Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images

The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 157; pp. 155 - 170
Main Authors Yoo, Cheolhee, Han, Daehyeon, Im, Jungho, Bechtel, Benjamin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2019.09.009

Cover

Loading…
Abstract The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning.
AbstractList The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning.
Author Yoo, Cheolhee
Im, Jungho
Bechtel, Benjamin
Han, Daehyeon
Author_xml – sequence: 1
  givenname: Cheolhee
  surname: Yoo
  fullname: Yoo, Cheolhee
  organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
– sequence: 2
  givenname: Daehyeon
  orcidid: 0000-0002-1907-8006
  surname: Han
  fullname: Han, Daehyeon
  organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
– sequence: 3
  givenname: Jungho
  orcidid: 0000-0002-4506-6877
  surname: Im
  fullname: Im, Jungho
  email: ersgis@unist.ac.kr
  organization: School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
– sequence: 4
  givenname: Benjamin
  orcidid: 0000-0001-8802-7934
  surname: Bechtel
  fullname: Bechtel, Benjamin
  organization: Department of Geography, Ruhr-University Bochum, Bochum 44801, Germany
BookMark eNqNUU2PFCEQJWZNnF39DXL00iM0DDQHD5uJX8kke9EzYehiwtgNI0XvRv_F_mOZHePBiyZV9ULy3ktR75pcpZyAkNecrTnj6u1xHfFU8Nh63TNu1qwVM8_Iig-674ZebK7Iipledr3m6gW5RjwyxvhGDSvyuM3zyZWIOdE91AeARH1O93laaszJTTTBUp6gPuTyDalLIy1t5JmGXADrGeiUfSP5Kc6uAv3ZVmwPhxhD9O7sRGOiMxwcXcreJeoKOKQLxnSgu-aGrtKmPQC-JM-DmxBe_cYb8vXD-y_bT93u7uPn7e2u81KJ2onN6LUEJZTnwgSlQElvOAezUT6I4M1gtOm1HNUohA8aBimDdI7tgzR7Lm7Im4vvqeTvS_uHnSN6mCaXIC9o-4Fzo7URslH1hepLRiwQ7Km0ZcsPy5k9h2CP9k8I9hyCZa2Yacp3fyl9rE_3qMXF6T_0txc9tEvcRygWfYTkYYwFfLVjjv_0-AU58bBe
CitedBy_id crossref_primary_10_1016_j_rsase_2022_100856
crossref_primary_10_3390_rs15102599
crossref_primary_10_1002_2475_8876_12303
crossref_primary_10_3390_rs12071097
crossref_primary_10_1109_JSTARS_2021_3103754
crossref_primary_10_3390_rs12060999
crossref_primary_10_3390_rs13153000
crossref_primary_10_1109_LGRS_2023_3282973
crossref_primary_10_1007_s00704_024_04920_y
crossref_primary_10_3390_ijgi11080420
crossref_primary_10_1016_j_uclim_2024_102129
crossref_primary_10_1016_j_isprsjprs_2023_03_018
crossref_primary_10_1007_s43762_022_00046_x
crossref_primary_10_1016_j_isprsjprs_2024_08_004
crossref_primary_10_1016_j_enbuild_2024_115255
crossref_primary_10_1016_j_jag_2022_102827
crossref_primary_10_1038_s43247_024_01375_x
crossref_primary_10_3389_frsc_2023_1084573
crossref_primary_10_1109_TGRS_2023_3336357
crossref_primary_10_1080_15481603_2023_2209970
crossref_primary_10_1016_j_rse_2020_112096
crossref_primary_10_1007_s11252_022_01321_9
crossref_primary_10_1016_j_rsase_2022_100740
crossref_primary_10_1016_j_jag_2023_103358
crossref_primary_10_1117_1_JRS_16_034521
crossref_primary_10_3390_ijgi10040260
crossref_primary_10_1016_j_scs_2022_104166
crossref_primary_10_1080_15481603_2025_2473158
crossref_primary_10_1080_15481603_2022_2143872
crossref_primary_10_1016_j_cities_2024_104999
crossref_primary_10_1002_joc_7932
crossref_primary_10_1007_s12524_024_01950_x
crossref_primary_10_1016_j_oceaneng_2024_119440
crossref_primary_10_1109_JSTARS_2021_3053067
crossref_primary_10_1364_AO_420673
crossref_primary_10_3390_s22114116
crossref_primary_10_1016_j_srs_2024_100188
crossref_primary_10_1007_s41748_023_00341_5
crossref_primary_10_1371_journal_pone_0288647
crossref_primary_10_1016_j_uclim_2022_101391
crossref_primary_10_1016_j_rse_2023_113573
crossref_primary_10_1016_j_ufug_2024_128239
crossref_primary_10_1016_j_ejrh_2024_101759
crossref_primary_10_3390_rs15123111
crossref_primary_10_3390_rs14215564
crossref_primary_10_1007_s10661_023_11768_8
crossref_primary_10_1016_j_uclim_2023_101770
crossref_primary_10_1016_j_uclim_2024_102148
crossref_primary_10_37394_23207_2020_17_26
crossref_primary_10_1109_JSTARS_2024_3435853
crossref_primary_10_1016_j_apor_2024_104007
crossref_primary_10_1109_JSTARS_2022_3226524
crossref_primary_10_3389_fpls_2023_1117869
crossref_primary_10_1016_j_wace_2022_100410
crossref_primary_10_3390_rs13101902
crossref_primary_10_1038_s41597_020_00605_z
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_2139_ssrn_4132138
crossref_primary_10_3390_ijgi9020114
crossref_primary_10_1016_j_ecolind_2024_111669
crossref_primary_10_1016_j_jag_2021_102482
crossref_primary_10_1016_j_scs_2021_102980
crossref_primary_10_3390_land13091479
crossref_primary_10_3390_s22176407
crossref_primary_10_1016_j_uclim_2023_101787
crossref_primary_10_1016_j_uclim_2024_101842
crossref_primary_10_3390_rs13152986
crossref_primary_10_1080_01431161_2023_2203344
crossref_primary_10_3390_rs12091398
crossref_primary_10_1016_j_jag_2023_103408
crossref_primary_10_3390_rs12213552
crossref_primary_10_1016_j_gloplacha_2025_104696
crossref_primary_10_1016_j_rsase_2020_100394
crossref_primary_10_3390_rs13122276
crossref_primary_10_1109_TGRS_2024_3414143
crossref_primary_10_1109_JSTARS_2022_3174412
crossref_primary_10_3390_rs13071383
crossref_primary_10_1155_2022_1047309
crossref_primary_10_1016_j_rse_2023_113789
crossref_primary_10_1080_15481603_2023_2271246
crossref_primary_10_1016_j_uclim_2025_102325
crossref_primary_10_1109_JSTARS_2020_2995711
crossref_primary_10_1109_JSTARS_2021_3122509
crossref_primary_10_2139_ssrn_4075474
crossref_primary_10_1080_10095020_2022_2030654
crossref_primary_10_1016_j_rsase_2021_100543
crossref_primary_10_3390_ijgi13020061
crossref_primary_10_1155_2023_1814906
crossref_primary_10_3390_urbansci8040253
crossref_primary_10_3390_rs15041001
crossref_primary_10_1007_s00704_023_04493_2
crossref_primary_10_3389_fmars_2021_736429
crossref_primary_10_3390_su16156656
crossref_primary_10_1016_j_mlwa_2023_100454
crossref_primary_10_1016_j_isprsjprs_2024_12_015
crossref_primary_10_1080_17538947_2024_2409351
crossref_primary_10_1016_j_jlp_2023_105057
crossref_primary_10_1016_j_rse_2022_113271
crossref_primary_10_3390_rs13234922
crossref_primary_10_1007_s00704_024_04888_9
crossref_primary_10_1109_JSTARS_2024_3421284
crossref_primary_10_1016_j_scs_2022_103959
crossref_primary_10_1109_JSTARS_2021_3132394
crossref_primary_10_1016_j_envdev_2024_101084
crossref_primary_10_3390_rs11232828
crossref_primary_10_3390_su13116374
crossref_primary_10_1016_j_buildenv_2021_107879
crossref_primary_10_1109_TGRS_2024_3399048
crossref_primary_10_1007_s12524_024_01887_1
crossref_primary_10_1007_s11769_023_1387_4
crossref_primary_10_1016_j_jag_2021_102577
crossref_primary_10_1016_j_uclim_2023_101455
crossref_primary_10_3390_rs14153594
crossref_primary_10_1016_j_agwat_2023_108302
crossref_primary_10_1016_j_buildenv_2022_109785
crossref_primary_10_3389_fenvs_2021_637455
crossref_primary_10_3390_land10050454
crossref_primary_10_1016_j_scs_2024_105922
crossref_primary_10_1016_j_scs_2021_103228
crossref_primary_10_1109_JSTARS_2023_3308045
crossref_primary_10_1016_j_landurbplan_2021_104187
crossref_primary_10_1016_j_promfg_2021_06_065
crossref_primary_10_1016_j_rse_2021_112794
crossref_primary_10_3390_buildings12101693
crossref_primary_10_1016_j_jclepro_2023_138892
crossref_primary_10_1016_j_jenvman_2023_118697
crossref_primary_10_1016_j_scs_2024_105518
crossref_primary_10_1109_ACCESS_2022_3163535
crossref_primary_10_3390_rs14153744
crossref_primary_10_3390_jmse9030330
crossref_primary_10_1016_j_ecolind_2023_110086
crossref_primary_10_1038_s41597_024_03042_4
crossref_primary_10_1080_15481603_2020_1766768
crossref_primary_10_1016_j_jag_2022_102865
crossref_primary_10_1109_MGRS_2020_2964708
crossref_primary_10_3389_fenvs_2022_867434
crossref_primary_10_5194_tc_14_1083_2020
crossref_primary_10_1016_j_uclim_2023_101500
crossref_primary_10_14358_PERS_24_00001R2
crossref_primary_10_1029_2019EA000740
crossref_primary_10_1016_j_rse_2019_111472
crossref_primary_10_1016_j_isprsjprs_2021_09_015
crossref_primary_10_3390_rs15092361
crossref_primary_10_1007_s12524_024_01958_3
crossref_primary_10_3390_atmos12091146
Cites_doi 10.1016/j.uclim.2017.05.010
10.1364/BOE.9.003049
10.1016/j.isprsjprs.2017.11.021
10.1016/j.scs.2017.01.006
10.1186/1471-2105-15-8
10.1016/j.isprsjprs.2019.05.004
10.3390/rs11010002
10.3390/ijgi6060168
10.1016/j.isprsjprs.2018.01.018
10.1038/323533a0
10.1016/j.ipm.2009.03.002
10.3390/urbansci1020015
10.1016/j.atmosenv.2015.10.094
10.1016/j.isprsjprs.2018.01.021
10.1109/TKDE.2006.17
10.1016/j.compag.2016.12.006
10.1117/1.JRS.12.025010
10.1016/j.nicl.2014.08.023
10.1016/j.snb.2012.11.071
10.1016/S1001-0742(08)60019-4
10.1080/15481603.2013.819161
10.1109/MGRS.2016.2645380
10.1016/j.isprsjprs.2014.09.002
10.1016/j.isprsjprs.2018.01.016
10.1080/15481603.2018.1426091
10.1038/s41598-017-11407-6
10.1016/j.proeng.2016.10.026
10.1016/j.neunet.2014.09.003
10.1023/A:1010933404324
10.1007/s00704-017-2197-3
10.1061/(ASCE)UP.1943-5444.0000346
10.1016/j.isprsjprs.2018.08.005
10.1080/01431161.2017.1353160
10.3390/rs10101572
10.3390/rs10030447
10.1080/15481603.2017.1323377
10.3390/f9050268
10.1016/j.enbuild.2003.12.016
10.1016/j.uclim.2018.11.001
10.1016/j.uclim.2018.10.001
10.1016/j.scs.2018.01.024
10.1016/j.isprsjprs.2017.07.014
10.1080/15481603.2018.1457201
10.3390/cli3020391
10.1080/01431161.2013.810822
10.1016/j.uclim.2018.01.006
10.1016/j.scs.2017.04.003
10.1080/15481603.2017.1302181
10.3390/ijgi4010199
10.5194/hess-11-1633-2007
10.1016/j.isprsjprs.2019.02.006
10.1016/j.isprsjprs.2019.03.015
10.14358/PERS.78.7.729
10.1109/TGRS.2016.2616585
10.3390/rs10040631
10.1016/j.scs.2018.04.018
10.1016/j.rse.2009.08.016
10.1016/j.uclim.2018.04.007
10.1175/BAMS-D-11-00019.1
10.1016/j.isprsjprs.2019.07.007
10.1038/nature14539
10.1016/j.isprsjprs.2018.04.009
ContentType Journal Article
Copyright 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2019.09.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 170
ExternalDocumentID 10_1016_j_isprsjprs_2019_09_009
S0924271619302205
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c463t-35dc74e636c139f66e64c911e956cf3fc98979274d6d33cf7e844f4aa0bf49b13
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 08:32:31 EDT 2025
Tue Jul 01 03:46:42 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 23 02:28:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Random forest
Local climate zone
Convolutional neural networks
Urban climate
Landsat
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-35dc74e636c139f66e64c911e956cf3fc98979274d6d33cf7e844f4aa0bf49b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8802-7934
0000-0002-4506-6877
0000-0002-1907-8006
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271619302205?via%3Dihub
PQID 2811977934
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2811977934
crossref_primary_10_1016_j_isprsjprs_2019_09_009
crossref_citationtrail_10_1016_j_isprsjprs_2019_09_009
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2019_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rahaman, Hassan, Ahmed (b0295) 2017; 6
Wang, Middel, Myint, Kaplan, Brazel, Lukasczyk (b0370) 2018; 141
Ellickson (b0100) 2012; 64
Jeatrakul, Wong, Fung (b0165) 2010
Verdonck, Okujeni, van der Linden, Demuzere, De Wulf, Van Coillie (b0360) 2017; 62
Founda, Santamouris (b0110) 2017; 7
Park, Im, Park, Yoo, Han, Rhee (b0275) 2018; 10
Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., Perez, J.R., 2011. GLOBCOVER 2009-Products description and validation report.
Richardson, Hill, Denesiuk, Fraser (b0300) 2017; 54
Barnes, Morgan, Roberge (b0020) 2001
Athiwaratkun, B., Kang, K., 2015. Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313.
Vedaldi, Lenc (b0355) 2015
Awrangjeb, Zhang, Fraser (b0010) 2012; 78
Giridharan, Ganesan, Lau (b0135) 2004; 36
Fu, Ma, Li, Johnson (b0120) 2018; 12
Bechtel, Alexander, Böhner, Ching, Conrad, Feddema, Mills, See, Stewart (b0030) 2015; 4
Wurm, Stark, Zhu, Weigand, Taubenböck (b0380) 2019; 150
Yue, Yang, Li, Hu, Zhang, Li (b0415) 2019; 156
Soltau, Saon, Sainath (b0335) 2014
Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (b0115) 2010; 114
Zhang, Tang (b0425) 2019; 11
Gilbertson, Kemp, Van Niekerk (b0125) 2017; 134
Rizwan, Dennis, Chunho (b0305) 2008; 20
Yokoya, Ghamisi, Xia, Sukhanov, Heremans, Tankoyeu, Bechtel, Le Saux, Moser, Tuia (b0400) 2018; 11
Han-qiu, Ben-qing (b0155) 2004; 16
Glorot, Bordes, Bengio (b0140) 2011
Yu, Wu, Luo, Ren (b0410) 2017; 54
Liu, Abd-Elrahman, Morton, Wilhelm (b0240) 2018; 55
de Colstoun, E.C.B., Huang, C., Wang, P., Tilton, J.C., Tan, B., Phillips, J., Niemczura, S., Ling, P.-Y., Wolfe, R., 2017. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset From Landsat.
Qiu, Schmitt, Mou, Ghamisi, Zhu (b0290) 2018; 10
Chan, Wang, Lang (b0070) 2016; 142
Yadav, Sharma, Peshin, Masiwal (b0395) 2017; 32
Hamwood, Alonso-Caneiro, Read, Vincent, Collins (b0150) 2018; 9
Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.
Zhou, Liu (b0440) 2006; 18
Kim, Lee, Han, Shin, Im, Lee, Quackenbush, Gu (b0180) 2018; 11
Cai, Ren, Xu, Lau, Wang (b0065) 2018; 24
LeCun, Bengio, Hinton (b0220) 2015; 521
Stewart, Oke (b0340) 2012; 93
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Beck, Straub, Breitner, Cyrys, Philipp, Rathmann, Schneider, Wolf, Jacobeit (b0050) 2018; 25
Bechtel, Alexander, Beck, Böhner, Brousse, Ching, Demuzere, Fonte, Gál, Hidalgo (b0025) 2019; 27
Bechtel, Demuzere, Sismanidis, Fenner, Brousse, Beck, Van Coillie, Conrad, Keramitsoglou, Middel (b0040) 2017; 1
Bechtel, See, Mills, Foley (b0045) 2016; 9
Lee, Im, Kim, Quackenbush (b0225) 2018; 9
Yoo, Im, Park, Quackenbush (b0405) 2018; 137
Khoshgoftaar, Golawala, Van Hulse (b0175) 2007
Chen, Chen, Liao, Cao, Chen, Chen, He, Han, Peng, Lu (b0075) 2015; 103
Breiman (b0060) 2001; 45
Fallmann, Forkel, Emeis (b0105) 2016; 125
Schmidhuber (b0320) 2015; 61
Cohen (b0080) 2015; 3
Liu, Wang, Wang, Li (b0235) 2013; 177
Mathew, Khandelwal, Kaul (b0255) 2018; 40
Koppel, Zalite, Voormansik, Jagdhuber (b0195) 2017; 38
Wang, Wu, Coates, Ng (b0375) 2012
Ziaul, Pal (b0445) 2018; 24
Xu, Guan, Casler, Peng, Wang (b0390) 2018; 144
Zhou, Chellappa (b0435) 1988
Bechtel, Daneke (b0035) 2012; 5
Rumerlhar (b0310) 1986; 323
Liu, Fang, Xu, Zhang, Luan (b0245) 2018; 133
Qiu, Mou, Schmitt, Zhu (b0285) 2019; 154
Kim, Lee, Im (b0185) 2018; 55
Sukhanov, Tankoyeu, Louradour, Heremans, Trofimova, Debes (b0345) 2017
Kursa (b0205) 2014; 15
Volpi, Tuia (b0365) 2016; 55
Krizhevsky, Sutskever, Hinton (b0200) 2012
Xing, Wang, Yang, Jiao (b0385) 2018; 145
Li, Im, Beier (b0230) 2013; 50
Min, Lee, Yoon (b0260) 2017; 18
Demuzere, Bechtel, Mills (b0095) 2019; 27
Mohammadimanesh, Salehi, Mahdianpari, Gill, Molinier (b0265) 2019; 151
Peel, Finlayson, McMahon (b0280) 2007; 11
Lebedev, Westman, Van Westen, Kramberger, Lundervold, Aarsland, Soininen, Kłoszewska, Mecocci, Tsolaki (b0215) 2014; 6
Marcos, Volpi, Kellenberger, Tuia (b0250) 2018; 145
Paoletti, Haut, Plaza, Plaza (b0270) 2018; 145
Giridharan, Emmanuel (b0130) 2018; 40
Kaloustian, Bechtel (b0170) 2016; 169
Salata, Golasi, Petitti, de Lieto Vollaro, Coppi, de Lieto Vollaro (b0315) 2017; 30
Goodfellow, Bengio, Courville, Bengio (b0145) 2016
Sokolova, Lapalme (b0330) 2009; 45
Tuia, Moser, Le Saux, Bechtel, See (b0350) 2017; 5
Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (b0420) 2018; 140
Danylo, See, Bechtel, Schepaschenko, Fritz (b0085) 2016; 9
Zhen, Quackenbush, Stehman, Zhang (b0430) 2013; 34
Sim, Im, Park, Park, Ahn, Chan (b0325) 2018; 10
Lauwaet, Hooyberghs, Maiheu, Lefebvre, Driesen, Van Looy, De Ridder (b0210) 2015; 3
Huang, Li, Change Loy, Tang (b0160) 2016
Lebedev (10.1016/j.isprsjprs.2019.09.009_b0215) 2014; 6
Stewart (10.1016/j.isprsjprs.2019.09.009_b0340) 2012; 93
Yu (10.1016/j.isprsjprs.2019.09.009_b0410) 2017; 54
Beck (10.1016/j.isprsjprs.2019.09.009_b0050) 2018; 25
LeCun (10.1016/j.isprsjprs.2019.09.009_b0220) 2015; 521
Sokolova (10.1016/j.isprsjprs.2019.09.009_b0330) 2009; 45
10.1016/j.isprsjprs.2019.09.009_b0005
Min (10.1016/j.isprsjprs.2019.09.009_b0260) 2017; 18
Han-qiu (10.1016/j.isprsjprs.2019.09.009_b0155) 2004; 16
Marcos (10.1016/j.isprsjprs.2019.09.009_b0250) 2018; 145
Zhang (10.1016/j.isprsjprs.2019.09.009_b0420) 2018; 140
Bechtel (10.1016/j.isprsjprs.2019.09.009_b0040) 2017; 1
Yadav (10.1016/j.isprsjprs.2019.09.009_b0395) 2017; 32
Richardson (10.1016/j.isprsjprs.2019.09.009_b0300) 2017; 54
Breiman (10.1016/j.isprsjprs.2019.09.009_b0060) 2001; 45
Jeatrakul (10.1016/j.isprsjprs.2019.09.009_b0165) 2010
Awrangjeb (10.1016/j.isprsjprs.2019.09.009_b0010) 2012; 78
10.1016/j.isprsjprs.2019.09.009_b0090
Fallmann (10.1016/j.isprsjprs.2019.09.009_b0105) 2016; 125
Volpi (10.1016/j.isprsjprs.2019.09.009_b0365) 2016; 55
10.1016/j.isprsjprs.2019.09.009_b0055
Xing (10.1016/j.isprsjprs.2019.09.009_b0385) 2018; 145
Danylo (10.1016/j.isprsjprs.2019.09.009_b0085) 2016; 9
Chan (10.1016/j.isprsjprs.2019.09.009_b0070) 2016; 142
10.1016/j.isprsjprs.2019.09.009_b0015
Mohammadimanesh (10.1016/j.isprsjprs.2019.09.009_b0265) 2019; 151
Rahaman (10.1016/j.isprsjprs.2019.09.009_b0295) 2017; 6
Ellickson (10.1016/j.isprsjprs.2019.09.009_b0100) 2012; 64
Cai (10.1016/j.isprsjprs.2019.09.009_b0065) 2018; 24
Huang (10.1016/j.isprsjprs.2019.09.009_b0160) 2016
Kursa (10.1016/j.isprsjprs.2019.09.009_b0205) 2014; 15
Wang (10.1016/j.isprsjprs.2019.09.009_b0375) 2012
Gilbertson (10.1016/j.isprsjprs.2019.09.009_b0125) 2017; 134
Tuia (10.1016/j.isprsjprs.2019.09.009_b0350) 2017; 5
Kim (10.1016/j.isprsjprs.2019.09.009_b0180) 2018; 11
Paoletti (10.1016/j.isprsjprs.2019.09.009_b0270) 2018; 145
Cohen (10.1016/j.isprsjprs.2019.09.009_b0080) 2015; 3
Lee (10.1016/j.isprsjprs.2019.09.009_b0225) 2018; 9
Zhen (10.1016/j.isprsjprs.2019.09.009_b0430) 2013; 34
Chen (10.1016/j.isprsjprs.2019.09.009_b0075) 2015; 103
Hamwood (10.1016/j.isprsjprs.2019.09.009_b0150) 2018; 9
Krizhevsky (10.1016/j.isprsjprs.2019.09.009_b0200) 2012
Peel (10.1016/j.isprsjprs.2019.09.009_b0280) 2007; 11
Vedaldi (10.1016/j.isprsjprs.2019.09.009_b0355) 2015
Schmidhuber (10.1016/j.isprsjprs.2019.09.009_b0320) 2015; 61
Liu (10.1016/j.isprsjprs.2019.09.009_b0240) 2018; 55
Mathew (10.1016/j.isprsjprs.2019.09.009_b0255) 2018; 40
Sim (10.1016/j.isprsjprs.2019.09.009_b0325) 2018; 10
Qiu (10.1016/j.isprsjprs.2019.09.009_b0285) 2019; 154
Goodfellow (10.1016/j.isprsjprs.2019.09.009_b0145) 2016
Lauwaet (10.1016/j.isprsjprs.2019.09.009_b0210) 2015; 3
Wurm (10.1016/j.isprsjprs.2019.09.009_b0380) 2019; 150
Giridharan (10.1016/j.isprsjprs.2019.09.009_b0130) 2018; 40
Wang (10.1016/j.isprsjprs.2019.09.009_b0370) 2018; 141
Yokoya (10.1016/j.isprsjprs.2019.09.009_b0400) 2018; 11
Verdonck (10.1016/j.isprsjprs.2019.09.009_b0360) 2017; 62
10.1016/j.isprsjprs.2019.09.009_b0190
Fu (10.1016/j.isprsjprs.2019.09.009_b0120) 2018; 12
Barnes (10.1016/j.isprsjprs.2019.09.009_b0020) 2001
Khoshgoftaar (10.1016/j.isprsjprs.2019.09.009_b0175) 2007
Liu (10.1016/j.isprsjprs.2019.09.009_b0245) 2018; 133
Qiu (10.1016/j.isprsjprs.2019.09.009_b0290) 2018; 10
Salata (10.1016/j.isprsjprs.2019.09.009_b0315) 2017; 30
Bechtel (10.1016/j.isprsjprs.2019.09.009_b0045) 2016; 9
Friedl (10.1016/j.isprsjprs.2019.09.009_b0115) 2010; 114
Yoo (10.1016/j.isprsjprs.2019.09.009_b0405) 2018; 137
Sukhanov (10.1016/j.isprsjprs.2019.09.009_b0345) 2017
Bechtel (10.1016/j.isprsjprs.2019.09.009_b0025) 2019; 27
Founda (10.1016/j.isprsjprs.2019.09.009_b0110) 2017; 7
Demuzere (10.1016/j.isprsjprs.2019.09.009_b0095) 2019; 27
Xu (10.1016/j.isprsjprs.2019.09.009_b0390) 2018; 144
Zhou (10.1016/j.isprsjprs.2019.09.009_b0435) 1988
Park (10.1016/j.isprsjprs.2019.09.009_b0275) 2018; 10
Rumerlhar (10.1016/j.isprsjprs.2019.09.009_b0310) 1986; 323
Zhou (10.1016/j.isprsjprs.2019.09.009_b0440) 2006; 18
Kim (10.1016/j.isprsjprs.2019.09.009_b0185) 2018; 55
Li (10.1016/j.isprsjprs.2019.09.009_b0230) 2013; 50
Zhang (10.1016/j.isprsjprs.2019.09.009_b0425) 2019; 11
Bechtel (10.1016/j.isprsjprs.2019.09.009_b0030) 2015; 4
Kaloustian (10.1016/j.isprsjprs.2019.09.009_b0170) 2016; 169
Soltau (10.1016/j.isprsjprs.2019.09.009_b0335) 2014
Ziaul (10.1016/j.isprsjprs.2019.09.009_b0445) 2018; 24
Bechtel (10.1016/j.isprsjprs.2019.09.009_b0035) 2012; 5
Giridharan (10.1016/j.isprsjprs.2019.09.009_b0135) 2004; 36
Glorot (10.1016/j.isprsjprs.2019.09.009_b0140) 2011
Koppel (10.1016/j.isprsjprs.2019.09.009_b0195) 2017; 38
Yue (10.1016/j.isprsjprs.2019.09.009_b0415) 2019; 156
Liu (10.1016/j.isprsjprs.2019.09.009_b0235) 2013; 177
Rizwan (10.1016/j.isprsjprs.2019.09.009_b0305) 2008; 20
References_xml – volume: 10
  start-page: 447
  year: 2018
  ident: b0275
  article-title: Classification and mapping of paddy rice by combining landsat and SAR time series data
  publication-title: Remote Sens-Basel
– volume: 134
  start-page: 151
  year: 2017
  end-page: 159
  ident: b0125
  article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques
  publication-title: Comput. Electron. Agric.
– volume: 3
  start-page: 391
  year: 2015
  end-page: 415
  ident: b0210
  article-title: Detailed Urban Heat Island projections for cities worldwide: dynamical downscaling CMIP5 global climate models
  publication-title: Climate
– volume: 154
  start-page: 151
  year: 2019
  end-page: 162
  ident: b0285
  article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 137
  start-page: 149
  year: 2018
  end-page: 162
  ident: b0405
  article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data
  publication-title: ISPRS J. Photogramm.
– volume: 133
  start-page: 473
  year: 2018
  end-page: 488
  ident: b0245
  article-title: Assessment of surface urban heat island across China’s three main urban agglomerations
  publication-title: Theor. Appl. Climatol.
– volume: 10
  start-page: 1572
  year: 2018
  ident: b0290
  article-title: Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets
  publication-title: Remote Sens-Basel
– volume: 7
  start-page: 10973
  year: 2017
  ident: b0110
  article-title: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012)
  publication-title: Sci. Rep.
– volume: 54
  start-page: 741
  year: 2017
  end-page: 758
  ident: b0410
  article-title: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework
  publication-title: Gisci. Remote Sens.
– volume: 18
  start-page: 63
  year: 2006
  end-page: 77
  ident: b0440
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 24
  start-page: 34
  year: 2018
  end-page: 50
  ident: b0445
  article-title: Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings
  publication-title: Urban Clim.
– volume: 9
  start-page: 3049
  year: 2018
  end-page: 3066
  ident: b0150
  article-title: Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers
  publication-title: Biomed. Opt. Express
– volume: 55
  start-page: 881
  year: 2016
  end-page: 893
  ident: b0365
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 142
  start-page: 05016007
  year: 2016
  ident: b0070
  article-title: Comprehensive Evaluation Framework for Sustainable Land Use: Case Study of Hong Kong in 2000–2010
  publication-title: J. Urban Plann. Dev.
– volume: 169
  start-page: 216
  year: 2016
  end-page: 223
  ident: b0170
  article-title: Local climatic zoning and urban heat island in Beirut
  publication-title: Procedia Eng.
– volume: 6
  start-page: 115
  year: 2014
  end-page: 125
  ident: b0215
  article-title: Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness
  publication-title: NeuroImage: Clin.
– volume: 4
  start-page: 199
  year: 2015
  end-page: 219
  ident: b0030
  article-title: Mapping local climate zones for a worldwide database of the form and function of cities
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 141
  start-page: 59
  year: 2018
  end-page: 71
  ident: b0370
  article-title: Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada
  publication-title: ISPRS J. Photogramm.
– volume: 140
  start-page: 133
  year: 2018
  end-page: 144
  ident: b0420
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm.
– volume: 15
  start-page: 8
  year: 2014
  ident: b0205
  article-title: Robustness of Random Forest-based gene selection methods
  publication-title: BMC Bioinf.
– volume: 10
  start-page: 631
  year: 2018
  ident: b0325
  article-title: Icing detection over East Asia from geostationary satellite data using machine learning approaches
  publication-title: Remote Sens-Basel
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b0320
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural networks
– volume: 93
  start-page: 1879
  year: 2012
  end-page: 1900
  ident: b0340
  article-title: Local climate zones for urban temperature studies
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 145
  start-page: 120
  year: 2018
  end-page: 147
  ident: b0270
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm.
– reference: de Colstoun, E.C.B., Huang, C., Wang, P., Tilton, J.C., Tan, B., Phillips, J., Niemczura, S., Ling, P.-Y., Wolfe, R., 2017. Documentation for the Global Man-made Impervious Surface (GMIS) Dataset From Landsat.
– volume: 114
  start-page: 168
  year: 2010
  end-page: 182
  ident: b0115
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 152
  year: 2018
  end-page: 166
  ident: b0050
  article-title: Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions
  publication-title: Urban Clim.
– reference: Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., Perez, J.R., 2011. GLOBCOVER 2009-Products description and validation report.
– volume: 9
  start-page: 268
  year: 2018
  ident: b0225
  article-title: Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data
  publication-title: Forests
– start-page: 3304
  year: 2012
  end-page: 3308
  ident: b0375
  article-title: End-to-end text recognition with convolutional neural networks
  publication-title: Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE
– start-page: 1201
  year: 2017
  end-page: 1204
  ident: b0345
  article-title: Multilevel ensembling for local climate zones classification
  publication-title: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE
– volume: 11
  start-page: 1363
  year: 2018
  end-page: 1377
  ident: b0400
  article-title: Open data for global multimodal land use classification: outcome of the 2017 IEEE GRSS Data Fusion Contest
  publication-title: IEEE J-Stars
– reference: Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.
– volume: 103
  start-page: 7
  year: 2015
  end-page: 27
  ident: b0075
  article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0220
  article-title: Deep learning
  publication-title: Nature
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  ident: b0280
  article-title: Updated world map of the Koppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: b0330
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inform. Process. Manage.
– volume: 50
  start-page: 361
  year: 2013
  end-page: 384
  ident: b0230
  article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
  publication-title: Gisci. Remote Sens.
– volume: 30
  start-page: 79
  year: 2017
  end-page: 96
  ident: b0315
  article-title: Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment
  publication-title: Sustain. Cities Soc.
– volume: 145
  start-page: 165
  year: 2018
  end-page: 183
  ident: b0385
  article-title: Pan-sharpening via deep metric learning
  publication-title: ISPRS J. Photogramm.
– volume: 54
  start-page: 573
  year: 2017
  end-page: 591
  ident: b0300
  article-title: A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada)
  publication-title: Gisci. Remote Sens.
– volume: 11
  start-page: 2
  year: 2019
  ident: b0425
  article-title: A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples
  publication-title: Remote Sens-Basel
– volume: 145
  start-page: 96
  year: 2018
  end-page: 107
  ident: b0250
  article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models
  publication-title: ISPRS J. Photogramm.
– start-page: 315
  year: 2011
  end-page: 323
  ident: b0140
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics
– start-page: 5375
  year: 2016
  end-page: 5384
  ident: b0160
  article-title: Learning deep representation for imbalanced classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 156
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0415
  article-title: TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 27
  start-page: 24
  year: 2019
  end-page: 45
  ident: b0025
  article-title: Generating WUDAPT Level 0 data–Current status of production and evaluation
  publication-title: Urban Clim.
– volume: 151
  start-page: 223
  year: 2019
  end-page: 236
  ident: b0265
  article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 5
  start-page: 1191
  year: 2012
  ident: b0035
  article-title: Classification of local climate zones based on multiple earth observation data
  publication-title: IEEE J-Stars
– volume: 144
  start-page: 423
  year: 2018
  end-page: 434
  ident: b0390
  article-title: A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery
  publication-title: ISPRS J. Photogramm.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0310
  article-title: Learning representation by back-propagating errors
  publication-title: Nature
– volume: 5
  start-page: 70
  year: 2017
  end-page: 73
  ident: b0350
  article-title: 2017 IEEE GRSS data fusion contest: open data for global multimodal land use classification [Technical Committees]
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 16
  start-page: 276
  year: 2004
  end-page: 281
  ident: b0155
  article-title: Remote sensing of the urban heat island and its changes in Xiamen City of SE China
  publication-title: J. Environ. Sci.
– volume: 32
  start-page: 202
  year: 2017
  end-page: 211
  ident: b0395
  article-title: Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi
  publication-title: Sustain. Cities Soc.
– start-page: 71
  year: 1988
  end-page: 78
  ident: b0435
  article-title: Computation of optical flow using a neural network
  publication-title: IEEE International Conference on Neural Networks
– volume: 3
  start-page: 4
  year: 2015
  end-page: 7
  ident: b0080
  article-title: Urbanization, City growth, and the New United Nations development agenda
  publication-title: Cornerstone
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0060
  article-title: Random forests
  publication-title: Machine Learn.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0200
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 4604
  year: 2018
  end-page: 4617
  ident: b0180
  article-title: Convolutional neural network-based land cover classification using 2-D spectral reflectance curve graphs with multitemporal satellite imagery
  publication-title: IEEE J-Stars
– start-page: 152
  year: 2010
  end-page: 159
  ident: b0165
  article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
  publication-title: International Conference on Neural Information Processing
– volume: 1
  start-page: 15
  year: 2017
  ident: b0040
  article-title: Quality of crowdsourced data on urban morphology—The human influence experiment (HUMINEX)
  publication-title: Urban Sci.
– volume: 78
  start-page: 729
  year: 2012
  end-page: 745
  ident: b0010
  article-title: Building detection in complex scenes thorough effective separation of buildings from trees
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 20
  start-page: 120
  year: 2008
  end-page: 128
  ident: b0305
  article-title: A review on the generation, determination and mitigation of Urban Heat Island
  publication-title: J. Environ. Sci.
– volume: 64
  start-page: 463
  year: 2012
  ident: b0100
  article-title: The law and economics of street layouts: How a grid pattern benefits a downtown
  publication-title: Ala. L. Rev.
– start-page: 689
  year: 2015
  end-page: 692
  ident: b0355
  article-title: Matconvnet: convolutional neural networks for matlab
  publication-title: Proceedings of the 23rd ACM International Conference on Multimedia. ACM
– volume: 12
  start-page: 025010
  year: 2018
  ident: b0120
  article-title: Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery
  publication-title: J. Appl. Remote Sens.
– year: 2001
  ident: b0020
  article-title: Impervious surfaces and the quality of natural and built environments
– start-page: 5572
  year: 2014
  end-page: 5576
  ident: b0335
  article-title: Joint training of convolutional and non-convolutional neural networks
  publication-title: ICASSP
– volume: 34
  start-page: 6914
  year: 2013
  end-page: 6930
  ident: b0430
  article-title: Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification
  publication-title: Int. J. Remote Sens.
– volume: 55
  start-page: 763
  year: 2018
  end-page: 792
  ident: b0185
  article-title: Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data
  publication-title: Gisci. Remote Sens.
– volume: 38
  start-page: 6298
  year: 2017
  end-page: 6318
  ident: b0195
  article-title: Sensitivity of Sentinel-1 backscatter to characteristics of buildings
  publication-title: Int. J. Remote Sens.
– reference: Athiwaratkun, B., Kang, K., 2015. Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313.
– volume: 125
  start-page: 199
  year: 2016
  end-page: 211
  ident: b0105
  article-title: Secondary effects of urban heat island mitigation measures on air quality
  publication-title: Atmos. Environ.
– volume: 62
  start-page: 102
  year: 2017
  end-page: 113
  ident: b0360
  article-title: Influence of neighbourhood information on ‘local climate zone’mapping in heterogeneous cities
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 310
  year: 2007
  end-page: 317
  ident: b0175
  article-title: An empirical study of learning from imbalanced data using random forest, Tools with Artificial Intelligence, 2007. ICTAI 2007
  publication-title: 19th IEEE International Conference on. IEEE
– year: 2016
  ident: b0145
  article-title: Deep Learning
– volume: 18
  start-page: 851
  year: 2017
  end-page: 869
  ident: b0260
  article-title: Deep learning in bioinformatics
  publication-title: Briefings Bioinf.
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– volume: 9
  start-page: 3097
  year: 2016
  end-page: 3105
  ident: b0045
  article-title: Classification of local climate zones using SAR and multispectral data in an arid environment
  publication-title: IEEE J-Stars
– volume: 55
  start-page: 243
  year: 2018
  end-page: 264
  ident: b0240
  article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
  publication-title: Gisci. Remote Sens.
– volume: 24
  start-page: 485
  year: 2018
  end-page: 502
  ident: b0065
  article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China
  publication-title: Urban Clim.
– volume: 177
  start-page: 970
  year: 2013
  end-page: 980
  ident: b0235
  article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar
  publication-title: Sens. Actuat. B
– volume: 150
  start-page: 59
  year: 2019
  end-page: 69
  ident: b0380
  article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 40
  start-page: 677
  year: 2018
  end-page: 687
  ident: b0130
  article-title: The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review
  publication-title: Sustain. Cities Soc.
– volume: 27
  start-page: 46
  year: 2019
  end-page: 63
  ident: b0095
  article-title: Global transferability of local climate zone models
  publication-title: Urban Clim.
– volume: 6
  start-page: 168
  year: 2017
  ident: b0295
  article-title: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 40
  start-page: 484
  year: 2018
  end-page: 500
  ident: b0255
  article-title: Investigating spatio-temporal surface urban heat island growth over Jaipur city using geospatial techniques
  publication-title: Sustain. Cities Soc.
– volume: 36
  start-page: 525
  year: 2004
  end-page: 534
  ident: b0135
  article-title: Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong
  publication-title: Energy Build.
– volume: 9
  start-page: 1841
  year: 2016
  end-page: 1853
  ident: b0085
  article-title: Contributing to WUDAPT: a local climate zone classification of two cities in Ukraine
  publication-title: IEEE J-Stars
– volume: 24
  start-page: 485
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0065
  article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2017.05.010
– volume: 9
  start-page: 3049
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0150
  article-title: Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.003049
– ident: 10.1016/j.isprsjprs.2019.09.009_b0015
– volume: 145
  start-page: 120
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0270
  article-title: A new deep convolutional neural network for fast hyperspectral image classification
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2017.11.021
– volume: 30
  start-page: 79
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0315
  article-title: Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.01.006
– volume: 15
  start-page: 8
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.09.009_b0205
  article-title: Robustness of Random Forest-based gene selection methods
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-15-8
– year: 2001
  ident: 10.1016/j.isprsjprs.2019.09.009_b0020
– start-page: 310
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.09.009_b0175
  article-title: An empirical study of learning from imbalanced data using random forest, Tools with Artificial Intelligence, 2007. ICTAI 2007
– volume: 154
  start-page: 151
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0285
  article-title: Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.05.004
– volume: 11
  start-page: 2
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0425
  article-title: A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples
  publication-title: Remote Sens-Basel
  doi: 10.3390/rs11010002
– volume: 62
  start-page: 102
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0360
  article-title: Influence of neighbourhood information on ‘local climate zone’mapping in heterogeneous cities
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: 168
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0295
  article-title: Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6060168
– volume: 137
  start-page: 149
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0405
  article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.01.018
– volume: 3
  start-page: 4
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0080
  article-title: Urbanization, City growth, and the New United Nations development agenda
  publication-title: Cornerstone
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.isprsjprs.2019.09.009_b0310
  article-title: Learning representation by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 45
  start-page: 427
  year: 2009
  ident: 10.1016/j.isprsjprs.2019.09.009_b0330
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inform. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– ident: 10.1016/j.isprsjprs.2019.09.009_b0005
– volume: 5
  start-page: 1191
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0035
  article-title: Classification of local climate zones based on multiple earth observation data
  publication-title: IEEE J-Stars
– volume: 1
  start-page: 15
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0040
  article-title: Quality of crowdsourced data on urban morphology—The human influence experiment (HUMINEX)
  publication-title: Urban Sci.
  doi: 10.3390/urbansci1020015
– volume: 125
  start-page: 199
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0105
  article-title: Secondary effects of urban heat island mitigation measures on air quality
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.10.094
– volume: 145
  start-page: 96
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0250
  article-title: Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.01.021
– volume: 18
  start-page: 851
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0260
  article-title: Deep learning in bioinformatics
  publication-title: Briefings Bioinf.
– volume: 18
  start-page: 63
  year: 2006
  ident: 10.1016/j.isprsjprs.2019.09.009_b0440
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.17
– volume: 134
  start-page: 151
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0125
  article-title: Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.006
– start-page: 689
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0355
  article-title: Matconvnet: convolutional neural networks for matlab
– volume: 9
  start-page: 1841
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0085
  article-title: Contributing to WUDAPT: a local climate zone classification of two cities in Ukraine
  publication-title: IEEE J-Stars
– volume: 12
  start-page: 025010
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0120
  article-title: Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.025010
– volume: 6
  start-page: 115
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.09.009_b0215
  article-title: Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.08.023
– volume: 177
  start-page: 970
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.09.009_b0235
  article-title: Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: application to the recognition of orange beverage and Chinese vinegar
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2012.11.071
– volume: 20
  start-page: 120
  year: 2008
  ident: 10.1016/j.isprsjprs.2019.09.009_b0305
  article-title: A review on the generation, determination and mitigation of Urban Heat Island
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)60019-4
– volume: 50
  start-page: 361
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.09.009_b0230
  article-title: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2013.819161
– volume: 5
  start-page: 70
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0350
  article-title: 2017 IEEE GRSS data fusion contest: open data for global multimodal land use classification [Technical Committees]
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2645380
– volume: 103
  start-page: 7
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0075
  article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2014.09.002
– volume: 145
  start-page: 165
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0385
  article-title: Pan-sharpening via deep metric learning
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.01.016
– volume: 55
  start-page: 243
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0240
  article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2018.1426091
– volume: 11
  start-page: 1363
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0400
  article-title: Open data for global multimodal land use classification: outcome of the 2017 IEEE GRSS Data Fusion Contest
  publication-title: IEEE J-Stars
– start-page: 5375
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0160
  article-title: Learning deep representation for imbalanced classification
– start-page: 3304
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0375
  article-title: End-to-end text recognition with convolutional neural networks
– volume: 7
  start-page: 10973
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0110
  article-title: Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11407-6
– start-page: 315
  year: 2011
  ident: 10.1016/j.isprsjprs.2019.09.009_b0140
  article-title: Deep sparse rectifier neural networks
– volume: 169
  start-page: 216
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0170
  article-title: Local climatic zoning and urban heat island in Beirut
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.10.026
– ident: 10.1016/j.isprsjprs.2019.09.009_b0190
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0320
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.isprsjprs.2019.09.009_b0060
  article-title: Random forests
  publication-title: Machine Learn.
  doi: 10.1023/A:1010933404324
– year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0145
– volume: 133
  start-page: 473
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0245
  article-title: Assessment of surface urban heat island across China’s three main urban agglomerations
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2197-3
– start-page: 5572
  year: 2014
  ident: 10.1016/j.isprsjprs.2019.09.009_b0335
  article-title: Joint training of convolutional and non-convolutional neural networks
  publication-title: ICASSP
– volume: 142
  start-page: 05016007
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0070
  article-title: Comprehensive Evaluation Framework for Sustainable Land Use: Case Study of Hong Kong in 2000–2010
  publication-title: J. Urban Plann. Dev.
  doi: 10.1061/(ASCE)UP.1943-5444.0000346
– volume: 144
  start-page: 423
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0390
  article-title: A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.08.005
– volume: 38
  start-page: 6298
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0195
  article-title: Sensitivity of Sentinel-1 backscatter to characteristics of buildings
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1353160
– volume: 10
  start-page: 1572
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0290
  article-title: Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets
  publication-title: Remote Sens-Basel
  doi: 10.3390/rs10101572
– volume: 10
  start-page: 447
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0275
  article-title: Classification and mapping of paddy rice by combining landsat and SAR time series data
  publication-title: Remote Sens-Basel
  doi: 10.3390/rs10030447
– volume: 54
  start-page: 741
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0410
  article-title: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2017.1323377
– start-page: 71
  year: 1988
  ident: 10.1016/j.isprsjprs.2019.09.009_b0435
  article-title: Computation of optical flow using a neural network
– volume: 9
  start-page: 268
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0225
  article-title: Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data
  publication-title: Forests
  doi: 10.3390/f9050268
– volume: 36
  start-page: 525
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.09.009_b0135
  article-title: Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2003.12.016
– volume: 11
  start-page: 4604
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0180
  article-title: Convolutional neural network-based land cover classification using 2-D spectral reflectance curve graphs with multitemporal satellite imagery
  publication-title: IEEE J-Stars
– volume: 27
  start-page: 46
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0095
  article-title: Global transferability of local climate zone models
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.11.001
– volume: 16
  start-page: 276
  year: 2004
  ident: 10.1016/j.isprsjprs.2019.09.009_b0155
  article-title: Remote sensing of the urban heat island and its changes in Xiamen City of SE China
  publication-title: J. Environ. Sci.
– volume: 27
  start-page: 24
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0025
  article-title: Generating WUDAPT Level 0 data–Current status of production and evaluation
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.10.001
– volume: 40
  start-page: 677
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0130
  article-title: The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.01.024
– start-page: 152
  year: 2010
  ident: 10.1016/j.isprsjprs.2019.09.009_b0165
  article-title: Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
– volume: 140
  start-page: 133
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0420
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2017.07.014
– start-page: 1097
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0200
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 55
  start-page: 763
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0185
  article-title: Deep learning-based monitoring of overshooting cloud tops from geostationary satellite data
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2018.1457201
– volume: 3
  start-page: 391
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0210
  article-title: Detailed Urban Heat Island projections for cities worldwide: dynamical downscaling CMIP5 global climate models
  publication-title: Climate
  doi: 10.3390/cli3020391
– volume: 34
  start-page: 6914
  year: 2013
  ident: 10.1016/j.isprsjprs.2019.09.009_b0430
  article-title: Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.810822
– volume: 24
  start-page: 34
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0445
  article-title: Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.01.006
– volume: 32
  start-page: 202
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0395
  article-title: Study of intra-city urban heat island intensity and its influence on atmospheric chemistry and energy consumption in Delhi
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.04.003
– volume: 54
  start-page: 573
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0300
  article-title: A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada)
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2017.1302181
– volume: 4
  start-page: 199
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0030
  article-title: Mapping local climate zones for a worldwide database of the form and function of cities
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4010199
– volume: 11
  start-page: 1633
  year: 2007
  ident: 10.1016/j.isprsjprs.2019.09.009_b0280
  article-title: Updated world map of the Koppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1633-2007
– volume: 150
  start-page: 59
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0380
  article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.006
– volume: 151
  start-page: 223
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0265
  article-title: A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.015
– volume: 78
  start-page: 729
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0010
  article-title: Building detection in complex scenes thorough effective separation of buildings from trees
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.7.729
– ident: 10.1016/j.isprsjprs.2019.09.009_b0055
– volume: 55
  start-page: 881
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0365
  article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– volume: 9
  start-page: 3097
  year: 2016
  ident: 10.1016/j.isprsjprs.2019.09.009_b0045
  article-title: Classification of local climate zones using SAR and multispectral data in an arid environment
  publication-title: IEEE J-Stars
– volume: 10
  start-page: 631
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0325
  article-title: Icing detection over East Asia from geostationary satellite data using machine learning approaches
  publication-title: Remote Sens-Basel
  doi: 10.3390/rs10040631
– start-page: 1201
  year: 2017
  ident: 10.1016/j.isprsjprs.2019.09.009_b0345
  article-title: Multilevel ensembling for local climate zones classification
– volume: 40
  start-page: 484
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0255
  article-title: Investigating spatio-temporal surface urban heat island growth over Jaipur city using geospatial techniques
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.04.018
– volume: 114
  start-page: 168
  year: 2010
  ident: 10.1016/j.isprsjprs.2019.09.009_b0115
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.016
– volume: 25
  start-page: 152
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0050
  article-title: Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.04.007
– volume: 93
  start-page: 1879
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0340
  article-title: Local climate zones for urban temperature studies
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00019.1
– volume: 64
  start-page: 463
  year: 2012
  ident: 10.1016/j.isprsjprs.2019.09.009_b0100
  article-title: The law and economics of street layouts: How a grid pattern benefits a downtown
  publication-title: Ala. L. Rev.
– volume: 156
  start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2019.09.009_b0415
  article-title: TreeUNet: Adaptive Tree convolutional neural networks for subdecimeter aerial image segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.07.007
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.isprsjprs.2019.09.009_b0220
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.isprsjprs.2019.09.009_b0090
– volume: 141
  start-page: 59
  year: 2018
  ident: 10.1016/j.isprsjprs.2019.09.009_b0370
  article-title: Assessing local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, Nevada
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.04.009
SSID ssj0001568
Score 2.6234035
Snippet The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Convolutional neural networks
Landsat
Local climate zone
Random forest
Urban climate
Title Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images
URI https://dx.doi.org/10.1016/j.isprsjprs.2019.09.009
https://www.proquest.com/docview/2811977934
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOqBQQLW01SFzDJhvHu-ZWraiWh3qBSr1FfoyXVG12tY8DHPgP_GNmHGdLEVIPSIkSR3Zi2ZOZb-RvxkK8CYgaK-0zKQ2Sg1K5TA9znVnrTWGrIbqO5Xuuphfy42V1uSMmfSwM0yqT7u90etTW6ckgjeZg0TSDLzm5DkOC-wRBYrgoR7DLEUv525-3NI-iC4fjyhnXvsPxalaL5eqKTuZ46ZjwlJmJ_7ZQf-nqaIDO9sSThBzhtOvcU7GD7b54_Ec-wX3xMG1p_u37M_Frst1hEBIZC5hinkSN3sSpLOMlEsFXYFoPZLn8_AYIyVIP-ALR2IG7bgjaIvyYt0gFQtxMMYqzCk0LNzgzsFla04JhljswnX4GnzmO2KyB2s5w9VxcnL3_Oplmaf-FzElVrrOy8m4kUZXKEU4MSqGSjpQjkk_lQhmcHuuRJrfWK1-WLoxwLGWQxuQ2SG2L8oXYbalbLwUYa03hGUyQRzn23lQYJHkygW7JqSoOhOrHvHYpOTnvkXFd9yy0q3o7WTVPVp3TkesDkW8bLrr8HPc3eddPan1H1GqyIvc3ft2LQU0_Iq-umBbnG6o05hVZUnfy8H8-8Eo84lIX7ngkdtfLDR4T7lnbkyjYJ-LB6YdP0_PfMYMJag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UB7qChQlT7AlXqNNtk43nVvaFW0wHYvBYmb5ec2CLKrfRzKv-AfdyZxVqVC4oCUKC9PYtnOzDfyN2OAb8F76QvpEs61RwelsInspTIxxunMFD1vG5bvRIyu-Pl1cb0FwzYWhmiVUfc3Or3W1vFON7Zmd16W3V8pug49hPsIQepw0VewTdmpig5sn5xdjCYbhZw1EXFUPiGBRzSvcjlfLG9wJ5qXrHOeEjnxaSP1n7qubdDpLryN4JGdNPV7B1u-2oM3_6QU3IOduKr57z_78DDcLDLIIh-LEcs8jjZ8E2WzrA81F3zJdOUYGi83u2MIZrEGdGC1vWP2tkR069n9rPJ4gaCbWEZ1x7KyYnd-qtl6YXTFNBHdGTHqp2xMocR6xVB26pcHcHX643I4SuISDInlIl8leeFsn3uRC4tQMQjhBbeoHz26VTbkwcqB7Ev0bJ1weW5D3w84D1zr1AQuTZa_h06F1foATBujM0d4Ap3KgXO68IGjMxPwFP2q7BBE2-bKxvzktEzGrWqJaDdq01mKOkuluKXyENKN4LxJ0fG8yPe2U9Wj0abQkDwv_LUdBgr_RZpg0ZWfrbHQgCZlUePxjy_5wDHsjC5_jtX4bHLxCV7Tkyb68TN0Vou1_4IwaGWO4jD_CzDRDBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+convolutional+neural+networks+and+random+forest+for+local+climate+zone+classification+in+mega+urban+areas+using+Landsat+images&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Yoo%2C+Cheolhee&rft.au=Han%2C+Daehyeon&rft.au=Im%2C+Jungho&rft.au=Bechtel%2C+Benjamin&rft.date=2019-11-01&rft.issn=0924-2716&rft.volume=157&rft.spage=155&rft.epage=170&rft_id=info:doi/10.1016%2Fj.isprsjprs.2019.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2019_09_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon