Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images

We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A prima...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 86; pp. 188 - 200
Main Authors Hou, Le, Nguyen, Vu, Kanevsky, Ariel B., Samaras, Dimitris, Kurc, Tahsin M., Zhao, Tianhao, Gupta, Rajarsi R., Gao, Yi, Chen, Wenjin, Foran, David, Saltz, Joel H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2018.09.007

Cover

Loading…
Abstract We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully-supervised annotation cost.
AbstractList We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully-supervised annotation cost.
We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully- supervised annotation cost.We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully- supervised annotation cost.
Author Zhao, Tianhao
Samaras, Dimitris
Foran, David
Saltz, Joel H.
Hou, Le
Kurc, Tahsin M.
Gao, Yi
Nguyen, Vu
Chen, Wenjin
Kanevsky, Ariel B.
Gupta, Rajarsi R.
AuthorAffiliation 1 Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA
7 Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey,New Brunswick, NJ, USA
2 Montreal Institute for Learning Algorithms, University of Montreal, Montreal, Canada
8 Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, NJ, USA
5 Dept. of Pathology, Stony Brook University Medical Center, Stony Brook, NY, USA
6 School of Biomedical Engineering, Health Science Center, Shenzhen University, China
3 Dept. of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
9 Div. of Medical Informatics, Rutgers-Robert Wood Johnson Medical School, Piscataway Township, NJ, USA
4 Oak Ridge National Laboratory, Oak Ridge, TN, USA
10 Cancer Center, Stony Brook University Hospital, Stony Brook, NY, USA
AuthorAffiliation_xml – name: 6 School of Biomedical Engineering, Health Science Center, Shenzhen University, China
– name: 5 Dept. of Pathology, Stony Brook University Medical Center, Stony Brook, NY, USA
– name: 10 Cancer Center, Stony Brook University Hospital, Stony Brook, NY, USA
– name: 2 Montreal Institute for Learning Algorithms, University of Montreal, Montreal, Canada
– name: 8 Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, NJ, USA
– name: 9 Div. of Medical Informatics, Rutgers-Robert Wood Johnson Medical School, Piscataway Township, NJ, USA
– name: 1 Dept. of Computer Science, Stony Brook University, Stony Brook, NY, USA
– name: 4 Oak Ridge National Laboratory, Oak Ridge, TN, USA
– name: 3 Dept. of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
– name: 7 Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey,New Brunswick, NJ, USA
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0001-7323-5300
  surname: Hou
  fullname: Hou, Le
  email: le.hou@stonybrook.edu
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
– sequence: 2
  givenname: Vu
  surname: Nguyen
  fullname: Nguyen, Vu
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
– sequence: 3
  givenname: Ariel B.
  surname: Kanevsky
  fullname: Kanevsky, Ariel B.
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
– sequence: 4
  givenname: Dimitris
  surname: Samaras
  fullname: Samaras, Dimitris
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
– sequence: 5
  givenname: Tahsin M.
  surname: Kurc
  fullname: Kurc, Tahsin M.
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
– sequence: 6
  givenname: Tianhao
  surname: Zhao
  fullname: Zhao, Tianhao
  organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
– sequence: 7
  givenname: Rajarsi R.
  orcidid: 0000-0002-1577-8718
  surname: Gupta
  fullname: Gupta, Rajarsi R.
  organization: Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
– sequence: 8
  givenname: Yi
  surname: Gao
  fullname: Gao, Yi
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, China
– sequence: 9
  givenname: Wenjin
  surname: Chen
  fullname: Chen, Wenjin
  organization: Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
– sequence: 10
  givenname: David
  surname: Foran
  fullname: Foran, David
  organization: Center for Biomedical Imaging & Informatics, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
– sequence: 11
  givenname: Joel H.
  surname: Saltz
  fullname: Saltz, Joel H.
  organization: Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30631215$$D View this record in MEDLINE/PubMed
BookMark eNqFUctqHDEQFMEhXtv5A2N09GUmLWl2HjkEjMkLDDkkPgut1LOrZVaaSDML_vu0s-tg55CcBOqq6uqqM3YSYkDGLgWUAkT9bluOZrJxXUoQbQldCdC8YgvRNqpYikqesAWAEoWSoE7ZWc5bANHQ4A07VVArIcVywcz30aSM3MxTxGCjw8T7mPgc8jxi2vuMjofZDjhn7nBCO_kYuAmOJxwTZgyT-f3lA9_4PEVytYlDXD9wvzNrzBfsdW-GjG-P7zm7__Txx-2X4u7b56-3N3eFrWo1FUoY8rdqamdbOkhKa1vVo4WVga6HTjV965arSsmlxKaqoDJtbZ2QDVE6wp6zDwfdcV7t0Fkylsygx0Q20oOOxuuXk-A3eh33ulZStpUggeujQIo_Z8yT3vlscRhMwDhnLUXTKdkJ0RH06vmuP0ueciXA-wPApphzwl5bf8iJVvtBC9CPJeqtPpSoH0vU0GkqkcjVX-Qn_f_QjgEgpbz3mHS2njpF5xPVpl30_xb4BcR3u0g
CitedBy_id crossref_primary_10_1109_TCBB_2021_3138189
crossref_primary_10_1016_j_ajpath_2024_01_016
crossref_primary_10_1007_s42979_023_02115_2
crossref_primary_10_1016_j_patcog_2019_107109
crossref_primary_10_3390_app10186427
crossref_primary_10_1016_j_patcog_2020_107200
crossref_primary_10_1109_ACCESS_2020_2984522
crossref_primary_10_1007_s40139_019_00200_x
crossref_primary_10_1016_j_patcog_2020_107481
crossref_primary_10_1016_j_media_2024_103344
crossref_primary_10_1007_s12652_021_03308_4
crossref_primary_10_1109_JBHI_2023_3310507
crossref_primary_10_46604_ijeti_2021_6891
crossref_primary_10_1016_j_neunet_2023_11_006
crossref_primary_10_1109_ACCESS_2021_3092645
crossref_primary_10_3390_s20061546
crossref_primary_10_2514_1_I011445
crossref_primary_10_1016_j_mlwa_2021_100198
crossref_primary_10_1016_j_smim_2020_101411
crossref_primary_10_3390_jimaging10100239
crossref_primary_10_1109_TCBB_2023_3321593
crossref_primary_10_3390_electronics10050562
crossref_primary_10_1016_j_patcog_2024_110621
crossref_primary_10_1088_1361_6560_ac910a
crossref_primary_10_2174_1573405617666210127154257
crossref_primary_10_1109_ACCESS_2022_3168721
crossref_primary_10_1016_j_media_2020_101912
crossref_primary_10_1177_03009858211040484
crossref_primary_10_1364_BOE_400816
crossref_primary_10_1109_TIP_2023_3337666
crossref_primary_10_1109_JBHI_2021_3081185
crossref_primary_10_1016_j_media_2022_102481
crossref_primary_10_1016_j_neucom_2019_08_103
crossref_primary_10_1109_TMI_2019_2895318
crossref_primary_10_1088_1757_899X_1175_1_012015
crossref_primary_10_1016_j_gmod_2020_101083
crossref_primary_10_1016_j_compmedimag_2024_102427
crossref_primary_10_1016_j_media_2022_102485
crossref_primary_10_3390_s23177318
crossref_primary_10_1016_j_cag_2021_04_037
crossref_primary_10_1007_s12065_019_00288_5
crossref_primary_10_1109_ACCESS_2021_3084597
crossref_primary_10_1109_TMI_2022_3157983
crossref_primary_10_1016_j_eswa_2024_125139
crossref_primary_10_3390_cancers11091235
crossref_primary_10_1016_j_knosys_2024_112217
crossref_primary_10_3390_electronics11101642
crossref_primary_10_1002_gcc_23177
crossref_primary_10_1016_j_patrec_2021_01_002
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1002_ima_22676
crossref_primary_10_1016_j_cmpb_2023_107520
crossref_primary_10_1016_j_patcog_2019_107166
crossref_primary_10_1109_ACCESS_2023_3237542
crossref_primary_10_3390_e23101336
crossref_primary_10_1038_s41467_021_23913_3
crossref_primary_10_1088_1361_6560_abcd17
crossref_primary_10_1016_j_neucom_2019_06_005
crossref_primary_10_1049_ipr2_12709
crossref_primary_10_1109_ACCESS_2022_3159700
crossref_primary_10_1109_ACCESS_2019_2908724
crossref_primary_10_3390_cancers14235778
crossref_primary_10_1016_j_metrad_2024_100069
crossref_primary_10_1186_s12911_022_01826_5
crossref_primary_10_1016_j_gpb_2022_11_003
crossref_primary_10_1038_s41597_020_0528_1
crossref_primary_10_1016_j_cmpb_2019_03_007
crossref_primary_10_3389_fmed_2019_00162
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1200_CCI_19_00155
crossref_primary_10_4103_jpi_jpi_36_21
crossref_primary_10_3389_fnins_2020_00027
crossref_primary_10_1007_s11831_020_09470_w
crossref_primary_10_1038_s42003_023_04608_5
crossref_primary_10_1371_journal_pcbi_1008349
crossref_primary_10_3390_cancers13215522
crossref_primary_10_1016_j_jpi_2023_100315
crossref_primary_10_1016_j_patcog_2020_107515
crossref_primary_10_55007_dufed_1181996
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_3389_fimmu_2022_942945
crossref_primary_10_1007_s10278_022_00631_w
crossref_primary_10_3390_math10050796
crossref_primary_10_1007_s00521_022_07857_3
crossref_primary_10_1007_s10845_020_01543_8
Cites_doi 10.1109/83.506761
10.1016/j.patrec.2016.01.007
10.4103/2153-3539.83746
10.1109/TMI.2015.2458702
10.1016/j.patcog.2015.02.023
10.5244/C.29.150
10.1016/j.patcog.2017.08.004
10.1016/j.media.2016.11.004
10.1016/j.patcog.2015.09.015
10.1016/j.patcog.2017.05.010
10.1016/j.patcog.2016.09.029
10.1016/j.patcog.2018.02.012
10.1016/j.neunet.2014.09.003
10.1016/j.patcog.2017.10.013
10.1109/RBME.2016.2515127
10.1016/j.patcog.2016.07.023
10.1126/scitranslmed.3004330
10.1016/j.patcog.2012.09.015
10.1016/j.patcog.2016.09.020
10.1109/TMI.2016.2525803
10.1007/s11263-015-0816-y
10.1016/j.patcog.2008.08.027
10.1093/annonc/mdu450
10.4103/2153-3539.189703
10.1126/science.1129139
10.1016/j.patcog.2016.05.029
10.1016/j.patcog.2017.06.021
10.1016/j.patrec.2014.02.008
10.1016/j.patcog.2008.10.035
10.1016/j.patrec.2012.11.008
10.1016/j.patcog.2016.10.020
10.1038/nm0798-844
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.patcog.2018.09.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 200
ExternalDocumentID PMC6322841
30631215
10_1016_j_patcog_2018_09_007
S0031320318303261
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM011119
– fundername: NLM NIH HHS
  grantid: R01 LM009239
– fundername: NCI NIH HHS
  grantid: U24 CA180924
– fundername: NCI NIH HHS
  grantid: R01 CA161375
– fundername: NCI NIH HHS
  grantid: U24 CA215109
– fundername: NCI NIH HHS
  grantid: UG3 CA225021
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c463t-31a001b76dc801822cc83fec0ba09f0937f8d5b43252e74404a86cd12776d9c83
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Aug 21 18:33:40 EDT 2025
Fri Jul 11 06:20:32 EDT 2025
Thu Apr 03 07:04:07 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Tue Jul 01 02:36:28 EDT 2025
Fri Feb 23 02:25:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pathology image analysis
Semi-supervised learning
Convolutional neural network
Unsupervised learning
pathology image analysis
semi-supervised learning
convolutional neural network
unsupervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-31a001b76dc801822cc83fec0ba09f0937f8d5b43252e74404a86cd12776d9c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1577-8718
0000-0001-7323-5300
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6322841
PMID 30631215
PQID 2179329119
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322841
proquest_miscellaneous_2179329119
pubmed_primary_30631215
crossref_citationtrail_10_1016_j_patcog_2018_09_007
crossref_primary_10_1016_j_patcog_2018_09_007
elsevier_sciencedirect_doi_10_1016_j_patcog_2018_09_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pattern recognition
PublicationTitleAlternate Pattern Recognit
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Suzuki, Zhou, Wang (bib0019) 2017; 63
Masci, Meier, Cireşan, Schmidhuber (bib0038) 2011
Theano Development Team, Theano: a python framework for fast computation of mathematical expressions, arXiv
Xu, Jia, Ai, Zhang, Lai, Eric, Chang (bib0069) 2015
Wang, Yao, Xu, Huang (bib0032) 2016
Reddy, Chatterji (bib0072) 1996; 5
Galon, Costes (bib0061) 2006; 313
Gragnaniello, Sansone, Verdoliva (bib0044) 2016; 82
Simonyan, Zisserman (bib0067) 2015
Xie, Kong, Xing, Liu, Su, Yang (bib0030) 2015
Vicente, Hou, Yu, Hoai, Samaras (bib0064) 2016
Xu, Huang (bib0035) 2016
Turkki, Linder, Kovanen, Pellinen, Lundin (bib0063) 2016; 7
Russakovsky, Deng (bib0068) 2015; 115
Sirinukunwattana, Raza, Tsang, Snead, Cree, Rajpoot (bib0034) 2016; 35
Pantanowitz, Valenstein, Evans, Kaplan, Pfeifer, Wilbur, Collins, Colgan (bib0005) 2011; 2
Radford, Metz, Chintala (bib0049) 2016
Ng (bib0052) 2011
Huang, Tosun, Guo, Chen, Wang, Ozolek, Rohde (bib0003) 2014; 42
Sertel, Kong, Shimada, Catalyurek, Saltz, Gurcan (bib0020) 2009; 42
Zhang, Chen, Sapkota, Yang (bib0002) 2017
MICCAI 2015 workshop and challenges in imaging and digital pathology: the computational brain tumor cluster of event, 2015
Ren, He, Girshick, Sun (bib0046) 2015
Ronneberger, Fischer, Brox (bib0014) 2015
Ranzato, Poultney, Chopra, LeCun (bib0037) 2006
Bibiloni, Gonzlez-Hidalgo, Massanet (bib0018) 2016; 60
Su, Xing, Kong, Xie, Zhang, Yang (bib0041) 2015
.
J. Saltz, R. Gupta, L. Hou, et al., Spatial organization and molecular correlation of tumor infiltrating lymphocytes using deep learning on pathology images, Cell Reports, Accepted for Publication, 2018.
Hou, Singh, Samaras, Kurc, Gao, Seidman, Saltz (bib0042) 2016
Zheng, Jiang, Xie, Zhang, Ma, Shi, Zhao (bib0028) 2017; 71
Xie, Zhang, Sapkota, Yang (bib0010) 2016
X. Xia, B. Kulis, W-net: a deep model for fully unsupervised image segmentation, arXiv
The cancer genome atlas
(2017).
Redmon, Divvala, Girshick, Farhadi (bib0047) 2016
Shen, Zhou, Yang, Yu, Dong, Yang, Zang, Tian (bib0024) 2017; 61
Tajbakhsh, Suzuki (bib0026) 2017; 63
Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib0040) 2016; 35
B. Graham, Spatially-sparse convolutional neural networks, arXiv
Kononen, Bubendorf, Kallionimeni, Bärlund, Schraml, Leighton, Torhorst, Mihatsch, Sauter, Kallionimeni (bib0006) 1998; 4
Peng, Zhang, Zhang (bib0016) 2013; 46
Pathologists’ Hourly Wages
Deng, Seltzer, Yu, Acero, Mohamed, Hinton (bib0051) 2010
Bayramoglu, Heikkilä (bib0039) 2016
Smochina, Manta, Kropatsch (bib0022) 2013; 34
Khatami, Schmidt-Wilcke, Sundgren, Abbasloo, Schlkopf, Schultz (bib0027) 2017; 63
Johnson, Zhang (bib0053) 2015
F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv
Gao, Ratner, Zhu, Diprima, Kurc, Tannenbaum, Saltz (bib0073) 2016; 9791
Makhzani, Frey (bib0056) 2014
Manivannan, Li, Akbar, Wang, Zhang, McKenna (bib0025) 2016; 51
Xing, Yang (bib0008) 2016; 9
Zhang, Xie, Xing, McGough, Yang (bib0001) 2017
Xian, Zhang, Cheng, Xu, Zhang, Ding (bib0017) 2018; 79
Rasti, Teshnehlab, Phung (bib0023) 2017; 72
Kong, Sertel, Shimada, Boyer, Saltz, Gurcan (bib0021) 2009; 42
Murthy, Hou, Samaras, Kurc, Saltz (bib0043) 2017
Salgado, Denkert (bib0062) 2014; 26
Graves, Jaitly (bib0045) 2014
Doersch, Gupta, Efros (bib0050) 2015
Schmidhuber (bib0012) 2015; 61
Chen, Qi, Yu, Dou, Qin, Heng (bib0033) 2017; 36
Kokkinos (bib0048) 2017
Xie, Xing, Kong, Su, Yang (bib0031) 2015
Gu, Wang (bib0013) 2018; 77
(2014).
Maas, Hannun, Ng (bib0059) 2013; 30
Al-Milaji, Ersoy, Hafiane, Palaniappan, Bunyak (bib0029) 2017
Yuan, Failmezger, Rueda (bib0071) 2012; 4
Xing, Xie, Su, Liu, Yang (bib0007) 2017; PP
Ioffe, Szegedy (bib0057) 2015
Xing, Shi, Zhang, Cai, Xie, Yang (bib0011) 2016
Zhang, Li (bib0009) 2017; 71
Lu, Mandal (bib0004) 2015; 48
(2016).
Zhou, Yu, Zhao (bib0070) 2017; 10140
Murdock, Li, Zhou, Duerig (bib0054) 2016
Zhang (10.1016/j.patcog.2018.09.007_bib0002) 2017
Xie (10.1016/j.patcog.2018.09.007_bib0010) 2016
Masci (10.1016/j.patcog.2018.09.007_bib0038) 2011
Bayramoglu (10.1016/j.patcog.2018.09.007_bib0039) 2016
Xie (10.1016/j.patcog.2018.09.007_bib0030) 2015
Doersch (10.1016/j.patcog.2018.09.007_bib0050) 2015
Ronneberger (10.1016/j.patcog.2018.09.007_bib0014) 2015
Xu (10.1016/j.patcog.2018.09.007_bib0040) 2016; 35
Rasti (10.1016/j.patcog.2018.09.007_bib0023) 2017; 72
Radford (10.1016/j.patcog.2018.09.007_bib0049) 2016
Ranzato (10.1016/j.patcog.2018.09.007_bib0037) 2006
Makhzani (10.1016/j.patcog.2018.09.007_bib0056) 2014
Manivannan (10.1016/j.patcog.2018.09.007_bib0025) 2016; 51
Bibiloni (10.1016/j.patcog.2018.09.007_bib0018) 2016; 60
Murdock (10.1016/j.patcog.2018.09.007_bib0054) 2016
10.1016/j.patcog.2018.09.007_bib0036
Zhou (10.1016/j.patcog.2018.09.007_bib0070) 2017; 10140
Xian (10.1016/j.patcog.2018.09.007_bib0017) 2018; 79
Salgado (10.1016/j.patcog.2018.09.007_bib0062) 2014; 26
Murthy (10.1016/j.patcog.2018.09.007_bib0043) 2017
Zheng (10.1016/j.patcog.2018.09.007_bib0028) 2017; 71
Turkki (10.1016/j.patcog.2018.09.007_bib0063) 2016; 7
Gao (10.1016/j.patcog.2018.09.007_bib0073) 2016; 9791
Vicente (10.1016/j.patcog.2018.09.007_bib0064) 2016
Wang (10.1016/j.patcog.2018.09.007_bib0032) 2016
Su (10.1016/j.patcog.2018.09.007_bib0041) 2015
Gu (10.1016/j.patcog.2018.09.007_bib0013) 2018; 77
Sertel (10.1016/j.patcog.2018.09.007_bib0020) 2009; 42
Deng (10.1016/j.patcog.2018.09.007_bib0051) 2010
Kong (10.1016/j.patcog.2018.09.007_bib0021) 2009; 42
Lu (10.1016/j.patcog.2018.09.007_bib0004) 2015; 48
Khatami (10.1016/j.patcog.2018.09.007_bib0027) 2017; 63
Ng (10.1016/j.patcog.2018.09.007_bib0052) 2011
Zhang (10.1016/j.patcog.2018.09.007_bib0001) 2017
Suzuki (10.1016/j.patcog.2018.09.007_bib0019) 2017; 63
Huang (10.1016/j.patcog.2018.09.007_bib0003) 2014; 42
Zhang (10.1016/j.patcog.2018.09.007_bib0009) 2017; 71
Galon (10.1016/j.patcog.2018.09.007_bib0061) 2006; 313
Xing (10.1016/j.patcog.2018.09.007_bib0007) 2017; PP
Redmon (10.1016/j.patcog.2018.09.007_bib0047) 2016
Kononen (10.1016/j.patcog.2018.09.007_bib0006) 1998; 4
Ioffe (10.1016/j.patcog.2018.09.007_bib0057) 2015
10.1016/j.patcog.2018.09.007_bib0055
Schmidhuber (10.1016/j.patcog.2018.09.007_bib0012) 2015; 61
10.1016/j.patcog.2018.09.007_bib0015
10.1016/j.patcog.2018.09.007_bib0058
Gragnaniello (10.1016/j.patcog.2018.09.007_bib0044) 2016; 82
10.1016/j.patcog.2018.09.007_bib0060
Reddy (10.1016/j.patcog.2018.09.007_bib0072) 1996; 5
Xu (10.1016/j.patcog.2018.09.007_bib0069) 2015
Hou (10.1016/j.patcog.2018.09.007_bib0042) 2016
Chen (10.1016/j.patcog.2018.09.007_bib0033) 2017; 36
Kokkinos (10.1016/j.patcog.2018.09.007_bib0048) 2017
Russakovsky (10.1016/j.patcog.2018.09.007_bib0068) 2015; 115
Xie (10.1016/j.patcog.2018.09.007_bib0031) 2015
10.1016/j.patcog.2018.09.007_bib0066
10.1016/j.patcog.2018.09.007_bib0065
Smochina (10.1016/j.patcog.2018.09.007_bib0022) 2013; 34
Tajbakhsh (10.1016/j.patcog.2018.09.007_bib0026) 2017; 63
Pantanowitz (10.1016/j.patcog.2018.09.007_bib0005) 2011; 2
Xing (10.1016/j.patcog.2018.09.007_bib0008) 2016; 9
10.1016/j.patcog.2018.09.007_bib0074
Xu (10.1016/j.patcog.2018.09.007_bib0035) 2016
Ren (10.1016/j.patcog.2018.09.007_bib0046) 2015
Xing (10.1016/j.patcog.2018.09.007_bib0011) 2016
Peng (10.1016/j.patcog.2018.09.007_bib0016) 2013; 46
Johnson (10.1016/j.patcog.2018.09.007_bib0053) 2015
Yuan (10.1016/j.patcog.2018.09.007_bib0071) 2012; 4
Maas (10.1016/j.patcog.2018.09.007_bib0059) 2013; 30
Simonyan (10.1016/j.patcog.2018.09.007_bib0067) 2015
Shen (10.1016/j.patcog.2018.09.007_bib0024) 2017; 61
Al-Milaji (10.1016/j.patcog.2018.09.007_bib0029) 2017
Sirinukunwattana (10.1016/j.patcog.2018.09.007_bib0034) 2016; 35
Graves (10.1016/j.patcog.2018.09.007_bib0045) 2014
References_xml – year: 2010
  ident: bib0051
  article-title: Binary coding of speech spectrograms using a deep auto-encoder.
  publication-title: Eleventh Annual Conference of the International Speech Communication Association
– volume: 36
  start-page: 135
  year: 2017
  end-page: 146
  ident: bib0033
  article-title: Dcan: deep contour-aware networks for object instance segmentation from histology images
  publication-title: Med. Image Anal.
– year: 2014
  ident: bib0045
  article-title: Towards end-to-end speech recognition with recurrent neural networks.
  publication-title: International Conference on Machine Learning
– volume: 7
  year: 2016
  ident: bib0063
  article-title: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
  publication-title: J. Pathol. Inform.
– volume: 71
  start-page: 14
  year: 2017
  end-page: 25
  ident: bib0028
  article-title: Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0042
  article-title: Automatic histopathology image analysis with CNNs
  publication-title: New York Scientific Data Summit
– year: 2015
  ident: bib0067
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 63
  start-page: 465
  year: 2017
  end-page: 467
  ident: bib0019
  article-title: Machine learning in medical imaging
  publication-title: Pattern Recognit.
– reference: ).
– start-page: 383
  year: 2015
  end-page: 390
  ident: bib0041
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2011
  ident: bib0052
  article-title: Sparse Autoencoder
  publication-title: Technical Report
– volume: 48
  start-page: 2738
  year: 2015
  end-page: 2750
  ident: bib0004
  article-title: Automated analysis and diagnosis of skin melanoma on whole slide histopathological images
  publication-title: Pattern Recognit.
– start-page: 919
  year: 2015
  end-page: 927
  ident: bib0053
  article-title: Semi-supervised convolutional neural networks for text categorization via region embedding
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0068
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1038
  ident: bib0016
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognit.
– volume: 42
  start-page: 1080
  year: 2009
  end-page: 1092
  ident: bib0021
  article-title: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation
  publication-title: Pattern Recognit.
– volume: 30
  start-page: 3
  year: 2013
  ident: bib0059
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: International conference on machine learning (ICML)
– volume: 313
  start-page: 1960
  year: 2006
  end-page: 1964
  ident: bib0061
  article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
  publication-title: Science
– volume: 9791
  start-page: 979117
  year: 2016
  ident: bib0073
  article-title: Hierarchical nucleus segmentation in digital pathology images
  publication-title: Medical Imaging 2016: Digital Pathology
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0057
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International conference on machine learning (ICML)
– volume: 42
  start-page: 1093
  year: 2009
  end-page: 1103
  ident: bib0020
  article-title: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0011
  article-title: Transfer shape modeling towards high-throughput microscopy image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 63
  start-page: 593
  year: 2017
  end-page: 600
  ident: bib0027
  article-title: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion mri
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 234
  year: 2016
  end-page: 263
  ident: bib0008
  article-title: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 2
  year: 2011
  ident: bib0005
  article-title: Review of the current state of whole slide imaging in pathology
  publication-title: J. Pathol. Inform.
– start-page: 532
  year: 2016
  end-page: 539
  ident: bib0039
  article-title: Transfer learning for cell nuclei classification in histopathology images
  publication-title: European Conference on Computer Vision Workshops
– start-page: 1137
  year: 2006
  end-page: 1144
  ident: bib0037
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in Neural Information Processing Systems
– volume: 10140
  start-page: 101400K
  year: 2017
  ident: bib0070
  article-title: Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis
  publication-title: Medical Imaging 2017: Digital Pathology
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: bib0013
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0049
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: International Conference on Learning Representations
– reference: MICCAI 2015 workshop and challenges in imaging and digital pathology: the computational brain tumor cluster of event, 2015, (
– reference: The cancer genome atlas, (
– start-page: 358
  year: 2015
  end-page: 365
  ident: bib0031
  article-title: Beyond classification: structured regression for robust cell detection using convolutional neural network
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– start-page: 816
  year: 2016
  end-page: 832
  ident: bib0064
  article-title: Large-scale training of shadow detectors with noisily-annotated shadow examples
  publication-title: European Conference on Computer Vision (ECCV)
– start-page: 320
  year: 2017
  end-page: 328
  ident: bib0002
  article-title: Tandemnet: distilling knowledge from medical images using diagnostic reports as optional semantic references
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 72
  start-page: 381
  year: 2017
  end-page: 390
  ident: bib0023
  article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 4
  year: 2012
  ident: bib0071
  article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
  publication-title: Sci. Transl. Med.
– reference: X. Xia, B. Kulis, W-net: a deep model for fully unsupervised image segmentation, arXiv:
– reference: (2017).
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0046
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 6428
  year: 2017
  end-page: 6436
  ident: bib0001
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib0047
  article-title: You only look once: unified, real-time object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0014
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 51
  start-page: 12
  year: 2016
  end-page: 26
  ident: bib0025
  article-title: An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens
  publication-title: Pattern Recognit.
– reference: (2016).
– volume: 4
  start-page: 844
  year: 1998
  end-page: 847
  ident: bib0006
  article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens
  publication-title: Nat. Med.
– volume: PP
  start-page: 1
  year: 2017
  end-page: 19
  ident: bib0007
  article-title: Deep learning in microscopy image analysis: a survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 34
  start-page: 934
  year: 2013
  end-page: 941
  ident: bib0022
  article-title: Crypts detection in microscopic images using hierarchical structures
  publication-title: Pattern Recognit. Lett.
– reference: F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv:
– volume: 60
  start-page: 949
  year: 2016
  end-page: 970
  ident: bib0018
  article-title: A survey on curvilinear object segmentation in multiple applications
  publication-title: Pattern Recognit.
– start-page: 374
  year: 2015
  end-page: 382
  ident: bib0030
  article-title: Deep voting: a robust approach toward nucleus localization in microscopy images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: J. Saltz, R. Gupta, L. Hou, et al., Spatial organization and molecular correlation of tumor infiltrating lymphocytes using deep learning on pathology images, Cell Reports, Accepted for Publication, 2018.
– year: 2016
  ident: bib0035
  article-title: Detecting 10,000 cells in one second
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 35
  start-page: 1196
  year: 2016
  end-page: 1206
  ident: bib0034
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: Medical Imaging
– start-page: 640
  year: 2016
  end-page: 648
  ident: bib0032
  article-title: Subtype cell detection with an accelerated deep convolution neural network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2017
  ident: bib0043
  article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images
  publication-title: Winter Conference on Applications of Computer Vision (WACV)
– start-page: 2583
  year: 2016
  end-page: 2591
  ident: bib0054
  article-title: Blockout: dynamic model selection for hierarchical deep networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 5
  start-page: 1266
  year: 1996
  end-page: 1271
  ident: bib0072
  article-title: An fft-based technique for translation, rotation, and scale-invariant image registration
  publication-title: IEEE Trans. Image Process.
– year: 2016
  ident: bib0010
  article-title: Spatial clockwork recurrent neural network for muscle perimysium segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 63
  start-page: 476
  year: 2017
  end-page: 486
  ident: bib0026
  article-title: Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: mtanns vs. cnns
  publication-title: Pattern Recognit.
– reference: Pathologists’ Hourly Wages, (
– year: 2014
  ident: bib0056
  article-title: k-sparse autoencoders
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 82
  start-page: 72
  year: 2016
  end-page: 78
  ident: bib0044
  article-title: Cell image classification by a scale and rotation invariant dense local descriptor
  publication-title: Pattern Recognit. Lett.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0012
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– volume: 42
  start-page: 115
  year: 2014
  end-page: 121
  ident: bib0003
  article-title: Cancer diagnosis by nuclear morphometry using spatial information
  publication-title: Pattern Recognit. Lett.
– start-page: 52
  year: 2011
  end-page: 59
  ident: bib0038
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: International Conference on Artificial Neural Networks (ICANN)
– reference: B. Graham, Spatially-sparse convolutional neural networks, arXiv:
– reference: Theano Development Team, Theano: a python framework for fast computation of mathematical expressions, arXiv:
– start-page: 6129
  year: 2017
  end-page: 6138
  ident: bib0048
  article-title: Ubernet: training auniversal’convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: (2014).
– volume: 79
  start-page: 340
  year: 2018
  end-page: 355
  ident: bib0017
  article-title: Automatic breast ultrasound image segmentation: a survey
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: bib0040
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
– volume: 61
  start-page: 663
  year: 2017
  end-page: 673
  ident: bib0024
  article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognit.
– start-page: 947
  year: 2015
  end-page: 951
  ident: bib0069
  article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib0029
  article-title: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in h&e images
  publication-title: Pattern Recognit. Lett.
– start-page: 1422
  year: 2015
  end-page: 1430
  ident: bib0050
  article-title: Unsupervised visual representation learning by context prediction
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 71
  start-page: 349
  year: 2017
  end-page: 360
  ident: bib0009
  article-title: Automated segmentation of overlapped nuclei using concave point detection and segment grouping
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 259
  year: 2014
  end-page: 271
  ident: bib0062
  article-title: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014
  publication-title: Ann. Oncol.
– volume: 5
  start-page: 1266
  issue: 8
  year: 1996
  ident: 10.1016/j.patcog.2018.09.007_bib0072
  article-title: An fft-based technique for translation, rotation, and scale-invariant image registration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.506761
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0007
  article-title: Deep learning in microscopy image analysis: a survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: 10.1016/j.patcog.2018.09.007_bib0058
– volume: 82
  start-page: 72
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0044
  article-title: Cell image classification by a scale and rotation invariant dense local descriptor
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.01.007
– ident: 10.1016/j.patcog.2018.09.007_bib0060
– start-page: 919
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0053
  article-title: Semi-supervised convolutional neural networks for text categorization via region embedding
– start-page: 816
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0064
  article-title: Large-scale training of shadow detectors with noisily-annotated shadow examples
– volume: 2
  year: 2011
  ident: 10.1016/j.patcog.2018.09.007_bib0005
  article-title: Review of the current state of whole slide imaging in pathology
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.83746
– volume: 10140
  start-page: 101400K
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0070
  article-title: Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis
– year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0067
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 91
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0046
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0040
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 48
  start-page: 2738
  issue: 8
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0004
  article-title: Automated analysis and diagnosis of skin melanoma on whole slide histopathological images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.02.023
– start-page: 2583
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0054
  article-title: Blockout: dynamic model selection for hierarchical deep networks
– year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0043
  article-title: Center-focusing multi-task CNN with injected features for classification of glioma nuclear images
– start-page: 6129
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0048
  article-title: Ubernet: training auniversal’convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory
– ident: 10.1016/j.patcog.2018.09.007_bib0055
  doi: 10.5244/C.29.150
– volume: 72
  start-page: 381
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0023
  article-title: Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.004
– start-page: 1422
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0050
  article-title: Unsupervised visual representation learning by context prediction
– start-page: 320
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0002
  article-title: Tandemnet: distilling knowledge from medical images using diagnostic reports as optional semantic references
– start-page: 532
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0039
  article-title: Transfer learning for cell nuclei classification in histopathology images
– volume: 30
  start-page: 3
  year: 2013
  ident: 10.1016/j.patcog.2018.09.007_bib0059
  article-title: Rectifier nonlinearities improve neural network acoustic models
– start-page: 1137
  year: 2006
  ident: 10.1016/j.patcog.2018.09.007_bib0037
  article-title: Efficient learning of sparse representations with an energy-based model
– volume: 36
  start-page: 135
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0033
  article-title: Dcan: deep contour-aware networks for object instance segmentation from histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.004
– year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0042
  article-title: Automatic histopathology image analysis with CNNs
– start-page: 448
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0057
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 51
  start-page: 12
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0025
  article-title: An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.09.015
– volume: 71
  start-page: 14
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0028
  article-title: Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.010
– volume: 63
  start-page: 476
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0026
  article-title: Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: mtanns vs. cnns
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.029
– volume: 79
  start-page: 340
  year: 2018
  ident: 10.1016/j.patcog.2018.09.007_bib0017
  article-title: Automatic breast ultrasound image segmentation: a survey
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.02.012
– year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0035
  article-title: Detecting 10,000 cells in one second
– ident: 10.1016/j.patcog.2018.09.007_bib0065
– year: 2011
  ident: 10.1016/j.patcog.2018.09.007_bib0052
  article-title: Sparse Autoencoder
– start-page: 779
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0047
  article-title: You only look once: unified, real-time object detection
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0012
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– year: 2010
  ident: 10.1016/j.patcog.2018.09.007_bib0051
  article-title: Binary coding of speech spectrograms using a deep auto-encoder.
– volume: 77
  start-page: 354
  year: 2018
  ident: 10.1016/j.patcog.2018.09.007_bib0013
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– volume: 9791
  start-page: 979117
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0073
  article-title: Hierarchical nucleus segmentation in digital pathology images
– volume: 9
  start-page: 234
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0008
  article-title: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2016.2515127
– volume: 60
  start-page: 949
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0018
  article-title: A survey on curvilinear object segmentation in multiple applications
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.023
– volume: 4
  issue: 157
  year: 2012
  ident: 10.1016/j.patcog.2018.09.007_bib0071
  article-title: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004330
– start-page: 947
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0069
  article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
– year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0011
  article-title: Transfer shape modeling towards high-throughput microscopy image segmentation
– start-page: 358
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0031
  article-title: Beyond classification: structured regression for robust cell detection using convolutional neural network
– volume: 46
  start-page: 1020
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2018.09.007_bib0016
  article-title: A survey of graph theoretical approaches to image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.09.015
– ident: 10.1016/j.patcog.2018.09.007_bib0066
– volume: 63
  start-page: 593
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0027
  article-title: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion mri
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.020
– volume: 35
  start-page: 1196
  issue: 5
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0034
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: Medical Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0068
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2014
  ident: 10.1016/j.patcog.2018.09.007_bib0045
  article-title: Towards end-to-end speech recognition with recurrent neural networks.
– volume: 42
  start-page: 1093
  issue: 6
  year: 2009
  ident: 10.1016/j.patcog.2018.09.007_bib0020
  article-title: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.08.027
– volume: 26
  start-page: 259
  issue: 2
  year: 2014
  ident: 10.1016/j.patcog.2018.09.007_bib0062
  article-title: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu450
– start-page: 1
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0029
  article-title: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in h&e images
  publication-title: Pattern Recognit. Lett.
– ident: 10.1016/j.patcog.2018.09.007_bib0074
– volume: 7
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0063
  article-title: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.189703
– volume: 313
  start-page: 1960
  issue: 5795
  year: 2006
  ident: 10.1016/j.patcog.2018.09.007_bib0061
  article-title: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome
  publication-title: Science
  doi: 10.1126/science.1129139
– volume: 61
  start-page: 663
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0024
  article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.029
– volume: 71
  start-page: 349
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0009
  article-title: Automated segmentation of overlapped nuclei using concave point detection and segment grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.021
– start-page: 383
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0041
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
– volume: 42
  start-page: 115
  year: 2014
  ident: 10.1016/j.patcog.2018.09.007_bib0003
  article-title: Cancer diagnosis by nuclear morphometry using spatial information
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.02.008
– volume: 42
  start-page: 1080
  issue: 6
  year: 2009
  ident: 10.1016/j.patcog.2018.09.007_bib0021
  article-title: Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.10.035
– year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0049
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 34
  start-page: 934
  issue: 8
  year: 2013
  ident: 10.1016/j.patcog.2018.09.007_bib0022
  article-title: Crypts detection in microscopic images using hierarchical structures
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.11.008
– start-page: 52
  year: 2011
  ident: 10.1016/j.patcog.2018.09.007_bib0038
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– year: 2014
  ident: 10.1016/j.patcog.2018.09.007_bib0056
  article-title: k-sparse autoencoders
– start-page: 640
  year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0032
  article-title: Subtype cell detection with an accelerated deep convolution neural network
– volume: 63
  start-page: 465
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0019
  article-title: Machine learning in medical imaging
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.020
– ident: 10.1016/j.patcog.2018.09.007_bib0036
– start-page: 6428
  year: 2017
  ident: 10.1016/j.patcog.2018.09.007_bib0001
  article-title: Mdnet: a semantically and visually interpretable medical image diagnosis network
– year: 2016
  ident: 10.1016/j.patcog.2018.09.007_bib0010
  article-title: Spatial clockwork recurrent neural network for muscle perimysium segmentation
– start-page: 374
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0030
  article-title: Deep voting: a robust approach toward nucleus localization in microscopy images
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2018.09.007_bib0014
  article-title: U-net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.patcog.2018.09.007_bib0015
– volume: 4
  start-page: 844
  issue: 7
  year: 1998
  ident: 10.1016/j.patcog.2018.09.007_bib0006
  article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens
  publication-title: Nat. Med.
  doi: 10.1038/nm0798-844
SSID ssj0017142
Score 2.6084342
Snippet We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 188
SubjectTerms Convolutional neural network
Pathology image analysis
Semi-supervised learning
Unsupervised learning
Title Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images
URI https://dx.doi.org/10.1016/j.patcog.2018.09.007
https://www.ncbi.nlm.nih.gov/pubmed/30631215
https://www.proquest.com/docview/2179329119
https://pubmed.ncbi.nlm.nih.gov/PMC6322841
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4P8qjMhJraBKnbjxWCFRAYgEkNiuxHQgCNyLJym_nzkkqCkiVGNOcFcvnfHdOv_uOkLNAZNr4JvOE4sqLIhN6IouFp-E4lHKIFypxBNk7Pn2Mbp5GTyvkoquFQVpli_0Npju0bn8Ztqs5LPIca3xRdtBtSh-SEFfBHo2R1nf-Oad5YH_vRjGcBR5ad-VzjuNVANzNnpHgFTu1U2wq-3d4-p1-_mRRfgtLV5tkvc0n6aSZ8hZZMXabbHS9Gmj76u6Q5L6AI6yhSV3NULtSw03IV2lty7pAvCiNphbFjeuSalM5hpalidXU6V52NUqW5pY6kWLsZey-ydP8HUCp3CWPV5cPF1Ovba_gqYizCtA3gfVJx1wrCFOQKCgVs8woP018kfmQt2SxHqURC0ehcTqCScyVDsIxDBFgu0d6dmbNAaEx1zxVmRkFLI1SOMGp2LBMMQGxj4Ftn7BuVaVqtcexBcab7Ehmr7LxhURfSF9I8EWfePNRRaO9scR-3DlMLuwhCeFhycjTzr8SXi_8zySxZlaXMkQACyEiiD7Zb_w9nwucthiKc8BzF3bC3ACluxfv2PzFSXhzwNE4Cg7_PeMjsgZXouGPH5Ne9VGbE0iPqnTg9v-ArE6ub6d3X0uUE2A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9wwDLbQ8QAv22CwHRuQSbxWtE0u1zwiNHQMdi8DibeoTdKt05ar1vb_Y6ftaTeQkPbaxGoUJ5_t1v4McJao0rrYlZEy0kRCuDRSZaYii-FQIdFemDwkyC7l4l58eZg9bMHlWAtDaZUD9veYHtB6eHI-7OZ5XVVU40u0g-FQxuiEYAi0TexUYgLbF9c3i-X6Z8I8ET1pOE8iEhgr6EKaV42It_pOOV5ZIDylvrLPW6inHui_iZR_WaarN_BqcCnZRb_qPdhyfh9ej-0a2HB730L-rcYo1rG8a1dEX2lxEF1W1vmmqwkyGmeZJ37jrmHWtSFJy7PcWxaoL8cyJc8qzwJPMbUzDp_lWfUbcak5gPurz3eXi2josBAZIXmLAJzj_hRzaQ1aKvQVjMl46Uxc5LEqY3RdyszOCsHTWeoClWCeSWOTdI4iCucewsSvvHsPLJNWFqZ0s4QXosAgzmSOl4YrNH8c506Bj7uqzUA_Tl0wfukxz-yn7nWhSRc6Vhp1MYVoLVX39BsvzJ-PCtMbx0ijhXhB8tOoX403jH6b5N6tukanhGEpGgU1hXe9vtdrwYCLEz8HvnfjJKwnEHv35oivfgQWb4lQmonk6L9XfAo7i7uvt_r2ennzAXZxRPXp5B9h0v7p3DF6S21xMtyGR6OfFhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Autoencoder+for+Unsupervised+Nucleus+Detection+and+Representation+in+Histopathology+Images&rft.jtitle=Pattern+recognition&rft.au=Hou%2C+Le&rft.au=Nguyen%2C+Vu&rft.au=Kanevsky%2C+Ariel+B&rft.au=Samaras%2C+Dimitris&rft.date=2019-02-01&rft.issn=0031-3203&rft.volume=86&rft.spage=188&rft_id=info:doi/10.1016%2Fj.patcog.2018.09.007&rft_id=info%3Apmid%2F30631215&rft.externalDocID=30631215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon