Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images
The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 157; pp. 155 - 170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2019.09.009 |
Cover
Loading…
Abstract | The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning. |
---|---|
AbstractList | The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning. |
Author | Yoo, Cheolhee Im, Jungho Bechtel, Benjamin Han, Daehyeon |
Author_xml | – sequence: 1 givenname: Cheolhee surname: Yoo fullname: Yoo, Cheolhee organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea – sequence: 2 givenname: Daehyeon orcidid: 0000-0002-1907-8006 surname: Han fullname: Han, Daehyeon organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea – sequence: 3 givenname: Jungho orcidid: 0000-0002-4506-6877 surname: Im fullname: Im, Jungho email: ersgis@unist.ac.kr organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea – sequence: 4 givenname: Benjamin orcidid: 0000-0001-8802-7934 surname: Bechtel fullname: Bechtel, Benjamin organization: Department of Geography, Ruhr-University Bochum, Bochum 44801, Germany |
BookMark | eNqNUU2PFCEQJWZNnF39DXL00iM0DDQHD5uJX8kke9EzYehiwtgNI0XvRv_F_mOZHePBiyZV9ULy3ktR75pcpZyAkNecrTnj6u1xHfFU8Nh63TNu1qwVM8_Iig-674ZebK7Iipledr3m6gW5RjwyxvhGDSvyuM3zyZWIOdE91AeARH1O93laaszJTTTBUp6gPuTyDalLIy1t5JmGXADrGeiUfSP5Kc6uAv3ZVmwPhxhD9O7sRGOiMxwcXcreJeoKOKQLxnSgu-aGrtKmPQC-JM-DmxBe_cYb8vXD-y_bT93u7uPn7e2u81KJ2onN6LUEJZTnwgSlQElvOAezUT6I4M1gtOm1HNUohA8aBimDdI7tgzR7Lm7Im4vvqeTvS_uHnSN6mCaXIC9o-4Fzo7URslH1hepLRiwQ7Km0ZcsPy5k9h2CP9k8I9hyCZa2Yacp3fyl9rE_3qMXF6T_0txc9tEvcRygWfYTkYYwFfLVjjv_0-AU58bBe |
CitedBy_id | crossref_primary_10_1016_j_rsase_2022_100856 crossref_primary_10_3390_rs15102599 crossref_primary_10_1002_2475_8876_12303 crossref_primary_10_3390_rs12071097 crossref_primary_10_1109_JSTARS_2021_3103754 crossref_primary_10_3390_rs12060999 crossref_primary_10_3390_rs13153000 crossref_primary_10_1109_LGRS_2023_3282973 crossref_primary_10_1007_s00704_024_04920_y crossref_primary_10_3390_ijgi11080420 crossref_primary_10_1016_j_uclim_2024_102129 crossref_primary_10_1016_j_isprsjprs_2023_03_018 crossref_primary_10_1007_s43762_022_00046_x crossref_primary_10_1016_j_isprsjprs_2024_08_004 crossref_primary_10_1016_j_enbuild_2024_115255 crossref_primary_10_1016_j_jag_2022_102827 crossref_primary_10_1038_s43247_024_01375_x crossref_primary_10_3389_frsc_2023_1084573 crossref_primary_10_1109_TGRS_2023_3336357 crossref_primary_10_1080_15481603_2023_2209970 crossref_primary_10_1016_j_rse_2020_112096 crossref_primary_10_1007_s11252_022_01321_9 crossref_primary_10_1016_j_rsase_2022_100740 crossref_primary_10_1016_j_jag_2023_103358 crossref_primary_10_1117_1_JRS_16_034521 crossref_primary_10_3390_ijgi10040260 crossref_primary_10_1016_j_scs_2022_104166 crossref_primary_10_1080_15481603_2025_2473158 crossref_primary_10_1080_15481603_2022_2143872 crossref_primary_10_1016_j_cities_2024_104999 crossref_primary_10_1002_joc_7932 crossref_primary_10_1007_s12524_024_01950_x crossref_primary_10_1016_j_oceaneng_2024_119440 crossref_primary_10_1109_JSTARS_2021_3053067 crossref_primary_10_1364_AO_420673 crossref_primary_10_3390_s22114116 crossref_primary_10_1016_j_srs_2024_100188 crossref_primary_10_1007_s41748_023_00341_5 crossref_primary_10_1371_journal_pone_0288647 crossref_primary_10_1016_j_uclim_2022_101391 crossref_primary_10_1016_j_rse_2023_113573 crossref_primary_10_1016_j_ufug_2024_128239 crossref_primary_10_1016_j_ejrh_2024_101759 crossref_primary_10_3390_rs15123111 crossref_primary_10_3390_rs14215564 crossref_primary_10_1007_s10661_023_11768_8 crossref_primary_10_1016_j_uclim_2023_101770 crossref_primary_10_1016_j_uclim_2024_102148 crossref_primary_10_37394_23207_2020_17_26 crossref_primary_10_1109_JSTARS_2024_3435853 crossref_primary_10_1016_j_apor_2024_104007 crossref_primary_10_1109_JSTARS_2022_3226524 crossref_primary_10_3389_fpls_2023_1117869 crossref_primary_10_1016_j_wace_2022_100410 crossref_primary_10_3390_rs13101902 crossref_primary_10_1038_s41597_020_00605_z crossref_primary_10_1080_15481603_2023_2243671 crossref_primary_10_2139_ssrn_4132138 crossref_primary_10_3390_ijgi9020114 crossref_primary_10_1016_j_ecolind_2024_111669 crossref_primary_10_1016_j_jag_2021_102482 crossref_primary_10_1016_j_scs_2021_102980 crossref_primary_10_3390_land13091479 crossref_primary_10_3390_s22176407 crossref_primary_10_1016_j_uclim_2023_101787 crossref_primary_10_1016_j_uclim_2024_101842 crossref_primary_10_3390_rs13152986 crossref_primary_10_1080_01431161_2023_2203344 crossref_primary_10_3390_rs12091398 crossref_primary_10_1016_j_jag_2023_103408 crossref_primary_10_3390_rs12213552 crossref_primary_10_1016_j_gloplacha_2025_104696 crossref_primary_10_1016_j_rsase_2020_100394 crossref_primary_10_3390_rs13122276 crossref_primary_10_1109_TGRS_2024_3414143 crossref_primary_10_1109_JSTARS_2022_3174412 crossref_primary_10_3390_rs13071383 crossref_primary_10_1155_2022_1047309 crossref_primary_10_1016_j_rse_2023_113789 crossref_primary_10_1080_15481603_2023_2271246 crossref_primary_10_1016_j_uclim_2025_102325 crossref_primary_10_1109_JSTARS_2020_2995711 crossref_primary_10_1109_JSTARS_2021_3122509 crossref_primary_10_2139_ssrn_4075474 crossref_primary_10_1080_10095020_2022_2030654 crossref_primary_10_1016_j_rsase_2021_100543 crossref_primary_10_3390_ijgi13020061 crossref_primary_10_1155_2023_1814906 crossref_primary_10_3390_urbansci8040253 crossref_primary_10_3390_rs15041001 crossref_primary_10_1007_s00704_023_04493_2 crossref_primary_10_3389_fmars_2021_736429 crossref_primary_10_3390_su16156656 crossref_primary_10_1016_j_mlwa_2023_100454 crossref_primary_10_1016_j_isprsjprs_2024_12_015 crossref_primary_10_1080_17538947_2024_2409351 crossref_primary_10_1016_j_jlp_2023_105057 crossref_primary_10_1016_j_rse_2022_113271 crossref_primary_10_3390_rs13234922 crossref_primary_10_1007_s00704_024_04888_9 crossref_primary_10_1109_JSTARS_2024_3421284 crossref_primary_10_1016_j_scs_2022_103959 crossref_primary_10_1109_JSTARS_2021_3132394 crossref_primary_10_1016_j_envdev_2024_101084 crossref_primary_10_3390_rs11232828 crossref_primary_10_3390_su13116374 crossref_primary_10_1016_j_buildenv_2021_107879 crossref_primary_10_1109_TGRS_2024_3399048 crossref_primary_10_1007_s12524_024_01887_1 crossref_primary_10_1007_s11769_023_1387_4 crossref_primary_10_1016_j_jag_2021_102577 crossref_primary_10_1016_j_uclim_2023_101455 crossref_primary_10_3390_rs14153594 crossref_primary_10_1016_j_agwat_2023_108302 crossref_primary_10_1016_j_buildenv_2022_109785 crossref_primary_10_3389_fenvs_2021_637455 crossref_primary_10_3390_land10050454 crossref_primary_10_1016_j_scs_2024_105922 crossref_primary_10_1016_j_scs_2021_103228 crossref_primary_10_1109_JSTARS_2023_3308045 crossref_primary_10_1016_j_landurbplan_2021_104187 crossref_primary_10_1016_j_promfg_2021_06_065 crossref_primary_10_1016_j_rse_2021_112794 crossref_primary_10_3390_buildings12101693 crossref_primary_10_1016_j_jclepro_2023_138892 crossref_primary_10_1016_j_jenvman_2023_118697 crossref_primary_10_1016_j_scs_2024_105518 crossref_primary_10_1109_ACCESS_2022_3163535 crossref_primary_10_3390_rs14153744 crossref_primary_10_3390_jmse9030330 crossref_primary_10_1016_j_ecolind_2023_110086 crossref_primary_10_1038_s41597_024_03042_4 crossref_primary_10_1080_15481603_2020_1766768 crossref_primary_10_1016_j_jag_2022_102865 crossref_primary_10_1109_MGRS_2020_2964708 crossref_primary_10_3389_fenvs_2022_867434 crossref_primary_10_5194_tc_14_1083_2020 crossref_primary_10_1016_j_uclim_2023_101500 crossref_primary_10_14358_PERS_24_00001R2 crossref_primary_10_1029_2019EA000740 crossref_primary_10_1016_j_rse_2019_111472 crossref_primary_10_1016_j_isprsjprs_2021_09_015 crossref_primary_10_3390_rs15092361 crossref_primary_10_1007_s12524_024_01958_3 crossref_primary_10_3390_atmos12091146 |
Cites_doi | 10.1016/j.uclim.2017.05.010 10.1364/BOE.9.003049 10.1016/j.isprsjprs.2017.11.021 10.1016/j.scs.2017.01.006 10.1186/1471-2105-15-8 10.1016/j.isprsjprs.2019.05.004 10.3390/rs11010002 10.3390/ijgi6060168 10.1016/j.isprsjprs.2018.01.018 10.1038/323533a0 10.1016/j.ipm.2009.03.002 10.3390/urbansci1020015 10.1016/j.atmosenv.2015.10.094 10.1016/j.isprsjprs.2018.01.021 10.1109/TKDE.2006.17 10.1016/j.compag.2016.12.006 10.1117/1.JRS.12.025010 10.1016/j.nicl.2014.08.023 10.1016/j.snb.2012.11.071 10.1016/S1001-0742(08)60019-4 10.1080/15481603.2013.819161 10.1109/MGRS.2016.2645380 10.1016/j.isprsjprs.2014.09.002 10.1016/j.isprsjprs.2018.01.016 10.1080/15481603.2018.1426091 10.1038/s41598-017-11407-6 10.1016/j.proeng.2016.10.026 10.1016/j.neunet.2014.09.003 10.1023/A:1010933404324 10.1007/s00704-017-2197-3 10.1061/(ASCE)UP.1943-5444.0000346 10.1016/j.isprsjprs.2018.08.005 10.1080/01431161.2017.1353160 10.3390/rs10101572 10.3390/rs10030447 10.1080/15481603.2017.1323377 10.3390/f9050268 10.1016/j.enbuild.2003.12.016 10.1016/j.uclim.2018.11.001 10.1016/j.uclim.2018.10.001 10.1016/j.scs.2018.01.024 10.1016/j.isprsjprs.2017.07.014 10.1080/15481603.2018.1457201 10.3390/cli3020391 10.1080/01431161.2013.810822 10.1016/j.uclim.2018.01.006 10.1016/j.scs.2017.04.003 10.1080/15481603.2017.1302181 10.3390/ijgi4010199 10.5194/hess-11-1633-2007 10.1016/j.isprsjprs.2019.02.006 10.1016/j.isprsjprs.2019.03.015 10.14358/PERS.78.7.729 10.1109/TGRS.2016.2616585 10.3390/rs10040631 10.1016/j.scs.2018.04.018 10.1016/j.rse.2009.08.016 10.1016/j.uclim.2018.04.007 10.1175/BAMS-D-11-00019.1 10.1016/j.isprsjprs.2019.07.007 10.1038/nature14539 10.1016/j.isprsjprs.2018.04.009 |
ContentType | Journal Article |
Copyright | 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2019.09.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 170 |
ExternalDocumentID | 10_1016_j_isprsjprs_2019_09_009 S0924271619302205 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c463t-35dc74e636c139f66e64c911e956cf3fc98979274d6d33cf7e844f4aa0bf49b13 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 08:32:31 EDT 2025 Tue Jul 01 03:46:42 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 23 02:28:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Random forest Local climate zone Convolutional neural networks Urban climate Landsat |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-35dc74e636c139f66e64c911e956cf3fc98979274d6d33cf7e844f4aa0bf49b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8802-7934 0000-0002-4506-6877 0000-0002-1907-8006 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271619302205?via%3Dihub |
PQID | 2811977934 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2811977934 crossref_primary_10_1016_j_isprsjprs_2019_09_009 crossref_citationtrail_10_1016_j_isprsjprs_2019_09_009 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rahaman, Hassan, Ahmed (b0295) 2017; 6 Wang, Middel, Myint, Kaplan, Brazel, Lukasczyk (b0370) 2018; 141 Ellickson (b0100) 2012; 64 Jeatrakul, Wong, Fung (b0165) 2010 Verdonck, Okujeni, van der Linden, Demuzere, De Wulf, Van Coillie (b0360) 2017; 62 Founda, Santamouris (b0110) 2017; 7 Park, Im, Park, Yoo, Han, Rhee (b0275) 2018; 10 Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., Perez, J.R., 2011. GLOBCOVER 2009-Products description and validation report. Richardson, Hill, Denesiuk, Fraser (b0300) 2017; 54 Barnes, Morgan, Roberge (b0020) 2001 Athiwaratkun, B., Kang, K., 2015. Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313. Vedaldi, Lenc (b0355) 2015 Awrangjeb, Zhang, Fraser (b0010) 2012; 78 Giridharan, Ganesan, Lau (b0135) 2004; 36 Fu, Ma, Li, Johnson (b0120) 2018; 12 Bechtel, Alexander, Böhner, Ching, Conrad, Feddema, Mills, See, Stewart (b0030) 2015; 4 Wurm, Stark, Zhu, Weigand, Taubenböck (b0380) 2019; 150 Yue, Yang, Li, Hu, Zhang, Li (b0415) 2019; 156 Soltau, Saon, Sainath (b0335) 2014 Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (b0115) 2010; 114 Zhang, Tang (b0425) 2019; 11 Gilbertson, Kemp, Van Niekerk (b0125) 2017; 134 Rizwan, Dennis, Chunho (b0305) 2008; 20 Yokoya, Ghamisi, Xia, Sukhanov, Heremans, Tankoyeu, Bechtel, Le Saux, Moser, Tuia (b0400) 2018; 11 Han-qiu, Ben-qing (b0155) 2004; 16 Glorot, Bordes, Bengio (b0140) 2011 Yu, Wu, Luo, Ren (b0410) 2017; 54 Liu, Abd-Elrahman, Morton, Wilhelm (b0240) 2018; 55 de Colstoun, E.C.B., Huang, C., Wang, P., Tilton, J.C., Tan, B., Phillips, J., Niemczura, S., Ling, P.-Y., Wolfe, R., 2017. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset From Landsat. Qiu, Schmitt, Mou, Ghamisi, Zhu (b0290) 2018; 10 Chan, Wang, Lang (b0070) 2016; 142 Yadav, Sharma, Peshin, Masiwal (b0395) 2017; 32 Hamwood, Alonso-Caneiro, Read, Vincent, Collins (b0150) 2018; 9 Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450. Zhou, Liu (b0440) 2006; 18 Kim, Lee, Han, Shin, Im, Lee, Quackenbush, Gu (b0180) 2018; 11 Cai, Ren, Xu, Lau, Wang (b0065) 2018; 24 LeCun, Bengio, Hinton (b0220) 2015; 521 Stewart, Oke (b0340) 2012; 93 Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Beck, Straub, Breitner, Cyrys, Philipp, Rathmann, Schneider, Wolf, Jacobeit (b0050) 2018; 25 Bechtel, Alexander, Beck, Böhner, Brousse, Ching, Demuzere, Fonte, Gál, Hidalgo (b0025) 2019; 27 Bechtel, Demuzere, Sismanidis, Fenner, Brousse, Beck, Van Coillie, Conrad, Keramitsoglou, Middel (b0040) 2017; 1 Bechtel, See, Mills, Foley (b0045) 2016; 9 Lee, Im, Kim, Quackenbush (b0225) 2018; 9 Yoo, Im, Park, Quackenbush (b0405) 2018; 137 Khoshgoftaar, Golawala, Van Hulse (b0175) 2007 Chen, Chen, Liao, Cao, Chen, Chen, He, Han, Peng, Lu (b0075) 2015; 103 Breiman (b0060) 2001; 45 Fallmann, Forkel, Emeis (b0105) 2016; 125 Schmidhuber (b0320) 2015; 61 Cohen (b0080) 2015; 3 Liu, Wang, Wang, Li (b0235) 2013; 177 Mathew, Khandelwal, Kaul (b0255) 2018; 40 Koppel, Zalite, Voormansik, Jagdhuber (b0195) 2017; 38 Wang, Wu, Coates, Ng (b0375) 2012 Ziaul, Pal (b0445) 2018; 24 Xu, Guan, Casler, Peng, Wang (b0390) 2018; 144 Zhou, Chellappa (b0435) 1988 Bechtel, Daneke (b0035) 2012; 5 Rumerlhar (b0310) 1986; 323 Liu, Fang, Xu, Zhang, Luan (b0245) 2018; 133 Qiu, Mou, Schmitt, Zhu (b0285) 2019; 154 Kim, Lee, Im (b0185) 2018; 55 Sukhanov, Tankoyeu, Louradour, Heremans, Trofimova, Debes (b0345) 2017 Kursa (b0205) 2014; 15 Volpi, Tuia (b0365) 2016; 55 Krizhevsky, Sutskever, Hinton (b0200) 2012 Xing, Wang, Yang, Jiao (b0385) 2018; 145 Li, Im, Beier (b0230) 2013; 50 Min, Lee, Yoon (b0260) 2017; 18 Demuzere, Bechtel, Mills (b0095) 2019; 27 Mohammadimanesh, Salehi, Mahdianpari, Gill, Molinier (b0265) 2019; 151 Peel, Finlayson, McMahon (b0280) 2007; 11 Lebedev, Westman, Van Westen, Kramberger, Lundervold, Aarsland, Soininen, Kłoszewska, Mecocci, Tsolaki (b0215) 2014; 6 Marcos, Volpi, Kellenberger, Tuia (b0250) 2018; 145 Paoletti, Haut, Plaza, Plaza (b0270) 2018; 145 Giridharan, Emmanuel (b0130) 2018; 40 Kaloustian, Bechtel (b0170) 2016; 169 Salata, Golasi, Petitti, de Lieto Vollaro, Coppi, de Lieto Vollaro (b0315) 2017; 30 Goodfellow, Bengio, Courville, Bengio (b0145) 2016 Sokolova, Lapalme (b0330) 2009; 45 Tuia, Moser, Le Saux, Bechtel, See (b0350) 2017; 5 Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (b0420) 2018; 140 Danylo, See, Bechtel, Schepaschenko, Fritz (b0085) 2016; 9 Zhen, Quackenbush, Stehman, Zhang (b0430) 2013; 34 Sim, Im, Park, Park, Ahn, Chan (b0325) 2018; 10 Lauwaet, Hooyberghs, Maiheu, Lefebvre, Driesen, Van Looy, De Ridder (b0210) 2015; 3 Huang, Li, Change Loy, Tang (b0160) 2016 Lebedev (10.1016/j.isprsjprs.2019.09.009_b0215) 2014; 6 Stewart (10.1016/j.isprsjprs.2019.09.009_b0340) 2012; 93 Yu (10.1016/j.isprsjprs.2019.09.009_b0410) 2017; 54 Beck (10.1016/j.isprsjprs.2019.09.009_b0050) 2018; 25 LeCun (10.1016/j.isprsjprs.2019.09.009_b0220) 2015; 521 Sokolova (10.1016/j.isprsjprs.2019.09.009_b0330) 2009; 45 10.1016/j.isprsjprs.2019.09.009_b0005 Min (10.1016/j.isprsjprs.2019.09.009_b0260) 2017; 18 Han-qiu (10.1016/j.isprsjprs.2019.09.009_b0155) 2004; 16 Marcos (10.1016/j.isprsjprs.2019.09.009_b0250) 2018; 145 Zhang (10.1016/j.isprsjprs.2019.09.009_b0420) 2018; 140 Bechtel (10.1016/j.isprsjprs.2019.09.009_b0040) 2017; 1 Yadav (10.1016/j.isprsjprs.2019.09.009_b0395) 2017; 32 Richardson (10.1016/j.isprsjprs.2019.09.009_b0300) 2017; 54 Breiman (10.1016/j.isprsjprs.2019.09.009_b0060) 2001; 45 Jeatrakul (10.1016/j.isprsjprs.2019.09.009_b0165) 2010 Awrangjeb (10.1016/j.isprsjprs.2019.09.009_b0010) 2012; 78 10.1016/j.isprsjprs.2019.09.009_b0090 Fallmann (10.1016/j.isprsjprs.2019.09.009_b0105) 2016; 125 Volpi (10.1016/j.isprsjprs.2019.09.009_b0365) 2016; 55 10.1016/j.isprsjprs.2019.09.009_b0055 Xing (10.1016/j.isprsjprs.2019.09.009_b0385) 2018; 145 Danylo (10.1016/j.isprsjprs.2019.09.009_b0085) 2016; 9 Chan (10.1016/j.isprsjprs.2019.09.009_b0070) 2016; 142 10.1016/j.isprsjprs.2019.09.009_b0015 Mohammadimanesh (10.1016/j.isprsjprs.2019.09.009_b0265) 2019; 151 Rahaman (10.1016/j.isprsjprs.2019.09.009_b0295) 2017; 6 Ellickson (10.1016/j.isprsjprs.2019.09.009_b0100) 2012; 64 Cai (10.1016/j.isprsjprs.2019.09.009_b0065) 2018; 24 Huang (10.1016/j.isprsjprs.2019.09.009_b0160) 2016 Kursa (10.1016/j.isprsjprs.2019.09.009_b0205) 2014; 15 Wang (10.1016/j.isprsjprs.2019.09.009_b0375) 2012 Gilbertson (10.1016/j.isprsjprs.2019.09.009_b0125) 2017; 134 Tuia (10.1016/j.isprsjprs.2019.09.009_b0350) 2017; 5 Kim (10.1016/j.isprsjprs.2019.09.009_b0180) 2018; 11 Paoletti (10.1016/j.isprsjprs.2019.09.009_b0270) 2018; 145 Cohen (10.1016/j.isprsjprs.2019.09.009_b0080) 2015; 3 Lee (10.1016/j.isprsjprs.2019.09.009_b0225) 2018; 9 Zhen (10.1016/j.isprsjprs.2019.09.009_b0430) 2013; 34 Chen (10.1016/j.isprsjprs.2019.09.009_b0075) 2015; 103 Hamwood (10.1016/j.isprsjprs.2019.09.009_b0150) 2018; 9 Krizhevsky (10.1016/j.isprsjprs.2019.09.009_b0200) 2012 Peel (10.1016/j.isprsjprs.2019.09.009_b0280) 2007; 11 Vedaldi (10.1016/j.isprsjprs.2019.09.009_b0355) 2015 Schmidhuber (10.1016/j.isprsjprs.2019.09.009_b0320) 2015; 61 Liu (10.1016/j.isprsjprs.2019.09.009_b0240) 2018; 55 Mathew (10.1016/j.isprsjprs.2019.09.009_b0255) 2018; 40 Sim (10.1016/j.isprsjprs.2019.09.009_b0325) 2018; 10 Qiu (10.1016/j.isprsjprs.2019.09.009_b0285) 2019; 154 Goodfellow (10.1016/j.isprsjprs.2019.09.009_b0145) 2016 Lauwaet (10.1016/j.isprsjprs.2019.09.009_b0210) 2015; 3 Wurm (10.1016/j.isprsjprs.2019.09.009_b0380) 2019; 150 Giridharan (10.1016/j.isprsjprs.2019.09.009_b0130) 2018; 40 Wang (10.1016/j.isprsjprs.2019.09.009_b0370) 2018; 141 Yokoya (10.1016/j.isprsjprs.2019.09.009_b0400) 2018; 11 Verdonck (10.1016/j.isprsjprs.2019.09.009_b0360) 2017; 62 10.1016/j.isprsjprs.2019.09.009_b0190 Fu (10.1016/j.isprsjprs.2019.09.009_b0120) 2018; 12 Barnes (10.1016/j.isprsjprs.2019.09.009_b0020) 2001 Khoshgoftaar (10.1016/j.isprsjprs.2019.09.009_b0175) 2007 Liu (10.1016/j.isprsjprs.2019.09.009_b0245) 2018; 133 Qiu (10.1016/j.isprsjprs.2019.09.009_b0290) 2018; 10 Salata (10.1016/j.isprsjprs.2019.09.009_b0315) 2017; 30 Bechtel (10.1016/j.isprsjprs.2019.09.009_b0045) 2016; 9 Friedl (10.1016/j.isprsjprs.2019.09.009_b0115) 2010; 114 Yoo (10.1016/j.isprsjprs.2019.09.009_b0405) 2018; 137 Sukhanov (10.1016/j.isprsjprs.2019.09.009_b0345) 2017 Bechtel (10.1016/j.isprsjprs.2019.09.009_b0025) 2019; 27 Founda (10.1016/j.isprsjprs.2019.09.009_b0110) 2017; 7 Demuzere (10.1016/j.isprsjprs.2019.09.009_b0095) 2019; 27 Xu (10.1016/j.isprsjprs.2019.09.009_b0390) 2018; 144 Zhou (10.1016/j.isprsjprs.2019.09.009_b0435) 1988 Park (10.1016/j.isprsjprs.2019.09.009_b0275) 2018; 10 Rumerlhar (10.1016/j.isprsjprs.2019.09.009_b0310) 1986; 323 Zhou (10.1016/j.isprsjprs.2019.09.009_b0440) 2006; 18 Kim (10.1016/j.isprsjprs.2019.09.009_b0185) 2018; 55 Li (10.1016/j.isprsjprs.2019.09.009_b0230) 2013; 50 Zhang (10.1016/j.isprsjprs.2019.09.009_b0425) 2019; 11 Bechtel (10.1016/j.isprsjprs.2019.09.009_b0030) 2015; 4 Kaloustian (10.1016/j.isprsjprs.2019.09.009_b0170) 2016; 169 Soltau (10.1016/j.isprsjprs.2019.09.009_b0335) 2014 Ziaul (10.1016/j.isprsjprs.2019.09.009_b0445) 2018; 24 Bechtel (10.1016/j.isprsjprs.2019.09.009_b0035) 2012; 5 Giridharan (10.1016/j.isprsjprs.2019.09.009_b0135) 2004; 36 Glorot (10.1016/j.isprsjprs.2019.09.009_b0140) 2011 Koppel (10.1016/j.isprsjprs.2019.09.009_b0195) 2017; 38 Yue (10.1016/j.isprsjprs.2019.09.009_b0415) 2019; 156 Liu (10.1016/j.isprsjprs.2019.09.009_b0235) 2013; 177 Rizwan (10.1016/j.isprsjprs.2019.09.009_b0305) 2008; 20 |
References_xml | – volume: 10 start-page: 447 year: 2018 ident: b0275 article-title: Classification and mapping of paddy rice by combining landsat and SAR time series data publication-title: Remote Sens-Basel – volume: 134 start-page: 151 year: 2017 end-page: 159 ident: b0125 article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques publication-title: Comput. Electron. Agric. – volume: 3 start-page: 391 year: 2015 end-page: 415 ident: b0210 article-title: Detailed Urban Heat Island projections for cities worldwide: dynamical downscaling CMIP5 global climate models publication-title: Climate – volume: 154 start-page: 151 year: 2019 end-page: 162 ident: b0285 article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 137 start-page: 149 year: 2018 end-page: 162 ident: b0405 article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data publication-title: ISPRS J. Photogramm. – volume: 133 start-page: 473 year: 2018 end-page: 488 ident: b0245 article-title: Assessment of surface urban heat island across China’s three main urban agglomerations publication-title: Theor. Appl. Climatol. – volume: 10 start-page: 1572 year: 2018 ident: b0290 article-title: Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets publication-title: Remote Sens-Basel – volume: 7 start-page: 10973 year: 2017 ident: b0110 article-title: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012) publication-title: Sci. Rep. – volume: 54 start-page: 741 year: 2017 end-page: 758 ident: b0410 article-title: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework publication-title: Gisci. Remote Sens. – volume: 18 start-page: 63 year: 2006 end-page: 77 ident: b0440 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. – volume: 24 start-page: 34 year: 2018 end-page: 50 ident: b0445 article-title: Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings publication-title: Urban Clim. – volume: 9 start-page: 3049 year: 2018 end-page: 3066 ident: b0150 article-title: Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers publication-title: Biomed. Opt. Express – volume: 55 start-page: 881 year: 2016 end-page: 893 ident: b0365 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 142 start-page: 05016007 year: 2016 ident: b0070 article-title: Comprehensive Evaluation Framework for Sustainable Land Use: Case Study of Hong Kong in 2000–2010 publication-title: J. Urban Plann. Dev. – volume: 169 start-page: 216 year: 2016 end-page: 223 ident: b0170 article-title: Local climatic zoning and urban heat island in Beirut publication-title: Procedia Eng. – volume: 6 start-page: 115 year: 2014 end-page: 125 ident: b0215 article-title: Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness publication-title: NeuroImage: Clin. – volume: 4 start-page: 199 year: 2015 end-page: 219 ident: b0030 article-title: Mapping local climate zones for a worldwide database of the form and function of cities publication-title: ISPRS Int. J. Geo-Inf. – volume: 141 start-page: 59 year: 2018 end-page: 71 ident: b0370 article-title: Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada publication-title: ISPRS J. Photogramm. – volume: 140 start-page: 133 year: 2018 end-page: 144 ident: b0420 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. – volume: 15 start-page: 8 year: 2014 ident: b0205 article-title: Robustness of Random Forest-based gene selection methods publication-title: BMC Bioinf. – volume: 10 start-page: 631 year: 2018 ident: b0325 article-title: Icing detection over East Asia from geostationary satellite data using machine learning approaches publication-title: Remote Sens-Basel – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0320 article-title: Deep learning in neural networks: an overview publication-title: Neural networks – volume: 93 start-page: 1879 year: 2012 end-page: 1900 ident: b0340 article-title: Local climate zones for urban temperature studies publication-title: Bull. Am. Meteorol. Soc. – volume: 145 start-page: 120 year: 2018 end-page: 147 ident: b0270 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. – reference: de Colstoun, E.C.B., Huang, C., Wang, P., Tilton, J.C., Tan, B., Phillips, J., Niemczura, S., Ling, P.-Y., Wolfe, R., 2017. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset From Landsat. – volume: 114 start-page: 168 year: 2010 end-page: 182 ident: b0115 article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. – volume: 25 start-page: 152 year: 2018 end-page: 166 ident: b0050 article-title: Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions publication-title: Urban Clim. – reference: Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., Perez, J.R., 2011. GLOBCOVER 2009-Products description and validation report. – volume: 9 start-page: 268 year: 2018 ident: b0225 article-title: Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data publication-title: Forests – start-page: 3304 year: 2012 end-page: 3308 ident: b0375 article-title: End-to-end text recognition with convolutional neural networks publication-title: Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE – start-page: 1201 year: 2017 end-page: 1204 ident: b0345 article-title: Multilevel ensembling for local climate zones classification publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE – volume: 11 start-page: 1363 year: 2018 end-page: 1377 ident: b0400 article-title: Open data for global multimodal land use classification: outcome of the 2017 IEEE GRSS Data Fusion Contest publication-title: IEEE J-Stars – reference: Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450. – volume: 103 start-page: 7 year: 2015 end-page: 27 ident: b0075 article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0220 article-title: Deep learning publication-title: Nature – volume: 11 start-page: 1633 year: 2007 end-page: 1644 ident: b0280 article-title: Updated world map of the Koppen-Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b0330 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inform. Process. Manage. – volume: 50 start-page: 361 year: 2013 end-page: 384 ident: b0230 article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest publication-title: Gisci. Remote Sens. – volume: 30 start-page: 79 year: 2017 end-page: 96 ident: b0315 article-title: Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment publication-title: Sustain. Cities Soc. – volume: 145 start-page: 165 year: 2018 end-page: 183 ident: b0385 article-title: Pan-sharpening via deep metric learning publication-title: ISPRS J. Photogramm. – volume: 54 start-page: 573 year: 2017 end-page: 591 ident: b0300 article-title: A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada) publication-title: Gisci. Remote Sens. – volume: 11 start-page: 2 year: 2019 ident: b0425 article-title: A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples publication-title: Remote Sens-Basel – volume: 145 start-page: 96 year: 2018 end-page: 107 ident: b0250 article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models publication-title: ISPRS J. Photogramm. – start-page: 315 year: 2011 end-page: 323 ident: b0140 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics – start-page: 5375 year: 2016 end-page: 5384 ident: b0160 article-title: Learning deep representation for imbalanced classification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 156 start-page: 1 year: 2019 end-page: 13 ident: b0415 article-title: TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 27 start-page: 24 year: 2019 end-page: 45 ident: b0025 article-title: Generating WUDAPT Level 0 data–Current status of production and evaluation publication-title: Urban Clim. – volume: 151 start-page: 223 year: 2019 end-page: 236 ident: b0265 article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 5 start-page: 1191 year: 2012 ident: b0035 article-title: Classification of local climate zones based on multiple earth observation data publication-title: IEEE J-Stars – volume: 144 start-page: 423 year: 2018 end-page: 434 ident: b0390 article-title: A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery publication-title: ISPRS J. Photogramm. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0310 article-title: Learning representation by back-propagating errors publication-title: Nature – volume: 5 start-page: 70 year: 2017 end-page: 73 ident: b0350 article-title: 2017 IEEE GRSS data fusion contest: open data for global multimodal land use classification [Technical Committees] publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 16 start-page: 276 year: 2004 end-page: 281 ident: b0155 article-title: Remote sensing of the urban heat island and its changes in Xiamen City of SE China publication-title: J. Environ. Sci. – volume: 32 start-page: 202 year: 2017 end-page: 211 ident: b0395 article-title: Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi publication-title: Sustain. Cities Soc. – start-page: 71 year: 1988 end-page: 78 ident: b0435 article-title: Computation of optical flow using a neural network publication-title: IEEE International Conference on Neural Networks – volume: 3 start-page: 4 year: 2015 end-page: 7 ident: b0080 article-title: Urbanization, City growth, and the New United Nations development agenda publication-title: Cornerstone – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0060 article-title: Random forests publication-title: Machine Learn. – start-page: 1097 year: 2012 end-page: 1105 ident: b0200 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 4604 year: 2018 end-page: 4617 ident: b0180 article-title: Convolutional neural network-based land cover classification using 2-D spectral reflectance curve graphs with multitemporal satellite imagery publication-title: IEEE J-Stars – start-page: 152 year: 2010 end-page: 159 ident: b0165 article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm publication-title: International Conference on Neural Information Processing – volume: 1 start-page: 15 year: 2017 ident: b0040 article-title: Quality of crowdsourced data on urban morphology—The human influence experiment (HUMINEX) publication-title: Urban Sci. – volume: 78 start-page: 729 year: 2012 end-page: 745 ident: b0010 article-title: Building detection in complex scenes thorough effective separation of buildings from trees publication-title: Photogramm. Eng. Remote Sens. – volume: 20 start-page: 120 year: 2008 end-page: 128 ident: b0305 article-title: A review on the generation, determination and mitigation of Urban Heat Island publication-title: J. Environ. Sci. – volume: 64 start-page: 463 year: 2012 ident: b0100 article-title: The law and economics of street layouts: How a grid pattern benefits a downtown publication-title: Ala. L. Rev. – start-page: 689 year: 2015 end-page: 692 ident: b0355 article-title: Matconvnet: convolutional neural networks for matlab publication-title: Proceedings of the 23rd ACM International Conference on Multimedia. ACM – volume: 12 start-page: 025010 year: 2018 ident: b0120 article-title: Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery publication-title: J. Appl. Remote Sens. – year: 2001 ident: b0020 article-title: Impervious surfaces and the quality of natural and built environments – start-page: 5572 year: 2014 end-page: 5576 ident: b0335 article-title: Joint training of convolutional and non-convolutional neural networks publication-title: ICASSP – volume: 34 start-page: 6914 year: 2013 end-page: 6930 ident: b0430 article-title: Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification publication-title: Int. J. Remote Sens. – volume: 55 start-page: 763 year: 2018 end-page: 792 ident: b0185 article-title: Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data publication-title: Gisci. Remote Sens. – volume: 38 start-page: 6298 year: 2017 end-page: 6318 ident: b0195 article-title: Sensitivity of Sentinel-1 backscatter to characteristics of buildings publication-title: Int. J. Remote Sens. – reference: Athiwaratkun, B., Kang, K., 2015. Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313. – volume: 125 start-page: 199 year: 2016 end-page: 211 ident: b0105 article-title: Secondary effects of urban heat island mitigation measures on air quality publication-title: Atmos. Environ. – volume: 62 start-page: 102 year: 2017 end-page: 113 ident: b0360 article-title: Influence of neighbourhood information on ‘local climate zone’mapping in heterogeneous cities publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 310 year: 2007 end-page: 317 ident: b0175 article-title: An empirical study of learning from imbalanced data using random forest, Tools with Artificial Intelligence, 2007. ICTAI 2007 publication-title: 19th IEEE International Conference on. IEEE – year: 2016 ident: b0145 article-title: Deep Learning – volume: 18 start-page: 851 year: 2017 end-page: 869 ident: b0260 article-title: Deep learning in bioinformatics publication-title: Briefings Bioinf. – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – volume: 9 start-page: 3097 year: 2016 end-page: 3105 ident: b0045 article-title: Classification of local climate zones using SAR and multispectral data in an arid environment publication-title: IEEE J-Stars – volume: 55 start-page: 243 year: 2018 end-page: 264 ident: b0240 article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system publication-title: Gisci. Remote Sens. – volume: 24 start-page: 485 year: 2018 end-page: 502 ident: b0065 article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China publication-title: Urban Clim. – volume: 177 start-page: 970 year: 2013 end-page: 980 ident: b0235 article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar publication-title: Sens. Actuat. B – volume: 150 start-page: 59 year: 2019 end-page: 69 ident: b0380 article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 40 start-page: 677 year: 2018 end-page: 687 ident: b0130 article-title: The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review publication-title: Sustain. Cities Soc. – volume: 27 start-page: 46 year: 2019 end-page: 63 ident: b0095 article-title: Global transferability of local climate zone models publication-title: Urban Clim. – volume: 6 start-page: 168 year: 2017 ident: b0295 article-title: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents publication-title: ISPRS Int. J. Geo-Inf. – volume: 40 start-page: 484 year: 2018 end-page: 500 ident: b0255 article-title: Investigating spatio-temporal surface urban heat island growth over Jaipur city using geospatial techniques publication-title: Sustain. Cities Soc. – volume: 36 start-page: 525 year: 2004 end-page: 534 ident: b0135 article-title: Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong publication-title: Energy Build. – volume: 9 start-page: 1841 year: 2016 end-page: 1853 ident: b0085 article-title: Contributing to WUDAPT: a local climate zone classification of two cities in Ukraine publication-title: IEEE J-Stars – volume: 24 start-page: 485 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0065 article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China publication-title: Urban Clim. doi: 10.1016/j.uclim.2017.05.010 – volume: 9 start-page: 3049 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0150 article-title: Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.003049 – ident: 10.1016/j.isprsjprs.2019.09.009_b0015 – volume: 145 start-page: 120 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0270 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2017.11.021 – volume: 30 start-page: 79 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0315 article-title: Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.01.006 – volume: 15 start-page: 8 year: 2014 ident: 10.1016/j.isprsjprs.2019.09.009_b0205 article-title: Robustness of Random Forest-based gene selection methods publication-title: BMC Bioinf. doi: 10.1186/1471-2105-15-8 – year: 2001 ident: 10.1016/j.isprsjprs.2019.09.009_b0020 – start-page: 310 year: 2007 ident: 10.1016/j.isprsjprs.2019.09.009_b0175 article-title: An empirical study of learning from imbalanced data using random forest, Tools with Artificial Intelligence, 2007. ICTAI 2007 – volume: 154 start-page: 151 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0285 article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.05.004 – volume: 11 start-page: 2 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0425 article-title: A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples publication-title: Remote Sens-Basel doi: 10.3390/rs11010002 – volume: 62 start-page: 102 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0360 article-title: Influence of neighbourhood information on ‘local climate zone’mapping in heterogeneous cities publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 6 start-page: 168 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0295 article-title: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi6060168 – volume: 137 start-page: 149 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0405 article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.01.018 – volume: 3 start-page: 4 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0080 article-title: Urbanization, City growth, and the New United Nations development agenda publication-title: Cornerstone – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.isprsjprs.2019.09.009_b0310 article-title: Learning representation by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 45 start-page: 427 year: 2009 ident: 10.1016/j.isprsjprs.2019.09.009_b0330 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inform. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – ident: 10.1016/j.isprsjprs.2019.09.009_b0005 – volume: 5 start-page: 1191 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0035 article-title: Classification of local climate zones based on multiple earth observation data publication-title: IEEE J-Stars – volume: 1 start-page: 15 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0040 article-title: Quality of crowdsourced data on urban morphology—The human influence experiment (HUMINEX) publication-title: Urban Sci. doi: 10.3390/urbansci1020015 – volume: 125 start-page: 199 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0105 article-title: Secondary effects of urban heat island mitigation measures on air quality publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.10.094 – volume: 145 start-page: 96 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0250 article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.01.021 – volume: 18 start-page: 851 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0260 article-title: Deep learning in bioinformatics publication-title: Briefings Bioinf. – volume: 18 start-page: 63 year: 2006 ident: 10.1016/j.isprsjprs.2019.09.009_b0440 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.17 – volume: 134 start-page: 151 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0125 article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.12.006 – start-page: 689 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0355 article-title: Matconvnet: convolutional neural networks for matlab – volume: 9 start-page: 1841 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0085 article-title: Contributing to WUDAPT: a local climate zone classification of two cities in Ukraine publication-title: IEEE J-Stars – volume: 12 start-page: 025010 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0120 article-title: Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.025010 – volume: 6 start-page: 115 year: 2014 ident: 10.1016/j.isprsjprs.2019.09.009_b0215 article-title: Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.08.023 – volume: 177 start-page: 970 year: 2013 ident: 10.1016/j.isprsjprs.2019.09.009_b0235 article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2012.11.071 – volume: 20 start-page: 120 year: 2008 ident: 10.1016/j.isprsjprs.2019.09.009_b0305 article-title: A review on the generation, determination and mitigation of Urban Heat Island publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)60019-4 – volume: 50 start-page: 361 year: 2013 ident: 10.1016/j.isprsjprs.2019.09.009_b0230 article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2013.819161 – volume: 5 start-page: 70 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0350 article-title: 2017 IEEE GRSS data fusion contest: open data for global multimodal land use classification [Technical Committees] publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2645380 – volume: 103 start-page: 7 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0075 article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2014.09.002 – volume: 145 start-page: 165 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0385 article-title: Pan-sharpening via deep metric learning publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.01.016 – volume: 55 start-page: 243 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0240 article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2018.1426091 – volume: 11 start-page: 1363 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0400 article-title: Open data for global multimodal land use classification: outcome of the 2017 IEEE GRSS Data Fusion Contest publication-title: IEEE J-Stars – start-page: 5375 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0160 article-title: Learning deep representation for imbalanced classification – start-page: 3304 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0375 article-title: End-to-end text recognition with convolutional neural networks – volume: 7 start-page: 10973 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0110 article-title: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012) publication-title: Sci. Rep. doi: 10.1038/s41598-017-11407-6 – start-page: 315 year: 2011 ident: 10.1016/j.isprsjprs.2019.09.009_b0140 article-title: Deep sparse rectifier neural networks – volume: 169 start-page: 216 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0170 article-title: Local climatic zoning and urban heat island in Beirut publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.10.026 – ident: 10.1016/j.isprsjprs.2019.09.009_b0190 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0320 article-title: Deep learning in neural networks: an overview publication-title: Neural networks doi: 10.1016/j.neunet.2014.09.003 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isprsjprs.2019.09.009_b0060 article-title: Random forests publication-title: Machine Learn. doi: 10.1023/A:1010933404324 – year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0145 – volume: 133 start-page: 473 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0245 article-title: Assessment of surface urban heat island across China’s three main urban agglomerations publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2197-3 – start-page: 5572 year: 2014 ident: 10.1016/j.isprsjprs.2019.09.009_b0335 article-title: Joint training of convolutional and non-convolutional neural networks publication-title: ICASSP – volume: 142 start-page: 05016007 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0070 article-title: Comprehensive Evaluation Framework for Sustainable Land Use: Case Study of Hong Kong in 2000–2010 publication-title: J. Urban Plann. Dev. doi: 10.1061/(ASCE)UP.1943-5444.0000346 – volume: 144 start-page: 423 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0390 article-title: A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.08.005 – volume: 38 start-page: 6298 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0195 article-title: Sensitivity of Sentinel-1 backscatter to characteristics of buildings publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1353160 – volume: 10 start-page: 1572 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0290 article-title: Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets publication-title: Remote Sens-Basel doi: 10.3390/rs10101572 – volume: 10 start-page: 447 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0275 article-title: Classification and mapping of paddy rice by combining landsat and SAR time series data publication-title: Remote Sens-Basel doi: 10.3390/rs10030447 – volume: 54 start-page: 741 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0410 article-title: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2017.1323377 – start-page: 71 year: 1988 ident: 10.1016/j.isprsjprs.2019.09.009_b0435 article-title: Computation of optical flow using a neural network – volume: 9 start-page: 268 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0225 article-title: Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data publication-title: Forests doi: 10.3390/f9050268 – volume: 36 start-page: 525 year: 2004 ident: 10.1016/j.isprsjprs.2019.09.009_b0135 article-title: Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong publication-title: Energy Build. doi: 10.1016/j.enbuild.2003.12.016 – volume: 11 start-page: 4604 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0180 article-title: Convolutional neural network-based land cover classification using 2-D spectral reflectance curve graphs with multitemporal satellite imagery publication-title: IEEE J-Stars – volume: 27 start-page: 46 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0095 article-title: Global transferability of local climate zone models publication-title: Urban Clim. doi: 10.1016/j.uclim.2018.11.001 – volume: 16 start-page: 276 year: 2004 ident: 10.1016/j.isprsjprs.2019.09.009_b0155 article-title: Remote sensing of the urban heat island and its changes in Xiamen City of SE China publication-title: J. Environ. Sci. – volume: 27 start-page: 24 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0025 article-title: Generating WUDAPT Level 0 data–Current status of production and evaluation publication-title: Urban Clim. doi: 10.1016/j.uclim.2018.10.001 – volume: 40 start-page: 677 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0130 article-title: The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.01.024 – start-page: 152 year: 2010 ident: 10.1016/j.isprsjprs.2019.09.009_b0165 article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm – volume: 140 start-page: 133 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0420 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2017.07.014 – start-page: 1097 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0200 article-title: Imagenet classification with deep convolutional neural networks – volume: 55 start-page: 763 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0185 article-title: Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2018.1457201 – volume: 3 start-page: 391 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0210 article-title: Detailed Urban Heat Island projections for cities worldwide: dynamical downscaling CMIP5 global climate models publication-title: Climate doi: 10.3390/cli3020391 – volume: 34 start-page: 6914 year: 2013 ident: 10.1016/j.isprsjprs.2019.09.009_b0430 article-title: Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.810822 – volume: 24 start-page: 34 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0445 article-title: Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings publication-title: Urban Clim. doi: 10.1016/j.uclim.2018.01.006 – volume: 32 start-page: 202 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0395 article-title: Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.04.003 – volume: 54 start-page: 573 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0300 article-title: A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada) publication-title: Gisci. Remote Sens. doi: 10.1080/15481603.2017.1302181 – volume: 4 start-page: 199 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0030 article-title: Mapping local climate zones for a worldwide database of the form and function of cities publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4010199 – volume: 11 start-page: 1633 year: 2007 ident: 10.1016/j.isprsjprs.2019.09.009_b0280 article-title: Updated world map of the Koppen-Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1633-2007 – volume: 150 start-page: 59 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0380 article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.006 – volume: 151 start-page: 223 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0265 article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.015 – volume: 78 start-page: 729 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0010 article-title: Building detection in complex scenes thorough effective separation of buildings from trees publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.7.729 – ident: 10.1016/j.isprsjprs.2019.09.009_b0055 – volume: 55 start-page: 881 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0365 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2616585 – volume: 9 start-page: 3097 year: 2016 ident: 10.1016/j.isprsjprs.2019.09.009_b0045 article-title: Classification of local climate zones using SAR and multispectral data in an arid environment publication-title: IEEE J-Stars – volume: 10 start-page: 631 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0325 article-title: Icing detection over East Asia from geostationary satellite data using machine learning approaches publication-title: Remote Sens-Basel doi: 10.3390/rs10040631 – start-page: 1201 year: 2017 ident: 10.1016/j.isprsjprs.2019.09.009_b0345 article-title: Multilevel ensembling for local climate zones classification – volume: 40 start-page: 484 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0255 article-title: Investigating spatio-temporal surface urban heat island growth over Jaipur city using geospatial techniques publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.04.018 – volume: 114 start-page: 168 year: 2010 ident: 10.1016/j.isprsjprs.2019.09.009_b0115 article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.016 – volume: 25 start-page: 152 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0050 article-title: Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions publication-title: Urban Clim. doi: 10.1016/j.uclim.2018.04.007 – volume: 93 start-page: 1879 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0340 article-title: Local climate zones for urban temperature studies publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00019.1 – volume: 64 start-page: 463 year: 2012 ident: 10.1016/j.isprsjprs.2019.09.009_b0100 article-title: The law and economics of street layouts: How a grid pattern benefits a downtown publication-title: Ala. L. Rev. – volume: 156 start-page: 1 year: 2019 ident: 10.1016/j.isprsjprs.2019.09.009_b0415 article-title: TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.07.007 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.isprsjprs.2019.09.009_b0220 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.isprsjprs.2019.09.009_b0090 – volume: 141 start-page: 59 year: 2018 ident: 10.1016/j.isprsjprs.2019.09.009_b0370 article-title: Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.04.009 |
SSID | ssj0001568 |
Score | 2.6234035 |
Snippet | The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 155 |
SubjectTerms | Convolutional neural networks Landsat Local climate zone Random forest Urban climate |
Title | Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2019.09.009 https://www.proquest.com/docview/2811977934 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOqBQQLW01SFzDJhvHu-ZWraiWh3qBSr1FfoyXVG12tY8DHPgP_GNmHGdLEVIPSIkSR3Zi2ZOZb-RvxkK8CYgaK-0zKQ2Sg1K5TA9znVnrTWGrIbqO5Xuuphfy42V1uSMmfSwM0yqT7u90etTW6ckgjeZg0TSDLzm5DkOC-wRBYrgoR7DLEUv525-3NI-iC4fjyhnXvsPxalaL5eqKTuZ46ZjwlJmJ_7ZQf-nqaIDO9sSThBzhtOvcU7GD7b54_Ec-wX3xMG1p_u37M_Frst1hEBIZC5hinkSN3sSpLOMlEsFXYFoPZLn8_AYIyVIP-ALR2IG7bgjaIvyYt0gFQtxMMYqzCk0LNzgzsFla04JhljswnX4GnzmO2KyB2s5w9VxcnL3_Oplmaf-FzElVrrOy8m4kUZXKEU4MSqGSjpQjkk_lQhmcHuuRJrfWK1-WLoxwLGWQxuQ2SG2L8oXYbalbLwUYa03hGUyQRzn23lQYJHkygW7JqSoOhOrHvHYpOTnvkXFd9yy0q3o7WTVPVp3TkesDkW8bLrr8HPc3eddPan1H1GqyIvc3ft2LQU0_Iq-umBbnG6o05hVZUnfy8H8-8Eo84lIX7ngkdtfLDR4T7lnbkyjYJ-LB6YdP0_PfMYMJag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UB7qChQlT7AlXqNNtk43nVvaFW0wHYvBYmb5ec2CLKrfRzKv-AfdyZxVqVC4oCUKC9PYtnOzDfyN2OAb8F76QvpEs61RwelsInspTIxxunMFD1vG5bvRIyu-Pl1cb0FwzYWhmiVUfc3Or3W1vFON7Zmd16W3V8pug49hPsIQepw0VewTdmpig5sn5xdjCYbhZw1EXFUPiGBRzSvcjlfLG9wJ5qXrHOeEjnxaSP1n7qubdDpLryN4JGdNPV7B1u-2oM3_6QU3IOduKr57z_78DDcLDLIIh-LEcs8jjZ8E2WzrA81F3zJdOUYGi83u2MIZrEGdGC1vWP2tkR069n9rPJ4gaCbWEZ1x7KyYnd-qtl6YXTFNBHdGTHqp2xMocR6xVB26pcHcHX643I4SuISDInlIl8leeFsn3uRC4tQMQjhBbeoHz26VTbkwcqB7Ev0bJ1weW5D3w84D1zr1AQuTZa_h06F1foATBujM0d4Ap3KgXO68IGjMxPwFP2q7BBE2-bKxvzktEzGrWqJaDdq01mKOkuluKXyENKN4LxJ0fG8yPe2U9Wj0abQkDwv_LUdBgr_RZpg0ZWfrbHQgCZlUePxjy_5wDHsjC5_jtX4bHLxCV7Tkyb68TN0Vou1_4IwaGWO4jD_CzDRDBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+convolutional+neural+networks+and+random+forest+for+local+climate+zone+classification+in+mega+urban+areas+using+Landsat+images&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Yoo%2C+Cheolhee&rft.au=Han%2C+Daehyeon&rft.au=Im%2C+Jungho&rft.au=Bechtel%2C+Benjamin&rft.date=2019-11-01&rft.issn=0924-2716&rft.volume=157&rft.spage=155&rft.epage=170&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2019_09_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |