Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury
Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transp...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 50; no. 4; pp. 1535 - 1559 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2018
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. Methods: The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. Results: MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65. Conclusion: MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously. |
---|---|
AbstractList | Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. Methods: The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. Results: MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65. Conclusion: MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously. Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65. MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously. Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI.BACKGROUND/AIMSNeurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI.The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats.METHODSThe effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats.MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65.RESULTSMSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65.MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously.CONCLUSIONMSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously. |
Author | Guo, Bin Pei, Shuang Xue, Bohan Chen, Xuemei Li, Yanfei Duan, Ranran Jia, Yanjie Yao, Yaobing Wang, Lin Han, Linlin |
Author_xml | – sequence: 1 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 2 givenname: Shuang surname: Pei fullname: Pei, Shuang – sequence: 3 givenname: Linlin surname: Han fullname: Han, Linlin – sequence: 4 givenname: Bin surname: Guo fullname: Guo, Bin – sequence: 5 givenname: Yanfei surname: Li fullname: Li, Yanfei email: jiayanjie1971@zzu.edu.cn – sequence: 6 givenname: Ranran surname: Duan fullname: Duan, Ranran – sequence: 7 givenname: Yaobing surname: Yao fullname: Yao, Yaobing – sequence: 8 givenname: Bohan surname: Xue fullname: Xue, Bohan – sequence: 9 givenname: Xuemei surname: Chen fullname: Chen, Xuemei – sequence: 10 givenname: Yanjie surname: Jia fullname: Jia, Yanjie email: jiayanjie1971@zzu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30376671$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1uEzEUhUeoiP7Agj1CltjAYqj_7VmmaQuRCkQE1pbHYycOM-NgzxTyBjwTD8Ez4TZpF1VXto--e-7V8T0uDvrQ26J4ieB7hFh1CiGkFeUMPymOEMWorISQB_kOEStlJcVhcZzSGuanqPCz4pBAIjgX6Kj488km25vVttMtWAy2A1PbtuW5jf7aNuDid0ihswl8tc1oLJggMElDDGY7ZPHaa3AefvXRLsdWDz70IDgwX4W0WYW4zVK2-Hz57-8ZmHMGFmM99n4AvgeLje9zw2mIDZj16zFunxdPnW6TfbE_T4rvlxffph_Lqy8fZtPJVWkoJ0OJq9o1UjspjYA1o5xTLhjTTFqpdY0cNxLyhgjHbkDjKKZUG0gJd4ySmpwUs51vE_RabaLvdNyqoL26FUJcKh0Hb1qrGocZMZYRBxtq6kriukLIkDqHiCAV2evtzmsTw8_RpkF1Ppmcn-5tGJPCCAvOKiRkRt88QNdhjDmDTBGIZEUFxpl6vafGurPN_Xh3_5WB0x1gYkgpWqeMH26TH6L2rUJQ3WyEut-IXPHuQcWd6WPsfsgfOi5tvCen87MdoTaNy9SrR6m9yX8dHsk7 |
CitedBy_id | crossref_primary_10_3389_fnmol_2019_00081 crossref_primary_10_62347_FGHV2647 crossref_primary_10_1186_s12967_020_02622_3 crossref_primary_10_3389_fphar_2023_1110008 crossref_primary_10_1111_prd_12561 crossref_primary_10_1038_s41598_020_80032_7 crossref_primary_10_1093_jnen_nlad053 crossref_primary_10_1155_2022_1900403 crossref_primary_10_1590_1414_431x20198735 crossref_primary_10_3390_ijms21186859 crossref_primary_10_1016_j_neures_2020_07_011 crossref_primary_10_1089_scd_2020_0133 crossref_primary_10_3389_fnins_2024_1363170 crossref_primary_10_1007_s12035_022_03080_2 crossref_primary_10_1016_j_trim_2022_101592 crossref_primary_10_3389_fncel_2021_792764 crossref_primary_10_1016_j_actbio_2020_09_057 crossref_primary_10_1016_j_intimp_2023_110872 crossref_primary_10_3390_ijms222112018 crossref_primary_10_1142_S1793984424500041 crossref_primary_10_1186_s13578_020_00475_3 crossref_primary_10_1007_s12035_022_02853_z crossref_primary_10_1111_jcmm_14555 crossref_primary_10_1007_s10735_020_09950_0 crossref_primary_10_3389_fcell_2021_653296 crossref_primary_10_3390_pharmaceutics15031006 crossref_primary_10_15283_ijsc23092 crossref_primary_10_1002_btpr_3383 crossref_primary_10_1186_s13578_021_00554_z crossref_primary_10_3389_fnins_2021_628917 crossref_primary_10_1007_s13577_022_00813_2 crossref_primary_10_2174_1574888X17666220330005937 crossref_primary_10_3390_cells13100861 crossref_primary_10_1177_09603271211003311 crossref_primary_10_1007_s11064_022_03810_x crossref_primary_10_3389_fnins_2023_1309172 crossref_primary_10_3390_ijms26020723 crossref_primary_10_1111_cns_14428 crossref_primary_10_1186_s13287_024_03737_w crossref_primary_10_3389_fncel_2020_00078 crossref_primary_10_12677_BP_2023_132013 crossref_primary_10_3390_ph13020031 crossref_primary_10_3389_fnins_2019_00163 crossref_primary_10_3389_fcell_2020_568889 crossref_primary_10_1016_j_preteyeres_2020_100849 crossref_primary_10_3389_fcell_2020_569977 crossref_primary_10_3389_fimmu_2022_1084101 crossref_primary_10_3389_fncel_2021_695899 crossref_primary_10_1016_j_cjtee_2024_03_009 crossref_primary_10_1016_j_jtcms_2022_04_002 crossref_primary_10_3390_pharmaceutics12111006 crossref_primary_10_1016_j_pneurobio_2021_102022 crossref_primary_10_4103_1673_5374_390961 crossref_primary_10_3389_fneur_2022_847444 crossref_primary_10_1016_j_ijbiomac_2024_130728 crossref_primary_10_3390_cells8050467 crossref_primary_10_3389_fnins_2024_1400413 crossref_primary_10_3390_ijms20235976 crossref_primary_10_4103_1673_5374_371376 crossref_primary_10_1186_s13075_020_2146_x crossref_primary_10_14245_ns_2346824_412 crossref_primary_10_3389_fncel_2022_882306 crossref_primary_10_3390_ijms24054628 crossref_primary_10_1007_s11481_019_09873_y crossref_primary_10_17352_sjggt_000022 crossref_primary_10_1016_j_molimm_2021_11_010 crossref_primary_10_3390_ijms21103651 crossref_primary_10_1002_term_3251 crossref_primary_10_1016_j_lfs_2025_123451 crossref_primary_10_1186_s13287_024_03868_0 crossref_primary_10_1186_s13287_023_03614_y crossref_primary_10_1002_jev2_12137 crossref_primary_10_1016_j_ecoenv_2024_117365 crossref_primary_10_3390_cells9051157 crossref_primary_10_1007_s00702_020_02173_3 crossref_primary_10_1186_s13287_022_03106_5 crossref_primary_10_4252_wjsc_v15_i3_52 crossref_primary_10_1016_j_jconrel_2025_01_018 crossref_primary_10_1038_s41598_019_53063_y crossref_primary_10_1007_s12035_024_04490_0 crossref_primary_10_1088_1741_2552_ad6596 crossref_primary_10_3892_etm_2023_12240 crossref_primary_10_3389_fneur_2025_1447414 crossref_primary_10_3390_ijms21030727 crossref_primary_10_1007_s11011_019_00514_0 crossref_primary_10_1016_j_bioactmat_2021_01_029 crossref_primary_10_1016_j_biopha_2022_112683 crossref_primary_10_1016_j_tice_2021_101559 crossref_primary_10_3389_fnmol_2022_926928 crossref_primary_10_1002_term_3002 crossref_primary_10_1007_s10735_020_09935_z crossref_primary_10_3390_cells9051163 crossref_primary_10_3389_fimmu_2021_751021 crossref_primary_10_1186_s13287_024_03952_5 crossref_primary_10_1002_advs_202105586 crossref_primary_10_1096_fj_202001657RR crossref_primary_10_3389_fncel_2023_1276506 crossref_primary_10_5312_wjo_v14_i2_64 crossref_primary_10_1038_s41419_020_03134_0 crossref_primary_10_4103_1673_5374_314323 crossref_primary_10_1186_s13287_021_02153_8 crossref_primary_10_3389_fmed_2019_00267 crossref_primary_10_3389_fimmu_2019_02723 crossref_primary_10_1155_2021_6640836 crossref_primary_10_1016_j_expneurol_2024_115038 crossref_primary_10_1007_s10517_024_06095_y crossref_primary_10_1016_j_intimp_2021_107823 crossref_primary_10_1097_CM9_0000000000002320 crossref_primary_10_3389_fnmol_2024_1448777 crossref_primary_10_1016_j_neuint_2021_104955 crossref_primary_10_1007_s10616_024_00631_4 crossref_primary_10_1063_1_5127077 crossref_primary_10_1007_s12015_019_09934_y crossref_primary_10_1016_j_mtbio_2022_100524 crossref_primary_10_3390_biom10091320 crossref_primary_10_1016_j_mtbio_2023_100888 crossref_primary_10_1016_j_brainres_2020_146700 crossref_primary_10_1371_journal_pone_0262892 crossref_primary_10_1016_j_hest_2024_04_003 crossref_primary_10_1002_glia_23693 crossref_primary_10_1038_s41598_021_01490_1 crossref_primary_10_12688_f1000research_55472_1 crossref_primary_10_1016_j_lfs_2020_118042 crossref_primary_10_4103_1673_5374_306064 crossref_primary_10_3389_fbioe_2022_812340 crossref_primary_10_3390_cells12010120 crossref_primary_10_1155_2019_9274585 crossref_primary_10_3389_fbioe_2023_1077825 crossref_primary_10_2174_1574888X14666190228103230 crossref_primary_10_3389_fphys_2022_1008264 crossref_primary_10_3390_biomedicines11010201 crossref_primary_10_3390_cells10081872 crossref_primary_10_1186_s12974_020_1725_8 crossref_primary_10_4236_jbm_2025_131010 crossref_primary_10_1016_j_jddst_2023_105011 crossref_primary_10_1016_j_biopha_2022_114011 crossref_primary_10_1007_s10735_021_10046_6 crossref_primary_10_1021_acsami_9b00893 crossref_primary_10_2147_JIR_S349572 crossref_primary_10_29252_ibj_24_6_342 crossref_primary_10_4103_RMR_REGENMED_D_23_00002 crossref_primary_10_1016_j_neuroscience_2024_03_026 crossref_primary_10_3389_fncel_2024_1478741 crossref_primary_10_1155_2021_8819884 crossref_primary_10_1002_JLB_3MIR0621_298R crossref_primary_10_1186_s13287_020_02090_y crossref_primary_10_1186_s13287_022_03122_5 crossref_primary_10_1177_0963689719870999 crossref_primary_10_1021_acsnano_9b01892 crossref_primary_10_1002_biot_202100167 crossref_primary_10_1016_j_intimp_2022_108754 crossref_primary_10_2217_nnm_2021_0025 crossref_primary_10_3389_fncel_2023_1334092 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by S. Karger AG, Basel 2018 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2018 The Author(s). Published by S. Karger AG, Basel – notice: 2018 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1159/000494652 |
DatabaseName | Karger Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef ProQuest One Academic Middle East (New) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 1559 |
ExternalDocumentID | oai_doaj_org_article_df253ce53f0d4cb982b911c3b7921047 30376671 10_1159_000494652 494652 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PQQKQ PROAC PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO CAG CITATION COF ITC PHGZM PHGZT RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c463t-29bfd8af88c70b546646755a58e8aab1f6c806d37f5bfd8cf4244ac0436f543b3 |
IEDL.DBID | 7X7 |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:26:16 EDT 2025 Tue Aug 05 11:15:29 EDT 2025 Fri Jul 25 03:14:45 EDT 2025 Wed Feb 19 02:34:43 EST 2025 Thu Apr 24 22:59:32 EDT 2025 Sun Jul 06 05:07:01 EDT 2025 Thu Aug 29 12:04:25 EDT 2024 Thu Sep 05 20:30:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Mesenchymal stem cell Inflammation Exosomes Spinal cord injury Astrocytes |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2018 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-29bfd8af88c70b546646755a58e8aab1f6c806d37f5bfd8cf4244ac0436f543b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000494652 |
PMID | 30376671 |
PQID | 2301894722 |
PQPubID | 2047990 |
PageCount | 25 |
ParticipantIDs | karger_primary_494652 proquest_miscellaneous_2127659178 doaj_primary_oai_doaj_org_article_df253ce53f0d4cb982b911c3b7921047 crossref_citationtrail_10_1159_000494652 proquest_journals_2301894722 pubmed_primary_30376671 crossref_primary_10_1159_000494652 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2018 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE, Nishida H, Prockop DJ: Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 2013; 59: 86-99. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W: Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury via suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 2018; 10.1089/neu.2018.5835. Hayta E, Elden H: Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 2018; 87: 25-31. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214-222. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD: Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10: 106. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008; 28: 329-340. Sofroniew MV: Astrogliosis. Cold Spring Harb Perspect Biol 2014; 7:a020420. Zhang M, Cui Z, Cui H, Wang Y, Zhong C: Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-kappaB signaling pathway. BMC Neurosci 2017; 18: 42. Moon MR, Parikh AA, Pritts TA, Fischer JE, Cottongim S, Szabo C, Salzman AL, Hasselgren PO: Complement component C3 production in IL-1beta-stimulated human intestinal epithelial cells is blocked by NF-kappaB inhibitors and by transfection with ser 32/36 mutant IkappaBalpha. J Surg Res 1999; 82: 48-55. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 2013; 33: 1711-1715. Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT: Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013; 124: 165-176. Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13. He H, Zhou Y, Zhou Y, Zhuang J, He X, Wang S, Lin W: Dexmedetomidine mitigates microglia-mediated neuroinflammation through up-regulation of programmed cell death protein 1 in a rat spinal cord injury model. J Neurotrauma 2018; 10.1089/neu.2017.5625. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H: NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 2015; 85: 101-115. Torres-Espin A, Hernandez J, Navarro X: Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells. PLoS One 2013; 8:e76141. Xiong Y, Mahmood A, Chopp M: Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 2017; 12: 19-22. Bracchi-Ricard V, Lambertsen KL, Ricard J, Nathanson L, Karmally S, Johnstone J, Ellman DG, Frydel B, McTigue DM, Bethea JR: Inhibition of astroglial NF-kappaB enhances oligodendrogenesis following spinal cord injury. J Neuroinflammation 2013; 10: 92. Courtois G, Gilmore TD: Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 2006; 25: 6831-6843. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, Brook G, Schoenen J, Franzen R: Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 2013; 8:e69515. Urdzikova LM, Ruzicka J, LaBagnara M, Karova K, Kubinova S, Jirakova K, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P: Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci 2014; 15: 11275-11293. Bao G, Li C, Qi L, Wang N, He B: Tetrandrine protects against oxygen-glucose-serum deprivation/ reoxygenation-induced injury via PI3K/AKT/NF-kappaB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 2016; 84: 925-930. Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R: Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500. Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, Zakirova EY, Galieva LR, Garanina EE, Rogozin AA, Kiassov AP, Rizvanov AA: Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Front Pharmacol 2018; 9: 343. Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A: Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8: 198. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6: 8472. Rosado IR, Carvalho PH, Alves EG, Tagushi TM, Carvalho JL, Silva JF, Lavor MS, Oliveira KM, Serakides R, Goes AM, Melo EG: Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res 2017; 16. doi: 10.4238/gmr16019555. Saludas L, Pascual-Gil S, Roli F, Garbayo E, Blanco-Prieto MJ: Heart tissue repair and cardioprotection using drug delivery systems. Maturitas 2018; 110: 1-9. Gilmore TD, Herscovitch M: Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 2006; 25: 6887-6899. Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, Cao QL: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 2011; 31: 6053-6058. Kalladka D, Muir KW: Brain repair: cell therapy in stroke. Stem Cells Cloning 2014; 7: 31-44. Michelucci A, Bithell A, Burney MJ, Johnston CE, Wong KY, Teng SW, Desai J, Gumbleton N, Anderson G, Stanton LW, Williams BP, Buckley NJ: The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals. Mol Neurobiol 2016; 53: 3724-3739. Pachler K, Ketterl N, Desgeorges A, Dunai ZA, Laner-Plamberger S, Streif D, Strunk D, Rohde E, Gimona M: An In vitro Potency Assay for Monitoring the Immunomodulatory Potential of Stromal Cell-Derived Extracellular Vesicles. Int J Mol Sci 2017; 18: 1413. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA: Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 2018; 115:E1896-E1905. Xin H, Li Y, Chopp M: Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 2014; 8: 377. Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE: Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke 2016; 47: 1817-1824. Wang X, Huang S, Jiang Y, Liu Y, Song T, Li D, Yang L: Reactive astrocytes increase the expression of Pgp and Mrp1 via TNFalpha and NFkappaB signaling. Mol Med Rep 2018; 17: 1198-1204. Roh DH, Seo MS, Choi HS, Park SB, Han HJ, Beitz AJ, Kang KS, Lee JH: Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 2013; 22: 1577-1590. Xue H, Zhang XY, Liu JM, Song Y, Liu TT, Chen D: NDGA reduces secondary damage after spinal cord injury in rats via anti-inflammatory effects. Brain Res 2013; 1516: 83-92. Sofroniew MV, Vinters HV: Astrocytes: biology and pathology. Acta Neuropathol 2010; 119: 7-35. Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, Kocsis JD: Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010; 1343: 226-235. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV: Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532: 195-200. Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B: An acidic protein isolated from fibrous astrocytes. Brain Res 1971; 28: 351-354. Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, Fujimiya M: Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep 2016; 6: 24805. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ: Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007; 354: 700-706. Kaltschmidt B, Kaltschmidt C: NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol 2009; 1:a001271. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S: Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-alpha levels. J Neuroinflammation 2014; 11: 149. Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X, Zhu R, Yu L, Jiang X: Paracrine Factors Secreted b |
References_xml | – reference: Courtois G, Gilmore TD: Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 2006; 25: 6831-6843. – reference: Phinney DG, Pittenger MF: Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35: 851-858. – reference: Xiong Y, Mahmood A, Chopp M: Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 2017; 12: 19-22. – reference: Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV: Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532: 195-200. – reference: Bellaver B, Dos Santos JP, Leffa DT, Bobermin LD, Roppa PHA, da Silva Torres IL, Goncalves CA, Souza DO, Quincozes-Santos A: Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player. Mol Neurobiol 2018; 55: 2685-2695. – reference: Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE: Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke 2016; 47: 1817-1824. – reference: Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT: Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013; 124: 165-176. – reference: Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y: Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 2017; 111: 69-81. – reference: Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X, Zhu R, Yu L, Jiang X: Paracrine Factors Secreted by MSCs Promote Astrocyte Survival Associated With GFAP Downregulation After Ischemic Stroke via p38 MAPK and JNK. J Cell Physiol 2015; 230: 2461-2475. – reference: Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD: Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018; 13:e0190358. – reference: Xue H, Zhang XY, Liu JM, Song Y, Liu TT, Chen D: NDGA reduces secondary damage after spinal cord injury in rats via anti-inflammatory effects. Brain Res 2013; 1516: 83-92. – reference: Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H: NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 2015; 85: 101-115. – reference: Rosado IR, Carvalho PH, Alves EG, Tagushi TM, Carvalho JL, Silva JF, Lavor MS, Oliveira KM, Serakides R, Goes AM, Melo EG: Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res 2017; 16. doi: 10.4238/gmr16019555. – reference: Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, Li T, Chen J: Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFkappaB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 2015; 8: 65. – reference: Moon MR, Parikh AA, Pritts TA, Fischer JE, Cottongim S, Szabo C, Salzman AL, Hasselgren PO: Complement component C3 production in IL-1beta-stimulated human intestinal epithelial cells is blocked by NF-kappaB inhibitors and by transfection with ser 32/36 mutant IkappaBalpha. J Surg Res 1999; 82: 48-55. – reference: Wang X, Yang L, Yang L, Xing F, Yang H, Qin L, Lan Y, Wu H, Zhang B, Shi H, Lu C, Huang F, Wu X, Wang Z: Gypenoside IX Suppresses p38 MAPK/Akt/NFkappaB Signaling Pathway Activation and Inflammatory Responses in Astrocytes Stimulated by Proinflammatory Mediators. Inflammation 2017; 40: 2137-2150. – reference: Boche D, Perry VH, Nicoll JA: Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2013; 39: 3-18. – reference: Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD: Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10: 106. – reference: Birck C, Koncina E, Heurtaux T, Glaab E, Michelucci A, Heuschling P, Grandbarbe L: Transcriptomic analyses of primary astrocytes under TNFalpha treatment. Genom Data 2016; 7: 7-11. – reference: Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6: 8472. – reference: Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, Rizzolio F: The Clinical translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. Curr Med Chem 2017; 10.2174/0929867324666170830113755. – reference: Morita T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Oka S, Oshigiri T, Takebayashi T, Yamashita T, Kocsis JD, Honmou O: Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 2016; 335: 221-231. – reference: Liddelow SA, Barres BA: Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017; 46: 957-967. – reference: Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR: Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 2005; 202: 145-156. – reference: Zhang G, Wang D, Miao S, Zou X, Liu G, Zhu Y: Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: A meta-analysis. Exp Ther Med 2016; 11: 1519-1525. – reference: Kaltschmidt B, Kaltschmidt C: NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol 2009; 1:a001271. – reference: Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M: Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 2013; 33: 1711-1715. – reference: Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY: Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Inflammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats. J Neurotrauma 2017; 34: 3388-3396. – reference: Ruppert KA, Nguyen TT, Prabhakara KS, Toledano Furman NE, Srivastava AK, Harting MT, Cox CS, Jr., Olson SD: Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Sci Rep 2018; 8: 480. – reference: Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008; 28: 329-340. – reference: Wang X, Huang S, Jiang Y, Liu Y, Song T, Li D, Yang L: Reactive astrocytes increase the expression of Pgp and Mrp1 via TNFalpha and NFkappaB signaling. Mol Med Rep 2018; 17: 1198-1204. – reference: Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S, de Miroschedji K, Horn PA, van de Looij Y, Giebel B, Felderhoff-Muser U: Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017; 60: 220-232. – reference: Sofroniew MV: Astrogliosis. Cold Spring Harb Perspect Biol 2014; 7:a020420. – reference: Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM: Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 2015; 4: 1131-1143. – reference: Kalladka D, Muir KW: Brain repair: cell therapy in stroke. Stem Cells Cloning 2014; 7: 31-44. – reference: Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B: An acidic protein isolated from fibrous astrocytes. Brain Res 1971; 28: 351-354. – reference: Saludas L, Pascual-Gil S, Roli F, Garbayo E, Blanco-Prieto MJ: Heart tissue repair and cardioprotection using drug delivery systems. Maturitas 2018; 110: 1-9. – reference: Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML: Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther 2010; 18: 1857-1864. – reference: Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ: Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007; 354: 700-706. – reference: Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y: Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 2015; 122: 856-867. – reference: Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8: 57-69. – reference: Martire A, Bedada FB, Uchida S, Poling J, Kruger M, Warnecke H, Richter M, Kubin T, Herold S, Braun T: Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res Cardiol 2016; 111: 54. – reference: Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18: 759-765. – reference: Park HJ, Shin JY, Kim HN, Oh SH, Song SK, Lee PH: Mesenchymal stem cells stabilize the blood-brain barrier through regulation of astrocytes. Stem Cell Res Ther 2015; 6: 187. – reference: He H, Zhou Y, Zhou Y, Zhuang J, He X, Wang S, Lin W: Dexmedetomidine mitigates microglia-mediated neuroinflammation through up-regulation of programmed cell death protein 1 in a rat spinal cord injury model. J Neurotrauma 2018; 10.1089/neu.2017.5625. – reference: Xin H, Li Y, Chopp M: Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 2014; 8: 377. – reference: Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, Zakirova EY, Galieva LR, Garanina EE, Rogozin AA, Kiassov AP, Rizvanov AA: Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Front Pharmacol 2018; 9: 343. – reference: Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ: Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 2012; 30: 2283-2296. – reference: Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA: Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541: 481-487. – reference: Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, Brook G, Schoenen J, Franzen R: Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 2013; 8:e69515. – reference: Matsushita T, Lankford KL, Arroyo EJ, Sasaki M, Neyazi M, Radtke C, Kocsis JD: Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol 2015; 267: 152-164. – reference: Sofroniew MV, Vinters HV: Astrocytes: biology and pathology. Acta Neuropathol 2010; 119: 7-35. – reference: Xia R, Ji C, Zhang L: Neuroprotective Effects of Pycnogenol Against Oxygen-Glucose Deprivation/ Reoxygenation-Induced Injury in Primary Rat Astrocytes via NF-kappaB and ERK1/2 MAPK Pathways. Cell Physiol Biochem 2017; 42: 987-998. – reference: Kourembanas S: Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77: 13-27. – reference: Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13. – reference: Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD: Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 2018; 32: 654-668. – reference: Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, Kocsis JD: Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010; 1343: 226-235. – reference: Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M: Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury. Stem Cells Transl Med 2016; 5: 991-1003. – reference: Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O’Kane CM, Krasnodembskaya AD: Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In vitro and In vivo Models of ARDS. Stem Cells 2016; 34: 2210-2223. – reference: Gilmore TD, Herscovitch M: Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 2006; 25: 6887-6899. – reference: Vik DP, Amiguet P, Moffat GJ, Fey M, Amiguet-Barras F, Wetsel RA, Tack BF: Structural features of the human C3 gene: intron/exon organization, transcriptional start site, and promoter region sequence. Biochemistry 1991; 30: 1080-1085. – reference: Hayta E, Elden H: Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 2018; 87: 25-31. – reference: Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D: High complement levels in astrocyte-derived exosomes of Alzheimer disease. Ann Neurol 2018; 83: 544-552. – reference: Conti A, Cardali S, Genovese T, Di Paola R, La Rosa G: Role of inflammation in the secondary injury following experimental spinal cord trauma. J Neurosurg Sci 2003; 47: 89-94. – reference: Torres-Espin A, Hernandez J, Navarro X: Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells. PLoS One 2013; 8:e76141. – reference: Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W: Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury via suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 2018; 10.1089/neu.2018.5835. – reference: Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R: Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500. – reference: Bao G, Li C, Qi L, Wang N, He B: Tetrandrine protects against oxygen-glucose-serum deprivation/ reoxygenation-induced injury via PI3K/AKT/NF-kappaB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 2016; 84: 925-930. – reference: Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Jr., Khakoo AY, Holcomb JB, Dash PK, Pati S: Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med 2012; 4: 161ra150. – reference: Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749-759. – reference: Bracchi-Ricard V, Lambertsen KL, Ricard J, Nathanson L, Karmally S, Johnstone J, Ellman DG, Frydel B, McTigue DM, Bethea JR: Inhibition of astroglial NF-kappaB enhances oligodendrogenesis following spinal cord injury. J Neuroinflammation 2013; 10: 92. – reference: Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, Lorenowicz MJ: Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In vitro. Theranostics 2018; 8: 906-920. – reference: Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, Cao QL: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 2011; 31: 6053-6058. – reference: Urdzikova LM, Ruzicka J, LaBagnara M, Karova K, Kubinova S, Jirakova K, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P: Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci 2014; 15: 11275-11293. – reference: Michelucci A, Bithell A, Burney MJ, Johnston CE, Wong KY, Teng SW, Desai J, Gumbleton N, Anderson G, Stanton LW, Williams BP, Buckley NJ: The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals. Mol Neurobiol 2016; 53: 3724-3739. – reference: Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S: Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-alpha levels. J Neuroinflammation 2014; 11: 149. – reference: Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE, Nishida H, Prockop DJ: Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 2013; 59: 86-99. – reference: Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S: Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 2017; 23: 818-828. – reference: Haynesworth SE, Baber MA, Caplan AI: Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585-592. – reference: Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK: Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23: 1233-1244. – reference: Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, Fujimiya M: Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep 2016; 6: 24805. – reference: Zhang M, Cui Z, Cui H, Wang Y, Zhong C: Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-kappaB signaling pathway. BMC Neurosci 2017; 18: 42. – reference: Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214-222. – reference: Pachler K, Ketterl N, Desgeorges A, Dunai ZA, Laner-Plamberger S, Streif D, Strunk D, Rohde E, Gimona M: An In vitro Potency Assay for Monitoring the Immunomodulatory Potential of Stromal Cell-Derived Extracellular Vesicles. Int J Mol Sci 2017; 18: 1413. – reference: Tran AP, Warren PM, Silver J: The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018; 98: 881-917. – reference: Roh DH, Seo MS, Choi HS, Park SB, Han HJ, Beitz AJ, Kang KS, Lee JH: Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 2013; 22: 1577-1590. – reference: Li Y, Yang YY, Ren JL, Xu F, Chen FM, Li A: Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 2017; 8: 198. – reference: Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA: Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 2018; 115:E1896-E1905. |
SSID | ssj0015792 |
Score | 2.553464 |
Snippet | Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B... Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1535 |
SubjectTerms | Animals Astrocytes Astrocytes - cytology Astrocytes - metabolism Bone marrow Cells, Cultured Cytokines Cytokines - metabolism Down-Regulation Exosomes Exosomes - chemistry Exosomes - metabolism Exosomes - transplantation Experiments Flow cytometry Fluorescent Dyes - chemistry I-kappa B Kinase - metabolism Inflammation Ischemia Locomotion Male Mesenchymal stem cell Mesenchymal Stem Cell Transplantation Mesenchymal Stem Cells - chemistry Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Microscopy, Fluorescence Morphology Myelin Basic Protein - metabolism Nervous system Original Paper Phosphorylation Rats Rats, Sprague-Dawley Recovery of Function Spinal cord injuries Spinal Cord Injuries - metabolism Spinal Cord Injuries - pathology Spinal Cord Injuries - veterinary Spinal cord injury Stem cells Transcription Factor RelA - metabolism Traumatic brain injury |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJQQXBKVAaEEGceASNYljxznupl0VJKoVpVJvUfynLewmq_2pum_AM_EQPBMzcRIBAnHhao-dxDPjmcnY3xDyxjqRgCfvQtgc8zA1BlQqtaB4kXU8zYxNdIv2eS7OLtP3V_zqp1JfeCbMwwP7hTs2LuFMW85cZFKtcpko0E_NVJYnCDOAuy_YvD6Y6vIHPMt9njPmoYSwusMUAtt97CFRBE9-sUQtYD9YoS94_nr1d3ezNTuTh-RB5y_SkX_PR-SOrffJXV9BcrdP7hV9wbbH5OsHvEmkZ7sFDLjY2AUt7HwenoCM3VhDT2-bdbOwa_oR0VotHcV0BAMbvQNvk95cV_QEIvKVr00P3KKNo9NZs17OmtUOmmCK88n3b2M6FZzCfrOFzYBe1_RiiYW1aAFRLH1XfwYeHZDLyemn4izsCi2EOhVsEya5ckZWTkqdRYoj4jzEEbzi0sqqUrETWkbCsMxxJNQOb8dVGtHrgaFMsSdkr25q-4xQw8Dec6FTmyFYu5EM2IW5N2Ejp1IRkLf9ope6QyHHYhjzso1GeF4O_AnI64F06aE3_kQ0Rs4NBIiW3TaADJWdDJX_kqGAHHi-D9P0kx_91l5Mx76rXBoH3b2UlJ3mr0sI6WKZIwRnQF4N3SAJmIipattsgSZOMsEhUJYBeeqla3gCuBSZEFn8_H982CG5Dw6e9L-MjsjeZrW1L8CJ2qiXrb78AEnqFQs priority: 102 providerName: Directory of Open Access Journals – databaseName: Karger Open Access dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3LbtQwFLVQEdBNRUuBlLYyiAUbiySOHWc5k3ZUkFqNKJW6ixI_OoWZeDSPivkDvomP4Ju4jpNIRe3Wvn4o923H5yL0URseQyRvCBjHjCRKgUolGhQv1IYlqdKxbNA-L_jZVfL1ml235x3uLcxP9_9zA43aYwuAw_3scUw4A2P7FPIo6lDyzwnp7wtYmvl7zYgRAWl0iyF0b-g2eg72OuU8je45oQarHxyQX_rxSLPxOKOXaKcNFfHA83YXPdH1Hnrmi0du9tCLvKvV9gr9PnePiORkM4MBlys9w7meTskJiNedVvj0l13amV7ibw6oVeNBhAcw0MoNBJr47rbEJ5CML3xZemAUtgaPJ3Y5n9jFBppgiovR3z9DPOYMg6lZgx3AtzW-nLuaWjiHBBZ_qX8Ae_bR1ej0e35G2hoLRCacrkicVUaJ0ggh07BiDmweUghWMqFFWVaR4VKEXNHUMEcojXsYV0oHXA-8pBV9jbZqW-u3CCsKrp5xmejU4bQrQassctduXIemSniAPnUfvZAtALmrgzEtmkSEZUXPqgB96EnnHnXjIaKh41xP4ICymwa7uClavSuUiRmVmlETqkRWmYhhU5GkFQiMQ6kI0L7nez9NN_nhf-35eOi7irky0N1JSdEq_bKAbC4SmUPfDND7vhskwd3BlLW2a6CJ4pQzyJFFgN546epX6KTz4JE9vUPbEK4JfwB0iLZWi7U-gpBoVR032vAPxVQBaw priority: 102 providerName: Karger AG |
Title | Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury |
URI | https://karger.com/doi/10.1159/000494652 https://www.ncbi.nlm.nih.gov/pubmed/30376671 https://www.proquest.com/docview/2301894722 https://www.proquest.com/docview/2127659178 https://doaj.org/article/df253ce53f0d4cb982b911c3b7921047 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtNAFB1BK0Q3CEqhhhINiAUbq_FjxuMVStxEBalR1FIpO8ueBykktrGTivwB38RH8E3c6xcCARsvZu6MLd_3PM4l5LU23IVI3thgHEPbVwpUytegeENtmB8o7coa7XPGz6_99wu2aBfcqvZYZWcTa0Otcolr5KcQKjsiRGjDt8UXG6tG4e5qW0LjLtlH6DI80hUs-oTLYUHY7HY6zBaQXLfIQuDBTxtgFM7c3_xRDdsPvugznsIu_x101s5n-pA8aKNGOmrY_Ijc0dkhudfUkdwdkvtRV7btMfl2gfeJ5HK3hgFXG72mkV6t7DOQtFut6ORrXuVrXdFLxGzVdOTQEQzM5Q5iTnp7k9AzyMvLpkI98Izmhs6XeVUs83IHTTDFbPrj-5jOOaNgdbZgEuhNRq8KLK9FI8hl6bvsE3DqiFxPJx-ic7stt2BLn3sb2w1To0RihJDBMGWIOw_ZBEuY0CJJUsdwKYZceYFhSCgN3pFLJGLYA1u91HtC9rI808eEKg-8PuPS1wFCtivhpaGDO3BcD03qc4u86X56LFssciyJsYrrnISFcc8fi7zqSYsGgONvRGPkXE-AmNl1Q15-jFsVjJVxmSc188xQ-TINhQsf5UgvBSlBwAqLHDV876fpJj_5oz2aj5uuuFAGujspiVv9r-Jf0mqRl303SAJuxySZzrdA47gBZ5AuC4s8baSrfwMEFgHngfPs_5M_JwcQwIlmSeiE7G3KrX4BQdImHdSaMCD748lsfjmolxrgeWHbPwHTiRAv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ZbtQwFLVKK1ReEJQCKQUMAomXqNnsOA8IzaoZ2o5GXaS-pYmXTulMPMzSMn_A1_ABfATfxHU2BALe-jj2zZ0od_FxbnwuQm-koh4geWVDcozsQAgIqUBC4DlSkSAU0uM52-eA9k6Dj2fkbA19q87CmM8qq5yYJ2qhuXlHvgdQ2WWRoTb8MP1sm65RprpatdAo3GJfrm5gyzZ_32-Dfd96Xrdz0urZZVcBmwfUX9helCrBEsUYD52UGHp1AM0kIUyyJEldRTlzqPBDRYwgV-YoWMINVTvcvZ_6oPcO2oCfDiSCjWZnMDyq6xYkjIr6qktsBtv5kssIMMNeQcVCiffbCpg3CoDV78p89z37N8zNl7vuA3S_xKm4UTjWQ7Qmsy10t-hcudpCm62qUdwj9PXQnGDio9UELjheyAluyfHYboNvX0uBO1_0XE_kHB8ZlliJGy5uwIWarwDl4uvLBLf1DTjxRdlIDGuFhyM9n470bAVDoGLQ_fG9iYeUYMhzS0hC-DLDx1PT0Au3wBS4n30C39hGp7diisdoPdOZfIqw8AFnEMoDGRqSeMH8NHJNzY9KR6UBtdC76qHHvGQ_N004xnG-CyJRXNvHQq9r0WlB-fE3oaaxXC1gWLrzAT27iMugj4XyiM8l8ZUjAp5GzIObcrmfgpcYigwLbRd2r9VUynf_GG8Nm8VUPBUKpisvicuMM49_xYeFXtXT4AmmAJRkUi9BxvVCSmCDziz0pPCu-h8AyoSUhu7O_5W_RJu9k8OD-KA_2H-G7gF8ZMULqV20vpgt5XOAaIv0RRkXGJ3fdij-BIA7S2U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VIo4XBKVAoIBBIPGySvaw1_uAUI5GDYUoolTK27Lroykk65CjJf-A39QfwW9ivBcCAW99tWcnxxz-Zm1_A_BCaeYhktcOJsfICaTEkAoUBl5LaRqEUnkiZ_scsoPj4O2YjrfgoroLY49VVjkxT9TSCPuOvIlQ2eWRpTZs6vJYxKjXfzP_6tgOUnantWqnUbjIodqcY_m2fD3ooa1fel5__2P3wCk7DDgiYP7K8aJUS55ozkXYSqmlWkcATRPKFU-S1NVM8BaTfqipFRTaXgtLhKVtx1_ipz7qvQJXQ5-6NsbCcV3suTSMip1WlzocC_uS1QjRQ7MgZWHU-20tzFsG4Dr4xZ4AX_wb8OYLX_823CoRK2kXLnYHtlS2A9eKHpabHbjRrVrG3YXv7-1dJjHZzPCBo5Waka6aTp0eevmZkmT_m1mamVqSD5YvVpG2S9r4oBEbxLvk7DQhPXOO7nxSthQjRpPRxCznE7PY4BCqGPZ_XHTIiFGCGW-N6YicZuRoblt7kS4aggyyz-glu3B8KYa4B9uZydQDINJHxEGZCFRo6eIl99PItbt_TLV0GrAGvKr-9FiUPOi2Hcc0zushGsW1fRrwvBadF-QffxPqWMvVApavOx8wi5O4DP9Yao_6QlFft2Qg0oh7-KVc4afoJZYsowG7hd1rNZXyvT_Gu6NOMRXPpcbpykviMvcs41-R0oBn9TR6gt0KSjJl1ijjeiGjWKrzBtwvvKv-BAQ1IWOh-_D_yp_CdQzA-N1gePgIbiKO5MWbqT3YXi3W6jFitVX6JA8KAp8uOwp_AmMcTjU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal+Stem+Cell-Derived+Exosomes+Reduce+A1+Astrocytes+via+Downregulation+of+Phosphorylated+NF%CE%BAB+P65+Subunit+in+Spinal+Cord+Injury&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Wang%2C+Lin&rft.au=Pei%2C+Shuang&rft.au=Han%2C+Linlin&rft.au=Guo%2C+Bin&rft.date=2018-01-01&rft.eissn=1421-9778&rft.volume=50&rft.issue=4&rft.spage=1535&rft_id=info:doi/10.1159%2F000494652&rft_id=info%3Apmid%2F30376671&rft.externalDocID=30376671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |