Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury

Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of RO...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 46; no. 5; pp. 2103 - 2113
Main Authors Lou, Zheng, Wang, Ai-Ping, Duan, Xiao-Ming, Hu, Guo-Huang, Song, Gui-Lin, Zuo, Mei-Ling, Yang, Zhong-Bao
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2018
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.
AbstractList Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation. Sprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.
Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.
Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation.BACKGROUND/AIMSIschemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β) signals in ROS generation.Sprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively.METHODSSprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively.I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells.RESULTSI/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells.Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.CONCLUSIONSOur studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.
Author Wang, Ai-Ping
Duan, Xiao-Ming
Hu, Guo-Huang
Zuo, Mei-Ling
Song, Gui-Lin
Lou, Zheng
Yang, Zhong-Bao
Author_xml – sequence: 1
  givenname: Zheng
  surname: Lou
  fullname: Lou, Zheng
– sequence: 2
  givenname: Ai-Ping
  surname: Wang
  fullname: Wang, Ai-Ping
– sequence: 3
  givenname: Xiao-Ming
  surname: Duan
  fullname: Duan, Xiao-Ming
– sequence: 4
  givenname: Guo-Huang
  surname: Hu
  fullname: Hu, Guo-Huang
  email: yzb55@yahoo.com
– sequence: 5
  givenname: Gui-Lin
  surname: Song
  fullname: Song, Gui-Lin
– sequence: 6
  givenname: Mei-Ling
  surname: Zuo
  fullname: Zuo, Mei-Ling
– sequence: 7
  givenname: Zhong-Bao
  surname: Yang
  fullname: Yang, Zhong-Bao
  email: yzb55@yahoo.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29723859$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQxy1URNuFA3eELPVCD2FtJ47jY1m1ZaXCVrSVuEUTe7z1kk0WO6HdO0_Eg_BMZLtlD1VPHnt-8x_PxyHZa9oGCXnL2UfOpR4zxrJCZ5K9IAc8EzzRShV7g824TApdqH1yGOOCDVelxSuyL7QSaSH1Afl9swo472vofNvQ1tGvs--CQmM3Rka_oPXQoaXVml6fnyV__9ArP2-g9s2cXkJ3ewdrenoPBkM1cJFOMGAVoKbTaG5x6WH8DVcYXB83-rN7b4dMv5BedQFjpNNm0Yf1a_LSQR3xzeM5Ijdnp9eTz8nF7Hw6OblITJanXSKlKlJQVhiZ67RyWWolU8YhWobSyBRza4ABE1IrJ61SuRFVITjPOBMK0hGZbnVtC4tyFfwSwrpswZcPD22YlxA6b2osc55n1kjUKKqsQlGgcpXKndQ8zx24QevDVmsV2p89xq5c-miwrqHBto-lYKkUmUi5HtCjJ-ii7cPQxIHiXHGVi6G-EXn_SPXVEu3ue_9nNQDHW8CENsaAbodwVm72oNztwcCOn7DGdw8z7gL4-tmId9uIHxDmGHbaO_fRs-7J5actUa6sS_8BzN7Hzw
CitedBy_id crossref_primary_10_1016_j_biochi_2021_04_010
crossref_primary_10_1016_j_lfs_2019_116821
crossref_primary_10_1007_s10495_023_01902_9
crossref_primary_10_1016_j_phrs_2022_106230
crossref_primary_10_3390_antiox10010107
crossref_primary_10_1186_s12864_018_5039_5
crossref_primary_10_1016_j_bbrc_2020_06_034
crossref_primary_10_1038_s44321_024_00035_z
crossref_primary_10_18632_aging_102997
crossref_primary_10_3390_antiox9040324
crossref_primary_10_1089_ars_2021_0040
crossref_primary_10_1186_s12974_019_1478_4
crossref_primary_10_1016_j_arr_2025_102735
crossref_primary_10_3390_antiox11101966
crossref_primary_10_3390_antiox9101013
crossref_primary_10_1016_j_biopha_2020_109990
crossref_primary_10_1007_s12035_024_04433_9
crossref_primary_10_1590_acb360707
crossref_primary_10_4103_1673_5374_250568
crossref_primary_10_1038_s41598_022_13918_3
crossref_primary_10_1590_acb360903
crossref_primary_10_1016_j_phrs_2020_105103
crossref_primary_10_3390_antiox8090404
crossref_primary_10_1093_hmg_ddaa278
crossref_primary_10_2174_1573406417666210628144849
crossref_primary_10_1007_s11064_018_2646_0
crossref_primary_10_3389_fimmu_2021_594376
crossref_primary_10_1016_j_molmet_2022_101502
crossref_primary_10_3390_antiox11102012
crossref_primary_10_4103_1673_5374_386398
crossref_primary_10_1007_s11064_024_04212_x
crossref_primary_10_1155_2022_1296816
crossref_primary_10_2174_1871527321666220324115848
crossref_primary_10_1093_ijnp_pyab096
crossref_primary_10_2147_JIR_S325678
crossref_primary_10_3390_antiox9090877
crossref_primary_10_3390_antiox11020408
crossref_primary_10_3389_fimmu_2021_740260
crossref_primary_10_1007_s00424_024_02981_6
crossref_primary_10_1111_bjh_17941
crossref_primary_10_1155_2024_5534135
crossref_primary_10_1016_j_retram_2020_103271
crossref_primary_10_1016_j_ajpath_2021_04_009
crossref_primary_10_1016_j_cbi_2020_109249
crossref_primary_10_1038_s41392_019_0075_4
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106187
crossref_primary_10_1080_21655979_2021_1999551
crossref_primary_10_1186_s12974_022_02551_6
crossref_primary_10_1080_0886022X_2020_1729189
crossref_primary_10_1016_j_brainresbull_2022_11_007
crossref_primary_10_2174_0115672026267629230920062917
crossref_primary_10_3171_2019_9_JNS191789
crossref_primary_10_1016_j_nbd_2021_105607
crossref_primary_10_3390_cells10092315
crossref_primary_10_1016_j_jbc_2021_100537
crossref_primary_10_1016_j_brainresbull_2021_12_003
crossref_primary_10_3390_biomedicines10020291
crossref_primary_10_1007_s12262_023_03695_2
crossref_primary_10_3892_etm_2021_10342
crossref_primary_10_1016_j_psj_2020_12_029
crossref_primary_10_3389_fphar_2018_01034
crossref_primary_10_1016_j_jgr_2021_08_001
crossref_primary_10_1093_nar_gkaa599
crossref_primary_10_1590_fst_36820
crossref_primary_10_1007_s10456_021_09787_5
crossref_primary_10_3389_fnmol_2020_00028
crossref_primary_10_1155_2022_1148874
crossref_primary_10_1016_j_biopha_2020_109860
crossref_primary_10_1016_j_ejphar_2024_176706
crossref_primary_10_1007_s12035_021_02632_2
crossref_primary_10_1155_2022_3494262
ContentType Journal Article
Copyright 2018 The Author(s). Published by S. Karger AG, Basel
2018 The Author(s). Published by S. Karger AG, Basel.
Copyright_xml – notice: 2018 The Author(s). Published by S. Karger AG, Basel
– notice: 2018 The Author(s). Published by S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1159/000489450
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest One Academic Middle East (New)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 2113
ExternalDocumentID oai_doaj_org_article_6164dc5e9e2b4be28e7fb76f59166faf
29723859
10_1159_000489450
489450
Genre Journal Article
GroupedDBID ---
0R~
0~B
29B
326
36B
3O.
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
8UI
AAFWJ
AAYIC
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GROUPED_DOAJ
HMCUK
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
M1P
ML-
N9A
O1H
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
RIG
RKO
RNS
SV3
UJ6
UKHRP
30W
AAYXX
ABBTS
ABWCG
ACQXL
ADAGL
AFSIO
AHFRZ
AIOBO
CAG
CITATION
COF
ITC
PHGZM
PHGZT
RXVBD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c463t-55783a7d2c5693bf43d507cfeed0e5c53e6dca0a02597f5d776c2b821141027a3
IEDL.DBID DOA
ISSN 1015-8987
1421-9778
IngestDate Wed Aug 27 01:28:10 EDT 2025
Fri Jul 11 09:38:29 EDT 2025
Fri Jul 25 23:11:37 EDT 2025
Wed Feb 19 02:34:37 EST 2025
Tue Jul 01 05:10:16 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Thu Aug 29 12:04:40 EDT 2024
Thu Sep 05 17:57:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords NOX4
Cerebral ischemia/reperfusion injury
ALK5
TGF-β signaling
ROS
NOX2
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
https://creativecommons.org/licenses/by-nc-nd/4.0
2018 The Author(s). Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-55783a7d2c5693bf43d507cfeed0e5c53e6dca0a02597f5d776c2b821141027a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6164dc5e9e2b4be28e7fb76f59166faf
PMID 29723859
PQID 2117176246
PQPubID 2047990
PageCount 11
ParticipantIDs karger_primary_489450
proquest_miscellaneous_2035242319
doaj_primary_oai_doaj_org_article_6164dc5e9e2b4be28e7fb76f59166faf
crossref_primary_10_1159_000489450
pubmed_primary_29723859
proquest_journals_2117176246
crossref_citationtrail_10_1159_000489450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
– name: Basel
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2018
Publisher S. Karger AG
Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: S. Karger AG
– name: Cell Physiol Biochem Press GmbH & Co KG
References Tsai CF, Thomas B, Sudlow CL: Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013; 81: 264-272.2385840810.1212/WNL.0b013e31829bfde3
Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q: Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 2015; 110: 138.2598288010.1007/s00395-015-0494-5
Guo C, Sun L, Chen X, Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8: 2003-2014.2520650910.3969/j.issn.1673-5374.2013.21.009
Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A: The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 2013; 28: 311–318.2343672010.1002/mds.25292
Wu P, Zuo X, Ji A. Stroke-induced microRNAs: The potential therapeutic role for stroke. Exp Ther Med 2012; 3: 571-576.2296993110.3892/etm.2012.452
Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia—reperfusion. J Cereb Blood Flow Metab 2009; 29: 1262-1272.1941775710.1038/jcbfm.2009.47
Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ: Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 2015; 21: 516-522.2508189710.1007/s11655-014-1791-1
Wang W, Rigueur D, Lyons KM: TGF-β signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 2014; 102: 37-51.2467772210.1002/bdrc.21058
Gomes FC, Sousa, Vde O, Romão L: Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 2005; 23: 413-424.1593692010.1016/j.ijdevneu.2005.04.001
Zhang HF, Li TB, Liu B, Lou Z, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Peng J, Luo XJ: Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 953-963.2592093410.1007/s00210-015-1125-2
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12: 7.2809592310.1186/s13024-017-0150-7
Vivien D, Ali C: Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev 2006; 17: 121-128.1627150010.1016/j.cytogfr.2005.09.011
Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M,Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH: Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8.pii: e1000479.2087771510.1371/journal.pbio.1000479
Weiss A, Attisano L: The TGF-beta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2: 47-63.2379963010.1002/wdev.86
Hsieh HL, Wang HH, Wu WB, Chu PJ,Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-κB pathways. J Neuroinflammation 2010; 7: 88.2113428810.1186/1742-2094-7-88
Grivennikova, VG, Vinogradov AD: Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta 2013; 1827: 446-454.2331341310.1016/j.bbabio.2013.01.002
Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ: Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2– and systolic blood pressure in mice. Circulation research 2001; 89: 408-414.1153290110.1161/hh1701.096037
Manea SA, Constantin A, Manda G, Sasson S, Manea A: Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5: 358-366.2613326110.1016/j.redox.2015.06.012
Glatt H, Rost K, Frank H, Seidel A, Kollock R: Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch Biochem Biophys 2008; 477: 196-205.1862101710.1016/j.abb.2008.06.020
Massagué J: How cells read TGF-β signals. Nat Rev Mol Cell Biol 2000; 1: 169-178.1125289210.1038/35043051
Ying W, Xiong ZG: Oxidative stress and NAD in ischemic brain injury: current advances and future perspectives. Curr Med Chem 2010; 17: 2152-2158.20423305
Bennett DA, Krishnamurthi RV, Barker-Collo S, Forouzanfar MH, Naghavi M, Connor M, Lawes CM, Moran AE, Anderson LM, Roth GA, Mensah GA, Ezzati M, Murray CJ, Feigin VL: The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart 2014; 9: 107–112.2543212010.1016/j.gheart.2014.01.001
Maraldi T: Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013: 271602.2438171410.1155/2013/271602
Shyu KG, Chang CC, Yeh YC, Sheu JR, Chou DS: Mechanisms of ascorbyl radical formation in human platelet-rich plasma. Biomed Res Int 2014; 2014: 614506.2469685910.1155/2014/614506
Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM: TGF beta-1 induced CD44v6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 2017; 292: 10490-10519.2838956110.1074/jbc.M116.752469
Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005
Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 2009; 156: 680-688.1917560410.1111/j.1476-5381.2008.00073.x
Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, Suri RM, Miller JD: TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res 2013; 99: 175-184.2355445710.1093/cvr/cvt083
Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 2008; 154: 556-562.1851120510.1016/j.neuroscience.2008.03.090
Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH: Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-1517.2081286910.1089/ars.2010.3576
References_xml – reference: Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, Suri RM, Miller JD: TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res 2013; 99: 175-184.2355445710.1093/cvr/cvt083
– reference: Jiang YF, Liu ZQ, Cui W, Zhang WT, Gong JP, Wang XM, Zhang Y, Yang MJ: Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 2015; 21: 516-522.2508189710.1007/s11655-014-1791-1
– reference: Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12: 7.2809592310.1186/s13024-017-0150-7
– reference: Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 2008; 154: 556-562.1851120510.1016/j.neuroscience.2008.03.090
– reference: Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005
– reference: Wu P, Zuo X, Ji A. Stroke-induced microRNAs: The potential therapeutic role for stroke. Exp Ther Med 2012; 3: 571-576.2296993110.3892/etm.2012.452
– reference: Wang W, Rigueur D, Lyons KM: TGF-β signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 2014; 102: 37-51.2467772210.1002/bdrc.21058
– reference: Gomes FC, Sousa, Vde O, Romão L: Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 2005; 23: 413-424.1593692010.1016/j.ijdevneu.2005.04.001
– reference: Manea SA, Constantin A, Manda G, Sasson S, Manea A: Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5: 358-366.2613326110.1016/j.redox.2015.06.012
– reference: Guo C, Sun L, Chen X, Zhang D: Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8: 2003-2014.2520650910.3969/j.issn.1673-5374.2013.21.009
– reference: Ying W, Xiong ZG: Oxidative stress and NAD in ischemic brain injury: current advances and future perspectives. Curr Med Chem 2010; 17: 2152-2158.20423305
– reference: Vivien D, Ali C: Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev 2006; 17: 121-128.1627150010.1016/j.cytogfr.2005.09.011
– reference: Glatt H, Rost K, Frank H, Seidel A, Kollock R: Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch Biochem Biophys 2008; 477: 196-205.1862101710.1016/j.abb.2008.06.020
– reference: Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG: Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 2009; 156: 680-688.1917560410.1111/j.1476-5381.2008.00073.x
– reference: Massagué J: How cells read TGF-β signals. Nat Rev Mol Cell Biol 2000; 1: 169-178.1125289210.1038/35043051
– reference: Hsieh HL, Wang HH, Wu WB, Chu PJ,Yang CM: Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-κB pathways. J Neuroinflammation 2010; 7: 88.2113428810.1186/1742-2094-7-88
– reference: Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM: TGF beta-1 induced CD44v6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 2017; 292: 10490-10519.2838956110.1074/jbc.M116.752469
– reference: Tsai CF, Thomas B, Sudlow CL: Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 2013; 81: 264-272.2385840810.1212/WNL.0b013e31829bfde3
– reference: Chen H, Song YS, Chan PH: Inhibition of NADPH oxidase is neuroprotective after ischemia—reperfusion. J Cereb Blood Flow Metab 2009; 29: 1262-1272.1941775710.1038/jcbfm.2009.47
– reference: Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A: The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 2013; 28: 311–318.2343672010.1002/mds.25292
– reference: Bennett DA, Krishnamurthi RV, Barker-Collo S, Forouzanfar MH, Naghavi M, Connor M, Lawes CM, Moran AE, Anderson LM, Roth GA, Mensah GA, Ezzati M, Murray CJ, Feigin VL: The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart 2014; 9: 107–112.2543212010.1016/j.gheart.2014.01.001
– reference: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M,Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH: Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8.pii: e1000479.2087771510.1371/journal.pbio.1000479
– reference: Weiss A, Attisano L: The TGF-beta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2: 47-63.2379963010.1002/wdev.86
– reference: Grivennikova, VG, Vinogradov AD: Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim Biophys Acta 2013; 1827: 446-454.2331341310.1016/j.bbabio.2013.01.002
– reference: Maraldi T: Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013: 271602.2438171410.1155/2013/271602
– reference: Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q: Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 2015; 110: 138.2598288010.1007/s00395-015-0494-5
– reference: Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ: Novel competitive inhibitor of NAD (P) H oxidase assembly attenuates vascular O2– and systolic blood pressure in mice. Circulation research 2001; 89: 408-414.1153290110.1161/hh1701.096037
– reference: Zhang HF, Li TB, Liu B, Lou Z, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Peng J, Luo XJ: Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2015; 388: 953-963.2592093410.1007/s00210-015-1125-2
– reference: Shyu KG, Chang CC, Yeh YC, Sheu JR, Chou DS: Mechanisms of ascorbyl radical formation in human platelet-rich plasma. Biomed Res Int 2014; 2014: 614506.2469685910.1155/2014/614506
– reference: Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH: Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14: 1505-1517.2081286910.1089/ars.2010.3576
SSID ssj0015792
Score 2.4665341
Snippet Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive...
Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS)...
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2103
SubjectTerms ALK5
Animals
Benzodioxoles - therapeutic use
Brain
Brain Ischemia - drug therapy
Brain Ischemia - genetics
Brain Ischemia - metabolism
Brain Ischemia - pathology
Carotid arteries
Cerebral ischemia/reperfusion injury
Growth factors
Hypoxia
Imidazoles - therapeutic use
Ischemia
Kinases
Laboratory animals
Male
NADPH Oxidase 2 - genetics
NADPH Oxidase 2 - metabolism
NADPH Oxidase 4 - genetics
NADPH Oxidase 4 - metabolism
Neurodegeneration
Neurosciences
NOX2
NOX4
Original Paper
Oxidative stress
Oxidative Stress - drug effects
Pathogenesis
PC12 Cells
Proteins
Pyridines - therapeutic use
Rats
Rats, Sprague-Dawley
Reactive oxygen species
Reperfusion Injury - drug therapy
Reperfusion Injury - genetics
Reperfusion Injury - metabolism
Reperfusion Injury - pathology
Rodents
ROS
Signal Transduction
TGF-β signaling
Transforming Growth Factor beta - metabolism
Up-Regulation
Veins & arteries
SummonAdditionalLinks – databaseName: Karger Open Access Journals
  dbid: M--
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Nb9QwELVQEYILglIgdKkM4sDFajeOneRIV922SNtWalfaW-TPVUuVXYVd0b33F_FD-E3M2EkEiN6sxLGjGVvznj_eEPJp6ADTa40JTbhmUMxYMZSeKW4LrVKlvMalgcmZPJlmX2di1q534F2Yb3j-OUij9toCEHD3w93nMkNy_hh4FMfDexPG-v0CkZdxX3MoWAE0utUQ-utT1P0NObZQl_SPIBS0-iEAxa4fRpoh4oxfkOctVKRfom9fkkeu3iZPYvLIzTZ5Oupytb0i99NlE5PKg5npwtOz81lKVW2xkNFJyMfhLNUbenU8Zr9-0svrOULwek4vAAP-UBt6dKcM2BixJx25BjeUb-kpkF_oRe0DUHeNX-PaGj2_u7ZBL5xehpsm9LS-AdfskOn46Gp0wtr8Csxkkq-YgNnKVW5TI2TJtc-4BXRoPITNAyeM4E5aow4UwKIy98LmuTSpLoAyZgBLcsVfk616Ubu3hJZprgujdCEVKp4Z4EWaG3C9AQIHJk_I587glWnFxzEHxm0VSIgoq95NCfnYV11GxY3_VTpEr_UVUCQ7PFg086qdc5UEKmiNcKVLdaZdWrjc61x6AZBYeuUTshN93jfTNT745_no4jC-qpYWPht0I6RqJ_z3CowCxFimmUzIh_41jALcf1G1W6yhDmrPAnwdlgl5E0dW30M3Mt898E-75BlAtSIu_gzI1qpZu_cAh1Z6L8yE30khAL0
  priority: 102
  providerName: Karger AG
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEFQSklsCCDOHCxtnnYTk6Irrq0SH1I7Up7i_xcFapkSXdF984v4ofwm5hxHiAE3KLEcSTPOPPN2P4-Qt7EDjC91ihokmoGlxnLY-GZSm2uVaKU11gaOD4Rh7Ps45zPu4Lbdbetsv8nhh-1rQ3WyMeQqEDmIZJMvFt-YagahaurnYTGbXIHqcvQq-V8SLhiLot2tTPmLIfkumMWggg-DoepiwyP2_8WjwJtP8Siz7gLu_k36AzBZ_qQPOhQI33fmvkRueWqbXK31ZHcbJN7k1627TH5Nls2rb48jDitPT05nSdUVRYvMnocpDmcpXpDLz5M2Y_v9PxygWi8WtAzgINf1YYe3CgDw40wlE5cg2vLV_QI8mD4ihoDZneNX2OZjZ7eXNpAHU7Pw6ETelR9AivtkNn04GJyyDqpBWYyka4Yh4mbKmkTw0WRap-lFoCi8RBB9xw3PHXCGrWnACEV0nMrpTCJzsEoGSAUqdInZKuqK_eU0CKROjdK50Ih-ZmBFEmnBrzAQC4HACEib_sBL03HQ45yGFdlyEd4UQ62icjroemyJd_4W6N9tNrQAPmyw426WZTd9CsFZIXWcFe4RGfaJbmTXkvhOaBj4ZWPyE5r86GbvvPRH_cnZ_vto3Jp4bVR7yFlN_evy1-eGpFXw2PwAlyKUZWr19AGaWgBycZFRHZbzxq-kAQhOF48-3_nz8l9AG95Ww4aka1Vs3YvACCt9MswC34C6QMMHA
  priority: 102
  providerName: ProQuest
Title Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury
URI https://karger.com/doi/10.1159/000489450
https://www.ncbi.nlm.nih.gov/pubmed/29723859
https://www.proquest.com/docview/2117176246
https://www.proquest.com/docview/2035242319
https://doaj.org/article/6164dc5e9e2b4be28e7fb76f59166faf
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgCMHLBGOMjFIZxAMvVtcktpNHWrVsSO0qtkp9i3yddlFahVas7_tF-yH8Jo7tJJoQiBdeqihxbucc93zHjr8PoY99A5heSidokkgCmynJ-swSkehMilgIK93QwGTKjufp1wVdPJD6ct-EBXrgYLgeAzyvFTW5iWUqTZwZbiVnlgKuYVZY9-8LOa8ppur5A8rzMM_ZpySDsrrmFILc3fPLqPPULbR_kIk8YT9koWv3_XX1d7jp0874Bdqt8SL-HJ7zJXpkyj30NChIbvfQs2Ej2PYK3c1XVVCWB1vjpcXT00WMRandRoonXpTDaCy3-PzLmPy8x2eXFw6Hlxd4BkDwh9ji0a1QYGgHQPHQVG5W-QafQAUMdxE9QOumshs3wIZPby-1Jw3HZ365CT4pr8A_-2g-Hp0Pj0ktskBUypI1odBlE8F1rCjLE2nTRANEVBZy55GhiiaGaSWOBGCjnFuqOWcqlhnUjSlgEy6S12inXJbmDcJ5zGWmhMyYcLRnCoojmSjwv4IqDqBBhD41Bi9UzUDuhDBuCl-J0LxofROhD23TVaDd-FOjgfNa28AxZfsdED9FHT_Fv-InQvvB5-1lmot3fts_nA3CoWKl4bROEyFF3eu_F2AUqI5ZnLIIvW8PQxS4SRhRmuUG2jgCWsCw_TxCByGy2jvEXgKO5of_48XeoucA7rIwXNRBO-tqY94BgFrLLnrMF7yLngxG09m3ru858Dsh5BeFKRjv
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBovCMaAQgGDQOIlauPETvKAECsrLVu7SWulvgVfq12UlKzV1nd-Dw_8EH4Tx84FhIC3vUW2Y0s5xz7fZ8fnQ-iVrwHTC2EFTQLhwWPoxT4zHg9ULDjh3Ai7NTAas8E0_DSjsw30rb4LY3-rrNdEt1CrXNo98g4QFWAejITs3eKLZ1Wj7OlqLaFRusW-Xl8CZbt4O_wA9n1NSH9v0ht4laqAJ0MWLD0KPhrwSBFJWRIIEwYKMJE0ECy6mkoaaKYk73IAA0lkqIoiJomIYfwQgnHEA-j3BroJgbdryV40awieT6OkPF31qRcDma8yGQFi6LjL20lor_f_Fv-cTADEvjP713fxb5Drgl3_LrpToVT8vnSre2hDZ9voVqlbud5GW71aJu4--jpdFKWePVgY5waPD2cE80zZhxCPnBSIVlis8eRj3_vxHR-fzC36z-b4CODnJV_jvSsuwbwW9uKeLuxZ9jkeAu-GUXgHOIIuzMpu6-HDqxPlUpXjY3fJBQ-zU_CKHTS9FiM8QJtZnulHCCckErHkImbcJluTQMlEIMHrJHBHACQt9Kb-4Kms8p5b-Y3z1PEfmqSNbVroZdN0USb7-FujXWu1poHNz-0K8mKeVtM9ZcBClaQ60USEQpNYR0ZEzFBA48xw00I7pc2bburO23-U9452y6p0oeC1du0habXWXKS_ZkYLvWiqwQvs0Q_PdL6CNjbtLSBnP2mhh6VnNSMQJzxHk8f_7_w52hpMRgfpwXC8_wTdBuAYl1tRbbS5LFb6KYCzpXjmZgRGn697Cv4EtQRIUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCEqBQIAFgcTFSrP2ru0DQiRNaChNI9pIuZl9RoXKCW6iNnd-EUd-BL-JWb9ACLj1ZtmbtZWZ2f2-nd35AJ53DGJ6KZ2giS89vAy8qMOtJ3wdSUGFsNItDRyM-N4keDdl0w34Xp2FcdsqqzExH6j1XLk18jYSFWQenAa8bcttEePdwevFF88pSLlMayWnUbjIvlmfI307ezXcRVu_oHTQP-7teaXCgKcC7i89hv7qi1BTxXjsSxv4GvGRsjhx7BimmG-4VmJHIDCIQ8t0GHJFZYTfEuDEHAof-70Cm6FjRQ3Y7PZH4w91DoOFcZFr7TAvQmpf1jVC_NDOj3LHgTvs_9tsmIsG4Ez42e0Bz_4NefOpb3ALbpaYlbwpnOw2bJh0C64WKpbrLbjeq0Tj7sDXySIr1O3R3mRuyehwSolItbsIyEEuDGI0kWty_Hbg_fhGjk5mjgukMzJGMHou1qR_IRQa24Fg0jOZy2yfkiGycHyLaCNjMJlduUU-cnhxovPC5eQoP_JChukn9JFtmFyKGe5CI52n5j6QmIYyUkJGXLjSawoJmvQV-qBCJonwpAkvqz88UWUVdCfGcZrkbIjFSW2bJjyrmy6K0h9_a9R1VqsbuGrd-Y15NkvK4E84clKtmIkNlYE0NDKhlSG3DLE5t8I2Ybuwed1N1Xnrj_u9cbd4lCw0_qxVeUhSjjxnya84acLT-jF6gUsEidTMV9jGFcFFHN2Jm3Cv8Kz6DTSXoWPxg_93_gSuYfgl74ej_YdwA1FkVKxLtaCxzFbmESK1pXxchgSBj5cdhT8B1DZN7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upregulation+of+NOX2+and+NOX4+Mediated+by+TGF-%CE%B2+Signaling+Pathway+Exacerbates+Cerebral+Ischemia%2FReperfusion+Oxidative+Stress+Injury&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Lou%2C+Zheng&rft.au=Wang%2C+Ai-Ping&rft.au=Duan%2C+Xiao-Ming&rft.au=Hu%2C+Guo-Huang&rft.date=2018-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=46&rft.issue=5&rft.spage=2103&rft.epage=2113&rft_id=info:doi/10.1159%2F000489450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000489450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon