Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration

Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are t...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5819 - 5824
Main Authors Jin, Ming, Shepardson, Nina, Yang, Ting, Chen, Gang, Walsh, Dominic, Selkoe, Dennis J., Petsko, Gregory A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.04.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supra-physiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.
AbstractList Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.
Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supra-physiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.
Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.
Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid beta -proteins (A beta ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of A beta raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic A beta peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated A beta dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering A beta N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.
Author Shepardson, Nina
Walsh, Dominic
Jin, Ming
Chen, Gang
Selkoe, Dennis J.
Yang, Ting
Petsko, Gregory A.
Author_xml – sequence: 1
  givenname: Ming
  surname: Jin
  fullname: Jin, Ming
– sequence: 2
  givenname: Nina
  surname: Shepardson
  fullname: Shepardson, Nina
– sequence: 3
  givenname: Ting
  surname: Yang
  fullname: Yang, Ting
– sequence: 4
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
– sequence: 5
  givenname: Dominic
  surname: Walsh
  fullname: Walsh, Dominic
– sequence: 6
  givenname: Dennis J.
  surname: Selkoe
  fullname: Selkoe, Dennis J.
– sequence: 7
  givenname: Gregory A.
  surname: Petsko
  fullname: Petsko, Gregory A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21421841$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhSNURKeFNSvAO9iE-sZO4myQqoqfSpVYUNaWY990XCV2sBPEsOWNeBCeCacznQKLsrBs6Xzn-Nr3HmUHzjvMsqdAXwOt2cnoVEwnqCljQMWDbAW0gbziDT3IVpQWdS54wQ-zoxivKaVNKeij7LAAXoDgsMp-fPL93PZI1LDpvTXk1898DH5C64ixA4ZIbPS9mtCQLviBnPbf17gIRPsw4bdEBdRTvyHWmVkjuVQzWW9GDOPax7TCJrmtd0Q5QxzOwU5WE4NX6DDcKI-zh53qIz7Z7cfZ53dvL88-5Bcf35-fnV7kmldsyjmrUHdVXVMFgIWpCsUa3YBpNdASkbZ1i9y0CdLIQbHO6PRQxVuqa6E6dpy92eaOczug0eimoHo5BjuosJFeWfm34uxaXvmvktFaMAEp4OUuIPgvM8ZJDjZq7Hvl0M9RiooKUTR1k8hX95IgIEVC2ZT_R1N3m7IRYkl9_ucD9pXftjMBJ1tABx9jwG6PAJXLwMhlYOTdwCRH-Y9D2-mmK-kHbH-P78WulEW4u0VI4LIUsBT7bEtcx8mHPcIBipLThv0GDwLefg
CitedBy_id crossref_primary_10_1016_j_virusres_2014_10_003
crossref_primary_10_1155_2012_247150
crossref_primary_10_1021_acschemneuro_3c00358
crossref_primary_10_3233_JAD_190585
crossref_primary_10_1074_jbc_M112_348300
crossref_primary_10_1016_j_neurobiolaging_2012_12_028
crossref_primary_10_1016_j_jconrel_2021_06_037
crossref_primary_10_1371_journal_pcbi_1002356
crossref_primary_10_3389_fnmol_2020_00137
crossref_primary_10_2174_1874467213666200422090135
crossref_primary_10_1007_s00401_011_0896_x
crossref_primary_10_1021_acsbiomaterials_1c00605
crossref_primary_10_1016_j_neubiorev_2020_01_026
crossref_primary_10_1016_j_nbd_2020_104938
crossref_primary_10_3389_fnins_2019_00659
crossref_primary_10_1016_j_parkreldis_2021_09_008
crossref_primary_10_1021_acs_biochem_1c00739
crossref_primary_10_1016_j_neulet_2021_135627
crossref_primary_10_1016_j_arr_2013_03_002
crossref_primary_10_1016_j_celrep_2019_07_060
crossref_primary_10_1021_acschemneuro_6b00108
crossref_primary_10_1002_pro_3275
crossref_primary_10_1371_journal_pone_0079947
crossref_primary_10_1016_j_neurobiolaging_2011_10_028
crossref_primary_10_2174_1570159X18666200525020259
crossref_primary_10_1021_acs_jpcb_7b10530
crossref_primary_10_1091_mbc_E14_12_1612
crossref_primary_10_4103_1673_5374_230303
crossref_primary_10_1016_j_npep_2022_102233
crossref_primary_10_1097_NEN_0b013e31825018f7
crossref_primary_10_1523_JNEUROSCI_1676_11_2012
crossref_primary_10_1021_acschemneuro_0c00624
crossref_primary_10_1038_srep46427
crossref_primary_10_1080_09168451_2020_1714420
crossref_primary_10_1007_s12031_013_0216_0
crossref_primary_10_1186_s13024_015_0002_2
crossref_primary_10_1039_C8CS00034D
crossref_primary_10_1523_JNEUROSCI_1700_18_2018
crossref_primary_10_1016_j_cca_2015_01_035
crossref_primary_10_1016_j_pneurobio_2023_102534
crossref_primary_10_1002_ana_25513
crossref_primary_10_1007_s00253_012_3941_3
crossref_primary_10_3389_fcell_2020_584898
crossref_primary_10_1016_j_bbadis_2017_12_017
crossref_primary_10_3390_ijms21124477
crossref_primary_10_1002_anie_201105638
crossref_primary_10_1021_jp402938p
crossref_primary_10_1016_j_nbd_2017_06_010
crossref_primary_10_1073_pnas_1222478110
crossref_primary_10_5607_en_2011_20_2_67
crossref_primary_10_1016_j_bbrc_2013_08_088
crossref_primary_10_1002_prot_25270
crossref_primary_10_1021_cn400197x
crossref_primary_10_1021_acschemneuro_0c00535
crossref_primary_10_1080_07391102_2020_1819425
crossref_primary_10_1007_s00401_018_1846_7
crossref_primary_10_1517_14728222_2013_789862
crossref_primary_10_1016_j_jalz_2012_12_004
crossref_primary_10_1523_JNEUROSCI_4989_14_2015
crossref_primary_10_1155_2012_251426
crossref_primary_10_6064_2012_796024
crossref_primary_10_1371_journal_pone_0039386
crossref_primary_10_4161_pri_23286
crossref_primary_10_1002_1873_3468_12229
crossref_primary_10_1016_j_pneurobio_2012_06_004
crossref_primary_10_1074_jbc_M112_407957
crossref_primary_10_7554_eLife_28401
crossref_primary_10_1016_j_bpj_2021_07_002
crossref_primary_10_1002_iub_2603
crossref_primary_10_1021_acschemneuro_3c00443
crossref_primary_10_1177_1759091415618916
crossref_primary_10_1517_13543776_2012_681302
crossref_primary_10_3390_brainsci8090162
crossref_primary_10_1042_BCJ20170239
crossref_primary_10_1148_rg_230009
crossref_primary_10_1016_j_bbr_2017_05_056
crossref_primary_10_1523_JNEUROSCI_1034_15_2015
crossref_primary_10_1093_hmg_ddx284
crossref_primary_10_1016_j_bmcl_2013_01_076
crossref_primary_10_1038_s41598_020_79275_1
crossref_primary_10_1021_acs_langmuir_8b01921
crossref_primary_10_1186_s13024_015_0049_0
crossref_primary_10_3389_fnbeh_2014_00332
crossref_primary_10_1016_j_biocel_2017_01_017
crossref_primary_10_1002_prot_26495
crossref_primary_10_1021_acs_jcim_5b00063
crossref_primary_10_3390_ijms22168769
crossref_primary_10_1007_s11064_016_1857_5
crossref_primary_10_1039_C6CP00263C
crossref_primary_10_1038_s41598_023_50465_x
crossref_primary_10_1155_2011_469679
crossref_primary_10_1111_febs_12813
crossref_primary_10_1271_bbb_110879
crossref_primary_10_1371_journal_pbio_3001694
crossref_primary_10_1021_acs_jmedchem_1c00167
crossref_primary_10_1038_s41598_017_10422_x
crossref_primary_10_3389_fnmol_2019_00319
crossref_primary_10_3390_cells9112482
crossref_primary_10_1111_jnc_13713
crossref_primary_10_1039_c3cc46772d
crossref_primary_10_1002_cphc_202400502
crossref_primary_10_3233_JAD_210109
crossref_primary_10_3390_ijms21228651
crossref_primary_10_1038_s41467_020_20611_4
crossref_primary_10_1242_jcs_1125880
crossref_primary_10_3390_cells10030546
crossref_primary_10_1016_j_actbio_2016_04_001
crossref_primary_10_3233_JAD_150913
crossref_primary_10_4103_NRR_NRR_D_23_01628
crossref_primary_10_1039_C6RA26737H
crossref_primary_10_1016_j_ijbiomac_2016_09_074
crossref_primary_10_1038_s41598_023_33677_z
crossref_primary_10_3233_JAD_201407
crossref_primary_10_1021_jp404034x
crossref_primary_10_1007_s12640_016_9603_y
crossref_primary_10_1089_ars_2012_5027
crossref_primary_10_1016_j_ejmech_2024_116624
crossref_primary_10_1016_j_pnpbp_2024_111069
crossref_primary_10_1016_j_conb_2020_02_003
crossref_primary_10_1371_journal_pone_0034726
crossref_primary_10_1007_s10571_011_9691_4
crossref_primary_10_1186_s12974_018_1134_4
crossref_primary_10_1021_bi5003053
crossref_primary_10_1038_s41467_022_30785_8
crossref_primary_10_3233_JAD_191334
crossref_primary_10_1016_j_phrs_2019_104255
crossref_primary_10_1021_pr5003593
crossref_primary_10_3390_cells13151293
crossref_primary_10_1016_j_pbb_2011_04_013
crossref_primary_10_3233_JAD_221279
crossref_primary_10_1016_j_neurobiolaging_2015_03_005
crossref_primary_10_1016_j_neuint_2020_104707
crossref_primary_10_3389_fnmol_2017_00361
crossref_primary_10_1371_journal_pone_0200251
crossref_primary_10_3389_fncel_2019_00068
crossref_primary_10_1371_journal_pone_0118379
crossref_primary_10_3892_mmr_2015_3424
crossref_primary_10_4061_2011_345614
crossref_primary_10_1007_s11481_012_9424_6
crossref_primary_10_1038_s41380_021_01249_0
crossref_primary_10_1371_journal_pbio_1002472
crossref_primary_10_1177_1073858414529828
crossref_primary_10_1186_s40035_019_0161_0
crossref_primary_10_1083_jcb_201701045
crossref_primary_10_1177_1087057114547232
crossref_primary_10_1016_j_jddst_2018_04_001
crossref_primary_10_3390_nu15173690
crossref_primary_10_1007_s00401_014_1296_9
crossref_primary_10_1016_j_neurobiolaging_2011_11_009
crossref_primary_10_15252_embj_201797724
crossref_primary_10_1007_s12264_012_1287_6
crossref_primary_10_1186_s40035_021_00274_x
crossref_primary_10_3892_ijmm_2018_3467
crossref_primary_10_1186_alzrt272
crossref_primary_10_1021_acschemneuro_2c00411
crossref_primary_10_3389_fnins_2015_00345
crossref_primary_10_3233_JAD_200462
crossref_primary_10_1038_s41598_018_21641_1
crossref_primary_10_3233_JAD_201549
crossref_primary_10_1007_s12035_023_03736_7
crossref_primary_10_3233_JAD_190367
crossref_primary_10_1021_jacs_6b01332
crossref_primary_10_1007_s00221_024_06821_y
crossref_primary_10_1111_j_1600_0854_2012_01340_x
crossref_primary_10_1016_j_ejmech_2019_111913
crossref_primary_10_1126_scitranslmed_aaf6295
crossref_primary_10_1016_j_neuint_2021_105210
crossref_primary_10_3390_ijms222111550
crossref_primary_10_1016_j_stemcr_2020_06_001
crossref_primary_10_1038_s41401_021_00720_6
crossref_primary_10_1146_annurev_biophys_062823_023436
crossref_primary_10_1038_srep05715
crossref_primary_10_1371_journal_pone_0066101
crossref_primary_10_1038_s41598_019_46306_5
crossref_primary_10_1134_S0026893316050034
crossref_primary_10_1016_j_neuron_2021_08_003
crossref_primary_10_1038_s44321_024_00190_3
crossref_primary_10_1016_S1474_4422_12_70140_0
crossref_primary_10_1021_acs_jpcb_0c07716
crossref_primary_10_1111_jnc_13072
crossref_primary_10_3233_JAD_160882
crossref_primary_10_3389_fnagi_2023_1148518
crossref_primary_10_3390_ijms20040879
crossref_primary_10_1016_j_bbr_2014_08_034
crossref_primary_10_1080_07391102_2020_1847197
crossref_primary_10_1371_journal_pone_0091531
crossref_primary_10_1016_j_jddst_2017_09_022
crossref_primary_10_1126_sciadv_aaz2387
crossref_primary_10_1007_s12274_016_1127_5
crossref_primary_10_1021_cr3000994
crossref_primary_10_1021_cn500081s
crossref_primary_10_1016_j_jmb_2012_01_006
crossref_primary_10_3233_JAD_170108
crossref_primary_10_1016_j_neuron_2023_04_007
crossref_primary_10_1016_j_jmb_2012_01_004
crossref_primary_10_1016_j_neuron_2014_05_004
crossref_primary_10_1007_s00018_011_0750_2
crossref_primary_10_1074_jbc_M112_442103
crossref_primary_10_1111_j_1742_4658_2011_08295_x
crossref_primary_10_1371_journal_pone_0230277
crossref_primary_10_2174_1567205016666190321163438
crossref_primary_10_1096_fj_11_201772
crossref_primary_10_1016_j_bioorg_2022_106100
crossref_primary_10_3390_molecules29122812
crossref_primary_10_1515_bmc_2018_0001
crossref_primary_10_1097_YCO_0b013e32835f6747
crossref_primary_10_1021_acs_biochem_4c00830
crossref_primary_10_1371_journal_pgen_1005917
crossref_primary_10_4155_fmc_2017_0029
crossref_primary_10_1186_s13195_020_00596_4
crossref_primary_10_3389_fmolb_2021_761227
crossref_primary_10_1021_jp506258g
crossref_primary_10_1016_j_biocel_2012_08_010
crossref_primary_10_1038_s12276_020_00494_7
crossref_primary_10_4161_pri_22118
crossref_primary_10_3389_fnagi_2016_00223
crossref_primary_10_1016_j_febslet_2015_07_013
crossref_primary_10_1007_s12035_023_03277_z
crossref_primary_10_3390_ijms242417377
crossref_primary_10_1093_hmg_ddu064
crossref_primary_10_1016_j_jare_2022_04_015
crossref_primary_10_1002_ana_23748
crossref_primary_10_1007_s11064_016_1993_y
crossref_primary_10_1016_j_neulet_2011_08_042
crossref_primary_10_1186_s40478_017_0501_1
crossref_primary_10_1093_braincomms_fcad115
crossref_primary_10_3389_fnmol_2017_00446
crossref_primary_10_1186_s40478_023_01688_6
crossref_primary_10_1002_prot_25439
crossref_primary_10_1038_cddis_2013_129
crossref_primary_10_1038_s41380_022_01589_5
crossref_primary_10_14283_jpad_2021_52
crossref_primary_10_1038_s41380_024_02611_8
crossref_primary_10_1002_ange_201105638
crossref_primary_10_1016_j_bbr_2016_05_030
crossref_primary_10_1007_s11940_023_00750_x
crossref_primary_10_2174_0929867328666211115124639
crossref_primary_10_3389_fmolb_2022_958399
crossref_primary_10_3390_ijms251910797
crossref_primary_10_1186_s40478_018_0539_8
crossref_primary_10_1016_j_arr_2020_101212
crossref_primary_10_1016_j_jmgm_2022_108207
crossref_primary_10_1016_j_dyepig_2019_107744
crossref_primary_10_1186_s13195_018_0447_y
crossref_primary_10_3389_fncel_2015_00464
crossref_primary_10_1111_acel_12210
crossref_primary_10_1038_nm_2460
crossref_primary_10_1038_s42003_024_06272_9
crossref_primary_10_3390_ijms232112841
crossref_primary_10_1111_gtc_12889
crossref_primary_10_3390_ijms22105191
crossref_primary_10_1038_nn_4018
crossref_primary_10_2174_1568026620666200916123000
crossref_primary_10_1016_j_nbd_2012_03_013
crossref_primary_10_3390_ijms140714908
crossref_primary_10_1016_j_jnutbio_2018_02_001
crossref_primary_10_1371_journal_pcbi_1009114
crossref_primary_10_1016_j_arr_2024_102211
crossref_primary_10_1371_journal_pone_0032014
crossref_primary_10_1039_C4CP04544K
crossref_primary_10_1523_JNEUROSCI_1858_12_2012
crossref_primary_10_1002_pro_4283
crossref_primary_10_1016_j_phymed_2021_153686
crossref_primary_10_3390_molecules27248950
crossref_primary_10_1038_s41467_024_50153_y
crossref_primary_10_1021_bi3002049
crossref_primary_10_1007_s00401_023_02633_6
crossref_primary_10_1039_C9CC03810H
crossref_primary_10_1038_nature19323
crossref_primary_10_1016_j_bbamem_2019_183061
crossref_primary_10_1039_C6CP07341G
crossref_primary_10_1039_C9AN01631G
crossref_primary_10_1371_journal_pone_0024329
crossref_primary_10_1016_j_tips_2013_03_002
crossref_primary_10_1016_j_pneurobio_2015_03_003
crossref_primary_10_3233_JAD_170230
crossref_primary_10_3389_fnmol_2022_1016559
crossref_primary_10_1186_s12883_014_0169_0
crossref_primary_10_1146_annurev_neuro_080317_061725
crossref_primary_10_3390_molecules22101723
crossref_primary_10_1016_j_jep_2021_114002
crossref_primary_10_1111_ejn_15611
crossref_primary_10_1021_jp403748z
crossref_primary_10_1021_acsami_2c14220
crossref_primary_10_1186_s13024_015_0035_6
crossref_primary_10_3390_ijms232315036
crossref_primary_10_1016_j_phrs_2017_03_020
crossref_primary_10_1002_ana_22615
crossref_primary_10_1007_s12640_015_9564_6
crossref_primary_10_1016_j_neurobiolaging_2021_01_017
crossref_primary_10_1126_scitranslmed_aay6931
crossref_primary_10_1007_s40120_019_00169_0
crossref_primary_10_1371_journal_pone_0091793
crossref_primary_10_3390_biom5020505
crossref_primary_10_1186_s40478_022_01417_5
crossref_primary_10_1016_j_bbapap_2011_09_005
crossref_primary_10_3390_ijms241814151
crossref_primary_10_1097_WCO_0b013e32835a30f4
crossref_primary_10_1021_cr500638n
crossref_primary_10_3390_nu16213667
crossref_primary_10_1093_braincomms_fcac193
crossref_primary_10_1021_acschemneuro_0c00290
crossref_primary_10_3389_fnagi_2014_00292
crossref_primary_10_1073_pnas_1917194117
crossref_primary_10_3390_medicines9080042
crossref_primary_10_1016_j_nbd_2016_01_006
crossref_primary_10_1016_j_ejmech_2012_10_045
crossref_primary_10_1016_j_nbd_2017_03_014
crossref_primary_10_1093_brain_awab319
crossref_primary_10_1523_ENEURO_0500_20_2021
crossref_primary_10_1002_ana_22509
crossref_primary_10_3233_JAD_200735
crossref_primary_10_1515_revneuro_2019_0089
crossref_primary_10_1007_s12017_013_8257_7
crossref_primary_10_3390_ijms161125961
crossref_primary_10_1002_asia_201801007
crossref_primary_10_1016_j_drudis_2014_02_015
crossref_primary_10_1371_journal_pone_0034345
crossref_primary_10_1038_s41467_025_58335_y
crossref_primary_10_4161_hv_24830
crossref_primary_10_3389_fnagi_2018_00113
crossref_primary_10_1016_j_jalz_2015_01_005
crossref_primary_10_1038_s41591_018_0004_z
crossref_primary_10_17816_MAJ624867
crossref_primary_10_3389_fgene_2020_00390
crossref_primary_10_1155_2012_630182
crossref_primary_10_1021_acscentsci_3c00592
crossref_primary_10_1126_sciadv_abb9036
crossref_primary_10_1159_000446283
crossref_primary_10_1016_j_chemphyslip_2016_01_002
crossref_primary_10_15252_embj_2022112453
crossref_primary_10_1155_2014_706487
crossref_primary_10_1007_s00018_017_2463_7
crossref_primary_10_3233_JAD_220640
crossref_primary_10_1002_mds_26656
crossref_primary_10_3233_JAD_215299
crossref_primary_10_3390_ijms24087258
crossref_primary_10_3233_JAD_190906
crossref_primary_10_1016_j_neuropharm_2020_108342
crossref_primary_10_1038_s42003_020_01490_3
crossref_primary_10_1038_s41467_018_05068_w
crossref_primary_10_3233_JAD_160365
crossref_primary_10_1074_jbc_M113_463273
crossref_primary_10_1517_14728222_2013_791284
crossref_primary_10_1007_s11033_023_09178_7
crossref_primary_10_1100_2011_371893
crossref_primary_10_1111_jnc_15538
crossref_primary_10_1002_agt2_463
crossref_primary_10_1016_j_mcn_2019_103409
crossref_primary_10_1016_j_nlm_2011_08_003
crossref_primary_10_1038_s41598_020_77210_y
crossref_primary_10_1007_s00018_014_1634_z
crossref_primary_10_1093_cercor_bhae357
crossref_primary_10_3389_fncel_2015_00191
crossref_primary_10_1155_2014_167024
crossref_primary_10_1016_j_bbamem_2018_03_017
crossref_primary_10_1038_nrneurol_2012_236
crossref_primary_10_1016_j_pneurobio_2018_05_001
crossref_primary_10_1002_acn3_639
crossref_primary_10_1111_ejn_12251
crossref_primary_10_1038_ncomms5824
crossref_primary_10_1002_cbic_202100383
crossref_primary_10_1021_acsomega_2c05609
crossref_primary_10_1016_j_neurobiolaging_2013_02_001
crossref_primary_10_1021_acs_analchem_3c02806
crossref_primary_10_3389_fnmol_2023_1227493
crossref_primary_10_1111_j_1365_2990_2012_01281_x
crossref_primary_10_3390_jpm10030115
crossref_primary_10_1016_j_nano_2013_11_016
crossref_primary_10_1186_1750_1326_7_59
crossref_primary_10_1038_s41380_018_0286_z
crossref_primary_10_1002_bies_201500004
crossref_primary_10_1016_j_nbd_2018_12_006
crossref_primary_10_3390_molecules23020296
crossref_primary_10_1002_ijch_201400162
crossref_primary_10_1111_j_1750_3639_2011_00560_x
crossref_primary_10_1136_postgradmedj_2013_201515rep
crossref_primary_10_1021_acs_jpcb_7b00267
crossref_primary_10_1111_ejn_12142
crossref_primary_10_1038_nn_3028
crossref_primary_10_1016_j_neulet_2019_134462
crossref_primary_10_1371_journal_pone_0313733
crossref_primary_10_1093_brain_awaa399
crossref_primary_10_1186_1750_1326_8_20
crossref_primary_10_1016_j_neurobiolaging_2018_04_007
crossref_primary_10_1111_cbdd_12492
crossref_primary_10_3233_JAD_230555
crossref_primary_10_1007_s12031_012_9782_9
crossref_primary_10_3389_fnagi_2014_00252
crossref_primary_10_1042_BSR20203980
crossref_primary_10_1146_annurev_genom_121520_081242
crossref_primary_10_1039_D3OB00509G
crossref_primary_10_1016_j_jmb_2011_05_021
crossref_primary_10_1007_s12640_017_9765_2
crossref_primary_10_1016_j_conb_2014_03_011
crossref_primary_10_1073_pnas_1819541116
crossref_primary_10_1111_acel_12978
crossref_primary_10_1093_brain_awac329
crossref_primary_10_1021_acs_biochem_6b00453
crossref_primary_10_1093_braincomms_fcaa010
crossref_primary_10_1016_j_nbd_2022_105816
crossref_primary_10_1186_s13195_021_00935_z
crossref_primary_10_1002_alz_14342
crossref_primary_10_1155_2020_4981814
crossref_primary_10_1007_s13311_023_01405_0
crossref_primary_10_1093_hmg_dds100
crossref_primary_10_2174_1874467215666220903095837
crossref_primary_10_1016_j_neuron_2013_02_003
crossref_primary_10_1186_s12987_023_00466_9
crossref_primary_10_1002_ana_25395
crossref_primary_10_1016_j_molstruc_2022_132979
crossref_primary_10_3390_molecules25081846
crossref_primary_10_1016_j_arr_2012_06_007
crossref_primary_10_1007_s10571_011_9796_9
crossref_primary_10_1016_j_neuropharm_2023_109478
crossref_primary_10_3390_ijms21134665
crossref_primary_10_1007_s00401_018_1886_z
crossref_primary_10_1186_s40035_024_00432_x
crossref_primary_10_1248_cpb_c19_00511
crossref_primary_10_1371_journal_pone_0147470
crossref_primary_10_1155_2012_628070
crossref_primary_10_1021_bi5008172
crossref_primary_10_1007_s00401_014_1259_1
crossref_primary_10_1016_j_stemcr_2017_10_015
crossref_primary_10_1134_S181971241202002X
crossref_primary_10_1016_j_jds_2022_07_001
crossref_primary_10_1523_JNEUROSCI_1698_16_2016
crossref_primary_10_1001_jamaneurol_2019_0834
crossref_primary_10_1111_cns_13082
crossref_primary_10_1254_fpj_145_229
crossref_primary_10_13005_bpj_2990
crossref_primary_10_3109_01677063_2011_626471
crossref_primary_10_3390_ijms25010259
crossref_primary_10_1186_s12860_021_00386_2
crossref_primary_10_1007_s12035_017_0533_3
crossref_primary_10_1021_acs_jpcb_2c07321
crossref_primary_10_3390_ijms23168997
crossref_primary_10_3892_mmr_2014_2013
crossref_primary_10_1093_brain_awac023
crossref_primary_10_1111_jnc_14136
crossref_primary_10_1016_j_bbagen_2018_07_019
crossref_primary_10_1111_jnc_15466
crossref_primary_10_1371_journal_pone_0094576
crossref_primary_10_1016_j_jff_2016_02_004
crossref_primary_10_1016_j_lfs_2012_04_038
crossref_primary_10_1093_hmg_ddr394
crossref_primary_10_1186_s13195_017_0293_3
crossref_primary_10_3389_fnins_2016_00205
crossref_primary_10_1186_s13195_020_00761_9
crossref_primary_10_1002_jcb_28361
crossref_primary_10_14336_AD_2020_1230
crossref_primary_10_7717_peerj_10003
crossref_primary_10_1007_s40263_015_0257_8
crossref_primary_10_1016_j_neuropharm_2021_108555
crossref_primary_10_1021_acsnano_7b01662
crossref_primary_10_1111_jnc_15111
crossref_primary_10_1038_srep38187
crossref_primary_10_1016_j_ejmech_2019_111585
crossref_primary_10_3389_fnmol_2020_570586
crossref_primary_10_1021_acschemneuro_8b00067
crossref_primary_10_1021_bm401795e
crossref_primary_10_3390_cells8050425
crossref_primary_10_3389_fnagi_2019_00174
crossref_primary_10_1093_hmg_ddt201
crossref_primary_10_1074_jbc_M115_666529
crossref_primary_10_3389_fmolb_2023_1153839
crossref_primary_10_1021_acs_biochem_8b00985
crossref_primary_10_1016_j_neuroscience_2017_06_050
crossref_primary_10_1186_1750_1326_9_2
crossref_primary_10_1042_BJ20140219
crossref_primary_10_1159_000369101
crossref_primary_10_1016_j_jalz_2012_07_002
crossref_primary_10_1021_acschemneuro_5b00082
crossref_primary_10_1007_s00259_011_2045_0
crossref_primary_10_1586_eci_11_93
crossref_primary_10_2174_0115701786286700240322065602
crossref_primary_10_1146_annurev_pharmtox_011613_135932
crossref_primary_10_1109_TNB_2018_2800723
crossref_primary_10_1039_C9SC01331H
crossref_primary_10_4236_aad_2016_52006
crossref_primary_10_1002_acn3_339
crossref_primary_10_1016_j_brainres_2015_12_048
crossref_primary_10_1016_j_pneurobio_2018_12_006
crossref_primary_10_3390_ijms25137352
crossref_primary_10_1126_scitranslmed_adp2564
crossref_primary_10_1093_brain_awz066
crossref_primary_10_1186_s13041_016_0284_5
crossref_primary_10_1093_braincomms_fcab147
crossref_primary_10_1186_1750_1326_9_48
crossref_primary_10_1523_JNEUROSCI_2804_19_2020
crossref_primary_10_1111_jnc_15007
crossref_primary_10_1136_jclinpath_2013_201515
crossref_primary_10_1007_s11064_023_04022_7
crossref_primary_10_1016_j_nbd_2018_02_003
crossref_primary_10_1007_s00018_022_04255_9
crossref_primary_10_1093_hmg_ddr576
crossref_primary_10_1016_j_tins_2019_03_003
crossref_primary_10_1093_jnen_nly059
crossref_primary_10_1073_pnas_2219216120
crossref_primary_10_1107_S0108270111022293
crossref_primary_10_1111_ejn_14389
crossref_primary_10_3233_JAD_201165
crossref_primary_10_3233_JAD_160093
crossref_primary_10_7554_eLife_46924
crossref_primary_10_2174_1567205016666191023102422
crossref_primary_10_1186_1750_1326_9_51
crossref_primary_10_1016_j_pbiomolbio_2024_01_002
crossref_primary_10_1186_s40035_022_00303_3
crossref_primary_10_1002_fft2_498
crossref_primary_10_1038_s41380_024_02463_2
crossref_primary_10_1074_jbc_M114_600833
crossref_primary_10_1093_brain_awt273
crossref_primary_10_1111_j_1471_4159_2011_07478_x
crossref_primary_10_1016_j_ejmech_2019_05_080
crossref_primary_10_15252_emmm_202114398
crossref_primary_10_1038_emm_2013_125
crossref_primary_10_1111_jnc_12305
crossref_primary_10_1186_1750_1326_9_52
crossref_primary_10_1186_2051_5960_2_61
crossref_primary_10_1007_s12035_014_8749_y
crossref_primary_10_5402_2012_728571
crossref_primary_10_1038_475S18a
crossref_primary_10_1111_jnc_13873
crossref_primary_10_1021_acschemneuro_6b00053
crossref_primary_10_1097_WNR_0000000000000803
crossref_primary_10_1038_srep11708
crossref_primary_10_1016_j_dadm_2018_06_004
crossref_primary_10_1007_s00726_012_1382_z
crossref_primary_10_3389_fnmol_2019_00192
crossref_primary_10_1016_j_neuint_2017_08_010
crossref_primary_10_1007_s12035_017_0580_9
crossref_primary_10_3390_molecules24122242
crossref_primary_10_1007_s00259_019_04409_1
crossref_primary_10_1007_s11064_022_03785_9
crossref_primary_10_2174_011570159X332930240925095423
crossref_primary_10_1016_j_vaccine_2011_12_136
crossref_primary_10_1002_pro_4639
crossref_primary_10_1002_smll_201201068
crossref_primary_10_1080_01616412_2017_1348689
crossref_primary_10_1016_j_neurobiolaging_2018_02_021
crossref_primary_10_3233_JAD_220905
crossref_primary_10_1111_nan_12674
crossref_primary_10_1186_s12929_014_0074_2
crossref_primary_10_1016_j_neuint_2017_08_007
crossref_primary_10_1038_s41467_022_32130_5
crossref_primary_10_3233_JAD_201185
crossref_primary_10_1016_j_dyepig_2017_07_071
crossref_primary_10_1186_2051_5960_1_73
crossref_primary_10_3233_JAD_179925
crossref_primary_10_1126_scisignal_aal2021
crossref_primary_10_1016_j_biopha_2021_111609
crossref_primary_10_1007_s12640_014_9492_x
crossref_primary_10_1523_JNEUROSCI_1353_14_2014
crossref_primary_10_1016_j_nbd_2017_12_007
crossref_primary_10_1039_C9CC09170J
crossref_primary_10_1371_journal_pone_0104965
crossref_primary_10_1007_s12035_019_01684_9
crossref_primary_10_1093_brain_awu261
crossref_primary_10_1093_brain_awv355
crossref_primary_10_1016_j_neurobiolaging_2015_04_002
crossref_primary_10_1016_j_bbapap_2012_08_017
crossref_primary_10_1111_jnc_13772
crossref_primary_10_1371_journal_pone_0189413
crossref_primary_10_1093_brain_awv356
crossref_primary_10_1074_jbc_M111_281295
crossref_primary_10_3389_fnagi_2023_1296919
crossref_primary_10_3389_fneur_2014_00276
crossref_primary_10_3233_JAD_179935
crossref_primary_10_1016_j_bbadis_2013_02_018
crossref_primary_10_1021_ac401055y
crossref_primary_10_1002_psp4_12759
crossref_primary_10_31083_j_jin_2019_03_1136
crossref_primary_10_1016_j_mcn_2013_11_001
crossref_primary_10_1038_cddis_2011_57
crossref_primary_10_1371_journal_pbio_3000851
crossref_primary_10_1186_s40035_021_00237_2
crossref_primary_10_1038_s41582_022_00749_z
crossref_primary_10_1371_journal_pone_0085885
crossref_primary_10_18632_aging_102202
crossref_primary_10_1093_jnen_nlx099
crossref_primary_10_1134_S0026893315020065
crossref_primary_10_1021_acs_langmuir_3c01169
crossref_primary_10_1039_D3SC06343G
crossref_primary_10_1074_jbc_M116_753525
crossref_primary_10_1016_j_neurobiolaging_2014_11_022
crossref_primary_10_1007_s12035_015_9390_0
crossref_primary_10_1016_j_ebiom_2024_105504
crossref_primary_10_1021_cn4001582
crossref_primary_10_1021_acs_jpcb_5b05593
crossref_primary_10_1111_ene_13439
crossref_primary_10_1016_j_gene_2019_04_040
crossref_primary_10_1007_s00401_017_1707_9
crossref_primary_10_1016_j_bbadis_2017_01_023
crossref_primary_10_1021_acs_jpcb_0c00574
crossref_primary_10_1021_acs_jpcb_7b04689
crossref_primary_10_1038_nature11060
crossref_primary_10_18632_aging_103445
crossref_primary_10_1038_srep18668
crossref_primary_10_1111_jnc_13671
crossref_primary_10_1038_nn_2871
crossref_primary_10_1016_j_biocel_2012_05_023
crossref_primary_10_1021_acschemneuro_0c00714
crossref_primary_10_1016_j_nbd_2015_05_020
crossref_primary_10_1016_j_ejphar_2011_09_019
crossref_primary_10_1083_jcb_201407065
crossref_primary_10_1039_D3CP05317B
crossref_primary_10_1016_j_brainresbull_2013_12_004
crossref_primary_10_3390_ijms22126577
crossref_primary_10_1016_j_cbi_2023_110387
crossref_primary_10_1021_acs_analchem_7b04936
crossref_primary_10_1371_journal_pone_0049375
crossref_primary_10_1016_j_jneumeth_2015_06_009
crossref_primary_10_1186_s41983_024_00912_x
crossref_primary_10_1039_C8RA08198K
crossref_primary_10_3390_biomedicines10112993
crossref_primary_10_4103_1673_5374_233451
crossref_primary_10_1016_j_molliq_2024_125342
crossref_primary_10_1021_cn300122k
crossref_primary_10_1073_pnas_1306832110
crossref_primary_10_1016_j_arr_2021_101496
crossref_primary_10_1111_jnc_15980
crossref_primary_10_1038_s41598_019_38645_0
crossref_primary_10_1111_j_1582_4934_2011_01507_x
crossref_primary_10_3390_ijms23042208
crossref_primary_10_1021_acschemneuro_5b00229
crossref_primary_10_1016_j_ica_2017_09_061
crossref_primary_10_3389_fphar_2019_01084
crossref_primary_10_1016_j_nbd_2017_08_019
crossref_primary_10_5213_inj_1938184_092
crossref_primary_10_1016_j_neubiorev_2023_105246
crossref_primary_10_1002_ana_24001
crossref_primary_10_1002_ijch_201600097
crossref_primary_10_1074_jbc_M116_720664
crossref_primary_10_15252_emmm_201808931
crossref_primary_10_1016_j_neuron_2014_02_027
crossref_primary_10_1074_jbc_M112_401240
crossref_primary_10_4062_biomolther_2019_076
crossref_primary_10_1038_s41583_019_0222_5
crossref_primary_10_4155_fmc_15_161
crossref_primary_10_1007_s00401_024_02691_4
crossref_primary_10_1038_s41598_019_53415_8
crossref_primary_10_1016_j_ijbiomac_2018_10_021
crossref_primary_10_1038_s41591_020_0781_z
crossref_primary_10_1371_journal_pone_0100200
crossref_primary_10_1002_cbic_202000125
crossref_primary_10_4252_wjsc_v11_i5_236
crossref_primary_10_3389_fnins_2018_00037
crossref_primary_10_1371_journal_pone_0073129
crossref_primary_10_1007_s00441_020_03198_6
crossref_primary_10_1053_j_semnuclmed_2016_09_005
crossref_primary_10_1126_science_1228541
crossref_primary_10_1042_NS20220086
crossref_primary_10_1021_acschemneuro_7b00469
crossref_primary_10_1002_jcp_28411
crossref_primary_10_3390_ijms23137307
crossref_primary_10_3233_JAD_170921
crossref_primary_10_1016_j_jneuroim_2015_08_008
crossref_primary_10_15252_emmm_201606210
crossref_primary_10_1016_j_ajpath_2015_09_018
crossref_primary_10_3389_fnins_2016_00294
crossref_primary_10_47102_annals_acadmedsg_V40N7p304
crossref_primary_10_3233_JAD_215662
crossref_primary_10_1590_1980_5764_dn_2024_vr01
crossref_primary_10_1021_acs_jpca_8b11251
crossref_primary_10_3233_JAD_215546
crossref_primary_10_1021_acs_jpcb_2c01768
crossref_primary_10_3390_cells12121618
crossref_primary_10_1016_j_neurobiolaging_2020_04_014
crossref_primary_10_1111_jnc_14674
crossref_primary_10_1002_ana_24488
crossref_primary_10_1016_j_ejmech_2018_09_031
Cites_doi 10.1523/JNEUROSCI.1065-09.2009
10.1097/00005072-198711000-00001
10.1016/S1074-5521(97)90255-6
10.1073/pnas.092136199
10.1073/pnas.95.11.6448
10.1126/science.1141736
10.1016/j.neurobiolaging.2007.02.029
10.1038/nm1234
10.1126/science.1062097
10.1038/nn842
10.1038/416535a
10.1523/JNEUROSCI.4970-06.2007
10.1073/pnas.0811698106
10.1074/jbc.270.13.7679
10.1523/JNEUROSCI.2357-10.2010
10.1006/mcne.1997.0615
10.1016/j.cell.2010.06.036
10.1126/science.1072994
10.1212/WNL.0b013e3181c67808
10.1016/S0896-6273(03)00434-3
10.1016/j.neuron.2009.05.012
10.1523/JNEUROSCI.3590-09.2009
10.1016/j.mcn.2007.02.006
10.1016/S0140-6736(08)61075-2
10.1073/pnas.96.9.5274
10.1126/science.1058189
10.1042/bj2960015
10.1146/annurev.neuro.24.1.1121
10.1038/nrn2194
10.1038/nrn2967
10.1083/jcb.200605187
10.1038/nm1782
10.1016/j.neuron.2004.07.003
10.1046/j.1471-4159.1998.71062465.x
10.1016/S0968-0004(98)01245-6
10.1523/JNEUROSCI.3537-10.2010
10.1073/pnas.1834302100
10.1038/nature07761
10.1046/j.1471-4159.2003.02070.x
10.1038/nrm2101
10.1021/bi026469j
10.1212/01.WNL.0000159740.16984.3C
10.1074/jbc.272.35.22364
10.1111/j.1742-4658.2010.07719.x
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1017033108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
CrossRef


MEDLINE

MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5824
ExternalDocumentID PMC3078381
21421841
10_1073_pnas_1017033108
108_14_5819
41125409
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG006173
– fundername: NIA NIH HHS
  grantid: R37 AG006173
– fundername: NIA NIH HHS
  grantid: R01 AG006173
– fundername: NIA NIH HHS
  grantid: AG027443
– fundername: NIA NIH HHS
  grantid: R01 AG027443
– fundername: NIA NIH HHS
  grantid: AG006173
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c463t-436ecf6770a11e2d62a39c91dbc105ee0b7be4dbecfce41a3fdc214a4b0c78af3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:55 EDT 2025
Fri Jul 11 10:18:09 EDT 2025
Fri Jul 11 16:15:21 EDT 2025
Fri Jul 11 04:54:33 EDT 2025
Thu Apr 03 07:09:45 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Tue Jul 01 00:47:07 EDT 2025
Wed Nov 11 00:29:32 EST 2020
Thu May 29 08:40:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-436ecf6770a11e2d62a39c91dbc105ee0b7be4dbecfce41a3fdc214a4b0c78af3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: M.J. and D.J.S. designed research; M.J., N.S., T.Y. and G.C. performed research; D.W. contributed new reagents/analytic tools; M.J. analyzed data; and M.J. and D.J.S. wrote the paper.
Edited* by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved February 25, 2011 (received for review November 13, 2010)
1Present address: F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115.
PMID 21421841
PQID 1017959889
PQPubID 23462
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1017033108
proquest_miscellaneous_1817831595
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078381
proquest_miscellaneous_1017959889
pnas_primary_108_14_5819
crossref_citationtrail_10_1073_pnas_1017033108
proquest_miscellaneous_860882979
pubmed_primary_21421841
jstor_primary_41125409
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-05
PublicationDateYYYYMMDD 2011-04-05
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
Lesne SE (e_1_3_3_28_2) 2009
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_24_2
  doi: 10.1523/JNEUROSCI.1065-09.2009
– ident: e_1_3_3_25_2
  doi: 10.1097/00005072-198711000-00001
– ident: e_1_3_3_45_2
  doi: 10.1016/S1074-5521(97)90255-6
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.092136199
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.95.11.6448
– ident: e_1_3_3_23_2
  doi: 10.1126/science.1141736
– ident: e_1_3_3_41_2
  doi: 10.1016/j.neurobiolaging.2007.02.029
– ident: e_1_3_3_6_2
  doi: 10.1038/nm1234
– ident: e_1_3_3_29_2
  doi: 10.1126/science.1062097
– ident: e_1_3_3_4_2
  doi: 10.1038/nn842
– ident: e_1_3_3_15_2
  doi: 10.1038/416535a
– ident: e_1_3_3_7_2
  doi: 10.1523/JNEUROSCI.4970-06.2007
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0811698106
– ident: e_1_3_3_38_2
  doi: 10.1074/jbc.270.13.7679
– ident: e_1_3_3_8_2
  doi: 10.1523/JNEUROSCI.2357-10.2010
– year: 2009
  ident: e_1_3_3_28_2
  article-title: Distinct brain Aβ oligomers are associated with different stages of Alzhermer's disease
  publication-title: Society for Neuroscience Annual Meeting
– ident: e_1_3_3_12_2
  doi: 10.1006/mcne.1997.0615
– ident: e_1_3_3_32_2
  doi: 10.1016/j.cell.2010.06.036
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1072994
– ident: e_1_3_3_35_2
  doi: 10.1212/WNL.0b013e3181c67808
– ident: e_1_3_3_27_2
  doi: 10.1016/S0896-6273(03)00434-3
– ident: e_1_3_3_43_2
  doi: 10.1016/j.neuron.2009.05.012
– ident: e_1_3_3_9_2
  doi: 10.1523/JNEUROSCI.3590-09.2009
– ident: e_1_3_3_17_2
  doi: 10.1016/j.mcn.2007.02.006
– ident: e_1_3_3_37_2
  doi: 10.1016/S0140-6736(08)61075-2
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.96.9.5274
– ident: e_1_3_3_30_2
  doi: 10.1126/science.1058189
– ident: e_1_3_3_14_2
  doi: 10.1042/bj2960015
– ident: e_1_3_3_20_2
  doi: 10.1146/annurev.neuro.24.1.1121
– ident: e_1_3_3_21_2
  doi: 10.1038/nrn2194
– ident: e_1_3_3_42_2
  doi: 10.1038/nrn2967
– ident: e_1_3_3_16_2
  doi: 10.1083/jcb.200605187
– ident: e_1_3_3_10_2
  doi: 10.1038/nm1782
– ident: e_1_3_3_31_2
  doi: 10.1016/j.neuron.2004.07.003
– ident: e_1_3_3_39_2
  doi: 10.1046/j.1471-4159.1998.71062465.x
– ident: e_1_3_3_40_2
  doi: 10.1016/S0968-0004(98)01245-6
– ident: e_1_3_3_18_2
  doi: 10.1523/JNEUROSCI.3537-10.2010
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1834302100
– ident: e_1_3_3_13_2
  doi: 10.1038/nature07761
– ident: e_1_3_3_26_2
  doi: 10.1046/j.1471-4159.2003.02070.x
– ident: e_1_3_3_2_2
  doi: 10.1038/nrm2101
– ident: e_1_3_3_19_2
  doi: 10.1021/bi026469j
– ident: e_1_3_3_36_2
  doi: 10.1212/01.WNL.0000159740.16984.3C
– ident: e_1_3_3_44_2
  doi: 10.1074/jbc.272.35.22364
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1742-4658.2010.07719.x
SSID ssj0009580
Score 2.567363
Snippet Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5819
SubjectTerms Alzheimer disease
Alzheimer Disease - physiopathology
Alzheimer's disease
Alzheimers disease
Amyloid
Amyloid beta-Peptides - metabolism
Amyloid beta-Peptides - pharmacology
Amyloids
Animals
Antibodies
Axons
beta -Amyloid
Biological Sciences
Blotting, Western
Brain
Chromatography, Gel
cognition
Cognitive ability
Cortex
Cytoskeleton
Deposits
Dimerization
Dimers
Dystrophy
Epitopes
Fibrils
Genetic Vectors - genetics
Hippocampus - cytology
Humans
Immunohistochemistry
Immunoprecipitation
Immunotherapy
In Situ Nick-End Labeling
Lentivirus
memory
Microscopy, Confocal
Microtubules
Microtubules - drug effects
Neurites
Neurites - drug effects
Neurites - pathology
Neurodegeneration
Neurodegenerative diseases
Neurons
Oligomers
peptides
Phosphorylation
Phosphorylation - drug effects
Rats
Rats, Sprague-Dawley
Tau protein
tau Proteins - metabolism
Title Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration
URI https://www.jstor.org/stable/41125409
http://www.pnas.org/content/108/14/5819.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21421841
https://www.proquest.com/docview/1017959889
https://www.proquest.com/docview/1817831595
https://www.proquest.com/docview/860882979
https://pubmed.ncbi.nlm.nih.gov/PMC3078381
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsfMlIPAxFKXHtJM5jNW1M0yh7aKW-RU7i0EolndZWgr3zR_Dfchc7Hx0dXw-NKufiRLlfznf23c-EvI21VCyXoRdpEeEyo--BzYNDHuqC-Ro8WKxG_jgKzybifBpMe70fnaylzTrtZzc760r-R6vQBnrFKtl_0GzTKTTAf9AvHEHDcPwrHeOcFlY-qS8Qds9zTLpSXsW8gDmuc5ySdufwCArdyqqQZLi4mWk84WaYZfvVNUPaAqv_ctCyO1YbdwaxKbz-5Qp-199Msly1yIDkl5gt5-b6c0VX3WjVureXzXC4qpMPRvVs47CtXbEGZeV67uWo3Qn5fG4z-e1oapgjrzplYXav78pM2YnucUf62JaafFC2LW_nZ4XnBx0LDA6MFwqzh2hf72irzbYvu_gUHSscSGOGfxkewJ7hnsalWlX8Uj7ndS9bRNyjT8np5OIiGZ9Mx_fI_QFEIIPK5nf5nKUhurBPVrNGRfz9re63HB6T84pEuiC0K6i5nZvbcXbGj8hDG6XQoYHcPunp8jHZr9VGjyxZ-bsn5LvFILUYpF0MUoNBWmOQIgZpg0FqMEhrDFKDQQoYpLswSAGDtMYg7WLwKZmcnoyPzzy7tYeXiZCvPcFDnRVhFPmKMT3Iw4HicRazPM3A4dfaT6NUixwMTJFpwRQv8mzAhBKpn0VSFfyA7JXLUh8SyoMiLPwYPK0iheibxVmaB5mE0JxD_9x3SL9-_0lmee9x-5VFUuVfRDxBXSStwhxy1FxwZShf7hY9qBTayAkIXyAGih1yWIm210sIshMEpkPe1FpPwJTj-pwq9XJj-o2DWMrfyUgWSQ4xSOAQeoeMDDFujiPo5pkBU_McSLDIpGAOibZg1ggg2_z2mXI-q1jnOS74S_b8z7d9QR60X_ZLsre-3uhX4Lqv09fVR_QTUFj2fA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+amyloid+beta-protein+dimers+isolated+from+Alzheimer+cortex+directly+induce+Tau+hyperphosphorylation+and+neuritic+degeneration&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jin%2C+Ming&rft.au=Shepardson%2C+Nina&rft.au=Yang%2C+Ting&rft.au=Chen%2C+Gang&rft.date=2011-04-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=14&rft.spage=5819&rft_id=info:doi/10.1073%2Fpnas.1017033108&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif