Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images
We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A prima...
Saved in:
| Published in | Pattern recognition Vol. 86; pp. 188 - 200 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.02.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 1873-5142 |
| DOI | 10.1016/j.patcog.2018.09.007 |
Cover
Loading…
| Abstract | We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully-supervised annotation cost. |
|---|---|
| AbstractList | We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully-supervised annotation cost. We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully- supervised annotation cost.We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully- supervised annotation cost. |
| Author | Zhao, Tianhao Samaras, Dimitris Foran, David Saltz, Joel H. Hou, Le Kurc, Tahsin M. Gao, Yi Nguyen, Vu Chen, Wenjin Kanevsky, Ariel B. Gupta, Rajarsi R. |
| AuthorAffiliation | 1 Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA 7 Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey,New Brunswick, NJ, USA 2 Montreal Institute for Learning Algorithms, University of Montreal, Montreal, Canada 8 Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, NJ, USA 5 Dept. of Pathology, Stony Brook University Medical Center, Stony Brook, NY, USA 6 School of Biomedical Engineering, Health Science Center, Shenzhen University, China 3 Dept. of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA 9 Div. of Medical Informatics, Rutgers-Robert Wood Johnson Medical School, Piscataway Township, NJ, USA 4 Oak Ridge National Laboratory, Oak Ridge, TN, USA 10 Cancer Center, Stony Brook University Hospital, Stony Brook, NY, USA |
| AuthorAffiliation_xml | – name: 6 School of Biomedical Engineering, Health Science Center, Shenzhen University, China – name: 5 Dept. of Pathology, Stony Brook University Medical Center, Stony Brook, NY, USA – name: 10 Cancer Center, Stony Brook University Hospital, Stony Brook, NY, USA – name: 2 Montreal Institute for Learning Algorithms, University of Montreal, Montreal, Canada – name: 8 Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, NJ, USA – name: 9 Div. of Medical Informatics, Rutgers-Robert Wood Johnson Medical School, Piscataway Township, NJ, USA – name: 1 Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA – name: 4 Oak Ridge National Laboratory, Oak Ridge, TN, USA – name: 3 Dept. of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA – name: 7 Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey,New Brunswick, NJ, USA |
| Author_xml | – sequence: 1 givenname: Le orcidid: 0000-0001-7323-5300 surname: Hou fullname: Hou, Le email: le.hou@stonybrook.edu organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA – sequence: 2 givenname: Vu surname: Nguyen fullname: Nguyen, Vu organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA – sequence: 3 givenname: Ariel B. surname: Kanevsky fullname: Kanevsky, Ariel B. organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA – sequence: 4 givenname: Dimitris surname: Samaras fullname: Samaras, Dimitris organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA – sequence: 5 givenname: Tahsin M. surname: Kurc fullname: Kurc, Tahsin M. organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA – sequence: 6 givenname: Tianhao surname: Zhao fullname: Zhao, Tianhao organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA – sequence: 7 givenname: Rajarsi R. orcidid: 0000-0002-1577-8718 surname: Gupta fullname: Gupta, Rajarsi R. organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA – sequence: 8 givenname: Yi surname: Gao fullname: Gao, Yi organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, China – sequence: 9 givenname: Wenjin surname: Chen fullname: Chen, Wenjin organization: Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA – sequence: 10 givenname: David surname: Foran fullname: Foran, David organization: Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA – sequence: 11 givenname: Joel H. surname: Saltz fullname: Saltz, Joel H. organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30631215$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUctqHDEQFMEhXtv5A2N09GUmLWl2HjkEjMkLDDkkPgut1LOrZVaaSDML_vu0s-tg55CcBOqq6uqqM3YSYkDGLgWUAkT9bluOZrJxXUoQbQldCdC8YgvRNqpYikqesAWAEoWSoE7ZWc5bANHQ4A07VVArIcVywcz30aSM3MxTxGCjw8T7mPgc8jxi2vuMjofZDjhn7nBCO_kYuAmOJxwTZgyT-f3lA9_4PEVytYlDXD9wvzNrzBfsdW-GjG-P7zm7__Txx-2X4u7b56-3N3eFrWo1FUoY8rdqamdbOkhKa1vVo4WVga6HTjV965arSsmlxKaqoDJtbZ2QDVE6wp6zDwfdcV7t0Fkylsygx0Q20oOOxuuXk-A3eh33ulZStpUggeujQIo_Z8yT3vlscRhMwDhnLUXTKdkJ0RH06vmuP0ueciXA-wPApphzwl5bf8iJVvtBC9CPJeqtPpSoH0vU0GkqkcjVX-Qn_f_QjgEgpbz3mHS2njpF5xPVpl30_xb4BcR3u0g |
| CitedBy_id | crossref_primary_10_1109_TCBB_2021_3138189 crossref_primary_10_1016_j_ajpath_2024_01_016 crossref_primary_10_1007_s42979_023_02115_2 crossref_primary_10_1016_j_patcog_2019_107109 crossref_primary_10_3390_app10186427 crossref_primary_10_1016_j_patcog_2020_107200 crossref_primary_10_1109_ACCESS_2020_2984522 crossref_primary_10_1007_s40139_019_00200_x crossref_primary_10_1016_j_patcog_2020_107481 crossref_primary_10_1016_j_media_2024_103344 crossref_primary_10_1007_s12652_021_03308_4 crossref_primary_10_1109_JBHI_2023_3310507 crossref_primary_10_46604_ijeti_2021_6891 crossref_primary_10_1016_j_neunet_2023_11_006 crossref_primary_10_1109_ACCESS_2021_3092645 crossref_primary_10_3390_s20061546 crossref_primary_10_2514_1_I011445 crossref_primary_10_1016_j_mlwa_2021_100198 crossref_primary_10_1016_j_smim_2020_101411 crossref_primary_10_3390_jimaging10100239 crossref_primary_10_1109_TCBB_2023_3321593 crossref_primary_10_3390_electronics10050562 crossref_primary_10_1016_j_patcog_2024_110621 crossref_primary_10_1088_1361_6560_ac910a crossref_primary_10_2174_1573405617666210127154257 crossref_primary_10_1109_ACCESS_2022_3168721 crossref_primary_10_1016_j_media_2020_101912 crossref_primary_10_1177_03009858211040484 crossref_primary_10_1364_BOE_400816 crossref_primary_10_1109_TIP_2023_3337666 crossref_primary_10_1109_JBHI_2021_3081185 crossref_primary_10_1016_j_media_2022_102481 crossref_primary_10_1016_j_neucom_2019_08_103 crossref_primary_10_1109_TMI_2019_2895318 crossref_primary_10_1088_1757_899X_1175_1_012015 crossref_primary_10_1016_j_gmod_2020_101083 crossref_primary_10_1016_j_compmedimag_2024_102427 crossref_primary_10_1016_j_media_2022_102485 crossref_primary_10_3390_s23177318 crossref_primary_10_1016_j_cag_2021_04_037 crossref_primary_10_1007_s12065_019_00288_5 crossref_primary_10_1109_ACCESS_2021_3084597 crossref_primary_10_1109_TMI_2022_3157983 crossref_primary_10_1016_j_eswa_2024_125139 crossref_primary_10_3390_cancers11091235 crossref_primary_10_1016_j_knosys_2024_112217 crossref_primary_10_3390_electronics11101642 crossref_primary_10_1002_gcc_23177 crossref_primary_10_1016_j_patrec_2021_01_002 crossref_primary_10_1038_s41591_021_01343_4 crossref_primary_10_1002_ima_22676 crossref_primary_10_1016_j_cmpb_2023_107520 crossref_primary_10_1016_j_patcog_2019_107166 crossref_primary_10_1109_ACCESS_2023_3237542 crossref_primary_10_3390_e23101336 crossref_primary_10_1038_s41467_021_23913_3 crossref_primary_10_1088_1361_6560_abcd17 crossref_primary_10_1016_j_neucom_2019_06_005 crossref_primary_10_1049_ipr2_12709 crossref_primary_10_1109_ACCESS_2022_3159700 crossref_primary_10_1109_ACCESS_2019_2908724 crossref_primary_10_3390_cancers14235778 crossref_primary_10_1016_j_metrad_2024_100069 crossref_primary_10_1186_s12911_022_01826_5 crossref_primary_10_1016_j_gpb_2022_11_003 crossref_primary_10_1038_s41597_020_0528_1 crossref_primary_10_1016_j_cmpb_2019_03_007 crossref_primary_10_3389_fmed_2019_00162 crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1200_CCI_19_00155 crossref_primary_10_4103_jpi_jpi_36_21 crossref_primary_10_3389_fnins_2020_00027 crossref_primary_10_1007_s11831_020_09470_w crossref_primary_10_1038_s42003_023_04608_5 crossref_primary_10_1371_journal_pcbi_1008349 crossref_primary_10_3390_cancers13215522 crossref_primary_10_1016_j_jpi_2023_100315 crossref_primary_10_1016_j_patcog_2020_107515 crossref_primary_10_55007_dufed_1181996 crossref_primary_10_1016_j_jpi_2023_100357 crossref_primary_10_3389_fimmu_2022_942945 crossref_primary_10_1007_s10278_022_00631_w crossref_primary_10_3390_math10050796 crossref_primary_10_1007_s00521_022_07857_3 crossref_primary_10_1007_s10845_020_01543_8 |
| Cites_doi | 10.1109/83.506761 10.1016/j.patrec.2016.01.007 10.4103/2153-3539.83746 10.1109/TMI.2015.2458702 10.1016/j.patcog.2015.02.023 10.5244/C.29.150 10.1016/j.patcog.2017.08.004 10.1016/j.media.2016.11.004 10.1016/j.patcog.2015.09.015 10.1016/j.patcog.2017.05.010 10.1016/j.patcog.2016.09.029 10.1016/j.patcog.2018.02.012 10.1016/j.neunet.2014.09.003 10.1016/j.patcog.2017.10.013 10.1109/RBME.2016.2515127 10.1016/j.patcog.2016.07.023 10.1126/scitranslmed.3004330 10.1016/j.patcog.2012.09.015 10.1016/j.patcog.2016.09.020 10.1109/TMI.2016.2525803 10.1007/s11263-015-0816-y 10.1016/j.patcog.2008.08.027 10.1093/annonc/mdu450 10.4103/2153-3539.189703 10.1126/science.1129139 10.1016/j.patcog.2016.05.029 10.1016/j.patcog.2017.06.021 10.1016/j.patrec.2014.02.008 10.1016/j.patcog.2008.10.035 10.1016/j.patrec.2012.11.008 10.1016/j.patcog.2016.10.020 10.1038/nm0798-844 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1016/j.patcog.2018.09.007 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 200 |
| ExternalDocumentID | PMC6322841 30631215 10_1016_j_patcog_2018_09_007 S0031320318303261 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM011119 – fundername: NLM NIH HHS grantid: R01 LM009239 – fundername: NCI NIH HHS grantid: U24 CA180924 – fundername: NCI NIH HHS grantid: R01 CA161375 – fundername: NCI NIH HHS grantid: U24 CA215109 – fundername: NCI NIH HHS grantid: UG3 CA225021 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 5PM EFKBS |
| ID | FETCH-LOGICAL-c463t-31a001b76dc801822cc83fec0ba09f0937f8d5b43252e74404a86cd12776d9c83 |
| IEDL.DBID | .~1 |
| ISSN | 0031-3203 |
| IngestDate | Thu Aug 21 18:33:40 EDT 2025 Fri Jul 11 06:20:32 EDT 2025 Thu Apr 03 07:04:07 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Tue Jul 01 02:36:28 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pathology image analysis Semi-supervised learning Convolutional neural network Unsupervised learning pathology image analysis semi-supervised learning convolutional neural network unsupervised learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-31a001b76dc801822cc83fec0ba09f0937f8d5b43252e74404a86cd12776d9c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1577-8718 0000-0001-7323-5300 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6322841 |
| PMID | 30631215 |
| PQID | 2179329119 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322841 proquest_miscellaneous_2179329119 pubmed_primary_30631215 crossref_citationtrail_10_1016_j_patcog_2018_09_007 crossref_primary_10_1016_j_patcog_2018_09_007 elsevier_sciencedirect_doi_10_1016_j_patcog_2018_09_007 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Pattern recognition |
| PublicationTitleAlternate | Pattern Recognit |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Suzuki, Zhou, Wang (bib0019) 2017; 63 Masci, Meier, Cireşan, Schmidhuber (bib0038) 2011 Theano Development Team, Theano: a python framework for fast computation of mathematical expressions, arXiv Xu, Jia, Ai, Zhang, Lai, Eric, Chang (bib0069) 2015 Wang, Yao, Xu, Huang (bib0032) 2016 Reddy, Chatterji (bib0072) 1996; 5 Galon, Costes (bib0061) 2006; 313 Gragnaniello, Sansone, Verdoliva (bib0044) 2016; 82 Simonyan, Zisserman (bib0067) 2015 Xie, Kong, Xing, Liu, Su, Yang (bib0030) 2015 Vicente, Hou, Yu, Hoai, Samaras (bib0064) 2016 Xu, Huang (bib0035) 2016 Turkki, Linder, Kovanen, Pellinen, Lundin (bib0063) 2016; 7 Russakovsky, Deng (bib0068) 2015; 115 Sirinukunwattana, Raza, Tsang, Snead, Cree, Rajpoot (bib0034) 2016; 35 Pantanowitz, Valenstein, Evans, Kaplan, Pfeifer, Wilbur, Collins, Colgan (bib0005) 2011; 2 Radford, Metz, Chintala (bib0049) 2016 Ng (bib0052) 2011 Huang, Tosun, Guo, Chen, Wang, Ozolek, Rohde (bib0003) 2014; 42 Sertel, Kong, Shimada, Catalyurek, Saltz, Gurcan (bib0020) 2009; 42 Zhang, Chen, Sapkota, Yang (bib0002) 2017 MICCAI 2015 workshop and challenges in imaging and digital pathology: the computational brain tumor cluster of event, 2015 Ren, He, Girshick, Sun (bib0046) 2015 Ronneberger, Fischer, Brox (bib0014) 2015 Ranzato, Poultney, Chopra, LeCun (bib0037) 2006 Bibiloni, Gonzlez-Hidalgo, Massanet (bib0018) 2016; 60 Su, Xing, Kong, Xie, Zhang, Yang (bib0041) 2015 . J. Saltz, R. Gupta, L. Hou, et al., Spatial organization and molecular correlation of tumor infiltrating lymphocytes using deep learning on pathology images, Cell Reports, Accepted for Publication, 2018. Hou, Singh, Samaras, Kurc, Gao, Seidman, Saltz (bib0042) 2016 Zheng, Jiang, Xie, Zhang, Ma, Shi, Zhao (bib0028) 2017; 71 Xie, Zhang, Sapkota, Yang (bib0010) 2016 X. Xia, B. Kulis, W-net: a deep model for fully unsupervised image segmentation, arXiv The cancer genome atlas (2017). Redmon, Divvala, Girshick, Farhadi (bib0047) 2016 Shen, Zhou, Yang, Yu, Dong, Yang, Zang, Tian (bib0024) 2017; 61 Tajbakhsh, Suzuki (bib0026) 2017; 63 Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0040) 2016; 35 B. Graham, Spatially-sparse convolutional neural networks, arXiv Kononen, Bubendorf, Kallionimeni, Bärlund, Schraml, Leighton, Torhorst, Mihatsch, Sauter, Kallionimeni (bib0006) 1998; 4 Peng, Zhang, Zhang (bib0016) 2013; 46 Pathologists’ Hourly Wages Deng, Seltzer, Yu, Acero, Mohamed, Hinton (bib0051) 2010 Bayramoglu, Heikkilä (bib0039) 2016 Smochina, Manta, Kropatsch (bib0022) 2013; 34 Khatami, Schmidt-Wilcke, Sundgren, Abbasloo, Schlkopf, Schultz (bib0027) 2017; 63 Johnson, Zhang (bib0053) 2015 F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv Gao, Ratner, Zhu, Diprima, Kurc, Tannenbaum, Saltz (bib0073) 2016; 9791 Makhzani, Frey (bib0056) 2014 Manivannan, Li, Akbar, Wang, Zhang, McKenna (bib0025) 2016; 51 Xing, Yang (bib0008) 2016; 9 Zhang, Xie, Xing, McGough, Yang (bib0001) 2017 Xian, Zhang, Cheng, Xu, Zhang, Ding (bib0017) 2018; 79 Rasti, Teshnehlab, Phung (bib0023) 2017; 72 Kong, Sertel, Shimada, Boyer, Saltz, Gurcan (bib0021) 2009; 42 Murthy, Hou, Samaras, Kurc, Saltz (bib0043) 2017 Salgado, Denkert (bib0062) 2014; 26 Graves, Jaitly (bib0045) 2014 Doersch, Gupta, Efros (bib0050) 2015 Schmidhuber (bib0012) 2015; 61 Chen, Qi, Yu, Dou, Qin, Heng (bib0033) 2017; 36 Kokkinos (bib0048) 2017 Xie, Xing, Kong, Su, Yang (bib0031) 2015 Gu, Wang (bib0013) 2018; 77 (2014). Maas, Hannun, Ng (bib0059) 2013; 30 Al-Milaji, Ersoy, Hafiane, Palaniappan, Bunyak (bib0029) 2017 Yuan, Failmezger, Rueda (bib0071) 2012; 4 Xing, Xie, Su, Liu, Yang (bib0007) 2017; PP Ioffe, Szegedy (bib0057) 2015 Xing, Shi, Zhang, Cai, Xie, Yang (bib0011) 2016 Zhang, Li (bib0009) 2017; 71 Lu, Mandal (bib0004) 2015; 48 (2016). Zhou, Yu, Zhao (bib0070) 2017; 10140 Murdock, Li, Zhou, Duerig (bib0054) 2016 Zhang (10.1016/j.patcog.2018.09.007_bib0002) 2017 Xie (10.1016/j.patcog.2018.09.007_bib0010) 2016 Masci (10.1016/j.patcog.2018.09.007_bib0038) 2011 Bayramoglu (10.1016/j.patcog.2018.09.007_bib0039) 2016 Xie (10.1016/j.patcog.2018.09.007_bib0030) 2015 Doersch (10.1016/j.patcog.2018.09.007_bib0050) 2015 Ronneberger (10.1016/j.patcog.2018.09.007_bib0014) 2015 Xu (10.1016/j.patcog.2018.09.007_bib0040) 2016; 35 Rasti (10.1016/j.patcog.2018.09.007_bib0023) 2017; 72 Radford (10.1016/j.patcog.2018.09.007_bib0049) 2016 Ranzato (10.1016/j.patcog.2018.09.007_bib0037) 2006 Makhzani (10.1016/j.patcog.2018.09.007_bib0056) 2014 Manivannan (10.1016/j.patcog.2018.09.007_bib0025) 2016; 51 Bibiloni (10.1016/j.patcog.2018.09.007_bib0018) 2016; 60 Murdock (10.1016/j.patcog.2018.09.007_bib0054) 2016 10.1016/j.patcog.2018.09.007_bib0036 Zhou (10.1016/j.patcog.2018.09.007_bib0070) 2017; 10140 Xian (10.1016/j.patcog.2018.09.007_bib0017) 2018; 79 Salgado (10.1016/j.patcog.2018.09.007_bib0062) 2014; 26 Murthy (10.1016/j.patcog.2018.09.007_bib0043) 2017 Zheng (10.1016/j.patcog.2018.09.007_bib0028) 2017; 71 Turkki (10.1016/j.patcog.2018.09.007_bib0063) 2016; 7 Gao (10.1016/j.patcog.2018.09.007_bib0073) 2016; 9791 Vicente (10.1016/j.patcog.2018.09.007_bib0064) 2016 Wang (10.1016/j.patcog.2018.09.007_bib0032) 2016 Su (10.1016/j.patcog.2018.09.007_bib0041) 2015 Gu (10.1016/j.patcog.2018.09.007_bib0013) 2018; 77 Sertel (10.1016/j.patcog.2018.09.007_bib0020) 2009; 42 Deng (10.1016/j.patcog.2018.09.007_bib0051) 2010 Kong (10.1016/j.patcog.2018.09.007_bib0021) 2009; 42 Lu (10.1016/j.patcog.2018.09.007_bib0004) 2015; 48 Khatami (10.1016/j.patcog.2018.09.007_bib0027) 2017; 63 Ng (10.1016/j.patcog.2018.09.007_bib0052) 2011 Zhang (10.1016/j.patcog.2018.09.007_bib0001) 2017 Suzuki (10.1016/j.patcog.2018.09.007_bib0019) 2017; 63 Huang (10.1016/j.patcog.2018.09.007_bib0003) 2014; 42 Zhang (10.1016/j.patcog.2018.09.007_bib0009) 2017; 71 Galon (10.1016/j.patcog.2018.09.007_bib0061) 2006; 313 Xing (10.1016/j.patcog.2018.09.007_bib0007) 2017; PP Redmon (10.1016/j.patcog.2018.09.007_bib0047) 2016 Kononen (10.1016/j.patcog.2018.09.007_bib0006) 1998; 4 Ioffe (10.1016/j.patcog.2018.09.007_bib0057) 2015 10.1016/j.patcog.2018.09.007_bib0055 Schmidhuber (10.1016/j.patcog.2018.09.007_bib0012) 2015; 61 10.1016/j.patcog.2018.09.007_bib0015 10.1016/j.patcog.2018.09.007_bib0058 Gragnaniello (10.1016/j.patcog.2018.09.007_bib0044) 2016; 82 10.1016/j.patcog.2018.09.007_bib0060 Reddy (10.1016/j.patcog.2018.09.007_bib0072) 1996; 5 Xu (10.1016/j.patcog.2018.09.007_bib0069) 2015 Hou (10.1016/j.patcog.2018.09.007_bib0042) 2016 Chen (10.1016/j.patcog.2018.09.007_bib0033) 2017; 36 Kokkinos (10.1016/j.patcog.2018.09.007_bib0048) 2017 Russakovsky (10.1016/j.patcog.2018.09.007_bib0068) 2015; 115 Xie (10.1016/j.patcog.2018.09.007_bib0031) 2015 10.1016/j.patcog.2018.09.007_bib0066 10.1016/j.patcog.2018.09.007_bib0065 Smochina (10.1016/j.patcog.2018.09.007_bib0022) 2013; 34 Tajbakhsh (10.1016/j.patcog.2018.09.007_bib0026) 2017; 63 Pantanowitz (10.1016/j.patcog.2018.09.007_bib0005) 2011; 2 Xing (10.1016/j.patcog.2018.09.007_bib0008) 2016; 9 10.1016/j.patcog.2018.09.007_bib0074 Xu (10.1016/j.patcog.2018.09.007_bib0035) 2016 Ren (10.1016/j.patcog.2018.09.007_bib0046) 2015 Xing (10.1016/j.patcog.2018.09.007_bib0011) 2016 Peng (10.1016/j.patcog.2018.09.007_bib0016) 2013; 46 Johnson (10.1016/j.patcog.2018.09.007_bib0053) 2015 Yuan (10.1016/j.patcog.2018.09.007_bib0071) 2012; 4 Maas (10.1016/j.patcog.2018.09.007_bib0059) 2013; 30 Simonyan (10.1016/j.patcog.2018.09.007_bib0067) 2015 Shen (10.1016/j.patcog.2018.09.007_bib0024) 2017; 61 Al-Milaji (10.1016/j.patcog.2018.09.007_bib0029) 2017 Sirinukunwattana (10.1016/j.patcog.2018.09.007_bib0034) 2016; 35 Graves (10.1016/j.patcog.2018.09.007_bib0045) 2014 |
| References_xml | – year: 2010 ident: bib0051 article-title: Binary coding of speech spectrograms using a deep auto-encoder. publication-title: Eleventh Annual Conference of the International Speech Communication Association – volume: 36 start-page: 135 year: 2017 end-page: 146 ident: bib0033 article-title: Dcan: deep contour-aware networks for object instance segmentation from histology images publication-title: Med. Image Anal. – year: 2014 ident: bib0045 article-title: Towards end-to-end speech recognition with recurrent neural networks. publication-title: International Conference on Machine Learning – volume: 7 year: 2016 ident: bib0063 article-title: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples publication-title: J. Pathol. Inform. – volume: 71 start-page: 14 year: 2017 end-page: 25 ident: bib0028 article-title: Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification publication-title: Pattern Recognit. – year: 2016 ident: bib0042 article-title: Automatic histopathology image analysis with CNNs publication-title: New York Scientific Data Summit – year: 2015 ident: bib0067 article-title: Very deep convolutional networks for large-scale image recognition publication-title: International Conference on Learning Representations (ICLR) – volume: 63 start-page: 465 year: 2017 end-page: 467 ident: bib0019 article-title: Machine learning in medical imaging publication-title: Pattern Recognit. – reference: ). – start-page: 383 year: 2015 end-page: 390 ident: bib0041 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2011 ident: bib0052 article-title: Sparse Autoencoder publication-title: Technical Report – volume: 48 start-page: 2738 year: 2015 end-page: 2750 ident: bib0004 article-title: Automated analysis and diagnosis of skin melanoma on whole slide histopathological images publication-title: Pattern Recognit. – start-page: 919 year: 2015 end-page: 927 ident: bib0053 article-title: Semi-supervised convolutional neural networks for text categorization via region embedding publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0068 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 46 start-page: 1020 year: 2013 end-page: 1038 ident: bib0016 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognit. – volume: 42 start-page: 1080 year: 2009 end-page: 1092 ident: bib0021 article-title: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation publication-title: Pattern Recognit. – volume: 30 start-page: 3 year: 2013 ident: bib0059 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: International conference on machine learning (ICML) – volume: 313 start-page: 1960 year: 2006 end-page: 1964 ident: bib0061 article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome publication-title: Science – volume: 9791 start-page: 979117 year: 2016 ident: bib0073 article-title: Hierarchical nucleus segmentation in digital pathology images publication-title: Medical Imaging 2016: Digital Pathology – start-page: 448 year: 2015 end-page: 456 ident: bib0057 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning (ICML) – volume: 42 start-page: 1093 year: 2009 end-page: 1103 ident: bib0020 article-title: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development publication-title: Pattern Recognit. – year: 2016 ident: bib0011 article-title: Transfer shape modeling towards high-throughput microscopy image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 63 start-page: 593 year: 2017 end-page: 600 ident: bib0027 article-title: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion mri publication-title: Pattern Recognit. – volume: 9 start-page: 234 year: 2016 end-page: 263 ident: bib0008 article-title: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review publication-title: IEEE Rev. Biomed. Eng. – volume: 2 year: 2011 ident: bib0005 article-title: Review of the current state of whole slide imaging in pathology publication-title: J. Pathol. Inform. – start-page: 532 year: 2016 end-page: 539 ident: bib0039 article-title: Transfer learning for cell nuclei classification in histopathology images publication-title: European Conference on Computer Vision Workshops – start-page: 1137 year: 2006 end-page: 1144 ident: bib0037 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Advances in Neural Information Processing Systems – volume: 10140 start-page: 101400K year: 2017 ident: bib0070 article-title: Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis publication-title: Medical Imaging 2017: Digital Pathology – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: bib0013 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. – year: 2016 ident: bib0049 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: International Conference on Learning Representations – reference: MICCAI 2015 workshop and challenges in imaging and digital pathology: the computational brain tumor cluster of event, 2015, ( – reference: The cancer genome atlas, ( – start-page: 358 year: 2015 end-page: 365 ident: bib0031 article-title: Beyond classification: structured regression for robust cell detection using convolutional neural network publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 816 year: 2016 end-page: 832 ident: bib0064 article-title: Large-scale training of shadow detectors with noisily-annotated shadow examples publication-title: European Conference on Computer Vision (ECCV) – start-page: 320 year: 2017 end-page: 328 ident: bib0002 article-title: Tandemnet: distilling knowledge from medical images using diagnostic reports as optional semantic references publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 72 start-page: 381 year: 2017 end-page: 390 ident: bib0023 article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks publication-title: Pattern Recognit. – volume: 4 year: 2012 ident: bib0071 article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling publication-title: Sci. Transl. Med. – reference: X. Xia, B. Kulis, W-net: a deep model for fully unsupervised image segmentation, arXiv: – reference: (2017). – start-page: 91 year: 2015 end-page: 99 ident: bib0046 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – start-page: 6428 year: 2017 end-page: 6436 ident: bib0001 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 779 year: 2016 end-page: 788 ident: bib0047 article-title: You only look once: unified, real-time object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) – start-page: 234 year: 2015 end-page: 241 ident: bib0014 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 51 start-page: 12 year: 2016 end-page: 26 ident: bib0025 article-title: An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens publication-title: Pattern Recognit. – reference: (2016). – volume: 4 start-page: 844 year: 1998 end-page: 847 ident: bib0006 article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens publication-title: Nat. Med. – volume: PP start-page: 1 year: 2017 end-page: 19 ident: bib0007 article-title: Deep learning in microscopy image analysis: a survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 34 start-page: 934 year: 2013 end-page: 941 ident: bib0022 article-title: Crypts detection in microscopic images using hierarchical structures publication-title: Pattern Recognit. Lett. – reference: F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv: – volume: 60 start-page: 949 year: 2016 end-page: 970 ident: bib0018 article-title: A survey on curvilinear object segmentation in multiple applications publication-title: Pattern Recognit. – start-page: 374 year: 2015 end-page: 382 ident: bib0030 article-title: Deep voting: a robust approach toward nucleus localization in microscopy images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: J. Saltz, R. Gupta, L. Hou, et al., Spatial organization and molecular correlation of tumor infiltrating lymphocytes using deep learning on pathology images, Cell Reports, Accepted for Publication, 2018. – year: 2016 ident: bib0035 article-title: Detecting 10,000 cells in one second publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 35 start-page: 1196 year: 2016 end-page: 1206 ident: bib0034 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: Medical Imaging – start-page: 640 year: 2016 end-page: 648 ident: bib0032 article-title: Subtype cell detection with an accelerated deep convolution neural network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2017 ident: bib0043 article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images publication-title: Winter Conference on Applications of Computer Vision (WACV) – start-page: 2583 year: 2016 end-page: 2591 ident: bib0054 article-title: Blockout: dynamic model selection for hierarchical deep networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) – volume: 5 start-page: 1266 year: 1996 end-page: 1271 ident: bib0072 article-title: An fft-based technique for translation, rotation, and scale-invariant image registration publication-title: IEEE Trans. Image Process. – year: 2016 ident: bib0010 article-title: Spatial clockwork recurrent neural network for muscle perimysium segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 63 start-page: 476 year: 2017 end-page: 486 ident: bib0026 article-title: Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: mtanns vs. cnns publication-title: Pattern Recognit. – reference: Pathologists’ Hourly Wages, ( – year: 2014 ident: bib0056 article-title: k-sparse autoencoders publication-title: International Conference on Learning Representations (ICLR) – volume: 82 start-page: 72 year: 2016 end-page: 78 ident: bib0044 article-title: Cell image classification by a scale and rotation invariant dense local descriptor publication-title: Pattern Recognit. Lett. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0012 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – volume: 42 start-page: 115 year: 2014 end-page: 121 ident: bib0003 article-title: Cancer diagnosis by nuclear morphometry using spatial information publication-title: Pattern Recognit. Lett. – start-page: 52 year: 2011 end-page: 59 ident: bib0038 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: International Conference on Artificial Neural Networks (ICANN) – reference: B. Graham, Spatially-sparse convolutional neural networks, arXiv: – reference: Theano Development Team, Theano: a python framework for fast computation of mathematical expressions, arXiv: – start-page: 6129 year: 2017 end-page: 6138 ident: bib0048 article-title: Ubernet: training auniversal’convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: (2014). – volume: 79 start-page: 340 year: 2018 end-page: 355 ident: bib0017 article-title: Automatic breast ultrasound image segmentation: a survey publication-title: Pattern Recognit. – volume: 35 start-page: 119 year: 2016 end-page: 130 ident: bib0040 article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging – volume: 61 start-page: 663 year: 2017 end-page: 673 ident: bib0024 article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification publication-title: Pattern Recognit. – start-page: 947 year: 2015 end-page: 951 ident: bib0069 article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 1 year: 2017 end-page: 8 ident: bib0029 article-title: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in h&e images publication-title: Pattern Recognit. Lett. – start-page: 1422 year: 2015 end-page: 1430 ident: bib0050 article-title: Unsupervised visual representation learning by context prediction publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 71 start-page: 349 year: 2017 end-page: 360 ident: bib0009 article-title: Automated segmentation of overlapped nuclei using concave point detection and segment grouping publication-title: Pattern Recognit. – volume: 26 start-page: 259 year: 2014 end-page: 271 ident: bib0062 article-title: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014 publication-title: Ann. Oncol. – volume: 5 start-page: 1266 issue: 8 year: 1996 ident: 10.1016/j.patcog.2018.09.007_bib0072 article-title: An fft-based technique for translation, rotation, and scale-invariant image registration publication-title: IEEE Trans. Image Process. doi: 10.1109/83.506761 – volume: PP start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0007 article-title: Deep learning in microscopy image analysis: a survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.patcog.2018.09.007_bib0058 – volume: 82 start-page: 72 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0044 article-title: Cell image classification by a scale and rotation invariant dense local descriptor publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.01.007 – ident: 10.1016/j.patcog.2018.09.007_bib0060 – start-page: 919 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0053 article-title: Semi-supervised convolutional neural networks for text categorization via region embedding – start-page: 816 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0064 article-title: Large-scale training of shadow detectors with noisily-annotated shadow examples – volume: 2 year: 2011 ident: 10.1016/j.patcog.2018.09.007_bib0005 article-title: Review of the current state of whole slide imaging in pathology publication-title: J. Pathol. Inform. doi: 10.4103/2153-3539.83746 – volume: 10140 start-page: 101400K year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0070 article-title: Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis – year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0067 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 91 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0046 article-title: Faster r-cnn: towards real-time object detection with region proposal networks – volume: 35 start-page: 119 issue: 1 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0040 article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2458702 – volume: 48 start-page: 2738 issue: 8 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0004 article-title: Automated analysis and diagnosis of skin melanoma on whole slide histopathological images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.02.023 – start-page: 2583 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0054 article-title: Blockout: dynamic model selection for hierarchical deep networks – year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0043 article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images – start-page: 6129 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0048 article-title: Ubernet: training auniversal’convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory – ident: 10.1016/j.patcog.2018.09.007_bib0055 doi: 10.5244/C.29.150 – volume: 72 start-page: 381 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0023 article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.004 – start-page: 1422 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0050 article-title: Unsupervised visual representation learning by context prediction – start-page: 320 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0002 article-title: Tandemnet: distilling knowledge from medical images using diagnostic reports as optional semantic references – start-page: 532 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0039 article-title: Transfer learning for cell nuclei classification in histopathology images – volume: 30 start-page: 3 year: 2013 ident: 10.1016/j.patcog.2018.09.007_bib0059 article-title: Rectifier nonlinearities improve neural network acoustic models – start-page: 1137 year: 2006 ident: 10.1016/j.patcog.2018.09.007_bib0037 article-title: Efficient learning of sparse representations with an energy-based model – volume: 36 start-page: 135 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0033 article-title: Dcan: deep contour-aware networks for object instance segmentation from histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.004 – year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0042 article-title: Automatic histopathology image analysis with CNNs – start-page: 448 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0057 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 51 start-page: 12 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0025 article-title: An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.09.015 – volume: 71 start-page: 14 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0028 article-title: Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.010 – volume: 63 start-page: 476 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0026 article-title: Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: mtanns vs. cnns publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.029 – volume: 79 start-page: 340 year: 2018 ident: 10.1016/j.patcog.2018.09.007_bib0017 article-title: Automatic breast ultrasound image segmentation: a survey publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.02.012 – year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0035 article-title: Detecting 10,000 cells in one second – ident: 10.1016/j.patcog.2018.09.007_bib0065 – year: 2011 ident: 10.1016/j.patcog.2018.09.007_bib0052 article-title: Sparse Autoencoder – start-page: 779 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0047 article-title: You only look once: unified, real-time object detection – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0012 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – year: 2010 ident: 10.1016/j.patcog.2018.09.007_bib0051 article-title: Binary coding of speech spectrograms using a deep auto-encoder. – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.patcog.2018.09.007_bib0013 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – volume: 9791 start-page: 979117 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0073 article-title: Hierarchical nucleus segmentation in digital pathology images – volume: 9 start-page: 234 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0008 article-title: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2016.2515127 – volume: 60 start-page: 949 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0018 article-title: A survey on curvilinear object segmentation in multiple applications publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.023 – volume: 4 issue: 157 year: 2012 ident: 10.1016/j.patcog.2018.09.007_bib0071 article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004330 – start-page: 947 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0069 article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation – year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0011 article-title: Transfer shape modeling towards high-throughput microscopy image segmentation – start-page: 358 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0031 article-title: Beyond classification: structured regression for robust cell detection using convolutional neural network – volume: 46 start-page: 1020 issue: 3 year: 2013 ident: 10.1016/j.patcog.2018.09.007_bib0016 article-title: A survey of graph theoretical approaches to image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.09.015 – ident: 10.1016/j.patcog.2018.09.007_bib0066 – volume: 63 start-page: 593 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0027 article-title: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion mri publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.020 – volume: 35 start-page: 1196 issue: 5 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0034 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: Medical Imaging doi: 10.1109/TMI.2016.2525803 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0068 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2014 ident: 10.1016/j.patcog.2018.09.007_bib0045 article-title: Towards end-to-end speech recognition with recurrent neural networks. – volume: 42 start-page: 1093 issue: 6 year: 2009 ident: 10.1016/j.patcog.2018.09.007_bib0020 article-title: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.08.027 – volume: 26 start-page: 259 issue: 2 year: 2014 ident: 10.1016/j.patcog.2018.09.007_bib0062 article-title: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu450 – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0029 article-title: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in h&e images publication-title: Pattern Recognit. Lett. – ident: 10.1016/j.patcog.2018.09.007_bib0074 – volume: 7 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0063 article-title: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples publication-title: J. Pathol. Inform. doi: 10.4103/2153-3539.189703 – volume: 313 start-page: 1960 issue: 5795 year: 2006 ident: 10.1016/j.patcog.2018.09.007_bib0061 article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome publication-title: Science doi: 10.1126/science.1129139 – volume: 61 start-page: 663 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0024 article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.029 – volume: 71 start-page: 349 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0009 article-title: Automated segmentation of overlapped nuclei using concave point detection and segment grouping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.06.021 – start-page: 383 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0041 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders – volume: 42 start-page: 115 year: 2014 ident: 10.1016/j.patcog.2018.09.007_bib0003 article-title: Cancer diagnosis by nuclear morphometry using spatial information publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.02.008 – volume: 42 start-page: 1080 issue: 6 year: 2009 ident: 10.1016/j.patcog.2018.09.007_bib0021 article-title: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.10.035 – year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0049 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – volume: 34 start-page: 934 issue: 8 year: 2013 ident: 10.1016/j.patcog.2018.09.007_bib0022 article-title: Crypts detection in microscopic images using hierarchical structures publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.11.008 – start-page: 52 year: 2011 ident: 10.1016/j.patcog.2018.09.007_bib0038 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – year: 2014 ident: 10.1016/j.patcog.2018.09.007_bib0056 article-title: k-sparse autoencoders – start-page: 640 year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0032 article-title: Subtype cell detection with an accelerated deep convolution neural network – volume: 63 start-page: 465 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0019 article-title: Machine learning in medical imaging publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.10.020 – ident: 10.1016/j.patcog.2018.09.007_bib0036 – start-page: 6428 year: 2017 ident: 10.1016/j.patcog.2018.09.007_bib0001 article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network – year: 2016 ident: 10.1016/j.patcog.2018.09.007_bib0010 article-title: Spatial clockwork recurrent neural network for muscle perimysium segmentation – start-page: 374 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0030 article-title: Deep voting: a robust approach toward nucleus localization in microscopy images – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2018.09.007_bib0014 article-title: U-net: convolutional networks for biomedical image segmentation – ident: 10.1016/j.patcog.2018.09.007_bib0015 – volume: 4 start-page: 844 issue: 7 year: 1998 ident: 10.1016/j.patcog.2018.09.007_bib0006 article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens publication-title: Nat. Med. doi: 10.1038/nm0798-844 |
| SSID | ssj0017142 |
| Score | 2.6084342 |
| Snippet | We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 188 |
| SubjectTerms | Convolutional neural network Pathology image analysis Semi-supervised learning Unsupervised learning |
| Title | Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images |
| URI | https://dx.doi.org/10.1016/j.patcog.2018.09.007 https://www.ncbi.nlm.nih.gov/pubmed/30631215 https://www.proquest.com/docview/2179329119 https://pubmed.ncbi.nlm.nih.gov/PMC6322841 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4P8qjMhJraBKnbjxWCFRAYgEkNiuxHQgCNyLJym_nzkkqCkiVGNOcFcvnfHdOv_uOkLNAZNr4JvOE4sqLIhN6IouFp-E4lHKIFypxBNk7Pn2Mbp5GTyvkoquFQVpli_0Npju0bn8Ztqs5LPIca3xRdtBtSh-SEFfBHo2R1nf-Oad5YH_vRjGcBR5ad-VzjuNVANzNnpHgFTu1U2wq-3d4-p1-_mRRfgtLV5tkvc0n6aSZ8hZZMXabbHS9Gmj76u6Q5L6AI6yhSV3NULtSw03IV2lty7pAvCiNphbFjeuSalM5hpalidXU6V52NUqW5pY6kWLsZey-ydP8HUCp3CWPV5cPF1Ovba_gqYizCtA3gfVJx1wrCFOQKCgVs8woP018kfmQt2SxHqURC0ehcTqCScyVDsIxDBFgu0d6dmbNAaEx1zxVmRkFLI1SOMGp2LBMMQGxj4Ftn7BuVaVqtcexBcab7Ehmr7LxhURfSF9I8EWfePNRRaO9scR-3DlMLuwhCeFhycjTzr8SXi_8zySxZlaXMkQACyEiiD7Zb_w9nwucthiKc8BzF3bC3ACluxfv2PzFSXhzwNE4Cg7_PeMjsgZXouGPH5Ne9VGbE0iPqnTg9v-ArE6ub6d3X0uUE2A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9wwDLbQ8QAv22CwHRuQSbxWtE0u1zwiNHQMdi8DibeoTdKt05ar1vb_Y6ftaTeQkPbaxGoUJ5_t1v4McJao0rrYlZEy0kRCuDRSZaYii-FQIdFemDwkyC7l4l58eZg9bMHlWAtDaZUD9veYHtB6eHI-7OZ5XVVU40u0g-FQxuiEYAi0TexUYgLbF9c3i-X6Z8I8ET1pOE8iEhgr6EKaV42It_pOOV5ZIDylvrLPW6inHui_iZR_WaarN_BqcCnZRb_qPdhyfh9ej-0a2HB730L-rcYo1rG8a1dEX2lxEF1W1vmmqwkyGmeZJ37jrmHWtSFJy7PcWxaoL8cyJc8qzwJPMbUzDp_lWfUbcak5gPurz3eXi2josBAZIXmLAJzj_hRzaQ1aKvQVjMl46Uxc5LEqY3RdyszOCsHTWeoClWCeSWOTdI4iCucewsSvvHsPLJNWFqZ0s4QXosAgzmSOl4YrNH8c506Bj7uqzUA_Tl0wfukxz-yn7nWhSRc6Vhp1MYVoLVX39BsvzJ-PCtMbx0ijhXhB8tOoX403jH6b5N6tukanhGEpGgU1hXe9vtdrwYCLEz8HvnfjJKwnEHv35oivfgQWb4lQmonk6L9XfAo7i7uvt_r2ennzAXZxRPXp5B9h0v7p3DF6S21xMtyGR6OfFhE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Autoencoder+for+Unsupervised+Nucleus+Detection+and+Representation+in+Histopathology+Images&rft.jtitle=Pattern+recognition&rft.au=Hou%2C+Le&rft.au=Nguyen%2C+Vu&rft.au=Kanevsky%2C+Ariel+B&rft.au=Samaras%2C+Dimitris&rft.date=2019-02-01&rft.issn=0031-3203&rft.volume=86&rft.spage=188&rft_id=info:doi/10.1016%2Fj.patcog.2018.09.007&rft_id=info%3Apmid%2F30631215&rft.externalDocID=30631215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |