miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS
A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrat...
Saved in:
Published in | Developmental cell Vol. 40; no. 6; pp. 566 - 582.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair.
[Display omitted]
•miR-219 is critical for oligodendrocyte differentiation and myelination in murine CNS•miR-338 deletion exacerbates the dysmyelination phenotype in miR-219-deficient mice•miR-219 targets stage-specific inhibitors and Lingo1-Etv5 to promote CNS myelination•miR-219 mimics augment remyelination and functional recovery in demyelinating models
Wang et al. show that miR-219 collaborates with miR-338 and is required for proper oligodendrocyte differentiation and myelination in the mammalian CNS by targeting a network of stage-specific differentiation inhibitors, including Lingo1 and Etv5. Therapeutic delivery of miR-219 also enhances myelin repair in animal models of multiple sclerosis. |
---|---|
AbstractList | A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair.
[Display omitted]
•miR-219 is critical for oligodendrocyte differentiation and myelination in murine CNS•miR-338 deletion exacerbates the dysmyelination phenotype in miR-219-deficient mice•miR-219 targets stage-specific inhibitors and Lingo1-Etv5 to promote CNS myelination•miR-219 mimics augment remyelination and functional recovery in demyelinating models
Wang et al. show that miR-219 collaborates with miR-338 and is required for proper oligodendrocyte differentiation and myelination in the mammalian CNS by targeting a network of stage-specific differentiation inhibitors, including Lingo1 and Etv5. Therapeutic delivery of miR-219 also enhances myelin repair in animal models of multiple sclerosis. A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219 -deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair. A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair.A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair. A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in oligodendrogenesis; however, their functions in myelin regeneration remained elusive. Through developmentally regulated targeted mutagenesis, we demonstrate that miR-219 alleles are critical for CNS myelination and remyelination after injury. Further deletion of miR-338 exacerbates the miR-219 mutant hypomyelination phenotype. Conversely, miR-219 overexpression promotes precocious oligodendrocyte maturation and regeneration processes in transgenic mice. Integrated transcriptome profiling and biotin-affinity miRNA pull-down approaches reveal stage-specific miR-219 targets in oligodendrocytes and further uncover a novel network for miR-219 targeting of differentiation inhibitors including Lingo1 and Etv5. Inhibition of Lingo1 and Etv5 partially rescues differentiation defects of miR-219-deficient oligodendrocyte precursors. Furthermore, miR-219 mimics enhance myelin restoration following lysolecithin-induced demyelination as well as experimental autoimmune encephalomyelitis, principal animal models of multiple sclerosis. Together, our findings identify context-specific miRNA-regulated checkpoints that control myelinogenesis and a therapeutic role for miR-219 in CNS myelin repair. |
Author | He, Xuelian Xin, Mei Yoon, Sung Ok Jiang, Minqing Lu, Q. Richard Bongarzone, Ernesto R. Deng, Yaqi Zhou, Wenhao Lin, Yifeng Ma, Zhixing Zhao, Chuntao Moyano, Ana Lis Wang, Haibo Ma, Zhangyan Zhang, Liguo Lu, Fanghui |
AuthorAffiliation | 3 Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai 201102, China 2 Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA 5 Departamento de Química Biologica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina 4 Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA 1 Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA |
AuthorAffiliation_xml | – name: 2 Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA – name: 1 Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA – name: 5 Departamento de Química Biologica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina – name: 3 Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai 201102, China – name: 4 Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA |
Author_xml | – sequence: 1 givenname: Haibo surname: Wang fullname: Wang, Haibo organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 2 givenname: Ana Lis surname: Moyano fullname: Moyano, Ana Lis organization: Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA – sequence: 3 givenname: Zhangyan surname: Ma fullname: Ma, Zhangyan organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 4 givenname: Yaqi surname: Deng fullname: Deng, Yaqi organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 5 givenname: Yifeng surname: Lin fullname: Lin, Yifeng organization: Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China – sequence: 6 givenname: Chuntao surname: Zhao fullname: Zhao, Chuntao organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 7 givenname: Liguo surname: Zhang fullname: Zhang, Liguo organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 8 givenname: Minqing surname: Jiang fullname: Jiang, Minqing organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 9 givenname: Xuelian surname: He fullname: He, Xuelian organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 10 givenname: Zhixing surname: Ma fullname: Ma, Zhixing organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 11 givenname: Fanghui surname: Lu fullname: Lu, Fanghui organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 12 givenname: Mei surname: Xin fullname: Xin, Mei organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA – sequence: 13 givenname: Wenhao surname: Zhou fullname: Zhou, Wenhao organization: Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China – sequence: 14 givenname: Sung Ok surname: Yoon fullname: Yoon, Sung Ok organization: Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA – sequence: 15 givenname: Ernesto R. surname: Bongarzone fullname: Bongarzone, Ernesto R. organization: Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA – sequence: 16 givenname: Q. Richard surname: Lu fullname: Lu, Q. Richard email: richard.lu@cchmc.org organization: Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28350989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wDxDKkk2Crx0nDgskNIIWqTxUytpynBvGo8QebM-g_nscZqiABaxs-X73HOucc3LivENCngKtgELzYlMNuDc4VYxCW1FeUQoPyBnIVpYgBJzku-B1KSRtT8l5jJsMNCDpI3LKJBe0k90ZuZ3tTcmgK1bebzHohLH4btO6WN45l4V1xfs7nKzTyXpXaDcUn4Kf_QIeBsUNbrUNC5nWWKw-fH5MHo56ivjkeF6QL2_f3K6uyuuPl-9Wr69LUzc8lYyNjczeQz3KnjVYs0YbDX0H7cjrvhs7OQqjB90LxNaMrBNcDz0A9iAYGH5BXh10t7t-xsGgS0FPahvsrMOd8tqqPyfOrtVXv1dCNB2ndRZ4fhQI_tsOY1KzjTnTSTv0u6hASkYl5TXL6LPfve5NfkWZgfoAmOBjDDjeI0DV0pjaqENjamlMUa5yIXnt5V9rxqafWecf2-l_y8cAMKe8txhUNBadwcEGNEkN3v5b4AczBrN8 |
CitedBy_id | crossref_primary_10_1515_revneuro_2017_0019 crossref_primary_10_1002_glia_23711 crossref_primary_10_1002_jbm_b_34378 crossref_primary_10_1002_glia_23957 crossref_primary_10_1016_j_jconrel_2019_10_007 crossref_primary_10_3389_fncel_2024_1404463 crossref_primary_10_1186_s13064_018_0115_8 crossref_primary_10_3390_ijms24043716 crossref_primary_10_2217_epi_2020_0172 crossref_primary_10_1016_j_cell_2024_04_005 crossref_primary_10_3389_fnmol_2018_00434 crossref_primary_10_3390_cells10020405 crossref_primary_10_1111_nyas_14959 crossref_primary_10_3389_fnmol_2023_1199313 crossref_primary_10_1038_s41380_020_00930_0 crossref_primary_10_3389_fncel_2024_1336439 crossref_primary_10_1016_j_tins_2019_01_002 crossref_primary_10_3389_fcell_2022_878142 crossref_primary_10_1038_s41467_020_19319_2 crossref_primary_10_1016_j_ygeno_2020_03_027 crossref_primary_10_1002_glia_24113 crossref_primary_10_3390_ijms24010470 crossref_primary_10_1371_journal_pone_0186091 crossref_primary_10_1007_s13760_019_01076_9 crossref_primary_10_1002_acn3_750 crossref_primary_10_1038_s41385_019_0216_7 crossref_primary_10_1186_s12929_023_00909_3 crossref_primary_10_1186_s13287_021_02645_7 crossref_primary_10_1016_j_msard_2023_104554 crossref_primary_10_7554_eLife_77441 crossref_primary_10_1016_j_addr_2019_03_004 crossref_primary_10_12688_f1000research_20904_1 crossref_primary_10_4103_1673_5374_266922 crossref_primary_10_1007_s12264_022_00950_6 crossref_primary_10_3389_fcell_2021_703989 crossref_primary_10_1007_s11011_020_00609_z crossref_primary_10_1002_acn3_51365 crossref_primary_10_3390_life11010062 crossref_primary_10_2174_1566524022666220525150259 crossref_primary_10_1016_j_prp_2023_154880 crossref_primary_10_1002_smll_202003656 crossref_primary_10_1038_s41467_021_20892_3 crossref_primary_10_4103_RPS_RPS_163_23 crossref_primary_10_3390_cells8101236 crossref_primary_10_1016_j_mcn_2017_11_010 crossref_primary_10_1016_j_ymthe_2018_01_008 crossref_primary_10_4103_NRR_NRR_D_23_01444 crossref_primary_10_1016_j_devcel_2018_05_022 crossref_primary_10_1016_j_lfs_2019_03_031 crossref_primary_10_1016_j_ymthe_2024_09_020 crossref_primary_10_3390_ijms20205031 crossref_primary_10_1080_21655979_2021_1966258 crossref_primary_10_1101_cshperspect_a041358 crossref_primary_10_1038_s41576_020_00309_5 crossref_primary_10_4103_1673_5374_350214 crossref_primary_10_1016_j_cell_2018_03_006 crossref_primary_10_1016_j_bcp_2019_06_019 crossref_primary_10_1002_jcp_29147 crossref_primary_10_1016_j_genrep_2021_101457 crossref_primary_10_1002_advs_202103065 crossref_primary_10_1016_j_actbio_2018_06_011 crossref_primary_10_1177_1759091420981182 crossref_primary_10_3390_brainsci14060553 crossref_primary_10_1016_j_expneurol_2024_114966 crossref_primary_10_1155_2022_3341481 crossref_primary_10_1016_j_neulet_2021_136124 crossref_primary_10_1093_hmg_ddac049 crossref_primary_10_3390_ijms22062812 crossref_primary_10_1111_jnc_15618 crossref_primary_10_1016_j_nbd_2023_106129 crossref_primary_10_1111_bpa_12951 crossref_primary_10_1371_journal_pone_0255778 crossref_primary_10_1002_jcp_29195 crossref_primary_10_1111_cns_14688 crossref_primary_10_3390_cells11142177 crossref_primary_10_1002_EXP_20230165 crossref_primary_10_1155_2019_9610687 crossref_primary_10_1212_NXI_0000000000200069 crossref_primary_10_3389_fncel_2021_781434 crossref_primary_10_1016_j_eng_2021_07_018 crossref_primary_10_1007_s12035_024_03954_7 crossref_primary_10_3389_fpsyt_2020_00405 crossref_primary_10_1016_j_ijbiomac_2022_01_100 crossref_primary_10_1038_s41598_018_22010_8 crossref_primary_10_1007_s11064_019_02777_6 crossref_primary_10_1016_j_bioadv_2023_213429 crossref_primary_10_1038_s41582_020_0369_8 crossref_primary_10_3390_cells9071711 crossref_primary_10_1093_hmg_ddad144 crossref_primary_10_3390_ijms22136765 crossref_primary_10_1016_j_msard_2022_103835 crossref_primary_10_1007_s12264_024_01261_8 crossref_primary_10_1038_s41467_024_48118_2 crossref_primary_10_1016_j_semcdb_2021_02_004 crossref_primary_10_2147_IJN_S407029 crossref_primary_10_1038_s41467_022_33140_z crossref_primary_10_3390_genes15040402 crossref_primary_10_1002_jcp_29910 crossref_primary_10_1080_14728222_2019_1661381 crossref_primary_10_3390_cells13121024 crossref_primary_10_3389_fncel_2020_00279 crossref_primary_10_1007_s11940_019_0574_1 crossref_primary_10_2139_ssrn_3950750 crossref_primary_10_1021_acs_jafc_9b02925 crossref_primary_10_1016_j_molcel_2020_05_009 crossref_primary_10_3390_pharmaceutics12020186 crossref_primary_10_1002_jcb_28248 crossref_primary_10_1016_j_ymthe_2018_11_016 crossref_primary_10_1016_j_bbrc_2024_150778 crossref_primary_10_3390_ijms23063383 crossref_primary_10_3390_biom15030392 crossref_primary_10_1002_jev2_12394 crossref_primary_10_1016_j_jchemneu_2018_03_001 crossref_primary_10_1002_dneu_22848 crossref_primary_10_1093_hmg_ddab184 crossref_primary_10_20517_and_2023_13 crossref_primary_10_4103_1673_5374_308081 crossref_primary_10_1038_s41467_022_35494_w crossref_primary_10_1002_path_5399 crossref_primary_10_1038_s41591_019_0695_9 crossref_primary_10_1186_s12974_017_1006_3 crossref_primary_10_2174_0115672026336440240822063430 crossref_primary_10_1016_j_jgg_2022_10_003 crossref_primary_10_1016_j_celrep_2019_09_020 crossref_primary_10_1016_j_ymgme_2024_108497 crossref_primary_10_1016_j_ejphar_2024_177080 |
Cites_doi | 10.1038/nrn917 10.1016/j.ymeth.2007.04.007 10.1016/j.cell.2012.02.005 10.1093/brain/awn096 10.1158/0008-5472.CAN-09-0352 10.1261/rna.5248604 10.1523/JNEUROSCI.3034-04.2005 10.1038/nrneurol.2010.179 10.4161/org.3.2.5171 10.1016/0092-8674(94)90581-9 10.1016/j.cell.2009.04.031 10.1523/JNEUROSCI.18-02-00601.1998 10.1038/nature09267 10.1517/14728222.2012.696102 10.1038/nn.3790 10.1038/nm1664 10.1371/journal.pgen.0030215 10.1016/j.neuron.2012.08.031 10.1038/ncomms3658 10.1371/journal.pgen.1002363 10.1523/JNEUROSCI.5859-10.2011 10.1002/stem.1129 10.1038/nrm2347 10.1038/nn.2333 10.1073/pnas.0902834106 10.1002/glia.22622 10.1523/JNEUROSCI.1636-12.2013 10.3791/51275 10.1177/1073858410392382 10.1002/gene.10154 10.1002/ana.21927 10.1056/NEJMoa010994 10.1038/ncomms10883 10.1002/ana.23590 10.1038/nrm2868 10.1038/ng1536 10.1002/(SICI)1097-4547(19980815)53:4<393::AID-JNR1>3.0.CO;2-1 10.1242/dmm.001065 10.1523/JNEUROSCI.1932-08.2008 10.1093/bioinformatics/btp565 10.1016/j.neuron.2010.02.018 10.1016/j.neuron.2014.06.010 10.1006/bbrc.1997.7111 10.1016/j.devcel.2013.10.015 10.1016/j.neuron.2010.01.027 10.1038/nrrheum.2016.119 10.1016/j.neuron.2006.11.019 10.1016/j.molcel.2007.06.017 10.1101/gad.1806309 10.1002/glia.22606 10.1016/j.cell.2009.01.002 10.3791/51229 10.1038/nature12647 10.1016/j.molcel.2010.09.027 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.devcel.2017.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
EndPage | 582.e5 |
ExternalDocumentID | PMC5569304 28350989 10_1016_j_devcel_2017_03_001 S1534580717301223 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS065808 – fundername: NINDS NIH HHS grantid: R01 NS075243 – fundername: NINDS NIH HHS grantid: R01 NS072427 – fundername: NINDS NIH HHS grantid: R37 NS096359 – fundername: NINDS NIH HHS grantid: R21 NS087474 |
GroupedDBID | --- --K 0R~ 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c463t-22f68219d4f8b26e426aca1b917f34b9f98f5cadab5ee7cf2953adb11eb1521c3 |
IEDL.DBID | IXB |
ISSN | 1534-5807 1878-1551 |
IngestDate | Thu Aug 21 14:07:00 EDT 2025 Fri Jul 11 08:53:56 EDT 2025 Thu Jan 02 23:12:21 EST 2025 Tue Jul 01 02:37:38 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Fri Feb 23 02:26:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | microRNAs experimental autoimmune encephalomyelitis Lingo1 myelination miR-338 gene regulatory network miR-219 remyelination demyelinating injury Etv5 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-22f68219d4f8b26e426aca1b917f34b9f98f5cadab5ee7cf2953adb11eb1521c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1534580717301223 |
PMID | 28350989 |
PQID | 1882080342 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5569304 proquest_miscellaneous_1882080342 pubmed_primary_28350989 crossref_primary_10_1016_j_devcel_2017_03_001 crossref_citationtrail_10_1016_j_devcel_2017_03_001 elsevier_sciencedirect_doi_10_1016_j_devcel_2017_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-27 |
PublicationDateYYYYMMDD | 2017-03-27 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bittner, Afzali, Wiendl, Meuth (bib3) 2014 Inui, Martello, Piccolo (bib24) 2010; 11 Glasgow, Zhu, Stolt, Huang, Chen, LoTurco, Neul, Wegner, Mohila, Deneen (bib18) 2014; 17 Deneen, Ho, Lukaszewicz, Hochstim, Gronostajski, Anderson (bib8) 2006; 52 Grimson, Farh, Johnston, Garrett-Engele, Lim, Bartel (bib20) 2007; 27 Junker, Hohlfeld, Meinl (bib25) 2011; 7 Kiyota, Kato, Kato (bib26) 2007; 3 Orom, Lund (bib40) 2007; 43 Wolswijk (bib49) 1998; 18 Krek, Grun, Poy, Wolf, Rosenberg, Epstein, MacMenamin, da Piedade, Gunsalus, Stoffel (bib28) 2005; 37 Shin, Shin, McManus, Ptacek, Fu (bib46) 2009; 66 Alexiou, Maragkakis, Papadopoulos, Reczko, Hatzigeorgiou (bib1) 2009; 25 Castelli, Boca, Chiaravalli, Ramalingam, Rowe, Distefano, Carroll, Boletta (bib5) 2013; 4 Fancy, Glasgow, Finley, Rowitch, Deneen (bib14) 2012; 72 He, Yu, Awatramani, Lu (bib22) 2012; 18 Mi, Hu, Hahm, Luo, Kam Hui, Yuan, Wong, Wang, Su, Chu (bib37) 2007; 13 Franklin (bib15) 2002; 3 Zhao, Deng, Liu, Yu, Zhang, Wang, He, Wang, Lu, Wu (bib55) 2016; 7 Franklin, Gallo (bib16) 2014; 62 Hudish, Blasky, Appel (bib23) 2013; 27 Rehmsmeier, Steffen, Hochsmann, Giegerich (bib42) 2004; 10 Sabo, Aumann, Merlo, Kilpatrick, Cate (bib44) 2011; 31 Bartel (bib2) 2009; 136 Zhang, Argaw, Gurfein, Zameer, Snyder, Ge, Lu, Rowitch, Raine, Brosnan (bib53) 2009; 106 Lal, Thomas, Altschuler, Navarro, O'Day, Li, Concepcion, Han, Thiery, Rajani (bib30) 2011; 7 Chang, Tourtellotte, Rudick, Trapp (bib6) 2002; 346 Sakai, Miyazaki (bib45) 1997; 237 Guo, Ingolia, Weissman, Bartel (bib21) 2010; 466 Leung, Sharp (bib32) 2010; 40 Lau, Verrier, Nielsen, Johnson, Notterpek, Hudson (bib31) 2008; 28 Mendell, Olson (bib36) 2012; 148 Xin, Yue, Ma, Wu, Gow, Lu (bib50) 2005; 25 Stefani, Slack (bib47) 2008; 9 Vicente, Noel, Pers, Apparailly, Jorgensen (bib48) 2016; 12 Njoo, Heinl, Kuner (bib39) 2014 Gravel, Di Polo, Valera, Braun (bib19) 1998; 53 Xin, Li, Buller, Katakowski, Zhang, Wang, Shang, Zhang, Chopp (bib51) 2012; 30 Emery, Agalliu, Cahoy, Watkins, Dugas, Mulinyawe, Ibrahim, Ligon, Rowitch, Barres (bib12) 2009; 138 Fancy, Baranzini, Zhao, Yuk, Irvine, Kaing, Sanai, Franklin, Rowitch (bib13) 2009; 23 Kuhlmann, Miron, Cui, Wegner, Antel, Bruck (bib29) 2008; 131 Lin, Fu (bib34) 2009; 2 Deshmukh, Tardif, Lyssiotis, Green, Kerman, Kim, Padmanabhan, Swoboda, Ahmad, Kondo (bib9) 2013; 502 Gallo, Deneen (bib17) 2014; 83 Zhao, He, Han, Yu, Ye, Chen, Hoang, Xu, Mi, Xin (bib54) 2010; 65 Ye, Chen, Hoang, Montgomery, Zhao, Bu, Hu, Taketo, van Es, Clevers (bib52) 2009; 12 Doerflinger, Macklin, Popko (bib10) 2003; 35 Dugas, Cuellar, Scholze, Ason, Ibrahim, Emery, Zamanian, Foo, McManus, Barres (bib11) 2010; 65 Miska, Alvarez-Saavedra, Abbott, Lau, Hellman, McGonagle, Bartel, Ambros, Horvitz (bib38) 2007; 3 Cho (bib7) 2012; 16 Bruck (bib4) 2005; 252 Lin, Lin, Li, Fenstermaker, Way, Clayton, Jamison, Harding, Ron, Popko (bib35) 2013; 33 Pusic, Kraig (bib41) 2014; 62 Klaes, Menne, Stollewerk, Scholz, Klambt (bib27) 1994; 78 Li, Newbern, Wu, Morgan-Smith, Zhong, Charron, Snider (bib33) 2012; 75 Rigoutsos (bib43) 2009; 69 Emery (10.1016/j.devcel.2017.03.001_bib12) 2009; 138 Pusic (10.1016/j.devcel.2017.03.001_bib41) 2014; 62 Klaes (10.1016/j.devcel.2017.03.001_bib27) 1994; 78 Bruck (10.1016/j.devcel.2017.03.001_bib4) 2005; 252 Franklin (10.1016/j.devcel.2017.03.001_bib16) 2014; 62 Bartel (10.1016/j.devcel.2017.03.001_bib2) 2009; 136 Ye (10.1016/j.devcel.2017.03.001_bib52) 2009; 12 Lau (10.1016/j.devcel.2017.03.001_bib31) 2008; 28 Leung (10.1016/j.devcel.2017.03.001_bib32) 2010; 40 Li (10.1016/j.devcel.2017.03.001_bib33) 2012; 75 Franklin (10.1016/j.devcel.2017.03.001_bib15) 2002; 3 Cho (10.1016/j.devcel.2017.03.001_bib7) 2012; 16 Rigoutsos (10.1016/j.devcel.2017.03.001_bib43) 2009; 69 Mi (10.1016/j.devcel.2017.03.001_bib37) 2007; 13 Orom (10.1016/j.devcel.2017.03.001_bib40) 2007; 43 Xin (10.1016/j.devcel.2017.03.001_bib51) 2012; 30 Rehmsmeier (10.1016/j.devcel.2017.03.001_bib42) 2004; 10 Junker (10.1016/j.devcel.2017.03.001_bib25) 2011; 7 Xin (10.1016/j.devcel.2017.03.001_bib50) 2005; 25 Deshmukh (10.1016/j.devcel.2017.03.001_bib9) 2013; 502 Mendell (10.1016/j.devcel.2017.03.001_bib36) 2012; 148 Alexiou (10.1016/j.devcel.2017.03.001_bib1) 2009; 25 Kiyota (10.1016/j.devcel.2017.03.001_bib26) 2007; 3 Lin (10.1016/j.devcel.2017.03.001_bib35) 2013; 33 Gallo (10.1016/j.devcel.2017.03.001_bib17) 2014; 83 Vicente (10.1016/j.devcel.2017.03.001_bib48) 2016; 12 Guo (10.1016/j.devcel.2017.03.001_bib21) 2010; 466 Hudish (10.1016/j.devcel.2017.03.001_bib23) 2013; 27 Zhao (10.1016/j.devcel.2017.03.001_bib55) 2016; 7 Deneen (10.1016/j.devcel.2017.03.001_bib8) 2006; 52 Fancy (10.1016/j.devcel.2017.03.001_bib14) 2012; 72 Grimson (10.1016/j.devcel.2017.03.001_bib20) 2007; 27 Krek (10.1016/j.devcel.2017.03.001_bib28) 2005; 37 Kuhlmann (10.1016/j.devcel.2017.03.001_bib29) 2008; 131 Miska (10.1016/j.devcel.2017.03.001_bib38) 2007; 3 Castelli (10.1016/j.devcel.2017.03.001_bib5) 2013; 4 Lin (10.1016/j.devcel.2017.03.001_bib34) 2009; 2 Stefani (10.1016/j.devcel.2017.03.001_bib47) 2008; 9 Dugas (10.1016/j.devcel.2017.03.001_bib11) 2010; 65 He (10.1016/j.devcel.2017.03.001_bib22) 2012; 18 Gravel (10.1016/j.devcel.2017.03.001_bib19) 1998; 53 Doerflinger (10.1016/j.devcel.2017.03.001_bib10) 2003; 35 Wolswijk (10.1016/j.devcel.2017.03.001_bib49) 1998; 18 Chang (10.1016/j.devcel.2017.03.001_bib6) 2002; 346 Shin (10.1016/j.devcel.2017.03.001_bib46) 2009; 66 Sabo (10.1016/j.devcel.2017.03.001_bib44) 2011; 31 Zhao (10.1016/j.devcel.2017.03.001_bib54) 2010; 65 Glasgow (10.1016/j.devcel.2017.03.001_bib18) 2014; 17 Bittner (10.1016/j.devcel.2017.03.001_bib3) 2014 Fancy (10.1016/j.devcel.2017.03.001_bib13) 2009; 23 Sakai (10.1016/j.devcel.2017.03.001_bib45) 1997; 237 Lal (10.1016/j.devcel.2017.03.001_bib30) 2011; 7 Inui (10.1016/j.devcel.2017.03.001_bib24) 2010; 11 Njoo (10.1016/j.devcel.2017.03.001_bib39) 2014 Zhang (10.1016/j.devcel.2017.03.001_bib53) 2009; 106 24339157 - Glia. 2014 Feb;62(2):284-99 24107995 - Nature. 2013 Oct 17;502(7471):327-332 17906634 - Nat Med. 2007 Oct;13(10 ):1228-33 20965416 - Mol Cell. 2010 Oct 22;40(2):205-15 25033178 - Neuron. 2014 Jul 16;83(2):283-308 19259393 - Dis Model Mech. 2009 Mar-Apr;2(3-4):178-88 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 21151203 - Nat Rev Neurol. 2011 Jan;7(1):56-9 22998872 - Neuron. 2012 Sep 20;75(6):1035-50 20035504 - Ann Neurol. 2009 Dec;66(6):843-57 16254699 - J Neurol. 2005 Nov;252 Suppl 5:v3-9 22690697 - Expert Opin Ther Targets. 2012 Aug;16(8):747-59 15703389 - J Neurosci. 2005 Feb 9;25(6):1354-65 19503085 - Nat Neurosci. 2009 Jul;12(7):829-38 24239515 - Dev Cell. 2013 Nov 25;27(4):387-98 26955760 - Nat Commun. 2016 Mar 09;7:10883 24797125 - J Vis Exp. 2014 Apr 15;(86):null 19279707 - Organogenesis. 2007 Oct;3(2):93-101 23554479 - J Neurosci. 2013 Apr 3;33(14 ):5980-91 19789267 - Bioinformatics. 2009 Dec 1;25(23):3049-55 19855010 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19162-7 8033206 - Cell. 1994 Jul 15;78(1):149-60 12481300 - Genesis. 2003 Jan;35(1):63-72 12209119 - Nat Rev Neurosci. 2002 Sep;3(9):705-14 20216554 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 20223197 - Neuron. 2010 Mar 11;65(5):597-611 17889804 - Methods. 2007 Oct;43(2):162-5 25151262 - Nat Neurosci. 2014 Oct;17(10):1322-9 18270516 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30 24153433 - Nat Commun. 2013;4:2658 18515322 - Brain. 2008 Jul;131(Pt 7):1749-58 27411908 - Nat Rev Rheumatol. 2016 Aug;12(8):496 9425002 - J Neurosci. 1998 Jan 15;18(2):601-9 19351814 - Cancer Res. 2009 Apr 15;69(8):3245-8 19515974 - Genes Dev. 2009 Jul 1;23(13):1571-85 20223198 - Neuron. 2010 Mar 11;65(5):612-26 20703300 - Nature. 2010 Aug 12;466(7308):835-40 21536841 - Neuroscientist. 2012 Feb;18(1):45-55 19596243 - Cell. 2009 Jul 10;138(1):172-85 15383676 - RNA. 2004 Oct;10(10):1507-17 9710259 - J Neurosci Res. 1998 Aug 15;53(4):393-404 24446279 - Glia. 2014 Nov;62(11):1905-15 18085825 - PLoS Genet. 2007 Dec;3(12):e215 9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24 15806104 - Nat Genet. 2005 May;37(5):495-500 19167326 - Cell. 2009 Jan 23;136(2):215-33 22807310 - Ann Neurol. 2012 Aug;72(2):224-33 17178400 - Neuron. 2006 Dec 21;52(6):953-68 22605481 - Stem Cells. 2012 Jul;30(7):1556-64 11796850 - N Engl J Med. 2002 Jan 17;346(3):165-73 24686916 - J Vis Exp. 2014 Mar 22;(85):null 22424228 - Cell. 2012 Mar 16;148(6):1172-87 22102825 - PLoS Genet. 2011 Nov;7(11):e1002363 18987208 - J Neurosci. 2008 Nov 5;28(45):11720-30 21430151 - J Neurosci. 2011 Mar 23;31(12):4504-10 |
References_xml | – volume: 75 start-page: 1035 year: 2012 end-page: 1050 ident: bib33 article-title: MEK is a key regulator of gliogenesis in the developing brain publication-title: Neuron – volume: 3 start-page: 705 year: 2002 end-page: 714 ident: bib15 article-title: Why does remyelination fail in multiple sclerosis? publication-title: Nat. Rev. Neurosci. – volume: 27 start-page: 91 year: 2007 end-page: 105 ident: bib20 article-title: MicroRNA targeting specificity in mammals: determinants beyond seed pairing publication-title: Mol. Cell – volume: 12 start-page: 829 year: 2009 end-page: 838 ident: bib52 article-title: HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction publication-title: Nat. Neurosci. – volume: 10 start-page: 1507 year: 2004 end-page: 1517 ident: bib42 article-title: Fast and effective prediction of microRNA/target duplexes publication-title: RNA – volume: 466 start-page: 835 year: 2010 end-page: 840 ident: bib21 article-title: Mammalian microRNAs predominantly act to decrease target mRNA levels publication-title: Nature – volume: 33 start-page: 5980 year: 2013 end-page: 5991 ident: bib35 article-title: Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis publication-title: J. Neurosci. – volume: 30 start-page: 1556 year: 2012 end-page: 1564 ident: bib51 article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth publication-title: Stem Cells – volume: 138 start-page: 172 year: 2009 end-page: 185 ident: bib12 article-title: Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination publication-title: Cell – year: 2014 ident: bib3 article-title: Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice publication-title: J. Vis. Exp. – volume: 28 start-page: 11720 year: 2008 end-page: 11730 ident: bib31 article-title: Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes publication-title: J. Neurosci. – volume: 13 start-page: 1228 year: 2007 end-page: 1233 ident: bib37 article-title: LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis publication-title: Nat. Med. – volume: 72 start-page: 224 year: 2012 end-page: 233 ident: bib14 article-title: Evidence that nuclear factor IA inhibits repair after white matter injury publication-title: Ann. Neurol. – volume: 252 start-page: v3 year: 2005 end-page: v9 ident: bib4 article-title: The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage publication-title: J. Neurol. – volume: 35 start-page: 63 year: 2003 end-page: 72 ident: bib10 article-title: Inducible site-specific recombination in myelinating cells publication-title: Genesis – volume: 3 start-page: e215 year: 2007 ident: bib38 article-title: Most publication-title: PLoS Genet. – volume: 25 start-page: 1354 year: 2005 end-page: 1365 ident: bib50 article-title: Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice publication-title: J. Neurosci. – volume: 346 start-page: 165 year: 2002 end-page: 173 ident: bib6 article-title: Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis publication-title: N. Engl. J. Med. – volume: 40 start-page: 205 year: 2010 end-page: 215 ident: bib32 article-title: MicroRNA functions in stress responses publication-title: Mol. Cell – volume: 18 start-page: 45 year: 2012 end-page: 55 ident: bib22 article-title: Unwrapping myelination by MicroRNAs publication-title: Neuroscientist – volume: 62 start-page: 284 year: 2014 end-page: 299 ident: bib41 article-title: Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination publication-title: Glia – volume: 69 start-page: 3245 year: 2009 end-page: 3248 ident: bib43 article-title: New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites publication-title: Cancer Res. – volume: 52 start-page: 953 year: 2006 end-page: 968 ident: bib8 article-title: The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord publication-title: Neuron – volume: 83 start-page: 283 year: 2014 end-page: 308 ident: bib17 article-title: Glial development: the crossroads of regeneration and repair in the CNS publication-title: Neuron – volume: 2 start-page: 178 year: 2009 end-page: 188 ident: bib34 article-title: miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination publication-title: Dis. Model. Mech. – volume: 18 start-page: 601 year: 1998 end-page: 609 ident: bib49 article-title: Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells publication-title: J. Neurosci. – volume: 62 start-page: 1905 year: 2014 end-page: 1915 ident: bib16 article-title: The translational biology of remyelination: past, present, and future publication-title: Glia – volume: 131 start-page: 1749 year: 2008 end-page: 1758 ident: bib29 article-title: Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis publication-title: Brain – volume: 502 start-page: 327 year: 2013 end-page: 332 ident: bib9 article-title: A regenerative approach to the treatment of multiple sclerosis publication-title: Nature – volume: 23 start-page: 1571 year: 2009 end-page: 1585 ident: bib13 article-title: Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS publication-title: Genes Dev. – volume: 65 start-page: 612 year: 2010 end-page: 626 ident: bib54 article-title: MicroRNA-mediated control of oligodendrocyte differentiation publication-title: Neuron – volume: 11 start-page: 252 year: 2010 end-page: 263 ident: bib24 article-title: MicroRNA control of signal transduction publication-title: Nat. Rev. Mol. Cell Biol. – volume: 12 start-page: 496 year: 2016 ident: bib48 article-title: Deregulation and therapeutic potential of microRNAs in arthritic diseases publication-title: Nat. Rev. Rheumatol. – volume: 25 start-page: 3049 year: 2009 end-page: 3055 ident: bib1 article-title: Lost in translation: an assessment and perspective for computational microRNA target identification publication-title: Bioinformatics – volume: 66 start-page: 843 year: 2009 end-page: 857 ident: bib46 article-title: Dicer ablation in oligodendrocytes provokes neuronal impairment in mice publication-title: Ann. Neurol. – volume: 7 start-page: 56 year: 2011 end-page: 59 ident: bib25 article-title: The emerging role of microRNAs in multiple sclerosis publication-title: Nat. Rev. Neurol. – volume: 27 start-page: 387 year: 2013 end-page: 398 ident: bib23 article-title: miR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins publication-title: Dev. Cell – volume: 106 start-page: 19162 year: 2009 end-page: 19167 ident: bib53 article-title: Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 747 year: 2012 end-page: 759 ident: bib7 article-title: MicroRNAs as therapeutic targets and their potential applications in cancer therapy publication-title: Expert Opin. Ther. Targets – volume: 53 start-page: 393 year: 1998 end-page: 404 ident: bib19 article-title: Four-kilobase sequence of the mouse CNP gene directs spatial and temporal expression of lacZ in transgenic mice publication-title: J. Neurosci. Res. – volume: 43 start-page: 162 year: 2007 end-page: 165 ident: bib40 article-title: Isolation of microRNA targets using biotinylated synthetic microRNAs publication-title: Methods – volume: 148 start-page: 1172 year: 2012 end-page: 1187 ident: bib36 article-title: MicroRNAs in stress signaling and human disease publication-title: Cell – volume: 31 start-page: 4504 year: 2011 end-page: 4510 ident: bib44 article-title: Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions publication-title: J. Neurosci. – volume: 9 start-page: 219 year: 2008 end-page: 230 ident: bib47 article-title: Small non-coding RNAs in animal development publication-title: Nat. Rev. Mol. Cell Biol. – volume: 17 start-page: 1322 year: 2014 end-page: 1329 ident: bib18 article-title: Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes publication-title: Nat. Neurosci. – volume: 4 start-page: 2658 year: 2013 ident: bib5 article-title: Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis publication-title: Nat. Commun. – volume: 37 start-page: 495 year: 2005 end-page: 500 ident: bib28 article-title: Combinatorial microRNA target predictions publication-title: Nat. Genet. – volume: 65 start-page: 597 year: 2010 end-page: 611 ident: bib11 article-title: Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination publication-title: Neuron – volume: 7 start-page: e1002363 year: 2011 ident: bib30 article-title: Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling publication-title: PLoS Genet. – year: 2014 ident: bib39 article-title: In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice publication-title: J. Vis. Exp. – volume: 78 start-page: 149 year: 1994 end-page: 160 ident: bib27 article-title: The Ets transcription factors encoded by the publication-title: Cell – volume: 136 start-page: 215 year: 2009 end-page: 233 ident: bib2 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell – volume: 7 start-page: 10883 year: 2016 ident: bib55 article-title: Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation publication-title: Nat. Commun. – volume: 3 start-page: 93 year: 2007 end-page: 101 ident: bib26 article-title: Ets-1 regulates radial glia formation during vertebrate embryogenesis publication-title: Organogenesis – volume: 237 start-page: 318 year: 1997 end-page: 324 ident: bib45 article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 705 year: 2002 ident: 10.1016/j.devcel.2017.03.001_bib15 article-title: Why does remyelination fail in multiple sclerosis? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn917 – volume: 43 start-page: 162 year: 2007 ident: 10.1016/j.devcel.2017.03.001_bib40 article-title: Isolation of microRNA targets using biotinylated synthetic microRNAs publication-title: Methods doi: 10.1016/j.ymeth.2007.04.007 – volume: 148 start-page: 1172 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib36 article-title: MicroRNAs in stress signaling and human disease publication-title: Cell doi: 10.1016/j.cell.2012.02.005 – volume: 131 start-page: 1749 year: 2008 ident: 10.1016/j.devcel.2017.03.001_bib29 article-title: Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis publication-title: Brain doi: 10.1093/brain/awn096 – volume: 69 start-page: 3245 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib43 article-title: New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-0352 – volume: 10 start-page: 1507 year: 2004 ident: 10.1016/j.devcel.2017.03.001_bib42 article-title: Fast and effective prediction of microRNA/target duplexes publication-title: RNA doi: 10.1261/rna.5248604 – volume: 25 start-page: 1354 year: 2005 ident: 10.1016/j.devcel.2017.03.001_bib50 article-title: Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3034-04.2005 – volume: 7 start-page: 56 year: 2011 ident: 10.1016/j.devcel.2017.03.001_bib25 article-title: The emerging role of microRNAs in multiple sclerosis publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.179 – volume: 3 start-page: 93 year: 2007 ident: 10.1016/j.devcel.2017.03.001_bib26 article-title: Ets-1 regulates radial glia formation during vertebrate embryogenesis publication-title: Organogenesis doi: 10.4161/org.3.2.5171 – volume: 78 start-page: 149 year: 1994 ident: 10.1016/j.devcel.2017.03.001_bib27 article-title: The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS publication-title: Cell doi: 10.1016/0092-8674(94)90581-9 – volume: 138 start-page: 172 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib12 article-title: Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination publication-title: Cell doi: 10.1016/j.cell.2009.04.031 – volume: 18 start-page: 601 year: 1998 ident: 10.1016/j.devcel.2017.03.001_bib49 article-title: Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-02-00601.1998 – volume: 466 start-page: 835 year: 2010 ident: 10.1016/j.devcel.2017.03.001_bib21 article-title: Mammalian microRNAs predominantly act to decrease target mRNA levels publication-title: Nature doi: 10.1038/nature09267 – volume: 16 start-page: 747 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib7 article-title: MicroRNAs as therapeutic targets and their potential applications in cancer therapy publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2012.696102 – volume: 17 start-page: 1322 year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib18 article-title: Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes publication-title: Nat. Neurosci. doi: 10.1038/nn.3790 – volume: 13 start-page: 1228 year: 2007 ident: 10.1016/j.devcel.2017.03.001_bib37 article-title: LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis publication-title: Nat. Med. doi: 10.1038/nm1664 – volume: 3 start-page: e215 year: 2007 ident: 10.1016/j.devcel.2017.03.001_bib38 article-title: Most Caenorhabditis elegans microRNAs are individually not essential for development or viability publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030215 – volume: 75 start-page: 1035 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib33 article-title: MEK is a key regulator of gliogenesis in the developing brain publication-title: Neuron doi: 10.1016/j.neuron.2012.08.031 – volume: 4 start-page: 2658 year: 2013 ident: 10.1016/j.devcel.2017.03.001_bib5 article-title: Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis publication-title: Nat. Commun. doi: 10.1038/ncomms3658 – volume: 7 start-page: e1002363 year: 2011 ident: 10.1016/j.devcel.2017.03.001_bib30 article-title: Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002363 – volume: 31 start-page: 4504 year: 2011 ident: 10.1016/j.devcel.2017.03.001_bib44 article-title: Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5859-10.2011 – volume: 30 start-page: 1556 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib51 article-title: Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth publication-title: Stem Cells doi: 10.1002/stem.1129 – volume: 9 start-page: 219 year: 2008 ident: 10.1016/j.devcel.2017.03.001_bib47 article-title: Small non-coding RNAs in animal development publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2347 – volume: 12 start-page: 829 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib52 article-title: HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction publication-title: Nat. Neurosci. doi: 10.1038/nn.2333 – volume: 106 start-page: 19162 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib53 article-title: Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0902834106 – volume: 62 start-page: 1905 year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib16 article-title: The translational biology of remyelination: past, present, and future publication-title: Glia doi: 10.1002/glia.22622 – volume: 33 start-page: 5980 year: 2013 ident: 10.1016/j.devcel.2017.03.001_bib35 article-title: Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1636-12.2013 – year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib3 article-title: Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice publication-title: J. Vis. Exp. doi: 10.3791/51275 – volume: 18 start-page: 45 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib22 article-title: Unwrapping myelination by MicroRNAs publication-title: Neuroscientist doi: 10.1177/1073858410392382 – volume: 35 start-page: 63 year: 2003 ident: 10.1016/j.devcel.2017.03.001_bib10 article-title: Inducible site-specific recombination in myelinating cells publication-title: Genesis doi: 10.1002/gene.10154 – volume: 66 start-page: 843 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib46 article-title: Dicer ablation in oligodendrocytes provokes neuronal impairment in mice publication-title: Ann. Neurol. doi: 10.1002/ana.21927 – volume: 346 start-page: 165 year: 2002 ident: 10.1016/j.devcel.2017.03.001_bib6 article-title: Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa010994 – volume: 7 start-page: 10883 year: 2016 ident: 10.1016/j.devcel.2017.03.001_bib55 article-title: Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation publication-title: Nat. Commun. doi: 10.1038/ncomms10883 – volume: 72 start-page: 224 year: 2012 ident: 10.1016/j.devcel.2017.03.001_bib14 article-title: Evidence that nuclear factor IA inhibits repair after white matter injury publication-title: Ann. Neurol. doi: 10.1002/ana.23590 – volume: 11 start-page: 252 year: 2010 ident: 10.1016/j.devcel.2017.03.001_bib24 article-title: MicroRNA control of signal transduction publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2868 – volume: 37 start-page: 495 year: 2005 ident: 10.1016/j.devcel.2017.03.001_bib28 article-title: Combinatorial microRNA target predictions publication-title: Nat. Genet. doi: 10.1038/ng1536 – volume: 53 start-page: 393 year: 1998 ident: 10.1016/j.devcel.2017.03.001_bib19 article-title: Four-kilobase sequence of the mouse CNP gene directs spatial and temporal expression of lacZ in transgenic mice publication-title: J. Neurosci. Res. doi: 10.1002/(SICI)1097-4547(19980815)53:4<393::AID-JNR1>3.0.CO;2-1 – volume: 2 start-page: 178 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib34 article-title: miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination publication-title: Dis. Model. Mech. doi: 10.1242/dmm.001065 – volume: 28 start-page: 11720 year: 2008 ident: 10.1016/j.devcel.2017.03.001_bib31 article-title: Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1932-08.2008 – volume: 25 start-page: 3049 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib1 article-title: Lost in translation: an assessment and perspective for computational microRNA target identification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp565 – volume: 65 start-page: 612 year: 2010 ident: 10.1016/j.devcel.2017.03.001_bib54 article-title: MicroRNA-mediated control of oligodendrocyte differentiation publication-title: Neuron doi: 10.1016/j.neuron.2010.02.018 – volume: 83 start-page: 283 year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib17 article-title: Glial development: the crossroads of regeneration and repair in the CNS publication-title: Neuron doi: 10.1016/j.neuron.2014.06.010 – volume: 237 start-page: 318 year: 1997 ident: 10.1016/j.devcel.2017.03.001_bib45 article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7111 – volume: 27 start-page: 387 year: 2013 ident: 10.1016/j.devcel.2017.03.001_bib23 article-title: miR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.10.015 – volume: 65 start-page: 597 year: 2010 ident: 10.1016/j.devcel.2017.03.001_bib11 article-title: Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination publication-title: Neuron doi: 10.1016/j.neuron.2010.01.027 – volume: 12 start-page: 496 year: 2016 ident: 10.1016/j.devcel.2017.03.001_bib48 article-title: Deregulation and therapeutic potential of microRNAs in arthritic diseases publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2016.119 – volume: 52 start-page: 953 year: 2006 ident: 10.1016/j.devcel.2017.03.001_bib8 article-title: The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord publication-title: Neuron doi: 10.1016/j.neuron.2006.11.019 – volume: 27 start-page: 91 year: 2007 ident: 10.1016/j.devcel.2017.03.001_bib20 article-title: MicroRNA targeting specificity in mammals: determinants beyond seed pairing publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.017 – volume: 23 start-page: 1571 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib13 article-title: Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS publication-title: Genes Dev. doi: 10.1101/gad.1806309 – volume: 62 start-page: 284 year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib41 article-title: Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination publication-title: Glia doi: 10.1002/glia.22606 – volume: 136 start-page: 215 year: 2009 ident: 10.1016/j.devcel.2017.03.001_bib2 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – year: 2014 ident: 10.1016/j.devcel.2017.03.001_bib39 article-title: In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice publication-title: J. Vis. Exp. doi: 10.3791/51229 – volume: 502 start-page: 327 year: 2013 ident: 10.1016/j.devcel.2017.03.001_bib9 article-title: A regenerative approach to the treatment of multiple sclerosis publication-title: Nature doi: 10.1038/nature12647 – volume: 252 start-page: v3 issue: Suppl 5 year: 2005 ident: 10.1016/j.devcel.2017.03.001_bib4 article-title: The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage publication-title: J. Neurol. – volume: 40 start-page: 205 year: 2010 ident: 10.1016/j.devcel.2017.03.001_bib32 article-title: MicroRNA functions in stress responses publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.027 – reference: 21536841 - Neuroscientist. 2012 Feb;18(1):45-55 – reference: 20223197 - Neuron. 2010 Mar 11;65(5):597-611 – reference: 25033178 - Neuron. 2014 Jul 16;83(2):283-308 – reference: 19515974 - Genes Dev. 2009 Jul 1;23(13):1571-85 – reference: 19503085 - Nat Neurosci. 2009 Jul;12(7):829-38 – reference: 24686916 - J Vis Exp. 2014 Mar 22;(85):null – reference: 17906634 - Nat Med. 2007 Oct;13(10 ):1228-33 – reference: 21151203 - Nat Rev Neurol. 2011 Jan;7(1):56-9 – reference: 15383676 - RNA. 2004 Oct;10(10):1507-17 – reference: 17178400 - Neuron. 2006 Dec 21;52(6):953-68 – reference: 19855010 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19162-7 – reference: 24107995 - Nature. 2013 Oct 17;502(7471):327-332 – reference: 19789267 - Bioinformatics. 2009 Dec 1;25(23):3049-55 – reference: 22102825 - PLoS Genet. 2011 Nov;7(11):e1002363 – reference: 8033206 - Cell. 1994 Jul 15;78(1):149-60 – reference: 20035504 - Ann Neurol. 2009 Dec;66(6):843-57 – reference: 26955760 - Nat Commun. 2016 Mar 09;7:10883 – reference: 12481300 - Genesis. 2003 Jan;35(1):63-72 – reference: 20703300 - Nature. 2010 Aug 12;466(7308):835-40 – reference: 21430151 - J Neurosci. 2011 Mar 23;31(12):4504-10 – reference: 24797125 - J Vis Exp. 2014 Apr 15;(86):null – reference: 9425002 - J Neurosci. 1998 Jan 15;18(2):601-9 – reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 – reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33 – reference: 22424228 - Cell. 2012 Mar 16;148(6):1172-87 – reference: 22807310 - Ann Neurol. 2012 Aug;72(2):224-33 – reference: 19259393 - Dis Model Mech. 2009 Mar-Apr;2(3-4):178-88 – reference: 24153433 - Nat Commun. 2013;4:2658 – reference: 18270516 - Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30 – reference: 23554479 - J Neurosci. 2013 Apr 3;33(14 ):5980-91 – reference: 18987208 - J Neurosci. 2008 Nov 5;28(45):11720-30 – reference: 24239515 - Dev Cell. 2013 Nov 25;27(4):387-98 – reference: 16254699 - J Neurol. 2005 Nov;252 Suppl 5:v3-9 – reference: 24339157 - Glia. 2014 Feb;62(2):284-99 – reference: 20216554 - Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 – reference: 19279707 - Organogenesis. 2007 Oct;3(2):93-101 – reference: 12209119 - Nat Rev Neurosci. 2002 Sep;3(9):705-14 – reference: 18515322 - Brain. 2008 Jul;131(Pt 7):1749-58 – reference: 18085825 - PLoS Genet. 2007 Dec;3(12):e215 – reference: 11796850 - N Engl J Med. 2002 Jan 17;346(3):165-73 – reference: 22998872 - Neuron. 2012 Sep 20;75(6):1035-50 – reference: 27411908 - Nat Rev Rheumatol. 2016 Aug;12(8):496 – reference: 17889804 - Methods. 2007 Oct;43(2):162-5 – reference: 22690697 - Expert Opin Ther Targets. 2012 Aug;16(8):747-59 – reference: 25151262 - Nat Neurosci. 2014 Oct;17(10):1322-9 – reference: 19351814 - Cancer Res. 2009 Apr 15;69(8):3245-8 – reference: 9710259 - J Neurosci Res. 1998 Aug 15;53(4):393-404 – reference: 15703389 - J Neurosci. 2005 Feb 9;25(6):1354-65 – reference: 19596243 - Cell. 2009 Jul 10;138(1):172-85 – reference: 24446279 - Glia. 2014 Nov;62(11):1905-15 – reference: 20965416 - Mol Cell. 2010 Oct 22;40(2):205-15 – reference: 15806104 - Nat Genet. 2005 May;37(5):495-500 – reference: 22605481 - Stem Cells. 2012 Jul;30(7):1556-64 – reference: 9268708 - Biochem Biophys Res Commun. 1997 Aug 18;237(2):318-24 – reference: 20223198 - Neuron. 2010 Mar 11;65(5):612-26 |
SSID | ssj0016180 |
Score | 2.567772 |
Snippet | A lack of sufficient oligodendrocyte myelination contributes to remyelination failure in demyelinating disorders. miRNAs have been implicated in... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 566 |
SubjectTerms | Animals Cell Differentiation - drug effects Cell Lineage - drug effects Central Nervous System - drug effects Central Nervous System - metabolism Central Nervous System - pathology Demyelinating Diseases - genetics Demyelinating Diseases - pathology demyelinating injury Disease Models, Animal Disease Progression Encephalomyelitis, Autoimmune, Experimental - genetics Encephalomyelitis, Autoimmune, Experimental - pathology Etv5 experimental autoimmune encephalomyelitis Gene Deletion gene regulatory network Lecithins - pharmacology Lingo1 Membrane Proteins - metabolism Mice, Inbred C57BL Mice, Knockout microRNAs MicroRNAs - genetics MicroRNAs - metabolism miR-219 miR-338 Multiple Sclerosis - genetics Multiple Sclerosis - pathology Multiple Sclerosis - therapy Myelin Sheath - drug effects Myelin Sheath - metabolism Myelin Sheath - pathology myelination Nerve Regeneration - drug effects Nerve Regeneration - genetics Nerve Tissue Proteins - metabolism Oligodendroglia - drug effects Oligodendroglia - metabolism Optic Nerve - pathology Optic Nerve - ultrastructure Phenotype remyelination Spinal Cord - drug effects Spinal Cord - metabolism Spinal Cord - pathology Wound Healing - drug effects Wound Healing - genetics |
Title | miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS |
URI | https://dx.doi.org/10.1016/j.devcel.2017.03.001 https://www.ncbi.nlm.nih.gov/pubmed/28350989 https://www.proquest.com/docview/1882080342 https://pubmed.ncbi.nlm.nih.gov/PMC5569304 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEHwRv51fRPC1bG2TNH3U4RBBET9gbyHNB1a0G3MK_vfepe1wigg-NrmQcJfcXXqX3xFy4pju9w33GBo0cEGxJpIMzpXgWW691LCnQpbvtbh4YJcjPuqQQfsWBtMqG91f6_SgrZuWXsPN3qQse3dwVhmXIYyM8SFE_EyZDI_4RmfzSIKIQ_U0JI6Qun0-F3K8rHs3DgMQcVZDnca_maef7uf3LMovZmm4RlYbf5Ke1kteJx1XbZDlusLkxya5fylvI1AXdDAeTxA_2b1S_PVKsR3ujbSs6NUHvkkPEqK6svQmZOgBYd1BwUfX5RQpwVmkg-u7LfIwPL8fXERNIYXIMJHOoiTxQsJclnlZJMKBVdZGxwVc1XzKitzn0nOjrS64c5nxCQhO2yKOQZGDeTfpNlmqxpXbJZQL5vJE-4QjVFacSTCBYGaFFdwynfIuSVv-KdOgjGOxi2fVppM9qZrrCrmu-ilm1XVJNB81qVE2_qDPWtGohd2iwBD8MfK4laSCg4TREV258duriuGuAe5zypIu2aklO18LgtL1c5nDvAsynxMgSPdiT1U-BrBuzrHYJNv794r3yQp-Yd5bkh2Qpdn0zR2CIzQrjsJO_wSp1AUX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajtK9jK0fW9Zt1aCvJrEtyfbjGlbSrQ1lTSFvQtYHddmckKaD_ve7k-3QrIzCXq0TEnfSffh-ugM4dlwPBkZ4Sg0aDFCsiXKO90qKrLA-13imAsp3LEfX_NtUTDdg2L2FIVhlq_sbnR60dful33KzP6-q_hXeVS7ykEam_FC6CS_QG8iof8PZ9GSVSpBxaJ9G1BGRd-_nAsjLut_GUQYizppap_G_7NNT__NvGOUju3T6Gl61DiX70uz5DWy4ehe2mxaTD3sw-VX9iFBfsOFsNqcCyu6O0b9XRt8xcGRVzS4e6FF6EBHTtWWXAaKHhM0AQyddVwuiRG-RDcdX-3B9-nUyHEVtJ4XIcJkuoyTxMse1LPd5mUiHZlkbHZcYq_mUl4Uvci-MtroUzmXGJyg5bcs4Rk2O9t2kB7BVz2r3DpiQ3BWJ9omgWllxlqMNRDsrrRSW61T0IO34p0xbZpy6XfxUHZ7sVjVcV8R1NUgJVteDaDVr3pTZeIY-60Sj1o6LQkvwzMzPnSQV3iRKj-jaze7vVIzBBvrPKU968LaR7GovVJVuUOQFrrsm8xUBVeleH6mrm1CtWwjqNsnf__eOj2BnNLk4V-dn4--H8JJGCASXZB9ga7m4dx_RK1qWn8Kp_wPJNQg2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-219+Cooperates+with+miR-338+in+Myelination+and+Promotes+Myelin+Repair+in+the+CNS&rft.jtitle=Developmental+cell&rft.au=Wang%2C+Haibo&rft.au=Moyano%2C+Ana+Lis&rft.au=Ma%2C+Zhangyan&rft.au=Deng%2C+Yaqi&rft.date=2017-03-27&rft.eissn=1878-1551&rft.volume=40&rft.issue=6&rft.spage=566&rft_id=info:doi/10.1016%2Fj.devcel.2017.03.001&rft_id=info%3Apmid%2F28350989&rft.externalDocID=28350989 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |