq-V8SLhiLot2tTPmLIfkumMWggg-DoepiwyP2_8WjwJtP8Siz7gLu_k36AzBZ_qQPOhQI33fmvkRueWqbXK31ZHcbJN7k1627TH5Nls2rb48jDitPT05nSdUVRYvMnocpDmcpXpDLz5M2Y_v9PxygWi8WtAzgINf1YYe3CgDw40wlE5cg2vLV_QI8mD4ihoDZneNX2OZjZ7eXNpAHU7Pw6ETelR9AivtkNn04GJyyDqpBWYyka4Yh4mbKmkTw0WRap-lFoCi8RBB9xw3PHXCGrWnACEV0nMrpTCJzsEoGSAUqdInZKuqK_eU0CKROjdK50Ih-ZmBFEmnBrzAQC4HACEib_sBL03HQ45yGFdlyEd4UQ62icjroemyJd_4W6N9tNrQAPmyw426WZTd9CsFZIXWcFe4RGfaJbmTXkvhOaBj4ZWPyE5r86GbvvPRH_cnZ_vto3Jp4bVR7yFlN_evy1-eGpFXw2PwAlyKUZWr19AGaWgBycZFRHZbzxq-kAQhOF48-3_nz8l9AG95Ww4aka1Vs3YvACCt9MswC34C6QMMHA priority: 102 providerName: ProQuest |
Title | Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury |
URI | https://karger.com/doi/10.1159/000489450 https://www.ncbi.nlm.nih.gov/pubmed/29723859 https://www.proquest.com/docview/2117176246 https://www.proquest.com/docview/2035242319 https://doaj.org/article/6164dc5e9e2b4be28e7fb76f59166faf |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCMHLBGOMjFIZxAMvVtcktpNHWrVsSO0qtkp9i3yddlFahVas7_tF-yH8Jo7tJJoQiBdeqihxbucc93zHjr8PoY99A5heSidokkgCmynJ-swSkehMilgIK93QwGTKjufp1wVdPJD6ct-EBXrgYLgeAzyvFTW5iWUqTZwZbiVnlgKuYVZY9-8LOa8ppur5A8rzMM_ZpySDsrrmFILc3fPLqPPULbR_kIk8YT9koWv3_XX1d7jp0874Bdqt8SL-HJ7zJXpkyj30NChIbvfQs2Ej2PYK3c1XVVCWB1vjpcXT00WMRandRoonXpTDaCy3-PzLmPy8x2eXFw6Hlxd4BkDwh9ji0a1QYGgHQPHQVG5W-QafQAUMdxE9QOumshs3wIZPby-1Jw3HZ365CT4pr8A_-2g-Hp0Pj0ktskBUypI1odBlE8F1rCjLE2nTRANEVBZy55GhiiaGaSWOBGCjnFuqOWcqlhnUjSlgEy6S12inXJbmDcJ5zGWmhMyYcLRnCoojmSjwv4IqDqBBhD41Bi9UzUDuhDBuCl-J0LxofROhD23TVaDd-FOjgfNa28AxZfsdED9FHT_Fv-InQvvB5-1lmot3fts_nA3CoWKl4bROEyFF3eu_F2AUqI5ZnLIIvW8PQxS4SRhRmuUG2jgCWsCw_TxCByGy2jvEXgKO5of_48XeoucA7rIwXNRBO-tqY94BgFrLLnrMF7yLngxG09m3ru858Dsh5BeFKRjv |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBovCMaAQgGDQOIlauPETvKAECsrLVu7SWulvgVfq12UlKzV1nd-Dw_8EH4Tx84FhIC3vUW2Y0s5xz7fZ8fnQ-iVrwHTC2EFTQLhwWPoxT4zHg9ULDjh3Ai7NTAas8E0_DSjsw30rb4LY3-rrNdEt1CrXNo98g4QFWAejITs3eKLZ1Wj7OlqLaFRusW-Xl8CZbt4O_wA9n1NSH9v0ht4laqAJ0MWLD0KPhrwSBFJWRIIEwYKMJE0ECy6mkoaaKYk73IAA0lkqIoiJomIYfwQgnHEA-j3BroJgbdryV40awieT6OkPF31qRcDma8yGQFi6LjL20lor_f_Fv-cTADEvjP713fxb5Drgl3_LrpToVT8vnSre2hDZ9voVqlbud5GW71aJu4--jpdFKWePVgY5waPD2cE80zZhxCPnBSIVlis8eRj3_vxHR-fzC36z-b4CODnJV_jvSsuwbwW9uKeLuxZ9jkeAu-GUXgHOIIuzMpu6-HDqxPlUpXjY3fJBQ-zU_CKHTS9FiM8QJtZnulHCCckErHkImbcJluTQMlEIMHrJHBHACQt9Kb-4Kms8p5b-Y3z1PEfmqSNbVroZdN0USb7-FujXWu1poHNz-0K8mKeVtM9ZcBClaQ60USEQpNYR0ZEzFBA48xw00I7pc2bburO23-U9452y6p0oeC1du0habXWXKS_ZkYLvWiqwQvs0Q_PdL6CNjbtLSBnP2mhh6VnNSMQJzxHk8f_7_w52hpMRgfpwXC8_wTdBuAYl1tRbbS5LFb6KYCzpXjmZgRGn697Cv4EtQRIUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCEqBQIAFgcTFSrP2ru0DQiRNaChNI9pIuZl9RoXKCW6iNnd-EUd-BL-JWb9ACLj1ZtmbtZWZ2f2-nd35AJ53DGJ6KZ2giS89vAy8qMOtJ3wdSUGFsNItDRyM-N4keDdl0w34Xp2FcdsqqzExH6j1XLk18jYSFWQenAa8bcttEePdwevFF88pSLlMayWnUbjIvlmfI307ezXcRVu_oHTQP-7teaXCgKcC7i89hv7qi1BTxXjsSxv4GvGRsjhx7BimmG-4VmJHIDCIQ8t0GHJFZYTfEuDEHAof-70Cm6FjRQ3Y7PZH4w91DoOFcZFr7TAvQmpf1jVC_NDOj3LHgTvs_9tsmIsG4Ez42e0Bz_4NefOpb3ALbpaYlbwpnOw2bJh0C64WKpbrLbjeq0Tj7sDXySIr1O3R3mRuyehwSolItbsIyEEuDGI0kWty_Hbg_fhGjk5mjgukMzJGMHou1qR_IRQa24Fg0jOZy2yfkiGycHyLaCNjMJlduUU-cnhxovPC5eQoP_JChukn9JFtmFyKGe5CI52n5j6QmIYyUkJGXLjSawoJmvQV-qBCJonwpAkvqz88UWUVdCfGcZrkbIjFSW2bJjyrmy6K0h9_a9R1VqsbuGrd-Y15NkvK4E84clKtmIkNlYE0NDKhlSG3DLE5t8I2Ybuwed1N1Xnrj_u9cbd4lCw0_qxVeUhSjjxnya84acLT-jF6gUsEidTMV9jGFcFFHN2Jm3Cv8Kz6DTSXoWPxg_93_gSuYfgl74ej_YdwA1FkVKxLtaCxzFbmESK1pXxchgSBj5cdhT8B1DZN7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upregulation+of+NOX2+and+NOX4+Mediated+by+TGF-%CE%B2+Signaling+Pathway+Exacerbates+Cerebral+Ischemia%2FReperfusion+Oxidative+Stress+Injury&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Lou%2C+Zheng&rft.au=Wang%2C+Ai-Ping&rft.au=Duan%2C+Xiao-Ming&rft.au=Hu%2C+Guo-Huang&rft.date=2018-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=46&rft.issue=5&rft.spage=2103&rft.epage=2113&rft_id=info:doi/10.1159%2F000489450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000489450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |