Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration
Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are t...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5819 - 5824 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.04.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supra-physiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this. |
---|---|
AbstractList | Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this. Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supra-physiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this. Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this.Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid β-proteins (Aβ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of Aβ raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic Aβ peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated Aβ dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering Aβ N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this. Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms in older humans. Insoluble fibrillar plaques of amyloid beta -proteins (A beta ) and neurofibrillary deposits of hyperphosphorylated tau proteins are the diagnostic lesions of AD, but their temporal mechanistic relationship has long been debated. The recent recognition that small, diffusible oligomers may be the principal bioactive form of A beta raises the key question of whether these are sufficient to initiate cytoskeletal change and neurite degeneration. A few studies have examined the effects of oligomers of synthetic A beta peptides of one defined length at supraphysiological concentrations, but the existence of such assemblies in the AD brain is not established. Here, we isolated A beta dimers, the most abundant form of soluble oligomer detectable in the human brain, from the cortices of typical AD subjects and found that at subnanomolar concentrations, they first induced hyperphosphorylation of tau at AD-relevant epitopes in hippocampal neurons and then disrupted the microtubule cytoskeleton and caused neuritic degeneration, all in the absence of amyloid fibrils. Application of pure, synthetic dimers confirmed the effects of the natural AD dimers, although the former were far less potent. Knocking down endogenous tau fully prevented the neuritic changes, whereas overexpressing human tau accelerated them. Coadministering A beta N-terminal antibodies neutralized the cytoskeletal disruption. We conclude that natural dimers isolated from the AD brain are sufficient to potently induce AD-type tau phosphorylation and then neuritic dystrophy, but passive immunotherapy mitigates this. |
Author | Shepardson, Nina Walsh, Dominic Jin, Ming Chen, Gang Selkoe, Dennis J. Yang, Ting Petsko, Gregory A. |
Author_xml | – sequence: 1 givenname: Ming surname: Jin fullname: Jin, Ming – sequence: 2 givenname: Nina surname: Shepardson fullname: Shepardson, Nina – sequence: 3 givenname: Ting surname: Yang fullname: Yang, Ting – sequence: 4 givenname: Gang surname: Chen fullname: Chen, Gang – sequence: 5 givenname: Dominic surname: Walsh fullname: Walsh, Dominic – sequence: 6 givenname: Dennis J. surname: Selkoe fullname: Selkoe, Dennis J. – sequence: 7 givenname: Gregory A. surname: Petsko fullname: Petsko, Gregory A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21421841$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhSNURKeFNSvAO9iE-sZO4myQqoqfSpVYUNaWY990XCV2sBPEsOWNeBCeCacznQKLsrBs6Xzn-Nr3HmUHzjvMsqdAXwOt2cnoVEwnqCljQMWDbAW0gbziDT3IVpQWdS54wQ-zoxivKaVNKeij7LAAXoDgsMp-fPL93PZI1LDpvTXk1898DH5C64ixA4ZIbPS9mtCQLviBnPbf17gIRPsw4bdEBdRTvyHWmVkjuVQzWW9GDOPax7TCJrmtd0Q5QxzOwU5WE4NX6DDcKI-zh53qIz7Z7cfZ53dvL88-5Bcf35-fnV7kmldsyjmrUHdVXVMFgIWpCsUa3YBpNdASkbZ1i9y0CdLIQbHO6PRQxVuqa6E6dpy92eaOczug0eimoHo5BjuosJFeWfm34uxaXvmvktFaMAEp4OUuIPgvM8ZJDjZq7Hvl0M9RiooKUTR1k8hX95IgIEVC2ZT_R1N3m7IRYkl9_ucD9pXftjMBJ1tABx9jwG6PAJXLwMhlYOTdwCRH-Y9D2-mmK-kHbH-P78WulEW4u0VI4LIUsBT7bEtcx8mHPcIBipLThv0GDwLefg |
CitedBy_id | crossref_primary_10_1016_j_virusres_2014_10_003 crossref_primary_10_1155_2012_247150 crossref_primary_10_1021_acschemneuro_3c00358 crossref_primary_10_3233_JAD_190585 crossref_primary_10_1074_jbc_M112_348300 crossref_primary_10_1016_j_neurobiolaging_2012_12_028 crossref_primary_10_1016_j_jconrel_2021_06_037 crossref_primary_10_1371_journal_pcbi_1002356 crossref_primary_10_3389_fnmol_2020_00137 crossref_primary_10_2174_1874467213666200422090135 crossref_primary_10_1007_s00401_011_0896_x crossref_primary_10_1021_acsbiomaterials_1c00605 crossref_primary_10_1016_j_neubiorev_2020_01_026 crossref_primary_10_1016_j_nbd_2020_104938 crossref_primary_10_3389_fnins_2019_00659 crossref_primary_10_1016_j_parkreldis_2021_09_008 crossref_primary_10_1021_acs_biochem_1c00739 crossref_primary_10_1016_j_neulet_2021_135627 crossref_primary_10_1016_j_arr_2013_03_002 crossref_primary_10_1016_j_celrep_2019_07_060 crossref_primary_10_1021_acschemneuro_6b00108 crossref_primary_10_1002_pro_3275 crossref_primary_10_1371_journal_pone_0079947 crossref_primary_10_1016_j_neurobiolaging_2011_10_028 crossref_primary_10_2174_1570159X18666200525020259 crossref_primary_10_1021_acs_jpcb_7b10530 crossref_primary_10_1091_mbc_E14_12_1612 crossref_primary_10_4103_1673_5374_230303 crossref_primary_10_1016_j_npep_2022_102233 crossref_primary_10_1097_NEN_0b013e31825018f7 crossref_primary_10_1523_JNEUROSCI_1676_11_2012 crossref_primary_10_1021_acschemneuro_0c00624 crossref_primary_10_1038_srep46427 crossref_primary_10_1080_09168451_2020_1714420 crossref_primary_10_1007_s12031_013_0216_0 crossref_primary_10_1186_s13024_015_0002_2 crossref_primary_10_1039_C8CS00034D crossref_primary_10_1523_JNEUROSCI_1700_18_2018 crossref_primary_10_1016_j_cca_2015_01_035 crossref_primary_10_1016_j_pneurobio_2023_102534 crossref_primary_10_1002_ana_25513 crossref_primary_10_1007_s00253_012_3941_3 crossref_primary_10_3389_fcell_2020_584898 crossref_primary_10_1016_j_bbadis_2017_12_017 crossref_primary_10_3390_ijms21124477 crossref_primary_10_1002_anie_201105638 crossref_primary_10_1021_jp402938p crossref_primary_10_1016_j_nbd_2017_06_010 crossref_primary_10_1073_pnas_1222478110 crossref_primary_10_5607_en_2011_20_2_67 crossref_primary_10_1016_j_bbrc_2013_08_088 crossref_primary_10_1002_prot_25270 crossref_primary_10_1021_cn400197x crossref_primary_10_1021_acschemneuro_0c00535 crossref_primary_10_1080_07391102_2020_1819425 crossref_primary_10_1007_s00401_018_1846_7 crossref_primary_10_1517_14728222_2013_789862 crossref_primary_10_1016_j_jalz_2012_12_004 crossref_primary_10_1523_JNEUROSCI_4989_14_2015 crossref_primary_10_1155_2012_251426 crossref_primary_10_6064_2012_796024 crossref_primary_10_1371_journal_pone_0039386 crossref_primary_10_4161_pri_23286 crossref_primary_10_1002_1873_3468_12229 crossref_primary_10_1016_j_pneurobio_2012_06_004 crossref_primary_10_1074_jbc_M112_407957 crossref_primary_10_7554_eLife_28401 crossref_primary_10_1016_j_bpj_2021_07_002 crossref_primary_10_1002_iub_2603 crossref_primary_10_1021_acschemneuro_3c00443 crossref_primary_10_1177_1759091415618916 crossref_primary_10_1517_13543776_2012_681302 crossref_primary_10_3390_brainsci8090162 crossref_primary_10_1042_BCJ20170239 crossref_primary_10_1148_rg_230009 crossref_primary_10_1016_j_bbr_2017_05_056 crossref_primary_10_1523_JNEUROSCI_1034_15_2015 crossref_primary_10_1093_hmg_ddx284 crossref_primary_10_1016_j_bmcl_2013_01_076 crossref_primary_10_1038_s41598_020_79275_1 crossref_primary_10_1021_acs_langmuir_8b01921 crossref_primary_10_1186_s13024_015_0049_0 crossref_primary_10_3389_fnbeh_2014_00332 crossref_primary_10_1016_j_biocel_2017_01_017 crossref_primary_10_1002_prot_26495 crossref_primary_10_1021_acs_jcim_5b00063 crossref_primary_10_3390_ijms22168769 crossref_primary_10_1007_s11064_016_1857_5 crossref_primary_10_1039_C6CP00263C crossref_primary_10_1038_s41598_023_50465_x crossref_primary_10_1155_2011_469679 crossref_primary_10_1111_febs_12813 crossref_primary_10_1271_bbb_110879 crossref_primary_10_1371_journal_pbio_3001694 crossref_primary_10_1021_acs_jmedchem_1c00167 crossref_primary_10_1038_s41598_017_10422_x crossref_primary_10_3389_fnmol_2019_00319 crossref_primary_10_3390_cells9112482 crossref_primary_10_1111_jnc_13713 crossref_primary_10_1039_c3cc46772d crossref_primary_10_1002_cphc_202400502 crossref_primary_10_3233_JAD_210109 crossref_primary_10_3390_ijms21228651 crossref_primary_10_1038_s41467_020_20611_4 crossref_primary_10_1242_jcs_1125880 crossref_primary_10_3390_cells10030546 crossref_primary_10_1016_j_actbio_2016_04_001 crossref_primary_10_3233_JAD_150913 crossref_primary_10_4103_NRR_NRR_D_23_01628 crossref_primary_10_1039_C6RA26737H crossref_primary_10_1016_j_ijbiomac_2016_09_074 crossref_primary_10_1038_s41598_023_33677_z crossref_primary_10_3233_JAD_201407 crossref_primary_10_1021_jp404034x crossref_primary_10_1007_s12640_016_9603_y crossref_primary_10_1089_ars_2012_5027 crossref_primary_10_1016_j_ejmech_2024_116624 crossref_primary_10_1016_j_pnpbp_2024_111069 crossref_primary_10_1016_j_conb_2020_02_003 crossref_primary_10_1371_journal_pone_0034726 crossref_primary_10_1007_s10571_011_9691_4 crossref_primary_10_1186_s12974_018_1134_4 crossref_primary_10_1021_bi5003053 crossref_primary_10_1038_s41467_022_30785_8 crossref_primary_10_3233_JAD_191334 crossref_primary_10_1016_j_phrs_2019_104255 crossref_primary_10_1021_pr5003593 crossref_primary_10_3390_cells13151293 crossref_primary_10_1016_j_pbb_2011_04_013 crossref_primary_10_3233_JAD_221279 crossref_primary_10_1016_j_neurobiolaging_2015_03_005 crossref_primary_10_1016_j_neuint_2020_104707 crossref_primary_10_3389_fnmol_2017_00361 crossref_primary_10_1371_journal_pone_0200251 crossref_primary_10_3389_fncel_2019_00068 crossref_primary_10_1371_journal_pone_0118379 crossref_primary_10_3892_mmr_2015_3424 crossref_primary_10_4061_2011_345614 crossref_primary_10_1007_s11481_012_9424_6 crossref_primary_10_1038_s41380_021_01249_0 crossref_primary_10_1371_journal_pbio_1002472 crossref_primary_10_1177_1073858414529828 crossref_primary_10_1186_s40035_019_0161_0 crossref_primary_10_1083_jcb_201701045 crossref_primary_10_1177_1087057114547232 crossref_primary_10_1016_j_jddst_2018_04_001 crossref_primary_10_3390_nu15173690 crossref_primary_10_1007_s00401_014_1296_9 crossref_primary_10_1016_j_neurobiolaging_2011_11_009 crossref_primary_10_15252_embj_201797724 crossref_primary_10_1007_s12264_012_1287_6 crossref_primary_10_1186_s40035_021_00274_x crossref_primary_10_3892_ijmm_2018_3467 crossref_primary_10_1186_alzrt272 crossref_primary_10_1021_acschemneuro_2c00411 crossref_primary_10_3389_fnins_2015_00345 crossref_primary_10_3233_JAD_200462 crossref_primary_10_1038_s41598_018_21641_1 crossref_primary_10_3233_JAD_201549 crossref_primary_10_1007_s12035_023_03736_7 crossref_primary_10_3233_JAD_190367 crossref_primary_10_1021_jacs_6b01332 crossref_primary_10_1007_s00221_024_06821_y crossref_primary_10_1111_j_1600_0854_2012_01340_x crossref_primary_10_1016_j_ejmech_2019_111913 crossref_primary_10_1126_scitranslmed_aaf6295 crossref_primary_10_1016_j_neuint_2021_105210 crossref_primary_10_3390_ijms222111550 crossref_primary_10_1016_j_stemcr_2020_06_001 crossref_primary_10_1038_s41401_021_00720_6 crossref_primary_10_1146_annurev_biophys_062823_023436 crossref_primary_10_1038_srep05715 crossref_primary_10_1371_journal_pone_0066101 crossref_primary_10_1038_s41598_019_46306_5 crossref_primary_10_1134_S0026893316050034 crossref_primary_10_1016_j_neuron_2021_08_003 crossref_primary_10_1038_s44321_024_00190_3 crossref_primary_10_1016_S1474_4422_12_70140_0 crossref_primary_10_1021_acs_jpcb_0c07716 crossref_primary_10_1111_jnc_13072 crossref_primary_10_3233_JAD_160882 crossref_primary_10_3389_fnagi_2023_1148518 crossref_primary_10_3390_ijms20040879 crossref_primary_10_1016_j_bbr_2014_08_034 crossref_primary_10_1080_07391102_2020_1847197 crossref_primary_10_1371_journal_pone_0091531 crossref_primary_10_1016_j_jddst_2017_09_022 crossref_primary_10_1126_sciadv_aaz2387 crossref_primary_10_1007_s12274_016_1127_5 crossref_primary_10_1021_cr3000994 crossref_primary_10_1021_cn500081s crossref_primary_10_1016_j_jmb_2012_01_006 crossref_primary_10_3233_JAD_170108 crossref_primary_10_1016_j_neuron_2023_04_007 crossref_primary_10_1016_j_jmb_2012_01_004 crossref_primary_10_1016_j_neuron_2014_05_004 crossref_primary_10_1007_s00018_011_0750_2 crossref_primary_10_1074_jbc_M112_442103 crossref_primary_10_1111_j_1742_4658_2011_08295_x crossref_primary_10_1371_journal_pone_0230277 crossref_primary_10_2174_1567205016666190321163438 crossref_primary_10_1096_fj_11_201772 crossref_primary_10_1016_j_bioorg_2022_106100 crossref_primary_10_3390_molecules29122812 crossref_primary_10_1515_bmc_2018_0001 crossref_primary_10_1097_YCO_0b013e32835f6747 crossref_primary_10_1021_acs_biochem_4c00830 crossref_primary_10_1371_journal_pgen_1005917 crossref_primary_10_4155_fmc_2017_0029 crossref_primary_10_1186_s13195_020_00596_4 crossref_primary_10_3389_fmolb_2021_761227 crossref_primary_10_1021_jp506258g crossref_primary_10_1016_j_biocel_2012_08_010 crossref_primary_10_1038_s12276_020_00494_7 crossref_primary_10_4161_pri_22118 crossref_primary_10_3389_fnagi_2016_00223 crossref_primary_10_1016_j_febslet_2015_07_013 crossref_primary_10_1007_s12035_023_03277_z crossref_primary_10_3390_ijms242417377 crossref_primary_10_1093_hmg_ddu064 crossref_primary_10_1016_j_jare_2022_04_015 crossref_primary_10_1002_ana_23748 crossref_primary_10_1007_s11064_016_1993_y crossref_primary_10_1016_j_neulet_2011_08_042 crossref_primary_10_1186_s40478_017_0501_1 crossref_primary_10_1093_braincomms_fcad115 crossref_primary_10_3389_fnmol_2017_00446 crossref_primary_10_1186_s40478_023_01688_6 crossref_primary_10_1002_prot_25439 crossref_primary_10_1038_cddis_2013_129 crossref_primary_10_1038_s41380_022_01589_5 crossref_primary_10_14283_jpad_2021_52 crossref_primary_10_1038_s41380_024_02611_8 crossref_primary_10_1002_ange_201105638 crossref_primary_10_1016_j_bbr_2016_05_030 crossref_primary_10_1007_s11940_023_00750_x crossref_primary_10_2174_0929867328666211115124639 crossref_primary_10_3389_fmolb_2022_958399 crossref_primary_10_3390_ijms251910797 crossref_primary_10_1186_s40478_018_0539_8 crossref_primary_10_1016_j_arr_2020_101212 crossref_primary_10_1016_j_jmgm_2022_108207 crossref_primary_10_1016_j_dyepig_2019_107744 crossref_primary_10_1186_s13195_018_0447_y crossref_primary_10_3389_fncel_2015_00464 crossref_primary_10_1111_acel_12210 crossref_primary_10_1038_nm_2460 crossref_primary_10_1038_s42003_024_06272_9 crossref_primary_10_3390_ijms232112841 crossref_primary_10_1111_gtc_12889 crossref_primary_10_3390_ijms22105191 crossref_primary_10_1038_nn_4018 crossref_primary_10_2174_1568026620666200916123000 crossref_primary_10_1016_j_nbd_2012_03_013 crossref_primary_10_3390_ijms140714908 crossref_primary_10_1016_j_jnutbio_2018_02_001 crossref_primary_10_1371_journal_pcbi_1009114 crossref_primary_10_1016_j_arr_2024_102211 crossref_primary_10_1371_journal_pone_0032014 crossref_primary_10_1039_C4CP04544K crossref_primary_10_1523_JNEUROSCI_1858_12_2012 crossref_primary_10_1002_pro_4283 crossref_primary_10_1016_j_phymed_2021_153686 crossref_primary_10_3390_molecules27248950 crossref_primary_10_1038_s41467_024_50153_y crossref_primary_10_1021_bi3002049 crossref_primary_10_1007_s00401_023_02633_6 crossref_primary_10_1039_C9CC03810H crossref_primary_10_1038_nature19323 crossref_primary_10_1016_j_bbamem_2019_183061 crossref_primary_10_1039_C6CP07341G crossref_primary_10_1039_C9AN01631G crossref_primary_10_1371_journal_pone_0024329 crossref_primary_10_1016_j_tips_2013_03_002 crossref_primary_10_1016_j_pneurobio_2015_03_003 crossref_primary_10_3233_JAD_170230 crossref_primary_10_3389_fnmol_2022_1016559 crossref_primary_10_1186_s12883_014_0169_0 crossref_primary_10_1146_annurev_neuro_080317_061725 crossref_primary_10_3390_molecules22101723 crossref_primary_10_1016_j_jep_2021_114002 crossref_primary_10_1111_ejn_15611 crossref_primary_10_1021_jp403748z crossref_primary_10_1021_acsami_2c14220 crossref_primary_10_1186_s13024_015_0035_6 crossref_primary_10_3390_ijms232315036 crossref_primary_10_1016_j_phrs_2017_03_020 crossref_primary_10_1002_ana_22615 crossref_primary_10_1007_s12640_015_9564_6 crossref_primary_10_1016_j_neurobiolaging_2021_01_017 crossref_primary_10_1126_scitranslmed_aay6931 crossref_primary_10_1007_s40120_019_00169_0 crossref_primary_10_1371_journal_pone_0091793 crossref_primary_10_3390_biom5020505 crossref_primary_10_1186_s40478_022_01417_5 crossref_primary_10_1016_j_bbapap_2011_09_005 crossref_primary_10_3390_ijms241814151 crossref_primary_10_1097_WCO_0b013e32835a30f4 crossref_primary_10_1021_cr500638n crossref_primary_10_3390_nu16213667 crossref_primary_10_1093_braincomms_fcac193 crossref_primary_10_1021_acschemneuro_0c00290 crossref_primary_10_3389_fnagi_2014_00292 crossref_primary_10_1073_pnas_1917194117 crossref_primary_10_3390_medicines9080042 crossref_primary_10_1016_j_nbd_2016_01_006 crossref_primary_10_1016_j_ejmech_2012_10_045 crossref_primary_10_1016_j_nbd_2017_03_014 crossref_primary_10_1093_brain_awab319 crossref_primary_10_1523_ENEURO_0500_20_2021 crossref_primary_10_1002_ana_22509 crossref_primary_10_3233_JAD_200735 crossref_primary_10_1515_revneuro_2019_0089 crossref_primary_10_1007_s12017_013_8257_7 crossref_primary_10_3390_ijms161125961 crossref_primary_10_1002_asia_201801007 crossref_primary_10_1016_j_drudis_2014_02_015 crossref_primary_10_1371_journal_pone_0034345 crossref_primary_10_1038_s41467_025_58335_y crossref_primary_10_4161_hv_24830 crossref_primary_10_3389_fnagi_2018_00113 crossref_primary_10_1016_j_jalz_2015_01_005 crossref_primary_10_1038_s41591_018_0004_z crossref_primary_10_17816_MAJ624867 crossref_primary_10_3389_fgene_2020_00390 crossref_primary_10_1155_2012_630182 crossref_primary_10_1021_acscentsci_3c00592 crossref_primary_10_1126_sciadv_abb9036 crossref_primary_10_1159_000446283 crossref_primary_10_1016_j_chemphyslip_2016_01_002 crossref_primary_10_15252_embj_2022112453 crossref_primary_10_1155_2014_706487 crossref_primary_10_1007_s00018_017_2463_7 crossref_primary_10_3233_JAD_220640 crossref_primary_10_1002_mds_26656 crossref_primary_10_3233_JAD_215299 crossref_primary_10_3390_ijms24087258 crossref_primary_10_3233_JAD_190906 crossref_primary_10_1016_j_neuropharm_2020_108342 crossref_primary_10_1038_s42003_020_01490_3 crossref_primary_10_1038_s41467_018_05068_w crossref_primary_10_3233_JAD_160365 crossref_primary_10_1074_jbc_M113_463273 crossref_primary_10_1517_14728222_2013_791284 crossref_primary_10_1007_s11033_023_09178_7 crossref_primary_10_1100_2011_371893 crossref_primary_10_1111_jnc_15538 crossref_primary_10_1002_agt2_463 crossref_primary_10_1016_j_mcn_2019_103409 crossref_primary_10_1016_j_nlm_2011_08_003 crossref_primary_10_1038_s41598_020_77210_y crossref_primary_10_1007_s00018_014_1634_z crossref_primary_10_1093_cercor_bhae357 crossref_primary_10_3389_fncel_2015_00191 crossref_primary_10_1155_2014_167024 crossref_primary_10_1016_j_bbamem_2018_03_017 crossref_primary_10_1038_nrneurol_2012_236 crossref_primary_10_1016_j_pneurobio_2018_05_001 crossref_primary_10_1002_acn3_639 crossref_primary_10_1111_ejn_12251 crossref_primary_10_1038_ncomms5824 crossref_primary_10_1002_cbic_202100383 crossref_primary_10_1021_acsomega_2c05609 crossref_primary_10_1016_j_neurobiolaging_2013_02_001 crossref_primary_10_1021_acs_analchem_3c02806 crossref_primary_10_3389_fnmol_2023_1227493 crossref_primary_10_1111_j_1365_2990_2012_01281_x crossref_primary_10_3390_jpm10030115 crossref_primary_10_1016_j_nano_2013_11_016 crossref_primary_10_1186_1750_1326_7_59 crossref_primary_10_1038_s41380_018_0286_z crossref_primary_10_1002_bies_201500004 crossref_primary_10_1016_j_nbd_2018_12_006 crossref_primary_10_3390_molecules23020296 crossref_primary_10_1002_ijch_201400162 crossref_primary_10_1111_j_1750_3639_2011_00560_x crossref_primary_10_1136_postgradmedj_2013_201515rep crossref_primary_10_1021_acs_jpcb_7b00267 crossref_primary_10_1111_ejn_12142 crossref_primary_10_1038_nn_3028 crossref_primary_10_1016_j_neulet_2019_134462 crossref_primary_10_1371_journal_pone_0313733 crossref_primary_10_1093_brain_awaa399 crossref_primary_10_1186_1750_1326_8_20 crossref_primary_10_1016_j_neurobiolaging_2018_04_007 crossref_primary_10_1111_cbdd_12492 crossref_primary_10_3233_JAD_230555 crossref_primary_10_1007_s12031_012_9782_9 crossref_primary_10_3389_fnagi_2014_00252 crossref_primary_10_1042_BSR20203980 crossref_primary_10_1146_annurev_genom_121520_081242 crossref_primary_10_1039_D3OB00509G crossref_primary_10_1016_j_jmb_2011_05_021 crossref_primary_10_1007_s12640_017_9765_2 crossref_primary_10_1016_j_conb_2014_03_011 crossref_primary_10_1073_pnas_1819541116 crossref_primary_10_1111_acel_12978 crossref_primary_10_1093_brain_awac329 crossref_primary_10_1021_acs_biochem_6b00453 crossref_primary_10_1093_braincomms_fcaa010 crossref_primary_10_1016_j_nbd_2022_105816 crossref_primary_10_1186_s13195_021_00935_z crossref_primary_10_1002_alz_14342 crossref_primary_10_1155_2020_4981814 crossref_primary_10_1007_s13311_023_01405_0 crossref_primary_10_1093_hmg_dds100 crossref_primary_10_2174_1874467215666220903095837 crossref_primary_10_1016_j_neuron_2013_02_003 crossref_primary_10_1186_s12987_023_00466_9 crossref_primary_10_1002_ana_25395 crossref_primary_10_1016_j_molstruc_2022_132979 crossref_primary_10_3390_molecules25081846 crossref_primary_10_1016_j_arr_2012_06_007 crossref_primary_10_1007_s10571_011_9796_9 crossref_primary_10_1016_j_neuropharm_2023_109478 crossref_primary_10_3390_ijms21134665 crossref_primary_10_1007_s00401_018_1886_z crossref_primary_10_1186_s40035_024_00432_x crossref_primary_10_1248_cpb_c19_00511 crossref_primary_10_1371_journal_pone_0147470 crossref_primary_10_1155_2012_628070 crossref_primary_10_1021_bi5008172 crossref_primary_10_1007_s00401_014_1259_1 crossref_primary_10_1016_j_stemcr_2017_10_015 crossref_primary_10_1134_S181971241202002X crossref_primary_10_1016_j_jds_2022_07_001 crossref_primary_10_1523_JNEUROSCI_1698_16_2016 crossref_primary_10_1001_jamaneurol_2019_0834 crossref_primary_10_1111_cns_13082 crossref_primary_10_1254_fpj_145_229 crossref_primary_10_13005_bpj_2990 crossref_primary_10_3109_01677063_2011_626471 crossref_primary_10_3390_ijms25010259 crossref_primary_10_1186_s12860_021_00386_2 crossref_primary_10_1007_s12035_017_0533_3 crossref_primary_10_1021_acs_jpcb_2c07321 crossref_primary_10_3390_ijms23168997 crossref_primary_10_3892_mmr_2014_2013 crossref_primary_10_1093_brain_awac023 crossref_primary_10_1111_jnc_14136 crossref_primary_10_1016_j_bbagen_2018_07_019 crossref_primary_10_1111_jnc_15466 crossref_primary_10_1371_journal_pone_0094576 crossref_primary_10_1016_j_jff_2016_02_004 crossref_primary_10_1016_j_lfs_2012_04_038 crossref_primary_10_1093_hmg_ddr394 crossref_primary_10_1186_s13195_017_0293_3 crossref_primary_10_3389_fnins_2016_00205 crossref_primary_10_1186_s13195_020_00761_9 crossref_primary_10_1002_jcb_28361 crossref_primary_10_14336_AD_2020_1230 crossref_primary_10_7717_peerj_10003 crossref_primary_10_1007_s40263_015_0257_8 crossref_primary_10_1016_j_neuropharm_2021_108555 crossref_primary_10_1021_acsnano_7b01662 crossref_primary_10_1111_jnc_15111 crossref_primary_10_1038_srep38187 crossref_primary_10_1016_j_ejmech_2019_111585 crossref_primary_10_3389_fnmol_2020_570586 crossref_primary_10_1021_acschemneuro_8b00067 crossref_primary_10_1021_bm401795e crossref_primary_10_3390_cells8050425 crossref_primary_10_3389_fnagi_2019_00174 crossref_primary_10_1093_hmg_ddt201 crossref_primary_10_1074_jbc_M115_666529 crossref_primary_10_3389_fmolb_2023_1153839 crossref_primary_10_1021_acs_biochem_8b00985 crossref_primary_10_1016_j_neuroscience_2017_06_050 crossref_primary_10_1186_1750_1326_9_2 crossref_primary_10_1042_BJ20140219 crossref_primary_10_1159_000369101 crossref_primary_10_1016_j_jalz_2012_07_002 crossref_primary_10_1021_acschemneuro_5b00082 crossref_primary_10_1007_s00259_011_2045_0 crossref_primary_10_1586_eci_11_93 crossref_primary_10_2174_0115701786286700240322065602 crossref_primary_10_1146_annurev_pharmtox_011613_135932 crossref_primary_10_1109_TNB_2018_2800723 crossref_primary_10_1039_C9SC01331H crossref_primary_10_4236_aad_2016_52006 crossref_primary_10_1002_acn3_339 crossref_primary_10_1016_j_brainres_2015_12_048 crossref_primary_10_1016_j_pneurobio_2018_12_006 crossref_primary_10_3390_ijms25137352 crossref_primary_10_1126_scitranslmed_adp2564 crossref_primary_10_1093_brain_awz066 crossref_primary_10_1186_s13041_016_0284_5 crossref_primary_10_1093_braincomms_fcab147 crossref_primary_10_1186_1750_1326_9_48 crossref_primary_10_1523_JNEUROSCI_2804_19_2020 crossref_primary_10_1111_jnc_15007 crossref_primary_10_1136_jclinpath_2013_201515 crossref_primary_10_1007_s11064_023_04022_7 crossref_primary_10_1016_j_nbd_2018_02_003 crossref_primary_10_1007_s00018_022_04255_9 crossref_primary_10_1093_hmg_ddr576 crossref_primary_10_1016_j_tins_2019_03_003 crossref_primary_10_1093_jnen_nly059 crossref_primary_10_1073_pnas_2219216120 crossref_primary_10_1107_S0108270111022293 crossref_primary_10_1111_ejn_14389 crossref_primary_10_3233_JAD_201165 crossref_primary_10_3233_JAD_160093 crossref_primary_10_7554_eLife_46924 crossref_primary_10_2174_1567205016666191023102422 crossref_primary_10_1186_1750_1326_9_51 crossref_primary_10_1016_j_pbiomolbio_2024_01_002 crossref_primary_10_1186_s40035_022_00303_3 crossref_primary_10_1002_fft2_498 crossref_primary_10_1038_s41380_024_02463_2 crossref_primary_10_1074_jbc_M114_600833 crossref_primary_10_1093_brain_awt273 crossref_primary_10_1111_j_1471_4159_2011_07478_x crossref_primary_10_1016_j_ejmech_2019_05_080 crossref_primary_10_15252_emmm_202114398 crossref_primary_10_1038_emm_2013_125 crossref_primary_10_1111_jnc_12305 crossref_primary_10_1186_1750_1326_9_52 crossref_primary_10_1186_2051_5960_2_61 crossref_primary_10_1007_s12035_014_8749_y crossref_primary_10_5402_2012_728571 crossref_primary_10_1038_475S18a crossref_primary_10_1111_jnc_13873 crossref_primary_10_1021_acschemneuro_6b00053 crossref_primary_10_1097_WNR_0000000000000803 crossref_primary_10_1038_srep11708 crossref_primary_10_1016_j_dadm_2018_06_004 crossref_primary_10_1007_s00726_012_1382_z crossref_primary_10_3389_fnmol_2019_00192 crossref_primary_10_1016_j_neuint_2017_08_010 crossref_primary_10_1007_s12035_017_0580_9 crossref_primary_10_3390_molecules24122242 crossref_primary_10_1007_s00259_019_04409_1 crossref_primary_10_1007_s11064_022_03785_9 crossref_primary_10_2174_011570159X332930240925095423 crossref_primary_10_1016_j_vaccine_2011_12_136 crossref_primary_10_1002_pro_4639 crossref_primary_10_1002_smll_201201068 crossref_primary_10_1080_01616412_2017_1348689 crossref_primary_10_1016_j_neurobiolaging_2018_02_021 crossref_primary_10_3233_JAD_220905 crossref_primary_10_1111_nan_12674 crossref_primary_10_1186_s12929_014_0074_2 crossref_primary_10_1016_j_neuint_2017_08_007 crossref_primary_10_1038_s41467_022_32130_5 crossref_primary_10_3233_JAD_201185 crossref_primary_10_1016_j_dyepig_2017_07_071 crossref_primary_10_1186_2051_5960_1_73 crossref_primary_10_3233_JAD_179925 crossref_primary_10_1126_scisignal_aal2021 crossref_primary_10_1016_j_biopha_2021_111609 crossref_primary_10_1007_s12640_014_9492_x crossref_primary_10_1523_JNEUROSCI_1353_14_2014 crossref_primary_10_1016_j_nbd_2017_12_007 crossref_primary_10_1039_C9CC09170J crossref_primary_10_1371_journal_pone_0104965 crossref_primary_10_1007_s12035_019_01684_9 crossref_primary_10_1093_brain_awu261 crossref_primary_10_1093_brain_awv355 crossref_primary_10_1016_j_neurobiolaging_2015_04_002 crossref_primary_10_1016_j_bbapap_2012_08_017 crossref_primary_10_1111_jnc_13772 crossref_primary_10_1371_journal_pone_0189413 crossref_primary_10_1093_brain_awv356 crossref_primary_10_1074_jbc_M111_281295 crossref_primary_10_3389_fnagi_2023_1296919 crossref_primary_10_3389_fneur_2014_00276 crossref_primary_10_3233_JAD_179935 crossref_primary_10_1016_j_bbadis_2013_02_018 crossref_primary_10_1021_ac401055y crossref_primary_10_1002_psp4_12759 crossref_primary_10_31083_j_jin_2019_03_1136 crossref_primary_10_1016_j_mcn_2013_11_001 crossref_primary_10_1038_cddis_2011_57 crossref_primary_10_1371_journal_pbio_3000851 crossref_primary_10_1186_s40035_021_00237_2 crossref_primary_10_1038_s41582_022_00749_z crossref_primary_10_1371_journal_pone_0085885 crossref_primary_10_18632_aging_102202 crossref_primary_10_1093_jnen_nlx099 crossref_primary_10_1134_S0026893315020065 crossref_primary_10_1021_acs_langmuir_3c01169 crossref_primary_10_1039_D3SC06343G crossref_primary_10_1074_jbc_M116_753525 crossref_primary_10_1016_j_neurobiolaging_2014_11_022 crossref_primary_10_1007_s12035_015_9390_0 crossref_primary_10_1016_j_ebiom_2024_105504 crossref_primary_10_1021_cn4001582 crossref_primary_10_1021_acs_jpcb_5b05593 crossref_primary_10_1111_ene_13439 crossref_primary_10_1016_j_gene_2019_04_040 crossref_primary_10_1007_s00401_017_1707_9 crossref_primary_10_1016_j_bbadis_2017_01_023 crossref_primary_10_1021_acs_jpcb_0c00574 crossref_primary_10_1021_acs_jpcb_7b04689 crossref_primary_10_1038_nature11060 crossref_primary_10_18632_aging_103445 crossref_primary_10_1038_srep18668 crossref_primary_10_1111_jnc_13671 crossref_primary_10_1038_nn_2871 crossref_primary_10_1016_j_biocel_2012_05_023 crossref_primary_10_1021_acschemneuro_0c00714 crossref_primary_10_1016_j_nbd_2015_05_020 crossref_primary_10_1016_j_ejphar_2011_09_019 crossref_primary_10_1083_jcb_201407065 crossref_primary_10_1039_D3CP05317B crossref_primary_10_1016_j_brainresbull_2013_12_004 crossref_primary_10_3390_ijms22126577 crossref_primary_10_1016_j_cbi_2023_110387 crossref_primary_10_1021_acs_analchem_7b04936 crossref_primary_10_1371_journal_pone_0049375 crossref_primary_10_1016_j_jneumeth_2015_06_009 crossref_primary_10_1186_s41983_024_00912_x crossref_primary_10_1039_C8RA08198K crossref_primary_10_3390_biomedicines10112993 crossref_primary_10_4103_1673_5374_233451 crossref_primary_10_1016_j_molliq_2024_125342 crossref_primary_10_1021_cn300122k crossref_primary_10_1073_pnas_1306832110 crossref_primary_10_1016_j_arr_2021_101496 crossref_primary_10_1111_jnc_15980 crossref_primary_10_1038_s41598_019_38645_0 crossref_primary_10_1111_j_1582_4934_2011_01507_x crossref_primary_10_3390_ijms23042208 crossref_primary_10_1021_acschemneuro_5b00229 crossref_primary_10_1016_j_ica_2017_09_061 crossref_primary_10_3389_fphar_2019_01084 crossref_primary_10_1016_j_nbd_2017_08_019 crossref_primary_10_5213_inj_1938184_092 crossref_primary_10_1016_j_neubiorev_2023_105246 crossref_primary_10_1002_ana_24001 crossref_primary_10_1002_ijch_201600097 crossref_primary_10_1074_jbc_M116_720664 crossref_primary_10_15252_emmm_201808931 crossref_primary_10_1016_j_neuron_2014_02_027 crossref_primary_10_1074_jbc_M112_401240 crossref_primary_10_4062_biomolther_2019_076 crossref_primary_10_1038_s41583_019_0222_5 crossref_primary_10_4155_fmc_15_161 crossref_primary_10_1007_s00401_024_02691_4 crossref_primary_10_1038_s41598_019_53415_8 crossref_primary_10_1016_j_ijbiomac_2018_10_021 crossref_primary_10_1038_s41591_020_0781_z crossref_primary_10_1371_journal_pone_0100200 crossref_primary_10_1002_cbic_202000125 crossref_primary_10_4252_wjsc_v11_i5_236 crossref_primary_10_3389_fnins_2018_00037 crossref_primary_10_1371_journal_pone_0073129 crossref_primary_10_1007_s00441_020_03198_6 crossref_primary_10_1053_j_semnuclmed_2016_09_005 crossref_primary_10_1126_science_1228541 crossref_primary_10_1042_NS20220086 crossref_primary_10_1021_acschemneuro_7b00469 crossref_primary_10_1002_jcp_28411 crossref_primary_10_3390_ijms23137307 crossref_primary_10_3233_JAD_170921 crossref_primary_10_1016_j_jneuroim_2015_08_008 crossref_primary_10_15252_emmm_201606210 crossref_primary_10_1016_j_ajpath_2015_09_018 crossref_primary_10_3389_fnins_2016_00294 crossref_primary_10_47102_annals_acadmedsg_V40N7p304 crossref_primary_10_3233_JAD_215662 crossref_primary_10_1590_1980_5764_dn_2024_vr01 crossref_primary_10_1021_acs_jpca_8b11251 crossref_primary_10_3233_JAD_215546 crossref_primary_10_1021_acs_jpcb_2c01768 crossref_primary_10_3390_cells12121618 crossref_primary_10_1016_j_neurobiolaging_2020_04_014 crossref_primary_10_1111_jnc_14674 crossref_primary_10_1002_ana_24488 crossref_primary_10_1016_j_ejmech_2018_09_031 |
Cites_doi | 10.1523/JNEUROSCI.1065-09.2009 10.1097/00005072-198711000-00001 10.1016/S1074-5521(97)90255-6 10.1073/pnas.092136199 10.1073/pnas.95.11.6448 10.1126/science.1141736 10.1016/j.neurobiolaging.2007.02.029 10.1038/nm1234 10.1126/science.1062097 10.1038/nn842 10.1038/416535a 10.1523/JNEUROSCI.4970-06.2007 10.1073/pnas.0811698106 10.1074/jbc.270.13.7679 10.1523/JNEUROSCI.2357-10.2010 10.1006/mcne.1997.0615 10.1016/j.cell.2010.06.036 10.1126/science.1072994 10.1212/WNL.0b013e3181c67808 10.1016/S0896-6273(03)00434-3 10.1016/j.neuron.2009.05.012 10.1523/JNEUROSCI.3590-09.2009 10.1016/j.mcn.2007.02.006 10.1016/S0140-6736(08)61075-2 10.1073/pnas.96.9.5274 10.1126/science.1058189 10.1042/bj2960015 10.1146/annurev.neuro.24.1.1121 10.1038/nrn2194 10.1038/nrn2967 10.1083/jcb.200605187 10.1038/nm1782 10.1016/j.neuron.2004.07.003 10.1046/j.1471-4159.1998.71062465.x 10.1016/S0968-0004(98)01245-6 10.1523/JNEUROSCI.3537-10.2010 10.1073/pnas.1834302100 10.1038/nature07761 10.1046/j.1471-4159.2003.02070.x 10.1038/nrm2101 10.1021/bi026469j 10.1212/01.WNL.0000159740.16984.3C 10.1074/jbc.272.35.22364 10.1111/j.1742-4658.2010.07719.x |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1017033108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5824 |
ExternalDocumentID | PMC3078381 21421841 10_1073_pnas_1017033108 108_14_5819 41125409 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG006173 – fundername: NIA NIH HHS grantid: R37 AG006173 – fundername: NIA NIH HHS grantid: R01 AG006173 – fundername: NIA NIH HHS grantid: AG027443 – fundername: NIA NIH HHS grantid: R01 AG027443 – fundername: NIA NIH HHS grantid: AG006173 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c463t-436ecf6770a11e2d62a39c91dbc105ee0b7be4dbecfce41a3fdc214a4b0c78af3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:55 EDT 2025 Fri Jul 11 10:18:09 EDT 2025 Fri Jul 11 16:15:21 EDT 2025 Fri Jul 11 04:54:33 EDT 2025 Thu Apr 03 07:09:45 EDT 2025 Thu Apr 24 22:53:17 EDT 2025 Tue Jul 01 00:47:07 EDT 2025 Wed Nov 11 00:29:32 EST 2020 Thu May 29 08:40:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c463t-436ecf6770a11e2d62a39c91dbc105ee0b7be4dbecfce41a3fdc214a4b0c78af3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: M.J. and D.J.S. designed research; M.J., N.S., T.Y. and G.C. performed research; D.W. contributed new reagents/analytic tools; M.J. analyzed data; and M.J. and D.J.S. wrote the paper. Edited* by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved February 25, 2011 (received for review November 13, 2010) 1Present address: F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115. |
PMID | 21421841 |
PQID | 1017959889 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1017033108 proquest_miscellaneous_1817831595 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078381 proquest_miscellaneous_1017959889 pnas_primary_108_14_5819 crossref_citationtrail_10_1073_pnas_1017033108 proquest_miscellaneous_860882979 pubmed_primary_21421841 jstor_primary_41125409 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-05 |
PublicationDateYYYYMMDD | 2011-04-05 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 Lesne SE (e_1_3_3_28_2) 2009 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_24_2 doi: 10.1523/JNEUROSCI.1065-09.2009 – ident: e_1_3_3_25_2 doi: 10.1097/00005072-198711000-00001 – ident: e_1_3_3_45_2 doi: 10.1016/S1074-5521(97)90255-6 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.092136199 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.95.11.6448 – ident: e_1_3_3_23_2 doi: 10.1126/science.1141736 – ident: e_1_3_3_41_2 doi: 10.1016/j.neurobiolaging.2007.02.029 – ident: e_1_3_3_6_2 doi: 10.1038/nm1234 – ident: e_1_3_3_29_2 doi: 10.1126/science.1062097 – ident: e_1_3_3_4_2 doi: 10.1038/nn842 – ident: e_1_3_3_15_2 doi: 10.1038/416535a – ident: e_1_3_3_7_2 doi: 10.1523/JNEUROSCI.4970-06.2007 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.0811698106 – ident: e_1_3_3_38_2 doi: 10.1074/jbc.270.13.7679 – ident: e_1_3_3_8_2 doi: 10.1523/JNEUROSCI.2357-10.2010 – year: 2009 ident: e_1_3_3_28_2 article-title: Distinct brain Aβ oligomers are associated with different stages of Alzhermer's disease publication-title: Society for Neuroscience Annual Meeting – ident: e_1_3_3_12_2 doi: 10.1006/mcne.1997.0615 – ident: e_1_3_3_32_2 doi: 10.1016/j.cell.2010.06.036 – ident: e_1_3_3_1_2 doi: 10.1126/science.1072994 – ident: e_1_3_3_35_2 doi: 10.1212/WNL.0b013e3181c67808 – ident: e_1_3_3_27_2 doi: 10.1016/S0896-6273(03)00434-3 – ident: e_1_3_3_43_2 doi: 10.1016/j.neuron.2009.05.012 – ident: e_1_3_3_9_2 doi: 10.1523/JNEUROSCI.3590-09.2009 – ident: e_1_3_3_17_2 doi: 10.1016/j.mcn.2007.02.006 – ident: e_1_3_3_37_2 doi: 10.1016/S0140-6736(08)61075-2 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.96.9.5274 – ident: e_1_3_3_30_2 doi: 10.1126/science.1058189 – ident: e_1_3_3_14_2 doi: 10.1042/bj2960015 – ident: e_1_3_3_20_2 doi: 10.1146/annurev.neuro.24.1.1121 – ident: e_1_3_3_21_2 doi: 10.1038/nrn2194 – ident: e_1_3_3_42_2 doi: 10.1038/nrn2967 – ident: e_1_3_3_16_2 doi: 10.1083/jcb.200605187 – ident: e_1_3_3_10_2 doi: 10.1038/nm1782 – ident: e_1_3_3_31_2 doi: 10.1016/j.neuron.2004.07.003 – ident: e_1_3_3_39_2 doi: 10.1046/j.1471-4159.1998.71062465.x – ident: e_1_3_3_40_2 doi: 10.1016/S0968-0004(98)01245-6 – ident: e_1_3_3_18_2 doi: 10.1523/JNEUROSCI.3537-10.2010 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.1834302100 – ident: e_1_3_3_13_2 doi: 10.1038/nature07761 – ident: e_1_3_3_26_2 doi: 10.1046/j.1471-4159.2003.02070.x – ident: e_1_3_3_2_2 doi: 10.1038/nrm2101 – ident: e_1_3_3_19_2 doi: 10.1021/bi026469j – ident: e_1_3_3_36_2 doi: 10.1212/01.WNL.0000159740.16984.3C – ident: e_1_3_3_44_2 doi: 10.1074/jbc.272.35.22364 – ident: e_1_3_3_11_2 doi: 10.1111/j.1742-4658.2010.07719.x |
SSID | ssj0009580 |
Score | 2.567363 |
Snippet | Alzheimer disease is a major cause of cognitive failure, and a pathogenically related but more subtle process accounts for many cases of mild memory symptoms... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5819 |
SubjectTerms | Alzheimer disease Alzheimer Disease - physiopathology Alzheimer's disease Alzheimers disease Amyloid Amyloid beta-Peptides - metabolism Amyloid beta-Peptides - pharmacology Amyloids Animals Antibodies Axons beta -Amyloid Biological Sciences Blotting, Western Brain Chromatography, Gel cognition Cognitive ability Cortex Cytoskeleton Deposits Dimerization Dimers Dystrophy Epitopes Fibrils Genetic Vectors - genetics Hippocampus - cytology Humans Immunohistochemistry Immunoprecipitation Immunotherapy In Situ Nick-End Labeling Lentivirus memory Microscopy, Confocal Microtubules Microtubules - drug effects Neurites Neurites - drug effects Neurites - pathology Neurodegeneration Neurodegenerative diseases Neurons Oligomers peptides Phosphorylation Phosphorylation - drug effects Rats Rats, Sprague-Dawley Tau protein tau Proteins - metabolism |
Title | Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration |
URI | https://www.jstor.org/stable/41125409 http://www.pnas.org/content/108/14/5819.abstract https://www.ncbi.nlm.nih.gov/pubmed/21421841 https://www.proquest.com/docview/1017959889 https://www.proquest.com/docview/1817831595 https://www.proquest.com/docview/860882979 https://pubmed.ncbi.nlm.nih.gov/PMC3078381 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsfMlIPAxFKXHtJM5jNW1M0yh7aKW-RU7i0EolndZWgr3zR_Dfchc7Hx0dXw-NKufiRLlfznf23c-EvI21VCyXoRdpEeEyo--BzYNDHuqC-Ro8WKxG_jgKzybifBpMe70fnaylzTrtZzc760r-R6vQBnrFKtl_0GzTKTTAf9AvHEHDcPwrHeOcFlY-qS8Qds9zTLpSXsW8gDmuc5ySdufwCArdyqqQZLi4mWk84WaYZfvVNUPaAqv_ctCyO1YbdwaxKbz-5Qp-199Msly1yIDkl5gt5-b6c0VX3WjVureXzXC4qpMPRvVs47CtXbEGZeV67uWo3Qn5fG4z-e1oapgjrzplYXav78pM2YnucUf62JaafFC2LW_nZ4XnBx0LDA6MFwqzh2hf72irzbYvu_gUHSscSGOGfxkewJ7hnsalWlX8Uj7ndS9bRNyjT8np5OIiGZ9Mx_fI_QFEIIPK5nf5nKUhurBPVrNGRfz9re63HB6T84pEuiC0K6i5nZvbcXbGj8hDG6XQoYHcPunp8jHZr9VGjyxZ-bsn5LvFILUYpF0MUoNBWmOQIgZpg0FqMEhrDFKDQQoYpLswSAGDtMYg7WLwKZmcnoyPzzy7tYeXiZCvPcFDnRVhFPmKMT3Iw4HicRazPM3A4dfaT6NUixwMTJFpwRQv8mzAhBKpn0VSFfyA7JXLUh8SyoMiLPwYPK0iheibxVmaB5mE0JxD_9x3SL9-_0lmee9x-5VFUuVfRDxBXSStwhxy1FxwZShf7hY9qBTayAkIXyAGih1yWIm210sIshMEpkPe1FpPwJTj-pwq9XJj-o2DWMrfyUgWSQ4xSOAQeoeMDDFujiPo5pkBU_McSLDIpGAOibZg1ggg2_z2mXI-q1jnOS74S_b8z7d9QR60X_ZLsre-3uhX4Lqv09fVR_QTUFj2fA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+amyloid+beta-protein+dimers+isolated+from+Alzheimer+cortex+directly+induce+Tau+hyperphosphorylation+and+neuritic+degeneration&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jin%2C+Ming&rft.au=Shepardson%2C+Nina&rft.au=Yang%2C+Ting&rft.au=Chen%2C+Gang&rft.date=2011-04-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=14&rft.spage=5819&rft_id=info:doi/10.1073%2Fpnas.1017033108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |