Clostridium ljungdahlii represents a microbial production platform based on syngas
Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thu...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 29; pp. 13087 - 13092 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.07.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thus combining industrial needs with sustained reduction of CO and CO₂ in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. |
---|---|
AbstractList | Clostridium ljungdahlii
is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO
2
/H
2
and synthesis gas (CO/H
2
). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO
2
, thus combining industrial needs with sustained reduction of CO and CO
2
in the atmosphere. Sequencing the complete genome of
C. ljungdahlii
revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as
Moorella thermoacetica
or
Acetobacterium woodii
, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus,
C. ljungdahlii
can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO sub(2)/H sub(2) and synthesis gas (CO/H sub(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO sub(2), thus combining industrial needs with sustained reduction of CO and CO sub(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO₂, thus combining industrial needs with sustained reduction of CO and CO₂ in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. |
Author | Köpke, Michael Ehrenreich, Armin Liebl, Wolfgang Wiezer, Arnim Wollherr, Antje Dürre, Peter Liesegang, Heiko Demain, Arnold L. Hujer, Sandra Held, Claudia Gottschalk, Gerhard |
Author_xml | – sequence: 1 givenname: Michael surname: Köpke fullname: Köpke, Michael – sequence: 2 givenname: Claudia surname: Held fullname: Held, Claudia – sequence: 3 givenname: Sandra surname: Hujer fullname: Hujer, Sandra – sequence: 4 givenname: Heiko surname: Liesegang fullname: Liesegang, Heiko – sequence: 5 givenname: Arnim surname: Wiezer fullname: Wiezer, Arnim – sequence: 6 givenname: Antje surname: Wollherr fullname: Wollherr, Antje – sequence: 7 givenname: Armin surname: Ehrenreich fullname: Ehrenreich, Armin – sequence: 8 givenname: Wolfgang surname: Liebl fullname: Liebl, Wolfgang – sequence: 9 givenname: Gerhard surname: Gottschalk fullname: Gottschalk, Gerhard – sequence: 10 givenname: Peter surname: Dürre fullname: Dürre, Peter – sequence: 11 givenname: Arnold L. surname: Demain fullname: Demain, Arnold L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20616070$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMydQbvQS6u84FyS0goJUCQnB2Zo4ztYrxw52gtT_Hke7dIFDOY0185vx03sX6CzEYBF6SfBbght2PQXI5YV5Q2RpPEEbgltSS97iM7TBmDa14pSfo4uc9xjjVij8DJ1TLInEDd6gr1sf85xc75ax8vsl7Hq4885VyU7JZhvmXEE1OpNi58BXU4r9YmYXQzV5mIeYxqqDbPuqdPJ92EF-jp4O4LN9cayX6PvHD9-2n-rbLzeft-9va8Mlm2tGKIPBGgkGyGBIqXigFnpJOShKLOO9taTv1ICJKIphnXZWGiVBGcEu0bvD3WnpRtubojWB11NyI6R7HcHpvyfB3eld_KlpS9pW0HLgzfFAij8Wm2c9umys9xBsXLJuBBeSCyX_TzK-mktYIa8eJYmighMhlCro6z_1Pwj_HU4Brg9AMT_nZIcHhGC9xq_X-PUp_rIh_tkwboY1rWKA84_sVUcp6-D0S1O80oRhtSKvDsg-zzGdxIoGKykV-wWPZ8rV |
CitedBy_id | crossref_primary_10_1186_s12864_015_2287_5 crossref_primary_10_1093_femsre_fuaa040 crossref_primary_10_1186_s13068_016_0495_0 crossref_primary_10_1016_j_ijhydene_2014_07_143 crossref_primary_10_1016_j_biotechadv_2019_01_003 crossref_primary_10_1186_s13068_020_01851_4 crossref_primary_10_1016_j_scitotenv_2020_142440 crossref_primary_10_1016_j_febslet_2011_09_031 crossref_primary_10_1016_j_copbio_2014_11_014 crossref_primary_10_1002_jctb_6263 crossref_primary_10_1016_j_biortech_2018_04_069 crossref_primary_10_1016_j_copbio_2014_03_003 crossref_primary_10_1002_elsc_201800118 crossref_primary_10_1016_j_ygeno_2018_11_020 crossref_primary_10_1155_2014_928038 crossref_primary_10_3389_fenvs_2022_822463 crossref_primary_10_1021_acs_energyfuels_0c01710 crossref_primary_10_1007_s00253_013_5281_3 crossref_primary_10_1016_j_febslet_2012_04_043 crossref_primary_10_1016_j_indcrop_2016_11_015 crossref_primary_10_1093_femsre_fuab008 crossref_primary_10_1007_s00018_010_0555_8 crossref_primary_10_1016_j_procbio_2015_03_019 crossref_primary_10_1038_s41598_017_12712_w crossref_primary_10_1371_journal_pone_0157851 crossref_primary_10_1042_EBC20200136 crossref_primary_10_1146_annurev_chembioeng_120120_021122 crossref_primary_10_1016_j_scitotenv_2024_175222 crossref_primary_10_1371_journal_pone_0100999 crossref_primary_10_3390_fermentation3020023 crossref_primary_10_1016_j_cels_2017_04_008 crossref_primary_10_1371_journal_pone_0062157 crossref_primary_10_3390_fermentation3020022 crossref_primary_10_1128_JB_00321_13 crossref_primary_10_1002_cssc_201402736 crossref_primary_10_1002_elsc_202000054 crossref_primary_10_3389_fbioe_2020_560726 crossref_primary_10_3389_fmicb_2020_00058 crossref_primary_10_1016_j_jbiotec_2013_12_011 crossref_primary_10_1016_j_rser_2021_111244 crossref_primary_10_1038_s41564_024_01714_w crossref_primary_10_3389_fmicb_2016_01531 crossref_primary_10_3389_fmicb_2016_01773 crossref_primary_10_1371_journal_pcbi_1006848 crossref_primary_10_1016_j_biortech_2017_10_054 crossref_primary_10_1371_journal_pcbi_1002490 crossref_primary_10_3389_fmicb_2019_02785 crossref_primary_10_1016_j_copbio_2022_102695 crossref_primary_10_1016_j_micres_2018_07_003 crossref_primary_10_3390_microorganisms11122962 crossref_primary_10_1111_1751_7915_13270 crossref_primary_10_1016_j_csbj_2023_09_015 crossref_primary_10_1016_j_copbio_2011_04_010 crossref_primary_10_1039_D3GC03159D crossref_primary_10_1016_j_bej_2017_10_018 crossref_primary_10_1016_j_copbio_2013_02_012 crossref_primary_10_1002_bbb_1531 crossref_primary_10_1039_c3ee41847b crossref_primary_10_1128_AEM_02307_17 crossref_primary_10_3390_en6083987 crossref_primary_10_1016_j_copbio_2013_02_017 crossref_primary_10_1016_j_biombioe_2019_105380 crossref_primary_10_1016_j_ces_2019_06_018 crossref_primary_10_3389_fmicb_2020_01031 crossref_primary_10_1128_JB_00048_15 crossref_primary_10_1186_s13068_020_1670_x crossref_primary_10_1016_j_watres_2020_116774 crossref_primary_10_1007_s40011_015_0683_x crossref_primary_10_3390_fermentation10110572 crossref_primary_10_1186_1475_2859_12_118 crossref_primary_10_1016_j_jaap_2014_12_011 crossref_primary_10_3389_fmicb_2022_865168 crossref_primary_10_12677_AMB_2017_61001 crossref_primary_10_1016_j_enconman_2019_112111 crossref_primary_10_1021_acssynbio_0c00226 crossref_primary_10_1038_s41598_017_12962_8 crossref_primary_10_1016_j_ymben_2019_01_003 crossref_primary_10_3390_fermentation11030154 crossref_primary_10_1111_1751_7915_14220 crossref_primary_10_1016_j_ymben_2019_01_005 crossref_primary_10_1016_j_csbj_2014_08_010 crossref_primary_10_1371_journal_pgen_1003131 crossref_primary_10_1016_j_soilbio_2017_10_034 crossref_primary_10_1016_j_cbpa_2017_10_003 crossref_primary_10_3390_fermentation10110546 crossref_primary_10_3389_fbioe_2022_874612 crossref_primary_10_1016_j_bioelechem_2017_07_009 crossref_primary_10_1038_s41589_020_0559_0 crossref_primary_10_1016_j_bej_2019_107338 crossref_primary_10_1016_j_biortech_2019_03_145 crossref_primary_10_3390_ijms21207639 crossref_primary_10_1128_mBio_00340_10 crossref_primary_10_1016_j_bbabio_2012_07_002 crossref_primary_10_1039_C9EE02410G crossref_primary_10_1016_j_copbio_2011_03_005 crossref_primary_10_1016_j_ymben_2022_01_015 crossref_primary_10_3389_fmicb_2023_1185739 crossref_primary_10_1007_s12155_014_9486_9 crossref_primary_10_1016_j_bbabio_2012_10_007 crossref_primary_10_1111_1462_2920_16429 crossref_primary_10_3389_fmicb_2019_01979 crossref_primary_10_1007_s00253_015_7033_z crossref_primary_10_1016_j_jbiotec_2014_03_005 crossref_primary_10_1371_journal_pone_0281744 crossref_primary_10_1038_nrmicro3365 crossref_primary_10_1042_BST20120111 crossref_primary_10_1016_j_biortech_2024_130774 crossref_primary_10_1155_2014_910590 crossref_primary_10_1111_1758_2229_12563 crossref_primary_10_1128_microbiolspectrum_TBS_0015_2012 crossref_primary_10_1186_s12934_024_02301_8 crossref_primary_10_1080_07388551_2023_2167065 crossref_primary_10_1039_D1SE01701B crossref_primary_10_1186_s12934_020_01337_w crossref_primary_10_1016_j_cej_2016_08_049 crossref_primary_10_1126_science_aag0804 crossref_primary_10_1039_C6EE01108J crossref_primary_10_1016_j_biombioe_2016_09_001 crossref_primary_10_1186_s12934_023_02272_2 crossref_primary_10_1016_j_biortech_2024_130782 crossref_primary_10_1016_j_jbiotec_2016_04_032 crossref_primary_10_3389_fmicb_2020_588468 crossref_primary_10_1016_j_psep_2015_09_009 crossref_primary_10_1128_genomeA_00304_15 crossref_primary_10_1371_journal_pone_0033439 crossref_primary_10_1038_s41598_017_14123_3 crossref_primary_10_1128_aem_00378_23 crossref_primary_10_1016_j_ymben_2014_11_004 crossref_primary_10_3389_fmicb_2015_01275 crossref_primary_10_1016_j_jbiotec_2019_09_005 crossref_primary_10_22207_JPAM_14_1_12 crossref_primary_10_3390_fermentation4020040 crossref_primary_10_1186_s13068_019_1448_1 crossref_primary_10_1002_btpr_3263 crossref_primary_10_1128_AEM_00355_11 crossref_primary_10_1128_JB_00399_15 crossref_primary_10_3390_ijms21217875 crossref_primary_10_1016_j_ymben_2017_01_007 crossref_primary_10_1016_j_ymben_2018_03_015 crossref_primary_10_1186_s12934_015_0200_1 crossref_primary_10_1128_mBio_00406_12 crossref_primary_10_1016_j_synbio_2023_12_001 crossref_primary_10_7554_eLife_50845 crossref_primary_10_1016_j_resconrec_2022_106395 crossref_primary_10_3390_fermentation7040291 crossref_primary_10_3389_fmicb_2018_00401 crossref_primary_10_1111_1462_2920_13142 crossref_primary_10_1080_15422119_2016_1185017 crossref_primary_10_1016_j_biotechadv_2014_10_007 crossref_primary_10_1007_s00449_012_0815_0 crossref_primary_10_1007_s00253_016_7978_6 crossref_primary_10_1128_AEM_00882_16 crossref_primary_10_1016_j_ymben_2015_04_008 crossref_primary_10_1016_j_biotechadv_2021_107886 crossref_primary_10_1016_j_copbio_2017_12_023 crossref_primary_10_1016_j_copbio_2015_02_006 crossref_primary_10_1080_17597269_2017_1316143 crossref_primary_10_1089_ind_2015_0023 crossref_primary_10_1039_C5IB00095E crossref_primary_10_1016_j_biortech_2016_03_094 crossref_primary_10_1016_j_jenvman_2023_118527 crossref_primary_10_1016_j_biotechadv_2023_108096 crossref_primary_10_1016_j_ijhydene_2012_12_107 crossref_primary_10_1039_C5GC02708J crossref_primary_10_1128_AEM_00301_14 crossref_primary_10_3390_fermentation7040264 crossref_primary_10_1016_j_biotechadv_2019_107468 crossref_primary_10_1016_j_cej_2023_142599 crossref_primary_10_1016_j_ijhydene_2024_07_367 crossref_primary_10_1186_s12934_022_01802_8 crossref_primary_10_1002_bit_26848 crossref_primary_10_1002_bit_24549 crossref_primary_10_7717_peerj_1919 crossref_primary_10_3389_fmicb_2016_00694 crossref_primary_10_1002_bit_24786 crossref_primary_10_3390_catal9110962 crossref_primary_10_1016_j_copbio_2016_10_002 crossref_primary_10_1039_C2NP20103H crossref_primary_10_1128_genomeA_00444_16 crossref_primary_10_1038_sdata_2015_14 crossref_primary_10_3389_fmicb_2018_01213 crossref_primary_10_1016_j_isci_2023_108383 crossref_primary_10_1016_j_biortech_2014_11_101 crossref_primary_10_1016_j_jcou_2022_102204 crossref_primary_10_1016_j_bej_2014_12_015 crossref_primary_10_1016_j_bej_2019_04_021 crossref_primary_10_1016_j_biotechadv_2015_10_006 crossref_primary_10_1016_j_mtsust_2024_100952 crossref_primary_10_3389_fmicb_2019_00219 crossref_primary_10_1021_acssuschemeng_9b05439 crossref_primary_10_1038_s41396_021_00983_1 crossref_primary_10_1371_journal_pone_0126124 crossref_primary_10_1186_s12864_018_5238_0 crossref_primary_10_1002_jctb_4721 crossref_primary_10_3389_fmicb_2022_887578 crossref_primary_10_1128_AEM_00730_20 crossref_primary_10_1590_0104_6632_20150322s00003342 crossref_primary_10_1186_s13068_016_0663_2 crossref_primary_10_1016_j_biortech_2017_04_099 crossref_primary_10_1016_j_rser_2024_114704 crossref_primary_10_1038_nrmicro_2016_130 crossref_primary_10_3389_fmicb_2019_00423 crossref_primary_10_1016_j_biortech_2021_125633 crossref_primary_10_1016_j_biotechadv_2018_09_005 crossref_primary_10_1016_j_ymben_2023_09_007 crossref_primary_10_1128_JB_00678_13 crossref_primary_10_1002_jobm_201300046 crossref_primary_10_3390_en14196011 crossref_primary_10_1128_spectrum_01019_22 crossref_primary_10_1016_j_bbabio_2016_03_028 crossref_primary_10_1016_j_biortech_2023_129368 crossref_primary_10_1111_1462_2920_14275 crossref_primary_10_1016_j_copbio_2015_03_008 crossref_primary_10_1007_s10295_012_1135_8 crossref_primary_10_1007_s00253_018_8737_7 crossref_primary_10_1038_s41587_021_01195_w crossref_primary_10_1002_cite_202000108 crossref_primary_10_1002_aic_14086 crossref_primary_10_1093_nar_gkaa167 crossref_primary_10_1016_j_apenergy_2016_11_084 crossref_primary_10_1016_j_watres_2020_115747 crossref_primary_10_4028_p_9g14o1 crossref_primary_10_3389_fbioe_2021_661694 crossref_primary_10_1128_AEM_02891_12 crossref_primary_10_1002_mbo3_50 crossref_primary_10_1016_j_ijhydene_2014_05_099 crossref_primary_10_1134_S000368381307003X crossref_primary_10_1038_s41467_018_06993_6 crossref_primary_10_1021_acs_chemrev_1c00121 crossref_primary_10_1016_j_copbio_2011_01_005 crossref_primary_10_1016_j_bej_2014_08_007 crossref_primary_10_1016_j_copbio_2011_01_009 crossref_primary_10_1016_j_procbio_2021_12_015 crossref_primary_10_1111_1751_7915_13991 crossref_primary_10_3389_fmicb_2015_00201 crossref_primary_10_1039_D3EE01091K crossref_primary_10_3390_microorganisms11081968 crossref_primary_10_1186_s13068_020_01695_y crossref_primary_10_1002_bit_25827 crossref_primary_10_1002_jctb_4754 crossref_primary_10_1093_femsle_fny241 crossref_primary_10_1128_AEM_00122_16 crossref_primary_10_1039_C5GC02696B crossref_primary_10_1039_C9GC03950C crossref_primary_10_1007_s12010_012_0060_7 crossref_primary_10_3839_jabc_2017_052 crossref_primary_10_3389_fmicb_2020_577266 crossref_primary_10_1186_s12934_017_0676_y crossref_primary_10_1021_acssynbio_7b00155 crossref_primary_10_1111_1751_7915_12431 crossref_primary_10_1186_s12934_015_0406_2 crossref_primary_10_1007_s00253_023_12670_6 crossref_primary_10_1016_j_watres_2013_07_033 crossref_primary_10_1007_s00203_021_02677_w crossref_primary_10_1007_s10295_014_1543_z crossref_primary_10_1042_BST20200603 crossref_primary_10_1016_j_coisb_2023_100489 crossref_primary_10_1186_2191_0855_1_10 crossref_primary_10_1093_femsle_fnw040 crossref_primary_10_1016_j_biortech_2024_131913 crossref_primary_10_1128_mBio_01168_15 crossref_primary_10_3389_fmicb_2020_00724 crossref_primary_10_1016_j_biotechadv_2021_107810 crossref_primary_10_1016_j_jclepro_2023_140185 crossref_primary_10_1038_s41396_021_01167_7 crossref_primary_10_1186_s13068_019_1570_0 crossref_primary_10_1038_ncomms12800 crossref_primary_10_7845_kjm_2016_6057 crossref_primary_10_2166_wst_2015_222 crossref_primary_10_1007_s00253_019_09763_6 crossref_primary_10_1111_1751_7915_12409 crossref_primary_10_1002_jctb_4410 crossref_primary_10_1021_acs_analchem_7b04758 crossref_primary_10_1021_acssuschemeng_4c04373 crossref_primary_10_1128_AEM_01723_17 crossref_primary_10_1128_JB_00385_12 crossref_primary_10_1016_j_cej_2021_131325 crossref_primary_10_1002_bit_23203 crossref_primary_10_3389_fmicb_2015_00575 crossref_primary_10_1016_j_rser_2021_110950 crossref_primary_10_15407_biotech12_05_005 crossref_primary_10_1111_1751_7915_13625 crossref_primary_10_3389_fbioe_2024_1395540 crossref_primary_10_1021_acscatal_0c04862 crossref_primary_10_1007_s12257_024_00128_z crossref_primary_10_1016_j_biortech_2012_09_104 crossref_primary_10_1016_j_rser_2021_111926 crossref_primary_10_1128_mSphere_00941_19 crossref_primary_10_1016_j_copbio_2019_09_012 crossref_primary_10_1016_j_ymben_2023_08_004 crossref_primary_10_1007_s00253_019_10072_1 crossref_primary_10_1038_srep31518 crossref_primary_10_1016_j_copbio_2011_10_008 crossref_primary_10_1002_biot_202100515 crossref_primary_10_1128_Spectrum_00958_21 crossref_primary_10_1186_1471_2164_13_723 crossref_primary_10_1039_D3CS00537B crossref_primary_10_1016_j_biortech_2022_127037 crossref_primary_10_1016_j_chemosphere_2023_140251 crossref_primary_10_1016_j_biortech_2017_05_077 crossref_primary_10_1016_j_jclepro_2025_145383 crossref_primary_10_1111_1751_7915_12864 crossref_primary_10_1128_genomeA_00387_14 crossref_primary_10_1016_j_biortech_2014_08_054 crossref_primary_10_1128_microbiolspec_TBS_0010_2012 crossref_primary_10_1016_j_biotechadv_2014_04_003 crossref_primary_10_1016_j_scitotenv_2023_164795 crossref_primary_10_1128_mBio_00427_16 crossref_primary_10_1271_bbb_120720 crossref_primary_10_1016_j_jenvman_2015_12_032 crossref_primary_10_1016_j_biteb_2019_100279 crossref_primary_10_1007_s12257_020_0005_x crossref_primary_10_1038_s41598_021_03999_x crossref_primary_10_1016_j_biotechadv_2018_02_012 crossref_primary_10_1021_acssuschemeng_1c01062 crossref_primary_10_1080_09593330_2013_827747 crossref_primary_10_1016_j_copbio_2013_12_001 crossref_primary_10_1021_acs_biomac_9b00342 crossref_primary_10_1080_09593330_2013_827746 crossref_primary_10_3389_fmicb_2016_01036 crossref_primary_10_1007_s12257_019_0428_4 crossref_primary_10_1111_febs_14664 crossref_primary_10_1038_s41396_023_01411_2 crossref_primary_10_4155_bfs_11_108 crossref_primary_10_1016_j_enzmictec_2017_03_002 crossref_primary_10_1080_17597269_2025_2450156 crossref_primary_10_1016_j_coche_2014_09_003 crossref_primary_10_1002_biot_201100046 crossref_primary_10_1007_s00253_016_7760_9 crossref_primary_10_1038_s41467_019_09095_z crossref_primary_10_1186_s13068_017_1005_8 crossref_primary_10_3389_fmicb_2020_00402 crossref_primary_10_1261_rna_068239_118 crossref_primary_10_1016_j_jes_2019_07_016 crossref_primary_10_1016_j_ijhydene_2013_09_003 crossref_primary_10_1128_mBio_01636_14 crossref_primary_10_1093_femsle_fnx219 crossref_primary_10_1111_jam_15155 crossref_primary_10_1021_acssynbio_1c00235 crossref_primary_10_1002_er_3458 crossref_primary_10_1007_s00253_019_09916_7 crossref_primary_10_1093_femsle_fnw004 crossref_primary_10_1128_genomeA_00628_13 crossref_primary_10_1016_j_jpowsour_2017_04_024 crossref_primary_10_1016_j_cbpa_2020_04_010 crossref_primary_10_1093_protein_gzv028 crossref_primary_10_1186_s13068_021_01966_2 crossref_primary_10_1002_biot_201100059 crossref_primary_10_1016_j_biortech_2011_10_054 crossref_primary_10_1038_s44160_022_00095_4 crossref_primary_10_3389_fmicb_2020_00416 crossref_primary_10_1016_j_watres_2023_120915 crossref_primary_10_1016_j_jhazmat_2015_04_010 crossref_primary_10_1016_j_cej_2022_139010 crossref_primary_10_1007_s00253_019_10086_9 crossref_primary_10_1039_C2EE23350A crossref_primary_10_1128_JB_01217_10 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_1039_C8TA10465D crossref_primary_10_1049_enb_2018_5003 crossref_primary_10_1093_femsle_fny084 crossref_primary_10_1088_1757_899X_1143_1_012014 crossref_primary_10_1016_j_biortech_2020_124521 crossref_primary_10_1038_srep16168 crossref_primary_10_1016_j_renene_2023_119018 crossref_primary_10_1007_s10482_023_01916_y crossref_primary_10_1016_j_ymben_2021_02_001 crossref_primary_10_1016_j_ymben_2018_06_006 crossref_primary_10_1128_JB_01839_14 crossref_primary_10_1016_j_tibtech_2015_06_010 crossref_primary_10_1016_j_ijhydene_2018_02_154 crossref_primary_10_1002_cite_202200153 crossref_primary_10_1016_j_biombioe_2012_06_022 crossref_primary_10_1016_j_renene_2025_122534 crossref_primary_10_1016_j_ymben_2017_12_003 crossref_primary_10_1128_AEM_03666_13 crossref_primary_10_1186_s13068_020_01674_3 crossref_primary_10_1039_c3mb70232d crossref_primary_10_1128_AEM_02491_15 crossref_primary_10_1128_AEM_01772_15 crossref_primary_10_1016_j_jbc_2021_101538 crossref_primary_10_3390_en12071194 crossref_primary_10_1038_ismej_2014_82 crossref_primary_10_1128_aem_02479_21 crossref_primary_10_1371_journal_pone_0051662 crossref_primary_10_1002_bit_27079 crossref_primary_10_1016_j_bioelechem_2024_108724 crossref_primary_10_1016_j_biortech_2012_07_104 crossref_primary_10_1016_j_ymben_2016_10_002 crossref_primary_10_1002_elsc_201200146 crossref_primary_10_1016_j_ymben_2017_12_011 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_1111_j_1472_765X_2012_03272_x crossref_primary_10_1186_1754_6834_7_40 crossref_primary_10_1016_j_ymben_2016_03_001 crossref_primary_10_1007_s00253_023_12637_7 crossref_primary_10_3389_fmicb_2022_907577 crossref_primary_10_1016_j_biombioe_2013_01_034 crossref_primary_10_1038_nature11478 crossref_primary_10_3390_ma12030350 crossref_primary_10_1038_ismej_2016_189 crossref_primary_10_1134_S0026261721030024 crossref_primary_10_1016_j_copbio_2017_03_009 crossref_primary_10_1128_AEM_00675_15 crossref_primary_10_1111_j_1758_2229_2010_00211_x crossref_primary_10_1016_j_tibtech_2024_06_014 crossref_primary_10_1093_femsle_fny191 crossref_primary_10_1016_j_ymben_2018_07_012 crossref_primary_10_1016_j_coche_2012_07_005 crossref_primary_10_1111_1751_7915_12014 crossref_primary_10_1016_j_jbiosc_2015_07_003 crossref_primary_10_1016_j_jbiosc_2023_04_001 crossref_primary_10_1186_s40168_024_01869_y crossref_primary_10_1016_j_cbpa_2016_08_024 crossref_primary_10_1021_acssynbio_9b00150 crossref_primary_10_1007_s10123_021_00190_0 crossref_primary_10_1016_j_rser_2014_05_009 crossref_primary_10_1016_j_jece_2021_106922 crossref_primary_10_1021_acssynbio_9b00033 crossref_primary_10_1007_s00792_016_0873_3 crossref_primary_10_1186_1745_6150_6_36 crossref_primary_10_1016_j_ijhydene_2013_10_084 crossref_primary_10_1039_D1GC02866A crossref_primary_10_1016_j_biortech_2016_12_035 crossref_primary_10_1016_j_biortech_2015_05_077 crossref_primary_10_3389_fbioe_2021_647853 crossref_primary_10_1016_j_scitotenv_2022_159124 crossref_primary_10_1371_journal_pone_0019316 crossref_primary_10_1007_s00253_017_8421_3 crossref_primary_10_1371_journal_pone_0170406 crossref_primary_10_1016_j_jbiosc_2013_04_011 crossref_primary_10_1002_bbb_1814 crossref_primary_10_1371_journal_pone_0020539 crossref_primary_10_1016_j_copbio_2016_09_004 crossref_primary_10_1021_acsomega_0c05588 crossref_primary_10_1128_AEM_00247_17 crossref_primary_10_1038_srep26228 crossref_primary_10_1016_j_biteb_2023_101713 crossref_primary_10_1186_s12934_022_01964_5 crossref_primary_10_1080_09593330_2013_826255 crossref_primary_10_15407_biotech12_05_029 crossref_primary_10_1016_j_jbiosc_2012_10_013 crossref_primary_10_1371_journal_pone_0158768 crossref_primary_10_2139_ssrn_4166596 crossref_primary_10_1186_s13068_023_02259_6 crossref_primary_10_1128_mBio_00518_12 crossref_primary_10_3390_molecules29112661 crossref_primary_10_3389_fbioe_2022_850370 crossref_primary_10_1099_ijsem_0_000641 crossref_primary_10_1128_genomeA_00786_15 crossref_primary_10_1021_acssynbio_6b00044 crossref_primary_10_1039_C4TA03101F crossref_primary_10_1039_c3ee41405a crossref_primary_10_1038_ismej_2016_149 crossref_primary_10_1016_j_scitotenv_2021_149292 crossref_primary_10_1016_j_copbio_2011_01_010 crossref_primary_10_1016_j_copbio_2011_01_011 crossref_primary_10_1128_AEM_02642_10 crossref_primary_10_1042_BST20170259 crossref_primary_10_1016_j_ymben_2022_03_011 crossref_primary_10_1016_j_rser_2021_111563 crossref_primary_10_5650_oleoscience_21_417 crossref_primary_10_1111_1751_7915_13663 crossref_primary_10_1016_j_ijhydene_2012_03_097 crossref_primary_10_3390_en5125372 crossref_primary_10_1039_C7EE02212C crossref_primary_10_1016_j_ymben_2017_04_005 crossref_primary_10_1371_journal_pone_0096696 crossref_primary_10_1093_femsle_fny039 crossref_primary_10_1016_j_btre_2017_11_002 |
Cites_doi | 10.1201/9780203489819.ch29 10.1128/JB.01417-07 10.1128/aem.59.4.1077-1081.1993 10.1002/bit.20354 10.1111/j.1432-1033.1990.tb19242.x 10.1126/science.1180251 10.1021/es902838n 10.1128/JB.184.7.1966-1973.2002 10.1196/annals.1419.016 10.1016/0167-7012(90)90050-G 10.1128/jb.154.1.192-199.1983 10.1016/0003-9861(89)90489-X 10.1126/science.1114736 10.1128/jb.171.10.5473-5478.1989 10.1111/j.1462-2920.2008.01679.x 10.1073/pnas.212640899 10.1038/nbt1244 10.1002/9783527619191 10.1007/BF00243458 10.1007/BF00454874 10.1128/AEM.00515-09 10.1073/pnas.0711093105 10.1007/s00253-007-1257-5 10.1093/nar/16.13.6127 10.1016/0378-1119(90)90336-P 10.1196/annals.1419.009 10.1016/S0021-9258(18)90590-9 10.1016/j.mimet.2007.05.021 10.1111/j.1574-6968.1988.tb03154.x 10.1073/pnas.77.9.5201 10.1002/biot.200700168 10.1126/science.326.5959.1472 10.1099/00207713-43-2-232 10.1074/jbc.274.48.33999 10.1093/nar/30.11.2478 10.1128/JB.00934-06 10.1128/JB.01422-07 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7QO 7ST 7T7 7U6 8FD C1K FR3 M7N P64 5PM |
DOI | 10.1073/pnas.1004716107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Biotechnology Research Abstracts AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13092 |
ExternalDocumentID | PMC2919952 20616070 10_1073_pnas_1004716107 107_29_13087 25708668 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7QO 7ST 7T7 7U6 8FD C1K FR3 M7N P64 5PM |
ID | FETCH-LOGICAL-c463t-3123afec6aca1fc16ac0f2ead624a821e34dee1db8f015206af2eabe6c86a8c53 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:48:35 EDT 2025 Fri Jul 11 03:40:23 EDT 2025 Fri Jul 11 16:39:10 EDT 2025 Fri Jul 11 04:57:28 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Tue Jul 01 00:46:56 EDT 2025 Wed Nov 11 00:30:48 EST 2020 Thu May 29 08:40:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c463t-3123afec6aca1fc16ac0f2ead624a821e34dee1db8f015206af2eabe6c86a8c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved June 10, 2010 (received for review April 13, 2010) 1Present address: LanzaTech, 24 Balfour Road, Parnell, Auckland 1052, New Zealand. Author contributions: A.E., W.L., G.G., and P.D. designed research; M.K., C.H., S.H., H.L., A. Wiezer, A. Wollherr, and A.E. performed research; and M.K., A.E., G.G, and P.D. wrote the paper. 3Present address: Qiagen Hamburg GmbH, Königstr. 4a, 22767 Hamburg, Germany. 2Present address: TU München, Abt. Mikrobiologie, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany. |
PMID | 20616070 |
PQID | 1825415588 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1004716107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2919952 crossref_citationtrail_10_1073_pnas_1004716107 proquest_miscellaneous_1825415588 proquest_miscellaneous_754564586 proquest_miscellaneous_734000913 pubmed_primary_20616070 pnas_primary_107_29_13087 jstor_primary_25708668 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-07-20 |
PublicationDateYYYYMMDD | 2010-07-20 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Tanner RS (e_1_3_3_13_2) 1997; 6 Huhnke RL (e_1_3_3_14_2) 2008 Noack S (e_1_3_3_28_2) 2010 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Energy Information Administration (e_1_3_3_1_2) 2007 Donaldson GK (e_1_3_3_35_2) 2007 Sambrook J (e_1_3_3_34_2) 2001 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 18218779 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33 18631365 - Environ Microbiol. 2008 Oct;10(10):2550-73 15759261 - Biotechnol Bioeng. 2005 Apr 20;90(2):154-66 16439654 - Science. 2006 Jan 27;311(5760):484-9 20085253 - Environ Sci Technol. 2010 Mar 1;44(5):1813-9 6833177 - J Bacteriol. 1983 Apr;154(1):192-9 17924389 - Biotechnol J. 2007 Dec;2(12):1525-34 8386500 - Appl Environ Microbiol. 1993 Apr;59(4):1077-81 2507527 - J Bacteriol. 1989 Oct;171(10):5473-8 Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15305 20007878 - Science. 2009 Dec 11;326(5959):1472-5 6159641 - Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5 18378605 - Ann N Y Acad Sci. 2008 Mar;1125:353-62 10567365 - J Biol Chem. 1999 Nov 26;274(48):33999-4004 12034836 - Nucleic Acids Res. 2002 Jun 1;30(11):2478-83 2265755 - Gene. 1990 Nov 30;96(1):23-8 19376903 - Appl Environ Microbiol. 2009 Jun;75(12):4035-45 16980459 - J Bacteriol. 2006 Nov;188(22):7759-64 17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28 18039764 - J Bacteriol. 2008 Feb;190(3):784-91 11889105 - J Bacteriol. 2002 Apr;184(7):1966-73 19933101 - Science. 2009 Dec 4;326(5958):1397-9 16964242 - Nat Biotechnol. 2006 Oct;24(10):1257-62 12475995 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15971-6 18060402 - Appl Microbiol Biotechnol. 2008 Jan;77(6):1305-16 7684239 - Int J Syst Bacteriol. 1993 Apr;43(2):232-6 2209595 - Eur J Biochem. 1990 Sep 11;192(2):411-7 17993531 - J Bacteriol. 2008 Feb;190(3):843-50 3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45 6381490 - J Biol Chem. 1984 Sep 10;259(17):10845-9 2673038 - Arch Biochem Biophys. 1989 Sep;273(2):309-18 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1201/9780203489819.ch29 – ident: e_1_3_3_21_2 doi: 10.1128/JB.01417-07 – ident: e_1_3_3_25_2 doi: 10.1128/aem.59.4.1077-1081.1993 – ident: e_1_3_3_30_2 doi: 10.1002/bit.20354 – ident: e_1_3_3_24_2 doi: 10.1111/j.1432-1033.1990.tb19242.x – ident: e_1_3_3_2_2 doi: 10.1126/science.1180251 – ident: e_1_3_3_3_2 doi: 10.1021/es902838n – ident: e_1_3_3_43_2 doi: 10.1128/JB.184.7.1966-1973.2002 – ident: e_1_3_3_16_2 doi: 10.1196/annals.1419.016 – ident: e_1_3_3_41_2 doi: 10.1016/0167-7012(90)90050-G – ident: e_1_3_3_15_2 doi: 10.1128/jb.154.1.192-199.1983 – ident: e_1_3_3_32_2 doi: 10.1016/0003-9861(89)90489-X – ident: e_1_3_3_7_2 doi: 10.1126/science.1114736 – ident: e_1_3_3_19_2 doi: 10.1128/jb.171.10.5473-5478.1989 – ident: e_1_3_3_8_2 doi: 10.1111/j.1462-2920.2008.01679.x – ident: e_1_3_3_11_2 doi: 10.1073/pnas.212640899 – ident: e_1_3_3_36_2 doi: 10.1038/nbt1244 – ident: e_1_3_3_5_2 doi: 10.1002/9783527619191 – ident: e_1_3_3_23_2 doi: 10.1007/BF00243458 – ident: e_1_3_3_40_2 doi: 10.1007/BF00454874 – year: 2007 ident: e_1_3_3_35_2 article-title: Fermentative production of four carbon alcohols publication-title: Int Patent – ident: e_1_3_3_37_2 doi: 10.1128/AEM.00515-09 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0711093105 – ident: e_1_3_3_29_2 doi: 10.1007/s00253-007-1257-5 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: e_1_3_3_34_2 – ident: e_1_3_3_39_2 doi: 10.1093/nar/16.13.6127 – volume: 6 start-page: 59 year: 1997 ident: e_1_3_3_13_2 article-title: Metabolism of Clostridium ljungdahlii, an acetogen in the clostridial RNA homology group I publication-title: Biofactors – ident: e_1_3_3_38_2 doi: 10.1016/0378-1119(90)90336-P – year: 2008 ident: e_1_3_3_14_2 article-title: Isolation and characterization of novel clostridial species publication-title: Int Patent – ident: e_1_3_3_27_2 doi: 10.1196/annals.1419.009 – ident: e_1_3_3_12_2 doi: 10.1016/S0021-9258(18)90590-9 – ident: e_1_3_3_31_2 doi: 10.1016/j.mimet.2007.05.021 – ident: e_1_3_3_33_2 doi: 10.1111/j.1574-6968.1988.tb03154.x – ident: e_1_3_3_42_2 doi: 10.1073/pnas.77.9.5201 – ident: e_1_3_3_26_2 doi: 10.1002/biot.200700168 – ident: e_1_3_3_6_2 doi: 10.1126/science.326.5959.1472 – ident: e_1_3_3_4_2 doi: 10.1099/00207713-43-2-232 – ident: e_1_3_3_17_2 doi: 10.1074/jbc.274.48.33999 – ident: e_1_3_3_9_2 doi: 10.1093/nar/30.11.2478 – volume-title: International Energy Outlook 2007 year: 2007 ident: e_1_3_3_1_2 – ident: e_1_3_3_18_2 doi: 10.1128/JB.00934-06 – volume-title: New Research on Biofuels year: 2010 ident: e_1_3_3_28_2 – ident: e_1_3_3_20_2 doi: 10.1128/JB.01422-07 – reference: 17924389 - Biotechnol J. 2007 Dec;2(12):1525-34 – reference: 2507527 - J Bacteriol. 1989 Oct;171(10):5473-8 – reference: 19933101 - Science. 2009 Dec 4;326(5958):1397-9 – reference: 2209595 - Eur J Biochem. 1990 Sep 11;192(2):411-7 – reference: 2673038 - Arch Biochem Biophys. 1989 Sep;273(2):309-18 – reference: 3041370 - Nucleic Acids Res. 1988 Jul 11;16(13):6127-45 – reference: 17993531 - J Bacteriol. 2008 Feb;190(3):843-50 – reference: 6381490 - J Biol Chem. 1984 Sep 10;259(17):10845-9 – reference: 15759261 - Biotechnol Bioeng. 2005 Apr 20;90(2):154-66 – reference: 17658189 - J Microbiol Methods. 2007 Sep;70(3):452-64 – reference: 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28 – reference: 8386500 - Appl Environ Microbiol. 1993 Apr;59(4):1077-81 – reference: 6833177 - J Bacteriol. 1983 Apr;154(1):192-9 – reference: 20085253 - Environ Sci Technol. 2010 Mar 1;44(5):1813-9 – reference: 6159641 - Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5 – reference: 16980459 - J Bacteriol. 2006 Nov;188(22):7759-64 – reference: 16964242 - Nat Biotechnol. 2006 Oct;24(10):1257-62 – reference: 11889105 - J Bacteriol. 2002 Apr;184(7):1966-73 – reference: 19376903 - Appl Environ Microbiol. 2009 Jun;75(12):4035-45 – reference: 12034836 - Nucleic Acids Res. 2002 Jun 1;30(11):2478-83 – reference: 18378605 - Ann N Y Acad Sci. 2008 Mar;1125:353-62 – reference: 18039764 - J Bacteriol. 2008 Feb;190(3):784-91 – reference: 7684239 - Int J Syst Bacteriol. 1993 Apr;43(2):232-6 – reference: 20007878 - Science. 2009 Dec 11;326(5959):1472-5 – reference: 18060402 - Appl Microbiol Biotechnol. 2008 Jan;77(6):1305-16 – reference: 18218779 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33 – reference: 18631365 - Environ Microbiol. 2008 Oct;10(10):2550-73 – reference: 10567365 - J Biol Chem. 1999 Nov 26;274(48):33999-4004 – reference: - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15305 – reference: 12475995 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15971-6 – reference: 16439654 - Science. 2006 Jan 27;311(5760):484-9 – reference: 2265755 - Gene. 1990 Nov 30;96(1):23-8 |
SSID | ssj0009580 |
Score | 2.5294511 |
Snippet | Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO₂/H₂ and synthesis gas (CO/H₂). The latter feature... Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO 2 /H 2 and synthesis gas (CO/H 2 ). The latter... Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO 2 /H 2 and synthesis gas (CO/H 2 ). The latter... Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter... Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO sub(2)/H sub(2) and synthesis gas (CO/H sub(2)).... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13087 |
SubjectTerms | Acetates Acetobacterium woodii Atmosphere Bacterial Proteins - genetics Bacterial Proteins - metabolism Biofuels Biofuels - microbiology Biological Sciences Blotting, Northern butanol Butanols Carbon dioxide carbon monoxide Chemicals Clostridium Clostridium - genetics Clostridium - growth & development Clostridium - metabolism Clostridium ljungdahlii Cytochrome Cytochromes Data processing Dehydrogenases DNA, Bacterial - metabolism Electroporation Energy Energy Metabolism - genetics Enzymes Ethanol Ethanol - metabolism Ferredoxins Fuel technology gene expression Gene Expression Regulation, Bacterial genes Genome, Bacterial - genetics Genomes Hydrogen industry Ions Metabolic Networks and Pathways - genetics Metabolism Molecular Sequence Data Moorella thermoacetica Organic compounds Plasmids Proteins Protons Recombination, Genetic - genetics Sodium Substrate Specificity Sugar sugars Synthesis gas Translocation |
Title | Clostridium ljungdahlii represents a microbial production platform based on syngas |
URI | https://www.jstor.org/stable/25708668 http://www.pnas.org/content/107/29/13087.abstract https://www.ncbi.nlm.nih.gov/pubmed/20616070 https://www.proquest.com/docview/1825415588 https://www.proquest.com/docview/734000913 https://www.proquest.com/docview/754564586 https://pubmed.ncbi.nlm.nih.gov/PMC2919952 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBFCiYlxaJQ5HlYq-dtXOsolYRlFChRMrNWq_XrVvXiZrkAL-emd31I6XldXGS9XhjeT7Pjscz3xDyPvMzsHIq9kQuMi-KC-mJMC-8MGOxL2KkTMM45JcJH8-iT_PBvEsd0tUl6-xA_ri1ruR_tApjoFeskv0HzbaTwgB8B_3CFjQM27_S8ahaYNuNvNxcudUF3La5OK_K0tVMlStduybcq1JzLWHFlWF3RYUvK7FGd9XFVSzHNwar7_WZzRSyvuppu7atmkyCSRM6POwKUax1WLmeezrp2hp_XqilSfzpZ-brqKuJRY8qsclL0eHqwvYAE3V-3Q6fIIvFmQ1qj1V5uejHKfAVe-wxv297GayHkamYbm2vaXlrQWZjH8aUBshV2FuX4bfpmveL0QcrhZ2Ka7HCnA9YbXkz7Ra99uRrejw7OUmnR_PpffKAwXOFzgQd91maE1OzZE-14YKKw483pt9yY0wmK9LjgtBtjyo3M257Lsz0MXlknz3ooQHSLrmn6idkt9Ef3bcU5B-ekm89ZNEesmiHLCpoiyzaIYs2yKIaWRRGDLKekdnx0XQ09mz3DU9GPFzD4sxCUSjJhRRBIQP49AsGhoezSCQsUGGUKxXkWVKAS8l8LnBvprhMuEjkINwjO_WiVi8Ildkwl6zIhwMmIj4sRDZQSRYwEJKFjHyHHDQXM5WWmh47pFSpTpGIwxQvbNpdfYfstwcsDSvL3aJ7WjutHLZtTDhPHOJo0e74OGXDVMPOIe8aHaZgbvEdmqjVYgMTY0QFfPAEjqd3yMRhhFgKwt-IDDSNU8Id8twgozs_8LA5LMQOibcw0wogIfz2nro818TwbIiEC-zln__2FXnY3aOvyc76eqPegHe9zt7qO-InRILU_A |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clostridium+ljungdahlii+represents+a+microbial+production+platform+based+on+syngas&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Koepke%2C+Michael&rft.au=Held%2C+Claudia&rft.au=Hujer%2C+Sandra&rft.au=Liesegang%2C+Heiko&rft.date=2010-07-20&rft.issn=0027-8424&rft.volume=107&rft.issue=29&rft.spage=13087&rft.epage=13092&rft_id=info:doi/10.1073%2Fpnas.1004716107&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F29.cover.gif |