Cholera toxin enhances Na + absorption across MCF10A human mammary epithelia
Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion tr...
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 306; no. 5; pp. C471 - C484 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular mechanisms to account for the low Na
+
concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I
sc
; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na
+
channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I
sc
at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I
sc
remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R
p
-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na
+
concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na
+
transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. |
---|---|
AbstractList | Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (I sub(SC); a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sub(SC) at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sub(SC) remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R sub(p)-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for alpha -, beta -, or, gamma -ENaC subunits. Ctx increases the abundance of both beta - and gamma -ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na + channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R p -cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na + concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na + transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (...; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R...-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, ...-ENaC subunits. Ctx increases the abundance of both β- and ...-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. (ProQuest: ... denotes formulae/symbols omitted.) Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. Cellular mechanisms to account for the low Na + concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current ( I sc ; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na + channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive I sc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive I sc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, R p -cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na + concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na + transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. |
Author | Schultz, Bruce D. Wang, Qian |
Author_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian organization: Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas – sequence: 2 givenname: Bruce D. surname: Schultz fullname: Schultz, Bruce D. organization: Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24371040$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS3Uqt0WvgAHZIkLEsoy_hPHvSBVK0orLXDp3Zq4DvEqsYOdIPj2JO22anuoOM1hfvP05r0TchBicIS8ZbBmrOSfcDdY13VrAKbZmgMTr8hqXvCClUockBUIJQrFpDgmJznvAEBydXZEjrkUFQMJK7LdtLFzCekY__hAXWgxWJfpd6QfKdY5pmH0MVC0KeZMv20uGJzTduox0B77HtNf6gY_tq7z-JocNthl92Y_T8n1xZfrzWWx_fH1anO-LaxUYixkY62ytVSycgC1Fii0bqREVXPEqlE16GrxKhWzoLTjJYryzEl2g1rV4pR8vpMdprp3N9aFMWFnhuQXOyaiN083wbfmZ_xt5PI_h1ngw14gxV-Ty6PpfV6ixODilA0rGRecaf0_KEgmy6riM_r-GbqLUwpzEAulykqVXM_Uu8fmH1zfVzID-g64TTy5xlg_4lLC_IvvDAOztG_27Zvb9s3S_nzKn53eq79w9A9GnbKg |
CODEN | AJPCDD |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2018_09_008 crossref_primary_10_1007_s10549_021_06133_7 crossref_primary_10_1016_j_gene_2015_12_061 |
Cites_doi | 10.1152/ajpendo.1998.274.4.E611 10.3389/fphys.2012.00212 10.1002/jbt.20040 10.1152/ajpcell.2000.279.1.C236 10.1016/S0167-4889(99)00070-1 10.1074/jbc.M611329200 10.1152/ajpcell.2001.281.2.C633 10.1007/0-387-23752-6_33 10.1210/edrv.23.2.0458 10.3168/jds.S0022-0302(79)83383-4 10.1038/229266a0 10.1152/ajprenal.2001.281.3.F391 10.1186/1741-7015-2-30 10.1023/A:1018707309361 10.1126/scisignal.122re4 10.1002/iub.589 10.1042/BJ20071708 10.1152/ajpcell.00468.2005 10.1152/physrev.1971.51.3.564 10.1017/S0022029900021580 10.3181/0705-RM-132 10.1152/ajprenal.00605.2007 10.3390/toxins2040632 10.1091/mbc.E12-02-0078 10.1152/ajpgi.2000.279.5.G1104 10.1152/ajprenal.00339.2007 10.1073/pnas.0708136104 10.1210/en.2006-1741 10.1016/S0031-3955(05)70283-2 10.1002/jcp.1041020306 10.2527/jas.2007-0302 10.1152/ajpcell.00068.2007 10.1152/ajpcell.00369.2006 10.1111/j.1749-6632.1990.tb17783.x 10.1074/jbc.C400080200 10.3109/10409238.2011.620943 10.1128/mr.56.4.622-647.1992 10.1007/s10719-008-9128-6 10.1152/ajpcell.00567.2005 10.1146/annurev.biochem.67.1.425 10.1152/physrev.2000.80.3.925 10.1007/s10157-011-0496-z 10.1016/S0006-2952(03)00456-8 10.1242/jcs.02412 10.1016/S0007-1935(17)36932-4 10.1016/0006-291X(87)90293-2 10.1210/en.2005-0894 10.1152/ajprenal.1995.268.2.F285 10.1152/ajprenal.00179.2002 10.1093/aje/155.2.103 10.1074/jbc.M708555200 10.1007/s00018-008-7496-5 10.1023/A:1018759326200 10.1152/ajpcell.00399.2006 10.3168/jds.S0022-0302(01)74716-9 10.3168/jds.S0022-0302(04)73397-4 10.1126/science.1653455 10.1016/0076-6879(90)91045-8 10.1093/emboj/16.21.6325 10.1152/ajpcell.1991.260.5.C1071 10.1007/s00424-011-0982-x 10.1074/jbc.M407858200 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Mar 1, 2014 Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
Copyright_xml | – notice: Copyright American Physiological Society Mar 1, 2014 – notice: Copyright © 2014 the American Physiological Society 2014 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7X8 7QL 7T2 C1K 5PM |
DOI | 10.1152/ajpcell.00181.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Health and Safety Science Abstracts (Full archive) Environmental Sciences and Pollution Management PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Physical Education Index MEDLINE - Academic Health & Safety Science Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Health & Safety Science Abstracts Calcium & Calcified Tissue Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1522-1563 |
EndPage | C484 |
ExternalDocumentID | PMC4042620 3244110451 24371040 10_1152_ajpcell_00181_2013 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P20-RR-017686 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 85S AAFWJ AAYXX ABJNI ACGFS ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK ~02 CGR CUY CVF ECM EIF NPM 7QP 7TS 7X8 7QL 7T2 C1K 5PM |
ID | FETCH-LOGICAL-c463t-4fcc6cb4647e00b83a388f44a6b2aa7f6b0870042461c068e25a359e41da86b3 |
ISSN | 0363-6143 1522-1563 |
IngestDate | Thu Aug 21 18:27:46 EDT 2025 Fri Jul 11 12:37:13 EDT 2025 Thu Jul 10 18:03:08 EDT 2025 Mon Jun 30 10:22:57 EDT 2025 Thu Apr 03 07:08:40 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Tue Jul 01 02:25:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | amiloride cholera toxin Isc ENaC mammary gland epithelial Na+ channel short-circuit current |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c463t-4fcc6cb4647e00b83a388f44a6b2aa7f6b0870042461c068e25a359e41da86b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1152/ajpcell.00181.2013 |
PMID | 24371040 |
PQID | 1506576528 |
PQPubID | 48267 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4042620 proquest_miscellaneous_1512321880 proquest_miscellaneous_1504145772 proquest_journals_1506576528 pubmed_primary_24371040 crossref_citationtrail_10_1152_ajpcell_00181_2013 crossref_primary_10_1152_ajpcell_00181_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American Journal of Physiology: Cell Physiology |
PublicationTitleAlternate | Am J Physiol Cell Physiol |
PublicationYear | 2014 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 Soule HD (B54) 1990; 50 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B47 B48 B49 B50 B51 B52 B53 B10 B11 B55 B12 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Sharp GW (B46) 1971; 84 B60 B61 Spencer JP (B56) 2008; 78 B62 B63 15320950 - BMC Med. 2004 Aug 20;2:30 17510235 - Endocrinology. 2007 Aug;148(8):3958-67 1975513 - Cancer Res. 1990 Sep 15;50(18):6075-86 4931980 - Physiol Rev. 1971 Jul;51(3):564-97 18222971 - Exp Biol Med (Maywood). 2008 Feb;233(2):163-75 4672325 - Br Vet J. 1972 Jun;128(6):284-95 9575821 - Am J Physiol. 1998 Apr;274(4 Pt 1):E611-7 15328296 - J Dairy Sci. 2004 Aug;87(8):2702-8 10819512 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):247-58 17202226 - Am J Physiol Cell Physiol. 2007 May;292(5):C1971-81 16150899 - Endocrinology. 2005 Dec;146(12):5079-85 1480112 - Microbiol Rev. 1992 Dec;56(4):622-47 1852105 - Am J Physiol. 1991 May;260(5 Pt 1):C1071-84 17251323 - Am J Physiol Cell Physiol. 2007 May;292(5):C1739-45 4364607 - Trans Assoc Am Physicians. 1971;84:200-11 1653455 - Science. 1991 Sep 6;253(5024):1132-5 11053008 - Am J Physiol Gastrointest Liver Physiol. 2000 Nov;279(5):G1104-12 22737130 - Front Physiol. 2012 Jun 21;3:212 11502587 - Am J Physiol Renal Physiol. 2001 Sep;281(3):F391-9 18727255 - Adv Exp Med Biol. 2004;559:359-68 11943747 - Endocr Rev. 2002 Apr;23(2):258-75 15328345 - J Biol Chem. 2004 Oct 29;279(44):45753-8 18498052 - Glycoconj J. 2008 Oct;25(7):675-83 2192630 - Ann N Y Acad Sci. 1990;586:1-11 6248570 - J Cell Physiol. 1980 Mar;102(3):317-21 12963496 - Biochem Pharmacol. 2003 Sep 15;66(6):1083-9 1963659 - Methods Enzymol. 1990;191:739-55 10898735 - Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47 7021617 - J Dairy Res. 1981 Feb;48(1):167-88 18819238 - Am Fam Physician. 2008 Sep 15;78(6):727-31 22131221 - IUBMB Life. 2012 Feb;64(2):136-42 11790672 - Am J Epidemiol. 2002 Jan 15;155(2):103-14 512133 - J Dairy Sci. 1979 Jul;62(7):1108-14 18174164 - J Biol Chem. 2008 Mar 7;283(10):6033-9 17715387 - Am J Physiol Cell Physiol. 2007 Nov;293(5):C1472-80 4323551 - Nature. 1971 Jan 22;229(5282):266-9 10819511 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):233-46 18498246 - Biochem J. 2008 Oct 1;415(1):155-63 15007080 - J Biol Chem. 2004 Apr 30;279(18):18111-4 21981143 - Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):17-28 15769939 - Am J Physiol Renal Physiol. 2005 Jul;289(1):F107-16 11814018 - J Dairy Sci. 2001 Dec;84(12):2622-31 21667229 - Pflugers Arch. 2011 Sep;462(3):431-41 18523239 - Sci Signal. 2008;1(22):re4 11236721 - Pediatr Clin North Am. 2001 Feb;48(1):13-34 16421205 - Am J Physiol Cell Physiol. 2006 Jun;290(6):C1560-71 22038262 - Clin Exp Nephrol. 2012 Feb;16(1):35-43 15674848 - J Biochem Mol Toxicol. 2004;18(6):322-31 17502380 - J Biol Chem. 2007 Jul 13;282(28):20207-12 16885391 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C305-18 17940054 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16708-13 18278577 - Cell Mol Life Sci. 2008 May;65(9):1347-60 18784262 - Am J Physiol Renal Physiol. 2008 Nov;295(5):F1519-27 17785603 - J Anim Sci. 2008 Mar;86(13 Suppl):57-65 10893427 - Physiol Rev. 2000 Jul;80(3):925-51 3028414 - Biochem Biophys Res Commun. 1987 Jan 30;142(2):436-40 15976445 - J Cell Sci. 2005 Jul 1;118(Pt 13):2859-69 9351815 - EMBO J. 1997 Nov 3;16(21):6325-36 7864168 - Am J Physiol. 1995 Feb;268(2 Pt 2):F285-95 11443063 - Am J Physiol Cell Physiol. 2001 Aug;281(2):C633-48 22069603 - Toxins (Basel). 2010 Apr;2(4):632-48 18322022 - Am J Physiol Renal Physiol. 2008 May;294(5):F1157-65 10395933 - Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90 22675028 - Mol Biol Cell. 2012 Aug;23(15):2973-81 9759494 - Annu Rev Biochem. 1998;67:425-79 |
References_xml | – ident: B39 doi: 10.1152/ajpendo.1998.274.4.E611 – ident: B41 doi: 10.3389/fphys.2012.00212 – ident: B33 doi: 10.1002/jbt.20040 – ident: B34 doi: 10.1152/ajpcell.2000.279.1.C236 – ident: B20 doi: 10.1016/S0167-4889(99)00070-1 – ident: B65 doi: 10.1074/jbc.M611329200 – ident: B1 doi: 10.1152/ajpcell.2001.281.2.C633 – ident: B2 doi: 10.1007/0-387-23752-6_33 – ident: B51 doi: 10.1210/edrv.23.2.0458 – ident: B10 doi: 10.3168/jds.S0022-0302(79)83383-4 – ident: B45 doi: 10.1038/229266a0 – ident: B40 doi: 10.1152/ajprenal.2001.281.3.F391 – ident: B62 doi: 10.1186/1741-7015-2-30 – ident: B30 doi: 10.1023/A:1018707309361 – ident: B26 doi: 10.1126/scisignal.122re4 – ident: B42 doi: 10.1002/iub.589 – ident: B4 doi: 10.1042/BJ20071708 – ident: B5 doi: 10.1152/ajpcell.00468.2005 – ident: B22 doi: 10.1152/physrev.1971.51.3.564 – ident: B17 doi: 10.1017/S0022029900021580 – volume: 78 start-page: 727 year: 2008 ident: B56 publication-title: Am Fam Physician – ident: B7 doi: 10.3181/0705-RM-132 – ident: B63 doi: 10.1152/ajprenal.00605.2007 – ident: B50 doi: 10.3390/toxins2040632 – ident: B27 doi: 10.1091/mbc.E12-02-0078 – ident: B31 doi: 10.1152/ajpgi.2000.279.5.G1104 – ident: B37 doi: 10.1152/ajprenal.00339.2007 – ident: B58 doi: 10.1073/pnas.0708136104 – ident: B3 doi: 10.1210/en.2006-1741 – ident: B28 doi: 10.1016/S0031-3955(05)70283-2 – ident: B60 doi: 10.1002/jcp.1041020306 – ident: B64 doi: 10.2527/jas.2007-0302 – volume: 50 start-page: 6075 year: 1990 ident: B54 publication-title: Cancer Res – ident: B19 doi: 10.1152/ajpcell.00068.2007 – ident: B36 doi: 10.1152/ajpcell.00369.2006 – ident: B29 doi: 10.1111/j.1749-6632.1990.tb17783.x – ident: B13 doi: 10.1074/jbc.C400080200 – ident: B38 doi: 10.3109/10409238.2011.620943 – ident: B55 doi: 10.1128/mr.56.4.622-647.1992 – ident: B14 doi: 10.1007/s10719-008-9128-6 – ident: B35 doi: 10.1152/ajpcell.00567.2005 – ident: B12 doi: 10.1146/annurev.biochem.67.1.425 – ident: B48 doi: 10.1152/physrev.2000.80.3.925 – ident: B32 doi: 10.1007/s10157-011-0496-z – ident: B25 doi: 10.1016/S0006-2952(03)00456-8 – ident: B8 doi: 10.1242/jcs.02412 – ident: B21 doi: 10.1016/S0007-1935(17)36932-4 – ident: B16 doi: 10.1016/0006-291X(87)90293-2 – ident: B52 doi: 10.1210/en.2005-0894 – ident: B11 doi: 10.1152/ajprenal.1995.268.2.F285 – ident: B23 doi: 10.1152/ajprenal.00179.2002 – ident: B9 doi: 10.1093/aje/155.2.103 – ident: B15 doi: 10.1074/jbc.M708555200 – ident: B43 doi: 10.1007/s00018-008-7496-5 – ident: B47 doi: 10.1023/A:1018759326200 – ident: B6 doi: 10.1152/ajpcell.00399.2006 – ident: B44 doi: 10.3168/jds.S0022-0302(01)74716-9 – ident: B49 doi: 10.3168/jds.S0022-0302(04)73397-4 – ident: B61 doi: 10.1126/science.1653455 – ident: B18 doi: 10.1016/0076-6879(90)91045-8 – ident: B57 doi: 10.1093/emboj/16.21.6325 – ident: B24 doi: 10.1152/ajpcell.1991.260.5.C1071 – ident: B59 doi: 10.1007/s00424-011-0982-x – volume: 84 start-page: 200 year: 1971 ident: B46 publication-title: Trans Assoc Am Physicians – ident: B53 doi: 10.1074/jbc.M407858200 – reference: 18523239 - Sci Signal. 2008;1(22):re4 – reference: 15769939 - Am J Physiol Renal Physiol. 2005 Jul;289(1):F107-16 – reference: 16885391 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C305-18 – reference: 4323551 - Nature. 1971 Jan 22;229(5282):266-9 – reference: 17502380 - J Biol Chem. 2007 Jul 13;282(28):20207-12 – reference: 18222971 - Exp Biol Med (Maywood). 2008 Feb;233(2):163-75 – reference: 22737130 - Front Physiol. 2012 Jun 21;3:212 – reference: 7864168 - Am J Physiol. 1995 Feb;268(2 Pt 2):F285-95 – reference: 21667229 - Pflugers Arch. 2011 Sep;462(3):431-41 – reference: 15007080 - J Biol Chem. 2004 Apr 30;279(18):18111-4 – reference: 22131221 - IUBMB Life. 2012 Feb;64(2):136-42 – reference: 17785603 - J Anim Sci. 2008 Mar;86(13 Suppl):57-65 – reference: 11443063 - Am J Physiol Cell Physiol. 2001 Aug;281(2):C633-48 – reference: 17251323 - Am J Physiol Cell Physiol. 2007 May;292(5):C1739-45 – reference: 16150899 - Endocrinology. 2005 Dec;146(12):5079-85 – reference: 1963659 - Methods Enzymol. 1990;191:739-55 – reference: 15976445 - J Cell Sci. 2005 Jul 1;118(Pt 13):2859-69 – reference: 11814018 - J Dairy Sci. 2001 Dec;84(12):2622-31 – reference: 4931980 - Physiol Rev. 1971 Jul;51(3):564-97 – reference: 9351815 - EMBO J. 1997 Nov 3;16(21):6325-36 – reference: 18174164 - J Biol Chem. 2008 Mar 7;283(10):6033-9 – reference: 15328345 - J Biol Chem. 2004 Oct 29;279(44):45753-8 – reference: 10898735 - Am J Physiol Cell Physiol. 2000 Jul;279(1):C236-47 – reference: 11236721 - Pediatr Clin North Am. 2001 Feb;48(1):13-34 – reference: 10893427 - Physiol Rev. 2000 Jul;80(3):925-51 – reference: 6248570 - J Cell Physiol. 1980 Mar;102(3):317-21 – reference: 9759494 - Annu Rev Biochem. 1998;67:425-79 – reference: 18322022 - Am J Physiol Renal Physiol. 2008 May;294(5):F1157-65 – reference: 1852105 - Am J Physiol. 1991 May;260(5 Pt 1):C1071-84 – reference: 17940054 - Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16708-13 – reference: 22675028 - Mol Biol Cell. 2012 Aug;23(15):2973-81 – reference: 7021617 - J Dairy Res. 1981 Feb;48(1):167-88 – reference: 1480112 - Microbiol Rev. 1992 Dec;56(4):622-47 – reference: 512133 - J Dairy Sci. 1979 Jul;62(7):1108-14 – reference: 18819238 - Am Fam Physician. 2008 Sep 15;78(6):727-31 – reference: 11790672 - Am J Epidemiol. 2002 Jan 15;155(2):103-14 – reference: 22038262 - Clin Exp Nephrol. 2012 Feb;16(1):35-43 – reference: 2192630 - Ann N Y Acad Sci. 1990;586:1-11 – reference: 10819512 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):247-58 – reference: 18498246 - Biochem J. 2008 Oct 1;415(1):155-63 – reference: 10819511 - J Mammary Gland Biol Neoplasia. 1998 Jul;3(3):233-46 – reference: 17510235 - Endocrinology. 2007 Aug;148(8):3958-67 – reference: 15328296 - J Dairy Sci. 2004 Aug;87(8):2702-8 – reference: 16421205 - Am J Physiol Cell Physiol. 2006 Jun;290(6):C1560-71 – reference: 17715387 - Am J Physiol Cell Physiol. 2007 Nov;293(5):C1472-80 – reference: 11053008 - Am J Physiol Gastrointest Liver Physiol. 2000 Nov;279(5):G1104-12 – reference: 22069603 - Toxins (Basel). 2010 Apr;2(4):632-48 – reference: 11502587 - Am J Physiol Renal Physiol. 2001 Sep;281(3):F391-9 – reference: 12963496 - Biochem Pharmacol. 2003 Sep 15;66(6):1083-9 – reference: 18498052 - Glycoconj J. 2008 Oct;25(7):675-83 – reference: 18727255 - Adv Exp Med Biol. 2004;559:359-68 – reference: 15320950 - BMC Med. 2004 Aug 20;2:30 – reference: 10395933 - Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90 – reference: 4672325 - Br Vet J. 1972 Jun;128(6):284-95 – reference: 1653455 - Science. 1991 Sep 6;253(5024):1132-5 – reference: 18278577 - Cell Mol Life Sci. 2008 May;65(9):1347-60 – reference: 18784262 - Am J Physiol Renal Physiol. 2008 Nov;295(5):F1519-27 – reference: 9575821 - Am J Physiol. 1998 Apr;274(4 Pt 1):E611-7 – reference: 4364607 - Trans Assoc Am Physicians. 1971;84:200-11 – reference: 21981143 - Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):17-28 – reference: 3028414 - Biochem Biophys Res Commun. 1987 Jan 30;142(2):436-40 – reference: 1975513 - Cancer Res. 1990 Sep 15;50(18):6075-86 – reference: 17202226 - Am J Physiol Cell Physiol. 2007 May;292(5):C1971-81 – reference: 15674848 - J Biochem Mol Toxicol. 2004;18(6):322-31 – reference: 11943747 - Endocr Rev. 2002 Apr;23(2):258-75 |
SSID | ssj0004269 |
Score | 2.1167288 |
Snippet | Cellular mechanisms to account for the low Na
+
concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium... Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium... Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | C471 |
SubjectTerms | Absorption Cell culture Cell Line Cell Membrane - drug effects Cell Membrane - metabolism Cell Membrane Permeability - drug effects Cells Cholera Cholera Toxin - pharmacology Endocrine system Endosomal Sorting Complexes Required for Transport - metabolism Epithelial Cells - drug effects Epithelial Cells - metabolism Epithelial Sodium Channel Blockers - pharmacology Epithelial Sodium Channels - drug effects Epithelial Sodium Channels - genetics Epithelial Sodium Channels - metabolism Female Human subjects Humans Hydrocortisone - pharmacology Ion Transport Mammary Glands, Human - drug effects Mammary Glands, Human - metabolism Membrane Potentials Nedd4 Ubiquitin Protein Ligases Phosphorylation Proteins RNA, Messenger - metabolism Sodium Sodium - metabolism Time Factors Toxins Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | Cholera toxin enhances Na + absorption across MCF10A human mammary epithelia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24371040 https://www.proquest.com/docview/1506576528 https://www.proquest.com/docview/1504145772 https://www.proquest.com/docview/1512321880 https://pubmed.ncbi.nlm.nih.gov/PMC4042620 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISReEGx8FAYyEuIlCiS243iPpdo0sa1oopP2Ftmeo27q0qprJQb_POePfJSiCniJKttJXN8vP9_ZvjuE3ueaSmOyq1golsQsy2ksODNxbjJFc6JhVre-w2cjfnzBvlxml73ez653yVJ91D_-6FfyP1KFMpCr9ZL9B8k2D4UC-A3yhStIGK5_JeOhTW67kKA_freRP6qJFSEQFyiEnyOp7mYLTwjSzYXR2RDM50FIy3crnddaZObWK2N6LbtqarOP09FX3VlR79tCB9HQrfk1Re26vOeO8w7qvunJaurSxnokhUPGYakhZe1Zq87pfsvN9dMdjsLx0g5x2b1hmPY9cZlArGD0gq1Iu8xLE96BWNbh0SHziVk2CT6zAWPlzdzua9htJGGN_JS201m9hT_6WhxdnJ4W48PL8Xqtn71BrwHVh1n3-wcEbAxLkifnnVDzxOVDbP5M7XGVkU-br1_XajZMld9P3HZUmPET9DjIEg88kJ6inql20d6gksvZ7T3-gFtx7qKHPknp_R46CSjDDmW4RhkeyQi3GMMeY9hjDDuM4YAx3GDsGRofHY6Hx3FIwRFrxukyZqXWXCvGWW6SRAkqqRAlY5IrImVecpWI3G2f81QnXBiSSZodGJZeScEVfY52qlllXiLoBYwnUSUnzDCtSlXmB1wqSUQJVoBgfZTWI1joEJ7eZkmZFs5MzUgRRr1wo17YUe-jqLln7oOzbG29XwumCB_xXWEDbILJnRHRR--aaqBYe7OszGzl2rAUaCwn29pY28QGN-yjF17WTZdszE9AGtTkayhoGtgQ7-s11fXEhXpnPmPEq-1df40etZ_rPtpZLlbmDejKS_XWYfoXyXTASQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholera+toxin+enhances+Na%2B+absorption+across+MCF10A+human+mammary+epithelia&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=Wang%2C+Qian&rft.au=Schultz%2C+Bruce+D&rft.date=2014-03-01&rft.pub=American+Physiological+Society&rft.issn=0363-6143&rft.eissn=1522-1563&rft.volume=306&rft.issue=5&rft.spage=C471&rft_id=info:doi/10.1152%2Fajpcell.00181.2013&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3244110451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon |