Cholera toxin enhances Na + absorption across MCF10A human mammary epithelia

Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion tr...

Full description

Saved in:
Bibliographic Details
Published inAmerican Journal of Physiology: Cell Physiology Vol. 306; no. 5; pp. C471 - C484
Main Authors Wang, Qian, Schultz, Bruce D.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na + channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R p -cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na + concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na + transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
AbstractList Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (I sub(SC); a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sub(SC) at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sub(SC) remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R sub(p)-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for alpha -, beta -, or, gamma -ENaC subunits. Ctx increases the abundance of both beta - and gamma -ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na + channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R p -cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na + concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na + transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (...; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R...-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, ...-ENaC subunits. Ctx increases the abundance of both β- and ...-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. (ProQuest: ... denotes formulae/symbols omitted.)
Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na + channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R p -cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na + concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na + transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.
Author Schultz, Bruce D.
Wang, Qian
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
– sequence: 2
  givenname: Bruce D.
  surname: Schultz
  fullname: Schultz, Bruce D.
  organization: Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24371040$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS3Uqt0WvgAHZIkLEsoy_hPHvSBVK0orLXDp3Zq4DvEqsYOdIPj2JO22anuoOM1hfvP05r0TchBicIS8ZbBmrOSfcDdY13VrAKbZmgMTr8hqXvCClUockBUIJQrFpDgmJznvAEBydXZEjrkUFQMJK7LdtLFzCekY__hAXWgxWJfpd6QfKdY5pmH0MVC0KeZMv20uGJzTduox0B77HtNf6gY_tq7z-JocNthl92Y_T8n1xZfrzWWx_fH1anO-LaxUYixkY62ytVSycgC1Fii0bqREVXPEqlE16GrxKhWzoLTjJYryzEl2g1rV4pR8vpMdprp3N9aFMWFnhuQXOyaiN083wbfmZ_xt5PI_h1ngw14gxV-Ty6PpfV6ixODilA0rGRecaf0_KEgmy6riM_r-GbqLUwpzEAulykqVXM_Uu8fmH1zfVzID-g64TTy5xlg_4lLC_IvvDAOztG_27Zvb9s3S_nzKn53eq79w9A9GnbKg
CODEN AJPCDD
CitedBy_id crossref_primary_10_1016_j_chembiol_2018_09_008
crossref_primary_10_1007_s10549_021_06133_7
crossref_primary_10_1016_j_gene_2015_12_061
Cites_doi 10.1152/ajpendo.1998.274.4.E611
10.3389/fphys.2012.00212
10.1002/jbt.20040
10.1152/ajpcell.2000.279.1.C236
10.1016/S0167-4889(99)00070-1
10.1074/jbc.M611329200
10.1152/ajpcell.2001.281.2.C633
10.1007/0-387-23752-6_33
10.1210/edrv.23.2.0458
10.3168/jds.S0022-0302(79)83383-4
10.1038/229266a0
10.1152/ajprenal.2001.281.3.F391
10.1186/1741-7015-2-30
10.1023/A:1018707309361
10.1126/scisignal.122re4
10.1002/iub.589
10.1042/BJ20071708
10.1152/ajpcell.00468.2005
10.1152/physrev.1971.51.3.564
10.1017/S0022029900021580
10.3181/0705-RM-132
10.1152/ajprenal.00605.2007
10.3390/toxins2040632
10.1091/mbc.E12-02-0078
10.1152/ajpgi.2000.279.5.G1104
10.1152/ajprenal.00339.2007
10.1073/pnas.0708136104
10.1210/en.2006-1741
10.1016/S0031-3955(05)70283-2
10.1002/jcp.1041020306
10.2527/jas.2007-0302
10.1152/ajpcell.00068.2007
10.1152/ajpcell.00369.2006
10.1111/j.1749-6632.1990.tb17783.x
10.1074/jbc.C400080200
10.3109/10409238.2011.620943
10.1128/mr.56.4.622-647.1992
10.1007/s10719-008-9128-6
10.1152/ajpcell.00567.2005
10.1146/annurev.biochem.67.1.425
10.1152/physrev.2000.80.3.925
10.1007/s10157-011-0496-z
10.1016/S0006-2952(03)00456-8
10.1242/jcs.02412
10.1016/S0007-1935(17)36932-4
10.1016/0006-291X(87)90293-2
10.1210/en.2005-0894
10.1152/ajprenal.1995.268.2.F285
10.1152/ajprenal.00179.2002
10.1093/aje/155.2.103
10.1074/jbc.M708555200
10.1007/s00018-008-7496-5
10.1023/A:1018759326200
10.1152/ajpcell.00399.2006
10.3168/jds.S0022-0302(01)74716-9
10.3168/jds.S0022-0302(04)73397-4
10.1126/science.1653455
10.1016/0076-6879(90)91045-8
10.1093/emboj/16.21.6325
10.1152/ajpcell.1991.260.5.C1071
10.1007/s00424-011-0982-x
10.1074/jbc.M407858200
ContentType Journal Article
Copyright Copyright American Physiological Society Mar 1, 2014
Copyright © 2014 the American Physiological Society 2014 American Physiological Society
Copyright_xml – notice: Copyright American Physiological Society Mar 1, 2014
– notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7X8
7QL
7T2
C1K
5PM
DOI 10.1152/ajpcell.00181.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Physical Education Index
MEDLINE - Academic
Health & Safety Science Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
Health & Safety Science Abstracts

Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1522-1563
EndPage C484
ExternalDocumentID PMC4042620
3244110451
24371040
10_1152_ajpcell_00181_2013
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P20-RR-017686
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
85S
AAFWJ
AAYXX
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7X8
7QL
7T2
C1K
5PM
ID FETCH-LOGICAL-c463t-4fcc6cb4647e00b83a388f44a6b2aa7f6b0870042461c068e25a359e41da86b3
ISSN 0363-6143
1522-1563
IngestDate Thu Aug 21 18:27:46 EDT 2025
Fri Jul 11 12:37:13 EDT 2025
Thu Jul 10 18:03:08 EDT 2025
Mon Jun 30 10:22:57 EDT 2025
Thu Apr 03 07:08:40 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Tue Jul 01 02:25:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords amiloride
cholera toxin
Isc
ENaC
mammary gland
epithelial Na+ channel
short-circuit current
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-4fcc6cb4647e00b83a388f44a6b2aa7f6b0870042461c068e25a359e41da86b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1152/ajpcell.00181.2013
PMID 24371040
PQID 1506576528
PQPubID 48267
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4042620
proquest_miscellaneous_1512321880
proquest_miscellaneous_1504145772
proquest_journals_1506576528
pubmed_primary_24371040
crossref_citationtrail_10_1152_ajpcell_00181_2013
crossref_primary_10_1152_ajpcell_00181_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American Journal of Physiology: Cell Physiology
PublicationTitleAlternate Am J Physiol Cell Physiol
PublicationYear 2014
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
Soule HD (B54) 1990; 50
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B47
B48
B49
B50
B51
B52
B53
B10
B11
B55
B12
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Sharp GW (B46) 1971; 84
B60
B61
Spencer JP (B56) 2008; 78
B62
B63
15320950 - BMC Med. 2004 Aug 20;2:30
17510235 - Endocrinology. 2007 Aug;148(8):3958-67
1975513 - Cancer Res. 1990 Sep 15;50(18):6075-86
4931980 - Physiol Rev. 1971 Jul;51(3):564-97
18222971 - Exp Biol Med (Maywood). 2008 Feb;233(2):163-75
4672325 - Br Vet J. 1972 Jun;128(6):284-95
9575821 - Am J Physiol. 1998 Apr;274(4 Pt 1):E611-7
15328296 - J Dairy Sci. 2004 Aug;87(8):2702-8
10819512 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):247-58
17202226 - Am J Physiol Cell Physiol. 2007 May;292(5):C1971-81
16150899 - Endocrinology. 2005 Dec;146(12):5079-85
1480112 - Microbiol Rev. 1992 Dec;56(4):622-47
1852105 - Am J Physiol. 1991 May;260(5 Pt 1):C1071-84
17251323 - Am J Physiol Cell Physiol. 2007 May;292(5):C1739-45
4364607 - Trans Assoc Am Physicians. 1971;84:200-11
1653455 - Science. 1991 Sep 6;253(5024):1132-5
11053008 - Am J Physiol Gastrointest Liver Physiol. 2000 Nov;279(5):G1104-12
22737130 - Front Physiol. 2012 Jun 21;3:212
11502587 - Am J Physiol Renal Physiol. 2001 Sep;281(3):F391-9
18727255 - Adv Exp Med Biol. 2004;559:359-68
11943747 - Endocr Rev. 2002 Apr;23(2):258-75
15328345 - J Biol Chem. 2004 Oct 29;279(44):45753-8
18498052 - Glycoconj J. 2008 Oct;25(7):675-83
2192630 - Ann N Y Acad Sci. 1990;586:1-11
6248570 - J Cell Physiol. 1980 Mar;102(3):317-21
12963496 - Biochem Pharmacol. 2003 Sep 15;66(6):1083-9
1963659 - Methods Enzymol. 1990;191:739-55
10898735 - Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47
7021617 - J Dairy Res. 1981 Feb;48(1):167-88
18819238 - Am Fam Physician. 2008 Sep 15;78(6):727-31
22131221 - IUBMB Life. 2012 Feb;64(2):136-42
11790672 - Am J Epidemiol. 2002 Jan 15;155(2):103-14
512133 - J Dairy Sci. 1979 Jul;62(7):1108-14
18174164 - J Biol Chem. 2008 Mar 7;283(10):6033-9
17715387 - Am J Physiol Cell Physiol. 2007 Nov;293(5):C1472-80
4323551 - Nature. 1971 Jan 22;229(5282):266-9
10819511 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):233-46
18498246 - Biochem J. 2008 Oct 1;415(1):155-63
15007080 - J Biol Chem. 2004 Apr 30;279(18):18111-4
21981143 - Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):17-28
15769939 - Am J Physiol Renal Physiol. 2005 Jul;289(1):F107-16
11814018 - J Dairy Sci. 2001 Dec;84(12):2622-31
21667229 - Pflugers Arch. 2011 Sep;462(3):431-41
18523239 - Sci Signal. 2008;1(22):re4
11236721 - Pediatr Clin North Am. 2001 Feb;48(1):13-34
16421205 - Am J Physiol Cell Physiol. 2006 Jun;290(6):C1560-71
22038262 - Clin Exp Nephrol. 2012 Feb;16(1):35-43
15674848 - J Biochem Mol Toxicol. 2004;18(6):322-31
17502380 - J Biol Chem. 2007 Jul 13;282(28):20207-12
16885391 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C305-18
17940054 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16708-13
18278577 - Cell Mol Life Sci. 2008 May;65(9):1347-60
18784262 - Am J Physiol Renal Physiol. 2008 Nov;295(5):F1519-27
17785603 - J Anim Sci. 2008 Mar;86(13 Suppl):57-65
10893427 - Physiol Rev. 2000 Jul;80(3):925-51
3028414 - Biochem Biophys Res Commun. 1987 Jan 30;142(2):436-40
15976445 - J Cell Sci. 2005 Jul 1;118(Pt 13):2859-69
9351815 - EMBO J. 1997 Nov 3;16(21):6325-36
7864168 - Am J Physiol. 1995 Feb;268(2 Pt 2):F285-95
11443063 - Am J Physiol Cell Physiol. 2001 Aug;281(2):C633-48
22069603 - Toxins (Basel). 2010 Apr;2(4):632-48
18322022 - Am J Physiol Renal Physiol. 2008 May;294(5):F1157-65
10395933 - Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90
22675028 - Mol Biol Cell. 2012 Aug;23(15):2973-81
9759494 - Annu Rev Biochem. 1998;67:425-79
References_xml – ident: B39
  doi: 10.1152/ajpendo.1998.274.4.E611
– ident: B41
  doi: 10.3389/fphys.2012.00212
– ident: B33
  doi: 10.1002/jbt.20040
– ident: B34
  doi: 10.1152/ajpcell.2000.279.1.C236
– ident: B20
  doi: 10.1016/S0167-4889(99)00070-1
– ident: B65
  doi: 10.1074/jbc.M611329200
– ident: B1
  doi: 10.1152/ajpcell.2001.281.2.C633
– ident: B2
  doi: 10.1007/0-387-23752-6_33
– ident: B51
  doi: 10.1210/edrv.23.2.0458
– ident: B10
  doi: 10.3168/jds.S0022-0302(79)83383-4
– ident: B45
  doi: 10.1038/229266a0
– ident: B40
  doi: 10.1152/ajprenal.2001.281.3.F391
– ident: B62
  doi: 10.1186/1741-7015-2-30
– ident: B30
  doi: 10.1023/A:1018707309361
– ident: B26
  doi: 10.1126/scisignal.122re4
– ident: B42
  doi: 10.1002/iub.589
– ident: B4
  doi: 10.1042/BJ20071708
– ident: B5
  doi: 10.1152/ajpcell.00468.2005
– ident: B22
  doi: 10.1152/physrev.1971.51.3.564
– ident: B17
  doi: 10.1017/S0022029900021580
– volume: 78
  start-page: 727
  year: 2008
  ident: B56
  publication-title: Am Fam Physician
– ident: B7
  doi: 10.3181/0705-RM-132
– ident: B63
  doi: 10.1152/ajprenal.00605.2007
– ident: B50
  doi: 10.3390/toxins2040632
– ident: B27
  doi: 10.1091/mbc.E12-02-0078
– ident: B31
  doi: 10.1152/ajpgi.2000.279.5.G1104
– ident: B37
  doi: 10.1152/ajprenal.00339.2007
– ident: B58
  doi: 10.1073/pnas.0708136104
– ident: B3
  doi: 10.1210/en.2006-1741
– ident: B28
  doi: 10.1016/S0031-3955(05)70283-2
– ident: B60
  doi: 10.1002/jcp.1041020306
– ident: B64
  doi: 10.2527/jas.2007-0302
– volume: 50
  start-page: 6075
  year: 1990
  ident: B54
  publication-title: Cancer Res
– ident: B19
  doi: 10.1152/ajpcell.00068.2007
– ident: B36
  doi: 10.1152/ajpcell.00369.2006
– ident: B29
  doi: 10.1111/j.1749-6632.1990.tb17783.x
– ident: B13
  doi: 10.1074/jbc.C400080200
– ident: B38
  doi: 10.3109/10409238.2011.620943
– ident: B55
  doi: 10.1128/mr.56.4.622-647.1992
– ident: B14
  doi: 10.1007/s10719-008-9128-6
– ident: B35
  doi: 10.1152/ajpcell.00567.2005
– ident: B12
  doi: 10.1146/annurev.biochem.67.1.425
– ident: B48
  doi: 10.1152/physrev.2000.80.3.925
– ident: B32
  doi: 10.1007/s10157-011-0496-z
– ident: B25
  doi: 10.1016/S0006-2952(03)00456-8
– ident: B8
  doi: 10.1242/jcs.02412
– ident: B21
  doi: 10.1016/S0007-1935(17)36932-4
– ident: B16
  doi: 10.1016/0006-291X(87)90293-2
– ident: B52
  doi: 10.1210/en.2005-0894
– ident: B11
  doi: 10.1152/ajprenal.1995.268.2.F285
– ident: B23
  doi: 10.1152/ajprenal.00179.2002
– ident: B9
  doi: 10.1093/aje/155.2.103
– ident: B15
  doi: 10.1074/jbc.M708555200
– ident: B43
  doi: 10.1007/s00018-008-7496-5
– ident: B47
  doi: 10.1023/A:1018759326200
– ident: B6
  doi: 10.1152/ajpcell.00399.2006
– ident: B44
  doi: 10.3168/jds.S0022-0302(01)74716-9
– ident: B49
  doi: 10.3168/jds.S0022-0302(04)73397-4
– ident: B61
  doi: 10.1126/science.1653455
– ident: B18
  doi: 10.1016/0076-6879(90)91045-8
– ident: B57
  doi: 10.1093/emboj/16.21.6325
– ident: B24
  doi: 10.1152/ajpcell.1991.260.5.C1071
– ident: B59
  doi: 10.1007/s00424-011-0982-x
– volume: 84
  start-page: 200
  year: 1971
  ident: B46
  publication-title: Trans Assoc Am Physicians
– ident: B53
  doi: 10.1074/jbc.M407858200
– reference: 18523239 - Sci Signal. 2008;1(22):re4
– reference: 15769939 - Am J Physiol Renal Physiol. 2005 Jul;289(1):F107-16
– reference: 16885391 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C305-18
– reference: 4323551 - Nature. 1971 Jan 22;229(5282):266-9
– reference: 17502380 - J Biol Chem. 2007 Jul 13;282(28):20207-12
– reference: 18222971 - Exp Biol Med (Maywood). 2008 Feb;233(2):163-75
– reference: 22737130 - Front Physiol. 2012 Jun 21;3:212
– reference: 7864168 - Am J Physiol. 1995 Feb;268(2 Pt 2):F285-95
– reference: 21667229 - Pflugers Arch. 2011 Sep;462(3):431-41
– reference: 15007080 - J Biol Chem. 2004 Apr 30;279(18):18111-4
– reference: 22131221 - IUBMB Life. 2012 Feb;64(2):136-42
– reference: 17785603 - J Anim Sci. 2008 Mar;86(13 Suppl):57-65
– reference: 11443063 - Am J Physiol Cell Physiol. 2001 Aug;281(2):C633-48
– reference: 17251323 - Am J Physiol Cell Physiol. 2007 May;292(5):C1739-45
– reference: 16150899 - Endocrinology. 2005 Dec;146(12):5079-85
– reference: 1963659 - Methods Enzymol. 1990;191:739-55
– reference: 15976445 - J Cell Sci. 2005 Jul 1;118(Pt 13):2859-69
– reference: 11814018 - J Dairy Sci. 2001 Dec;84(12):2622-31
– reference: 4931980 - Physiol Rev. 1971 Jul;51(3):564-97
– reference: 9351815 - EMBO J. 1997 Nov 3;16(21):6325-36
– reference: 18174164 - J Biol Chem. 2008 Mar 7;283(10):6033-9
– reference: 15328345 - J Biol Chem. 2004 Oct 29;279(44):45753-8
– reference: 10898735 - Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47
– reference: 11236721 - Pediatr Clin North Am. 2001 Feb;48(1):13-34
– reference: 10893427 - Physiol Rev. 2000 Jul;80(3):925-51
– reference: 6248570 - J Cell Physiol. 1980 Mar;102(3):317-21
– reference: 9759494 - Annu Rev Biochem. 1998;67:425-79
– reference: 18322022 - Am J Physiol Renal Physiol. 2008 May;294(5):F1157-65
– reference: 1852105 - Am J Physiol. 1991 May;260(5 Pt 1):C1071-84
– reference: 17940054 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16708-13
– reference: 22675028 - Mol Biol Cell. 2012 Aug;23(15):2973-81
– reference: 7021617 - J Dairy Res. 1981 Feb;48(1):167-88
– reference: 1480112 - Microbiol Rev. 1992 Dec;56(4):622-47
– reference: 512133 - J Dairy Sci. 1979 Jul;62(7):1108-14
– reference: 18819238 - Am Fam Physician. 2008 Sep 15;78(6):727-31
– reference: 11790672 - Am J Epidemiol. 2002 Jan 15;155(2):103-14
– reference: 22038262 - Clin Exp Nephrol. 2012 Feb;16(1):35-43
– reference: 2192630 - Ann N Y Acad Sci. 1990;586:1-11
– reference: 10819512 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):247-58
– reference: 18498246 - Biochem J. 2008 Oct 1;415(1):155-63
– reference: 10819511 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):233-46
– reference: 17510235 - Endocrinology. 2007 Aug;148(8):3958-67
– reference: 15328296 - J Dairy Sci. 2004 Aug;87(8):2702-8
– reference: 16421205 - Am J Physiol Cell Physiol. 2006 Jun;290(6):C1560-71
– reference: 17715387 - Am J Physiol Cell Physiol. 2007 Nov;293(5):C1472-80
– reference: 11053008 - Am J Physiol Gastrointest Liver Physiol. 2000 Nov;279(5):G1104-12
– reference: 22069603 - Toxins (Basel). 2010 Apr;2(4):632-48
– reference: 11502587 - Am J Physiol Renal Physiol. 2001 Sep;281(3):F391-9
– reference: 12963496 - Biochem Pharmacol. 2003 Sep 15;66(6):1083-9
– reference: 18498052 - Glycoconj J. 2008 Oct;25(7):675-83
– reference: 18727255 - Adv Exp Med Biol. 2004;559:359-68
– reference: 15320950 - BMC Med. 2004 Aug 20;2:30
– reference: 10395933 - Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90
– reference: 4672325 - Br Vet J. 1972 Jun;128(6):284-95
– reference: 1653455 - Science. 1991 Sep 6;253(5024):1132-5
– reference: 18278577 - Cell Mol Life Sci. 2008 May;65(9):1347-60
– reference: 18784262 - Am J Physiol Renal Physiol. 2008 Nov;295(5):F1519-27
– reference: 9575821 - Am J Physiol. 1998 Apr;274(4 Pt 1):E611-7
– reference: 4364607 - Trans Assoc Am Physicians. 1971;84:200-11
– reference: 21981143 - Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):17-28
– reference: 3028414 - Biochem Biophys Res Commun. 1987 Jan 30;142(2):436-40
– reference: 1975513 - Cancer Res. 1990 Sep 15;50(18):6075-86
– reference: 17202226 - Am J Physiol Cell Physiol. 2007 May;292(5):C1971-81
– reference: 15674848 - J Biochem Mol Toxicol. 2004;18(6):322-31
– reference: 11943747 - Endocr Rev. 2002 Apr;23(2):258-75
SSID ssj0004269
Score 2.1167288
Snippet Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium...
Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium...
Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage C471
SubjectTerms Absorption
Cell culture
Cell Line
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Membrane Permeability - drug effects
Cells
Cholera
Cholera Toxin - pharmacology
Endocrine system
Endosomal Sorting Complexes Required for Transport - metabolism
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial Sodium Channel Blockers - pharmacology
Epithelial Sodium Channels - drug effects
Epithelial Sodium Channels - genetics
Epithelial Sodium Channels - metabolism
Female
Human subjects
Humans
Hydrocortisone - pharmacology
Ion Transport
Mammary Glands, Human - drug effects
Mammary Glands, Human - metabolism
Membrane Potentials
Nedd4 Ubiquitin Protein Ligases
Phosphorylation
Proteins
RNA, Messenger - metabolism
Sodium
Sodium - metabolism
Time Factors
Toxins
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title Cholera toxin enhances Na + absorption across MCF10A human mammary epithelia
URI https://www.ncbi.nlm.nih.gov/pubmed/24371040
https://www.proquest.com/docview/1506576528
https://www.proquest.com/docview/1504145772
https://www.proquest.com/docview/1512321880
https://pubmed.ncbi.nlm.nih.gov/PMC4042620
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISReEGx8FAYyEuIlCiS243iPpdo0sa1oopP2Ftmeo27q0qprJQb_POePfJSiCniJKttJXN8vP9_ZvjuE3ueaSmOyq1golsQsy2ksODNxbjJFc6JhVre-w2cjfnzBvlxml73ez653yVJ91D_-6FfyP1KFMpCr9ZL9B8k2D4UC-A3yhStIGK5_JeOhTW67kKA_freRP6qJFSEQFyiEnyOp7mYLTwjSzYXR2RDM50FIy3crnddaZObWK2N6LbtqarOP09FX3VlR79tCB9HQrfk1Re26vOeO8w7qvunJaurSxnokhUPGYakhZe1Zq87pfsvN9dMdjsLx0g5x2b1hmPY9cZlArGD0gq1Iu8xLE96BWNbh0SHziVk2CT6zAWPlzdzua9htJGGN_JS201m9hT_6WhxdnJ4W48PL8Xqtn71BrwHVh1n3-wcEbAxLkifnnVDzxOVDbP5M7XGVkU-br1_XajZMld9P3HZUmPET9DjIEg88kJ6inql20d6gksvZ7T3-gFtx7qKHPknp_R46CSjDDmW4RhkeyQi3GMMeY9hjDDuM4YAx3GDsGRofHY6Hx3FIwRFrxukyZqXWXCvGWW6SRAkqqRAlY5IrImVecpWI3G2f81QnXBiSSZodGJZeScEVfY52qlllXiLoBYwnUSUnzDCtSlXmB1wqSUQJVoBgfZTWI1joEJ7eZkmZFs5MzUgRRr1wo17YUe-jqLln7oOzbG29XwumCB_xXWEDbILJnRHRR--aaqBYe7OszGzl2rAUaCwn29pY28QGN-yjF17WTZdszE9AGtTkayhoGtgQ7-s11fXEhXpnPmPEq-1df40etZ_rPtpZLlbmDejKS_XWYfoXyXTASQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholera+toxin+enhances+Na%2B+absorption+across+MCF10A+human+mammary+epithelia&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=Wang%2C+Qian&rft.au=Schultz%2C+Bruce+D&rft.date=2014-03-01&rft.pub=American+Physiological+Society&rft.issn=0363-6143&rft.eissn=1522-1563&rft.volume=306&rft.issue=5&rft.spage=C471&rft_id=info:doi/10.1152%2Fajpcell.00181.2013&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3244110451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon