Clostridium ljungdahlii represents a microbial production platform based on syngas

Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 29; pp. 13087 - 13092
Main Authors Köpke, Michael, Held, Claudia, Hujer, Sandra, Liesegang, Heiko, Wiezer, Arnim, Wollherr, Antje, Ehrenreich, Armin, Liebl, Wolfgang, Gottschalk, Gerhard, Dürre, Peter, Demain, Arnold L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.07.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thus combining industrial needs with sustained reduction of CO and CO₂ in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
AbstractList Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO 2 /H 2 and synthesis gas (CO/H 2 ). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO 2 , thus combining industrial needs with sustained reduction of CO and CO 2 in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii , neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO sub(2)/H sub(2) and synthesis gas (CO/H sub(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO sub(2), thus combining industrial needs with sustained reduction of CO and CO sub(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thus combining industrial needs with sustained reduction of CO and CO₂ in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.
Author Köpke, Michael
Ehrenreich, Armin
Liebl, Wolfgang
Wiezer, Arnim
Wollherr, Antje
Dürre, Peter
Liesegang, Heiko
Demain, Arnold L.
Hujer, Sandra
Held, Claudia
Gottschalk, Gerhard
Author_xml – sequence: 1
  givenname: Michael
  surname: Köpke
  fullname: Köpke, Michael
– sequence: 2
  givenname: Claudia
  surname: Held
  fullname: Held, Claudia
– sequence: 3
  givenname: Sandra
  surname: Hujer
  fullname: Hujer, Sandra
– sequence: 4
  givenname: Heiko
  surname: Liesegang
  fullname: Liesegang, Heiko
– sequence: 5
  givenname: Arnim
  surname: Wiezer
  fullname: Wiezer, Arnim
– sequence: 6
  givenname: Antje
  surname: Wollherr
  fullname: Wollherr, Antje
– sequence: 7
  givenname: Armin
  surname: Ehrenreich
  fullname: Ehrenreich, Armin
– sequence: 8
  givenname: Wolfgang
  surname: Liebl
  fullname: Liebl, Wolfgang
– sequence: 9
  givenname: Gerhard
  surname: Gottschalk
  fullname: Gottschalk, Gerhard
– sequence: 10
  givenname: Peter
  surname: Dürre
  fullname: Dürre, Peter
– sequence: 11
  givenname: Arnold L.
  surname: Demain
  fullname: Demain, Arnold L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20616070$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMydQbvQS6u84FyS0goJUCQnB2Zo4ztYrxw52gtT_Hke7dIFDOY0185vx03sX6CzEYBF6SfBbght2PQXI5YV5Q2RpPEEbgltSS97iM7TBmDa14pSfo4uc9xjjVij8DJ1TLInEDd6gr1sf85xc75ax8vsl7Hq4885VyU7JZhvmXEE1OpNi58BXU4r9YmYXQzV5mIeYxqqDbPuqdPJ92EF-jp4O4LN9cayX6PvHD9-2n-rbLzeft-9va8Mlm2tGKIPBGgkGyGBIqXigFnpJOShKLOO9taTv1ICJKIphnXZWGiVBGcEu0bvD3WnpRtubojWB11NyI6R7HcHpvyfB3eld_KlpS9pW0HLgzfFAij8Wm2c9umys9xBsXLJuBBeSCyX_TzK-mktYIa8eJYmighMhlCro6z_1Pwj_HU4Brg9AMT_nZIcHhGC9xq_X-PUp_rIh_tkwboY1rWKA84_sVUcp6-D0S1O80oRhtSKvDsg-zzGdxIoGKykV-wWPZ8rV
CitedBy_id crossref_primary_10_1186_s12864_015_2287_5
crossref_primary_10_1093_femsre_fuaa040
crossref_primary_10_1186_s13068_016_0495_0
crossref_primary_10_1016_j_ijhydene_2014_07_143
crossref_primary_10_1016_j_biotechadv_2019_01_003
crossref_primary_10_1186_s13068_020_01851_4
crossref_primary_10_1016_j_scitotenv_2020_142440
crossref_primary_10_1016_j_febslet_2011_09_031
crossref_primary_10_1016_j_copbio_2014_11_014
crossref_primary_10_1002_jctb_6263
crossref_primary_10_1016_j_biortech_2018_04_069
crossref_primary_10_1016_j_copbio_2014_03_003
crossref_primary_10_1002_elsc_201800118
crossref_primary_10_1016_j_ygeno_2018_11_020
crossref_primary_10_1155_2014_928038
crossref_primary_10_3389_fenvs_2022_822463
crossref_primary_10_1021_acs_energyfuels_0c01710
crossref_primary_10_1007_s00253_013_5281_3
crossref_primary_10_1016_j_febslet_2012_04_043
crossref_primary_10_1016_j_indcrop_2016_11_015
crossref_primary_10_1093_femsre_fuab008
crossref_primary_10_1007_s00018_010_0555_8
crossref_primary_10_1016_j_procbio_2015_03_019
crossref_primary_10_1038_s41598_017_12712_w
crossref_primary_10_1371_journal_pone_0157851
crossref_primary_10_1042_EBC20200136
crossref_primary_10_1146_annurev_chembioeng_120120_021122
crossref_primary_10_1016_j_scitotenv_2024_175222
crossref_primary_10_1371_journal_pone_0100999
crossref_primary_10_3390_fermentation3020023
crossref_primary_10_1016_j_cels_2017_04_008
crossref_primary_10_1371_journal_pone_0062157
crossref_primary_10_3390_fermentation3020022
crossref_primary_10_1128_JB_00321_13
crossref_primary_10_1002_cssc_201402736
crossref_primary_10_1002_elsc_202000054
crossref_primary_10_3389_fbioe_2020_560726
crossref_primary_10_3389_fmicb_2020_00058
crossref_primary_10_1016_j_jbiotec_2013_12_011
crossref_primary_10_1016_j_rser_2021_111244
crossref_primary_10_1038_s41564_024_01714_w
crossref_primary_10_3389_fmicb_2016_01531
crossref_primary_10_3389_fmicb_2016_01773
crossref_primary_10_1371_journal_pcbi_1006848
crossref_primary_10_1016_j_biortech_2017_10_054
crossref_primary_10_1371_journal_pcbi_1002490
crossref_primary_10_3389_fmicb_2019_02785
crossref_primary_10_1016_j_copbio_2022_102695
crossref_primary_10_1016_j_micres_2018_07_003
crossref_primary_10_3390_microorganisms11122962
crossref_primary_10_1111_1751_7915_13270
crossref_primary_10_1016_j_csbj_2023_09_015
crossref_primary_10_1016_j_copbio_2011_04_010
crossref_primary_10_1039_D3GC03159D
crossref_primary_10_1016_j_bej_2017_10_018
crossref_primary_10_1016_j_copbio_2013_02_012
crossref_primary_10_1002_bbb_1531
crossref_primary_10_1039_c3ee41847b
crossref_primary_10_1128_AEM_02307_17
crossref_primary_10_3390_en6083987
crossref_primary_10_1016_j_copbio_2013_02_017
crossref_primary_10_1016_j_biombioe_2019_105380
crossref_primary_10_1016_j_ces_2019_06_018
crossref_primary_10_3389_fmicb_2020_01031
crossref_primary_10_1128_JB_00048_15
crossref_primary_10_1186_s13068_020_1670_x
crossref_primary_10_1016_j_watres_2020_116774
crossref_primary_10_1007_s40011_015_0683_x
crossref_primary_10_3390_fermentation10110572
crossref_primary_10_1186_1475_2859_12_118
crossref_primary_10_1016_j_jaap_2014_12_011
crossref_primary_10_3389_fmicb_2022_865168
crossref_primary_10_12677_AMB_2017_61001
crossref_primary_10_1016_j_enconman_2019_112111
crossref_primary_10_1021_acssynbio_0c00226
crossref_primary_10_1038_s41598_017_12962_8
crossref_primary_10_1016_j_ymben_2019_01_003
crossref_primary_10_3390_fermentation11030154
crossref_primary_10_1111_1751_7915_14220
crossref_primary_10_1016_j_ymben_2019_01_005
crossref_primary_10_1016_j_csbj_2014_08_010
crossref_primary_10_1371_journal_pgen_1003131
crossref_primary_10_1016_j_soilbio_2017_10_034
crossref_primary_10_1016_j_cbpa_2017_10_003
crossref_primary_10_3390_fermentation10110546
crossref_primary_10_3389_fbioe_2022_874612
crossref_primary_10_1016_j_bioelechem_2017_07_009
crossref_primary_10_1038_s41589_020_0559_0
crossref_primary_10_1016_j_bej_2019_107338
crossref_primary_10_1016_j_biortech_2019_03_145
crossref_primary_10_3390_ijms21207639
crossref_primary_10_1128_mBio_00340_10
crossref_primary_10_1016_j_bbabio_2012_07_002
crossref_primary_10_1039_C9EE02410G
crossref_primary_10_1016_j_copbio_2011_03_005
crossref_primary_10_1016_j_ymben_2022_01_015
crossref_primary_10_3389_fmicb_2023_1185739
crossref_primary_10_1007_s12155_014_9486_9
crossref_primary_10_1016_j_bbabio_2012_10_007
crossref_primary_10_1111_1462_2920_16429
crossref_primary_10_3389_fmicb_2019_01979
crossref_primary_10_1007_s00253_015_7033_z
crossref_primary_10_1016_j_jbiotec_2014_03_005
crossref_primary_10_1371_journal_pone_0281744
crossref_primary_10_1038_nrmicro3365
crossref_primary_10_1042_BST20120111
crossref_primary_10_1016_j_biortech_2024_130774
crossref_primary_10_1155_2014_910590
crossref_primary_10_1111_1758_2229_12563
crossref_primary_10_1128_microbiolspectrum_TBS_0015_2012
crossref_primary_10_1186_s12934_024_02301_8
crossref_primary_10_1080_07388551_2023_2167065
crossref_primary_10_1039_D1SE01701B
crossref_primary_10_1186_s12934_020_01337_w
crossref_primary_10_1016_j_cej_2016_08_049
crossref_primary_10_1126_science_aag0804
crossref_primary_10_1039_C6EE01108J
crossref_primary_10_1016_j_biombioe_2016_09_001
crossref_primary_10_1186_s12934_023_02272_2
crossref_primary_10_1016_j_biortech_2024_130782
crossref_primary_10_1016_j_jbiotec_2016_04_032
crossref_primary_10_3389_fmicb_2020_588468
crossref_primary_10_1016_j_psep_2015_09_009
crossref_primary_10_1128_genomeA_00304_15
crossref_primary_10_1371_journal_pone_0033439
crossref_primary_10_1038_s41598_017_14123_3
crossref_primary_10_1128_aem_00378_23
crossref_primary_10_1016_j_ymben_2014_11_004
crossref_primary_10_3389_fmicb_2015_01275
crossref_primary_10_1016_j_jbiotec_2019_09_005
crossref_primary_10_22207_JPAM_14_1_12
crossref_primary_10_3390_fermentation4020040
crossref_primary_10_1186_s13068_019_1448_1
crossref_primary_10_1002_btpr_3263
crossref_primary_10_1128_AEM_00355_11
crossref_primary_10_1128_JB_00399_15
crossref_primary_10_3390_ijms21217875
crossref_primary_10_1016_j_ymben_2017_01_007
crossref_primary_10_1016_j_ymben_2018_03_015
crossref_primary_10_1186_s12934_015_0200_1
crossref_primary_10_1128_mBio_00406_12
crossref_primary_10_1016_j_synbio_2023_12_001
crossref_primary_10_7554_eLife_50845
crossref_primary_10_1016_j_resconrec_2022_106395
crossref_primary_10_3390_fermentation7040291
crossref_primary_10_3389_fmicb_2018_00401
crossref_primary_10_1111_1462_2920_13142
crossref_primary_10_1080_15422119_2016_1185017
crossref_primary_10_1016_j_biotechadv_2014_10_007
crossref_primary_10_1007_s00449_012_0815_0
crossref_primary_10_1007_s00253_016_7978_6
crossref_primary_10_1128_AEM_00882_16
crossref_primary_10_1016_j_ymben_2015_04_008
crossref_primary_10_1016_j_biotechadv_2021_107886
crossref_primary_10_1016_j_copbio_2017_12_023
crossref_primary_10_1016_j_copbio_2015_02_006
crossref_primary_10_1080_17597269_2017_1316143
crossref_primary_10_1089_ind_2015_0023
crossref_primary_10_1039_C5IB00095E
crossref_primary_10_1016_j_biortech_2016_03_094
crossref_primary_10_1016_j_jenvman_2023_118527
crossref_primary_10_1016_j_biotechadv_2023_108096
crossref_primary_10_1016_j_ijhydene_2012_12_107
crossref_primary_10_1039_C5GC02708J
crossref_primary_10_1128_AEM_00301_14
crossref_primary_10_3390_fermentation7040264
crossref_primary_10_1016_j_biotechadv_2019_107468
crossref_primary_10_1016_j_cej_2023_142599
crossref_primary_10_1016_j_ijhydene_2024_07_367
crossref_primary_10_1186_s12934_022_01802_8
crossref_primary_10_1002_bit_26848
crossref_primary_10_1002_bit_24549
crossref_primary_10_7717_peerj_1919
crossref_primary_10_3389_fmicb_2016_00694
crossref_primary_10_1002_bit_24786
crossref_primary_10_3390_catal9110962
crossref_primary_10_1016_j_copbio_2016_10_002
crossref_primary_10_1039_C2NP20103H
crossref_primary_10_1128_genomeA_00444_16
crossref_primary_10_1038_sdata_2015_14
crossref_primary_10_3389_fmicb_2018_01213
crossref_primary_10_1016_j_isci_2023_108383
crossref_primary_10_1016_j_biortech_2014_11_101
crossref_primary_10_1016_j_jcou_2022_102204
crossref_primary_10_1016_j_bej_2014_12_015
crossref_primary_10_1016_j_bej_2019_04_021
crossref_primary_10_1016_j_biotechadv_2015_10_006
crossref_primary_10_1016_j_mtsust_2024_100952
crossref_primary_10_3389_fmicb_2019_00219
crossref_primary_10_1021_acssuschemeng_9b05439
crossref_primary_10_1038_s41396_021_00983_1
crossref_primary_10_1371_journal_pone_0126124
crossref_primary_10_1186_s12864_018_5238_0
crossref_primary_10_1002_jctb_4721
crossref_primary_10_3389_fmicb_2022_887578
crossref_primary_10_1128_AEM_00730_20
crossref_primary_10_1590_0104_6632_20150322s00003342
crossref_primary_10_1186_s13068_016_0663_2
crossref_primary_10_1016_j_biortech_2017_04_099
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_1038_nrmicro_2016_130
crossref_primary_10_3389_fmicb_2019_00423
crossref_primary_10_1016_j_biortech_2021_125633
crossref_primary_10_1016_j_biotechadv_2018_09_005
crossref_primary_10_1016_j_ymben_2023_09_007
crossref_primary_10_1128_JB_00678_13
crossref_primary_10_1002_jobm_201300046
crossref_primary_10_3390_en14196011
crossref_primary_10_1128_spectrum_01019_22
crossref_primary_10_1016_j_bbabio_2016_03_028
crossref_primary_10_1016_j_biortech_2023_129368
crossref_primary_10_1111_1462_2920_14275
crossref_primary_10_1016_j_copbio_2015_03_008
crossref_primary_10_1007_s10295_012_1135_8
crossref_primary_10_1007_s00253_018_8737_7
crossref_primary_10_1038_s41587_021_01195_w
crossref_primary_10_1002_cite_202000108
crossref_primary_10_1002_aic_14086
crossref_primary_10_1093_nar_gkaa167
crossref_primary_10_1016_j_apenergy_2016_11_084
crossref_primary_10_1016_j_watres_2020_115747
crossref_primary_10_4028_p_9g14o1
crossref_primary_10_3389_fbioe_2021_661694
crossref_primary_10_1128_AEM_02891_12
crossref_primary_10_1002_mbo3_50
crossref_primary_10_1016_j_ijhydene_2014_05_099
crossref_primary_10_1134_S000368381307003X
crossref_primary_10_1038_s41467_018_06993_6
crossref_primary_10_1021_acs_chemrev_1c00121
crossref_primary_10_1016_j_copbio_2011_01_005
crossref_primary_10_1016_j_bej_2014_08_007
crossref_primary_10_1016_j_copbio_2011_01_009
crossref_primary_10_1016_j_procbio_2021_12_015
crossref_primary_10_1111_1751_7915_13991
crossref_primary_10_3389_fmicb_2015_00201
crossref_primary_10_1039_D3EE01091K
crossref_primary_10_3390_microorganisms11081968
crossref_primary_10_1186_s13068_020_01695_y
crossref_primary_10_1002_bit_25827
crossref_primary_10_1002_jctb_4754
crossref_primary_10_1093_femsle_fny241
crossref_primary_10_1128_AEM_00122_16
crossref_primary_10_1039_C5GC02696B
crossref_primary_10_1039_C9GC03950C
crossref_primary_10_1007_s12010_012_0060_7
crossref_primary_10_3839_jabc_2017_052
crossref_primary_10_3389_fmicb_2020_577266
crossref_primary_10_1186_s12934_017_0676_y
crossref_primary_10_1021_acssynbio_7b00155
crossref_primary_10_1111_1751_7915_12431
crossref_primary_10_1186_s12934_015_0406_2
crossref_primary_10_1007_s00253_023_12670_6
crossref_primary_10_1016_j_watres_2013_07_033
crossref_primary_10_1007_s00203_021_02677_w
crossref_primary_10_1007_s10295_014_1543_z
crossref_primary_10_1042_BST20200603
crossref_primary_10_1016_j_coisb_2023_100489
crossref_primary_10_1186_2191_0855_1_10
crossref_primary_10_1093_femsle_fnw040
crossref_primary_10_1016_j_biortech_2024_131913
crossref_primary_10_1128_mBio_01168_15
crossref_primary_10_3389_fmicb_2020_00724
crossref_primary_10_1016_j_biotechadv_2021_107810
crossref_primary_10_1016_j_jclepro_2023_140185
crossref_primary_10_1038_s41396_021_01167_7
crossref_primary_10_1186_s13068_019_1570_0
crossref_primary_10_1038_ncomms12800
crossref_primary_10_7845_kjm_2016_6057
crossref_primary_10_2166_wst_2015_222
crossref_primary_10_1007_s00253_019_09763_6
crossref_primary_10_1111_1751_7915_12409
crossref_primary_10_1002_jctb_4410
crossref_primary_10_1021_acs_analchem_7b04758
crossref_primary_10_1021_acssuschemeng_4c04373
crossref_primary_10_1128_AEM_01723_17
crossref_primary_10_1128_JB_00385_12
crossref_primary_10_1016_j_cej_2021_131325
crossref_primary_10_1002_bit_23203
crossref_primary_10_3389_fmicb_2015_00575
crossref_primary_10_1016_j_rser_2021_110950
crossref_primary_10_15407_biotech12_05_005
crossref_primary_10_1111_1751_7915_13625
crossref_primary_10_3389_fbioe_2024_1395540
crossref_primary_10_1021_acscatal_0c04862
crossref_primary_10_1007_s12257_024_00128_z
crossref_primary_10_1016_j_biortech_2012_09_104
crossref_primary_10_1016_j_rser_2021_111926
crossref_primary_10_1128_mSphere_00941_19
crossref_primary_10_1016_j_copbio_2019_09_012
crossref_primary_10_1016_j_ymben_2023_08_004
crossref_primary_10_1007_s00253_019_10072_1
crossref_primary_10_1038_srep31518
crossref_primary_10_1016_j_copbio_2011_10_008
crossref_primary_10_1002_biot_202100515
crossref_primary_10_1128_Spectrum_00958_21
crossref_primary_10_1186_1471_2164_13_723
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1016_j_biortech_2022_127037
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1016_j_biortech_2017_05_077
crossref_primary_10_1016_j_jclepro_2025_145383
crossref_primary_10_1111_1751_7915_12864
crossref_primary_10_1128_genomeA_00387_14
crossref_primary_10_1016_j_biortech_2014_08_054
crossref_primary_10_1128_microbiolspec_TBS_0010_2012
crossref_primary_10_1016_j_biotechadv_2014_04_003
crossref_primary_10_1016_j_scitotenv_2023_164795
crossref_primary_10_1128_mBio_00427_16
crossref_primary_10_1271_bbb_120720
crossref_primary_10_1016_j_jenvman_2015_12_032
crossref_primary_10_1016_j_biteb_2019_100279
crossref_primary_10_1007_s12257_020_0005_x
crossref_primary_10_1038_s41598_021_03999_x
crossref_primary_10_1016_j_biotechadv_2018_02_012
crossref_primary_10_1021_acssuschemeng_1c01062
crossref_primary_10_1080_09593330_2013_827747
crossref_primary_10_1016_j_copbio_2013_12_001
crossref_primary_10_1021_acs_biomac_9b00342
crossref_primary_10_1080_09593330_2013_827746
crossref_primary_10_3389_fmicb_2016_01036
crossref_primary_10_1007_s12257_019_0428_4
crossref_primary_10_1111_febs_14664
crossref_primary_10_1038_s41396_023_01411_2
crossref_primary_10_4155_bfs_11_108
crossref_primary_10_1016_j_enzmictec_2017_03_002
crossref_primary_10_1080_17597269_2025_2450156
crossref_primary_10_1016_j_coche_2014_09_003
crossref_primary_10_1002_biot_201100046
crossref_primary_10_1007_s00253_016_7760_9
crossref_primary_10_1038_s41467_019_09095_z
crossref_primary_10_1186_s13068_017_1005_8
crossref_primary_10_3389_fmicb_2020_00402
crossref_primary_10_1261_rna_068239_118
crossref_primary_10_1016_j_jes_2019_07_016
crossref_primary_10_1016_j_ijhydene_2013_09_003
crossref_primary_10_1128_mBio_01636_14
crossref_primary_10_1093_femsle_fnx219
crossref_primary_10_1111_jam_15155
crossref_primary_10_1021_acssynbio_1c00235
crossref_primary_10_1002_er_3458
crossref_primary_10_1007_s00253_019_09916_7
crossref_primary_10_1093_femsle_fnw004
crossref_primary_10_1128_genomeA_00628_13
crossref_primary_10_1016_j_jpowsour_2017_04_024
crossref_primary_10_1016_j_cbpa_2020_04_010
crossref_primary_10_1093_protein_gzv028
crossref_primary_10_1186_s13068_021_01966_2
crossref_primary_10_1002_biot_201100059
crossref_primary_10_1016_j_biortech_2011_10_054
crossref_primary_10_1038_s44160_022_00095_4
crossref_primary_10_3389_fmicb_2020_00416
crossref_primary_10_1016_j_watres_2023_120915
crossref_primary_10_1016_j_jhazmat_2015_04_010
crossref_primary_10_1016_j_cej_2022_139010
crossref_primary_10_1007_s00253_019_10086_9
crossref_primary_10_1039_C2EE23350A
crossref_primary_10_1128_JB_01217_10
crossref_primary_10_1007_s00253_014_6005_z
crossref_primary_10_1039_C8TA10465D
crossref_primary_10_1049_enb_2018_5003
crossref_primary_10_1093_femsle_fny084
crossref_primary_10_1088_1757_899X_1143_1_012014
crossref_primary_10_1016_j_biortech_2020_124521
crossref_primary_10_1038_srep16168
crossref_primary_10_1016_j_renene_2023_119018
crossref_primary_10_1007_s10482_023_01916_y
crossref_primary_10_1016_j_ymben_2021_02_001
crossref_primary_10_1016_j_ymben_2018_06_006
crossref_primary_10_1128_JB_01839_14
crossref_primary_10_1016_j_tibtech_2015_06_010
crossref_primary_10_1016_j_ijhydene_2018_02_154
crossref_primary_10_1002_cite_202200153
crossref_primary_10_1016_j_biombioe_2012_06_022
crossref_primary_10_1016_j_renene_2025_122534
crossref_primary_10_1016_j_ymben_2017_12_003
crossref_primary_10_1128_AEM_03666_13
crossref_primary_10_1186_s13068_020_01674_3
crossref_primary_10_1039_c3mb70232d
crossref_primary_10_1128_AEM_02491_15
crossref_primary_10_1128_AEM_01772_15
crossref_primary_10_1016_j_jbc_2021_101538
crossref_primary_10_3390_en12071194
crossref_primary_10_1038_ismej_2014_82
crossref_primary_10_1128_aem_02479_21
crossref_primary_10_1371_journal_pone_0051662
crossref_primary_10_1002_bit_27079
crossref_primary_10_1016_j_bioelechem_2024_108724
crossref_primary_10_1016_j_biortech_2012_07_104
crossref_primary_10_1016_j_ymben_2016_10_002
crossref_primary_10_1002_elsc_201200146
crossref_primary_10_1016_j_ymben_2017_12_011
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_1111_j_1472_765X_2012_03272_x
crossref_primary_10_1186_1754_6834_7_40
crossref_primary_10_1016_j_ymben_2016_03_001
crossref_primary_10_1007_s00253_023_12637_7
crossref_primary_10_3389_fmicb_2022_907577
crossref_primary_10_1016_j_biombioe_2013_01_034
crossref_primary_10_1038_nature11478
crossref_primary_10_3390_ma12030350
crossref_primary_10_1038_ismej_2016_189
crossref_primary_10_1134_S0026261721030024
crossref_primary_10_1016_j_copbio_2017_03_009
crossref_primary_10_1128_AEM_00675_15
crossref_primary_10_1111_j_1758_2229_2010_00211_x
crossref_primary_10_1016_j_tibtech_2024_06_014
crossref_primary_10_1093_femsle_fny191
crossref_primary_10_1016_j_ymben_2018_07_012
crossref_primary_10_1016_j_coche_2012_07_005
crossref_primary_10_1111_1751_7915_12014
crossref_primary_10_1016_j_jbiosc_2015_07_003
crossref_primary_10_1016_j_jbiosc_2023_04_001
crossref_primary_10_1186_s40168_024_01869_y
crossref_primary_10_1016_j_cbpa_2016_08_024
crossref_primary_10_1021_acssynbio_9b00150
crossref_primary_10_1007_s10123_021_00190_0
crossref_primary_10_1016_j_rser_2014_05_009
crossref_primary_10_1016_j_jece_2021_106922
crossref_primary_10_1021_acssynbio_9b00033
crossref_primary_10_1007_s00792_016_0873_3
crossref_primary_10_1186_1745_6150_6_36
crossref_primary_10_1016_j_ijhydene_2013_10_084
crossref_primary_10_1039_D1GC02866A
crossref_primary_10_1016_j_biortech_2016_12_035
crossref_primary_10_1016_j_biortech_2015_05_077
crossref_primary_10_3389_fbioe_2021_647853
crossref_primary_10_1016_j_scitotenv_2022_159124
crossref_primary_10_1371_journal_pone_0019316
crossref_primary_10_1007_s00253_017_8421_3
crossref_primary_10_1371_journal_pone_0170406
crossref_primary_10_1016_j_jbiosc_2013_04_011
crossref_primary_10_1002_bbb_1814
crossref_primary_10_1371_journal_pone_0020539
crossref_primary_10_1016_j_copbio_2016_09_004
crossref_primary_10_1021_acsomega_0c05588
crossref_primary_10_1128_AEM_00247_17
crossref_primary_10_1038_srep26228
crossref_primary_10_1016_j_biteb_2023_101713
crossref_primary_10_1186_s12934_022_01964_5
crossref_primary_10_1080_09593330_2013_826255
crossref_primary_10_15407_biotech12_05_029
crossref_primary_10_1016_j_jbiosc_2012_10_013
crossref_primary_10_1371_journal_pone_0158768
crossref_primary_10_2139_ssrn_4166596
crossref_primary_10_1186_s13068_023_02259_6
crossref_primary_10_1128_mBio_00518_12
crossref_primary_10_3390_molecules29112661
crossref_primary_10_3389_fbioe_2022_850370
crossref_primary_10_1099_ijsem_0_000641
crossref_primary_10_1128_genomeA_00786_15
crossref_primary_10_1021_acssynbio_6b00044
crossref_primary_10_1039_C4TA03101F
crossref_primary_10_1039_c3ee41405a
crossref_primary_10_1038_ismej_2016_149
crossref_primary_10_1016_j_scitotenv_2021_149292
crossref_primary_10_1016_j_copbio_2011_01_010
crossref_primary_10_1016_j_copbio_2011_01_011
crossref_primary_10_1128_AEM_02642_10
crossref_primary_10_1042_BST20170259
crossref_primary_10_1016_j_ymben_2022_03_011
crossref_primary_10_1016_j_rser_2021_111563
crossref_primary_10_5650_oleoscience_21_417
crossref_primary_10_1111_1751_7915_13663
crossref_primary_10_1016_j_ijhydene_2012_03_097
crossref_primary_10_3390_en5125372
crossref_primary_10_1039_C7EE02212C
crossref_primary_10_1016_j_ymben_2017_04_005
crossref_primary_10_1371_journal_pone_0096696
crossref_primary_10_1093_femsle_fny039
crossref_primary_10_1016_j_btre_2017_11_002
Cites_doi 10.1201/9780203489819.ch29
10.1128/JB.01417-07
10.1128/aem.59.4.1077-1081.1993
10.1002/bit.20354
10.1111/j.1432-1033.1990.tb19242.x
10.1126/science.1180251
10.1021/es902838n
10.1128/JB.184.7.1966-1973.2002
10.1196/annals.1419.016
10.1016/0167-7012(90)90050-G
10.1128/jb.154.1.192-199.1983
10.1016/0003-9861(89)90489-X
10.1126/science.1114736
10.1128/jb.171.10.5473-5478.1989
10.1111/j.1462-2920.2008.01679.x
10.1073/pnas.212640899
10.1038/nbt1244
10.1002/9783527619191
10.1007/BF00243458
10.1007/BF00454874
10.1128/AEM.00515-09
10.1073/pnas.0711093105
10.1007/s00253-007-1257-5
10.1093/nar/16.13.6127
10.1016/0378-1119(90)90336-P
10.1196/annals.1419.009
10.1016/S0021-9258(18)90590-9
10.1016/j.mimet.2007.05.021
10.1111/j.1574-6968.1988.tb03154.x
10.1073/pnas.77.9.5201
10.1002/biot.200700168
10.1126/science.326.5959.1472
10.1099/00207713-43-2-232
10.1074/jbc.274.48.33999
10.1093/nar/30.11.2478
10.1128/JB.00934-06
10.1128/JB.01422-07
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7QO
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
5PM
DOI 10.1073/pnas.1004716107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Biotechnology Research Abstracts
AGRICOLA
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13092
ExternalDocumentID PMC2919952
20616070
10_1073_pnas_1004716107
107_29_13087
25708668
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7QO
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
5PM
ID FETCH-LOGICAL-c463t-3123afec6aca1fc16ac0f2ead624a821e34dee1db8f015206af2eabe6c86a8c53
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:48:35 EDT 2025
Fri Jul 11 03:40:23 EDT 2025
Fri Jul 11 16:39:10 EDT 2025
Fri Jul 11 04:57:28 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jul 01 00:46:56 EDT 2025
Wed Nov 11 00:30:48 EST 2020
Thu May 29 08:40:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-3123afec6aca1fc16ac0f2ead624a821e34dee1db8f015206af2eabe6c86a8c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved June 10, 2010 (received for review April 13, 2010)
1Present address: LanzaTech, 24 Balfour Road, Parnell, Auckland 1052, New Zealand.
Author contributions: A.E., W.L., G.G., and P.D. designed research; M.K., C.H., S.H., H.L., A. Wiezer, A. Wollherr, and A.E. performed research; and M.K., A.E., G.G, and P.D. wrote the paper.
3Present address: Qiagen Hamburg GmbH, Königstr. 4a, 22767 Hamburg, Germany.
2Present address: TU München, Abt. Mikrobiologie, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany.
PMID 20616070
PQID 1825415588
PQPubID 24069
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1004716107
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2919952
crossref_citationtrail_10_1073_pnas_1004716107
proquest_miscellaneous_1825415588
proquest_miscellaneous_754564586
proquest_miscellaneous_734000913
pubmed_primary_20616070
pnas_primary_107_29_13087
jstor_primary_25708668
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-20
PublicationDateYYYYMMDD 2010-07-20
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Tanner RS (e_1_3_3_13_2) 1997; 6
Huhnke RL (e_1_3_3_14_2) 2008
Noack S (e_1_3_3_28_2) 2010
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Energy Information Administration (e_1_3_3_1_2) 2007
Donaldson GK (e_1_3_3_35_2) 2007
Sambrook J (e_1_3_3_34_2) 2001
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
18218779 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33
18631365 - Environ Microbiol. 2008 Oct;10(10):2550-73
15759261 - Biotechnol Bioeng. 2005 Apr 20;90(2):154-66
16439654 - Science. 2006 Jan 27;311(5760):484-9
20085253 - Environ Sci Technol. 2010 Mar 1;44(5):1813-9
6833177 - J Bacteriol. 1983 Apr;154(1):192-9
17924389 - Biotechnol J. 2007 Dec;2(12):1525-34
8386500 - Appl Environ Microbiol. 1993 Apr;59(4):1077-81
2507527 - J Bacteriol. 1989 Oct;171(10):5473-8
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15305
20007878 - Science. 2009 Dec 11;326(5959):1472-5
6159641 - Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5
18378605 - Ann N Y Acad Sci. 2008 Mar;1125:353-62
10567365 - J Biol Chem. 1999 Nov 26;274(48):33999-4004
12034836 - Nucleic Acids Res. 2002 Jun 1;30(11):2478-83
2265755 - Gene. 1990 Nov 30;96(1):23-8
19376903 - Appl Environ Microbiol. 2009 Jun;75(12):4035-45
16980459 - J Bacteriol. 2006 Nov;188(22):7759-64
17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64
18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28
18039764 - J Bacteriol. 2008 Feb;190(3):784-91
11889105 - J Bacteriol. 2002 Apr;184(7):1966-73
19933101 - Science. 2009 Dec 4;326(5958):1397-9
16964242 - Nat Biotechnol. 2006 Oct;24(10):1257-62
12475995 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15971-6
18060402 - Appl Microbiol Biotechnol. 2008 Jan;77(6):1305-16
7684239 - Int J Syst Bacteriol. 1993 Apr;43(2):232-6
2209595 - Eur J Biochem. 1990 Sep 11;192(2):411-7
17993531 - J Bacteriol. 2008 Feb;190(3):843-50
3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45
6381490 - J Biol Chem. 1984 Sep 10;259(17):10845-9
2673038 - Arch Biochem Biophys. 1989 Sep;273(2):309-18
References_xml – ident: e_1_3_3_10_2
  doi: 10.1201/9780203489819.ch29
– ident: e_1_3_3_21_2
  doi: 10.1128/JB.01417-07
– ident: e_1_3_3_25_2
  doi: 10.1128/aem.59.4.1077-1081.1993
– ident: e_1_3_3_30_2
  doi: 10.1002/bit.20354
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1432-1033.1990.tb19242.x
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1180251
– ident: e_1_3_3_3_2
  doi: 10.1021/es902838n
– ident: e_1_3_3_43_2
  doi: 10.1128/JB.184.7.1966-1973.2002
– ident: e_1_3_3_16_2
  doi: 10.1196/annals.1419.016
– ident: e_1_3_3_41_2
  doi: 10.1016/0167-7012(90)90050-G
– ident: e_1_3_3_15_2
  doi: 10.1128/jb.154.1.192-199.1983
– ident: e_1_3_3_32_2
  doi: 10.1016/0003-9861(89)90489-X
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1114736
– ident: e_1_3_3_19_2
  doi: 10.1128/jb.171.10.5473-5478.1989
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1462-2920.2008.01679.x
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.212640899
– ident: e_1_3_3_36_2
  doi: 10.1038/nbt1244
– ident: e_1_3_3_5_2
  doi: 10.1002/9783527619191
– ident: e_1_3_3_23_2
  doi: 10.1007/BF00243458
– ident: e_1_3_3_40_2
  doi: 10.1007/BF00454874
– year: 2007
  ident: e_1_3_3_35_2
  article-title: Fermentative production of four carbon alcohols
  publication-title: Int Patent
– ident: e_1_3_3_37_2
  doi: 10.1128/AEM.00515-09
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0711093105
– ident: e_1_3_3_29_2
  doi: 10.1007/s00253-007-1257-5
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 2001
  ident: e_1_3_3_34_2
– ident: e_1_3_3_39_2
  doi: 10.1093/nar/16.13.6127
– volume: 6
  start-page: 59
  year: 1997
  ident: e_1_3_3_13_2
  article-title: Metabolism of Clostridium ljungdahlii, an acetogen in the clostridial RNA homology group I
  publication-title: Biofactors
– ident: e_1_3_3_38_2
  doi: 10.1016/0378-1119(90)90336-P
– year: 2008
  ident: e_1_3_3_14_2
  article-title: Isolation and characterization of novel clostridial species
  publication-title: Int Patent
– ident: e_1_3_3_27_2
  doi: 10.1196/annals.1419.009
– ident: e_1_3_3_12_2
  doi: 10.1016/S0021-9258(18)90590-9
– ident: e_1_3_3_31_2
  doi: 10.1016/j.mimet.2007.05.021
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1574-6968.1988.tb03154.x
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.77.9.5201
– ident: e_1_3_3_26_2
  doi: 10.1002/biot.200700168
– ident: e_1_3_3_6_2
  doi: 10.1126/science.326.5959.1472
– ident: e_1_3_3_4_2
  doi: 10.1099/00207713-43-2-232
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.274.48.33999
– ident: e_1_3_3_9_2
  doi: 10.1093/nar/30.11.2478
– volume-title: International Energy Outlook 2007
  year: 2007
  ident: e_1_3_3_1_2
– ident: e_1_3_3_18_2
  doi: 10.1128/JB.00934-06
– volume-title: New Research on Biofuels
  year: 2010
  ident: e_1_3_3_28_2
– ident: e_1_3_3_20_2
  doi: 10.1128/JB.01422-07
– reference: 17924389 - Biotechnol J. 2007 Dec;2(12):1525-34
– reference: 2507527 - J Bacteriol. 1989 Oct;171(10):5473-8
– reference: 19933101 - Science. 2009 Dec 4;326(5958):1397-9
– reference: 2209595 - Eur J Biochem. 1990 Sep 11;192(2):411-7
– reference: 2673038 - Arch Biochem Biophys. 1989 Sep;273(2):309-18
– reference: 3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45
– reference: 17993531 - J Bacteriol. 2008 Feb;190(3):843-50
– reference: 6381490 - J Biol Chem. 1984 Sep 10;259(17):10845-9
– reference: 15759261 - Biotechnol Bioeng. 2005 Apr 20;90(2):154-66
– reference: 17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64
– reference: 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28
– reference: 8386500 - Appl Environ Microbiol. 1993 Apr;59(4):1077-81
– reference: 6833177 - J Bacteriol. 1983 Apr;154(1):192-9
– reference: 20085253 - Environ Sci Technol. 2010 Mar 1;44(5):1813-9
– reference: 6159641 - Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5
– reference: 16980459 - J Bacteriol. 2006 Nov;188(22):7759-64
– reference: 16964242 - Nat Biotechnol. 2006 Oct;24(10):1257-62
– reference: 11889105 - J Bacteriol. 2002 Apr;184(7):1966-73
– reference: 19376903 - Appl Environ Microbiol. 2009 Jun;75(12):4035-45
– reference: 12034836 - Nucleic Acids Res. 2002 Jun 1;30(11):2478-83
– reference: 18378605 - Ann N Y Acad Sci. 2008 Mar;1125:353-62
– reference: 18039764 - J Bacteriol. 2008 Feb;190(3):784-91
– reference: 7684239 - Int J Syst Bacteriol. 1993 Apr;43(2):232-6
– reference: 20007878 - Science. 2009 Dec 11;326(5959):1472-5
– reference: 18060402 - Appl Microbiol Biotechnol. 2008 Jan;77(6):1305-16
– reference: 18218779 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33
– reference: 18631365 - Environ Microbiol. 2008 Oct;10(10):2550-73
– reference: 10567365 - J Biol Chem. 1999 Nov 26;274(48):33999-4004
– reference: - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15305
– reference: 12475995 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15971-6
– reference: 16439654 - Science. 2006 Jan 27;311(5760):484-9
– reference: 2265755 - Gene. 1990 Nov 30;96(1):23-8
SSID ssj0009580
Score 2.5294511
Snippet Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature...
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO 2 /H 2 and synthesis gas (CO/H 2 ). The latter...
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO 2 /H 2 and synthesis gas (CO/H 2 ). The latter...
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter...
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO sub(2)/H sub(2) and synthesis gas (CO/H sub(2))....
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13087
SubjectTerms Acetates
Acetobacterium woodii
Atmosphere
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofuels
Biofuels - microbiology
Biological Sciences
Blotting, Northern
butanol
Butanols
Carbon dioxide
carbon monoxide
Chemicals
Clostridium
Clostridium - genetics
Clostridium - growth & development
Clostridium - metabolism
Clostridium ljungdahlii
Cytochrome
Cytochromes
Data processing
Dehydrogenases
DNA, Bacterial - metabolism
Electroporation
Energy
Energy Metabolism - genetics
Enzymes
Ethanol
Ethanol - metabolism
Ferredoxins
Fuel technology
gene expression
Gene Expression Regulation, Bacterial
genes
Genome, Bacterial - genetics
Genomes
Hydrogen
industry
Ions
Metabolic Networks and Pathways - genetics
Metabolism
Molecular Sequence Data
Moorella thermoacetica
Organic compounds
Plasmids
Proteins
Protons
Recombination, Genetic - genetics
Sodium
Substrate Specificity
Sugar
sugars
Synthesis gas
Translocation
Title Clostridium ljungdahlii represents a microbial production platform based on syngas
URI https://www.jstor.org/stable/25708668
http://www.pnas.org/content/107/29/13087.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20616070
https://www.proquest.com/docview/1825415588
https://www.proquest.com/docview/734000913
https://www.proquest.com/docview/754564586
https://pubmed.ncbi.nlm.nih.gov/PMC2919952
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBFCiYlxaJQ5HlYq-dtXOsolYRlFChRMrNWq_XrVvXiZrkAL-emd31I6XldXGS9XhjeT7Pjscz3xDyPvMzsHIq9kQuMi-KC-mJMC-8MGOxL2KkTMM45JcJH8-iT_PBvEsd0tUl6-xA_ri1ruR_tApjoFeskv0HzbaTwgB8B_3CFjQM27_S8ahaYNuNvNxcudUF3La5OK_K0tVMlStduybcq1JzLWHFlWF3RYUvK7FGd9XFVSzHNwar7_WZzRSyvuppu7atmkyCSRM6POwKUax1WLmeezrp2hp_XqilSfzpZ-brqKuJRY8qsclL0eHqwvYAE3V-3Q6fIIvFmQ1qj1V5uejHKfAVe-wxv297GayHkamYbm2vaXlrQWZjH8aUBshV2FuX4bfpmveL0QcrhZ2Ka7HCnA9YbXkz7Ra99uRrejw7OUmnR_PpffKAwXOFzgQd91maE1OzZE-14YKKw483pt9yY0wmK9LjgtBtjyo3M257Lsz0MXlknz3ooQHSLrmn6idkt9Ef3bcU5B-ekm89ZNEesmiHLCpoiyzaIYs2yKIaWRRGDLKekdnx0XQ09mz3DU9GPFzD4sxCUSjJhRRBIQP49AsGhoezSCQsUGGUKxXkWVKAS8l8LnBvprhMuEjkINwjO_WiVi8Ildkwl6zIhwMmIj4sRDZQSRYwEJKFjHyHHDQXM5WWmh47pFSpTpGIwxQvbNpdfYfstwcsDSvL3aJ7WjutHLZtTDhPHOJo0e74OGXDVMPOIe8aHaZgbvEdmqjVYgMTY0QFfPAEjqd3yMRhhFgKwt-IDDSNU8Id8twgozs_8LA5LMQOibcw0wogIfz2nro818TwbIiEC-zln__2FXnY3aOvyc76eqPegHe9zt7qO-InRILU_A
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clostridium+ljungdahlii+represents+a+microbial+production+platform+based+on+syngas&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Koepke%2C+Michael&rft.au=Held%2C+Claudia&rft.au=Hujer%2C+Sandra&rft.au=Liesegang%2C+Heiko&rft.date=2010-07-20&rft.issn=0027-8424&rft.volume=107&rft.issue=29&rft.spage=13087&rft.epage=13092&rft_id=info:doi/10.1073%2Fpnas.1004716107&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif