EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration
Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost ex...
Saved in:
Published in | Developmental cell Vol. 45; no. 6; pp. 681 - 695.e4 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a “partial EMT” phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination.
[Display omitted]
•Pancreatic carcinoma cells use two distinct programs to undergo EMT•Transcriptional repression of epithelial genes mediates EMT in a minority of tumors•Re-localization of epithelial proteins mediates EMT in a majority of tumors•Different EMT programs are associated with different modes of invasion
Using a lineage-traced tumor model, Aiello et al. describe a program of epithelial-to-mesenchymal transition (EMT), conserved across several carcinomas, involving re-localization of epithelial proteins rather than transcriptional repression. This alternative program leads to a “partial EMT” phenotype that promotes collective tumor cell migration and formation of circulating tumor cell clusters. |
---|---|
AbstractList | Epithelial-mesenchymal-transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively
in vitro
, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT
in vivo
, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a “partial EMT” phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally-defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination.
Using a lineage-traced tumor model, Aiello et al. describe a program of epithelial-to-mesenchymal transition (EMT), conserved across several carcinomas, involving re-localization of epithelial proteins rather than transcriptional repression. This alternative program leads to a “partial EMT” phenotype that promotes collective tumor cell migration and formation of circulating tumor cell clusters. Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a “partial EMT” phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination. [Display omitted] •Pancreatic carcinoma cells use two distinct programs to undergo EMT•Transcriptional repression of epithelial genes mediates EMT in a minority of tumors•Re-localization of epithelial proteins mediates EMT in a majority of tumors•Different EMT programs are associated with different modes of invasion Using a lineage-traced tumor model, Aiello et al. describe a program of epithelial-to-mesenchymal transition (EMT), conserved across several carcinomas, involving re-localization of epithelial proteins rather than transcriptional repression. This alternative program leads to a “partial EMT” phenotype that promotes collective tumor cell migration and formation of circulating tumor cell clusters. Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a "partial EMT" phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination.Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a "partial EMT" phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination. Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the transcriptional level through the repressive activity of EMT transcription factors. However, these classical mechanisms have been parsed out almost exclusively in vitro, leaving questions about the programs driving EMT in physiological contexts. Here, using a lineage-labeled mouse model of pancreatic ductal adenocarcinoma to study EMT in vivo, we found that most tumors lose their epithelial phenotype through an alternative program involving protein internalization rather than transcriptional repression, resulting in a "partial EMT" phenotype. Carcinoma cells utilizing this program migrate as clusters, contrasting with the single-cell migration pattern associated with traditionally defined EMT mechanisms. Moreover, many breast and colorectal cancer cell lines utilize this alternative program to undergo EMT. Collectively, these results suggest that carcinoma cells have different ways of losing their epithelial program, resulting in distinct modes of invasion and dissemination. |
Author | Aiello, Nicole M. Norgard, Robert J. Yuan, Salina Li, Jinyang Black, Taylor Stanger, Ben Z. Sahmoud, Amine Balli, David Maddipati, Ravikanth Yamazoe, Taiji Bar-Sagi, Dafna Furth, Emma E. |
AuthorAffiliation | d Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA a Department of Medicine, Gastroenterology Division, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA c Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA b Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA |
AuthorAffiliation_xml | – name: b Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA – name: d Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA – name: c Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA – name: a Department of Medicine, Gastroenterology Division, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA |
Author_xml | – sequence: 1 givenname: Nicole M. surname: Aiello fullname: Aiello, Nicole M. organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 2 givenname: Ravikanth surname: Maddipati fullname: Maddipati, Ravikanth organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 3 givenname: Robert J. surname: Norgard fullname: Norgard, Robert J. organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 4 givenname: David surname: Balli fullname: Balli, David organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 5 givenname: Jinyang surname: Li fullname: Li, Jinyang organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 6 givenname: Salina surname: Yuan fullname: Yuan, Salina organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 7 givenname: Taiji surname: Yamazoe fullname: Yamazoe, Taiji organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 8 givenname: Taylor surname: Black fullname: Black, Taylor organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 9 givenname: Amine surname: Sahmoud fullname: Sahmoud, Amine organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA – sequence: 10 givenname: Emma E. surname: Furth fullname: Furth, Emma E. organization: Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 11 givenname: Dafna surname: Bar-Sagi fullname: Bar-Sagi, Dafna organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA – sequence: 12 givenname: Ben Z. surname: Stanger fullname: Stanger, Ben Z. email: bstanger@exchange.upenn.edu organization: Department of Medicine, Gastroenterology Division, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 512 BRB II/III, Philadelphia, PA 19104, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29920274$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1r2zAUhsXoWL_2D8bw5W7sHSmSLe9iMELaFRo2WHstZOm4VVCkzLID-fdVmnRsu9iudEDvBzzvOTkJMSAh7yhUFGj9cVVZ3Br0FQMqKxAVsOYVOaOykSUVgp7kW8x4KSQ0p-Q8pRVkG5XwhpyytmVZzs_I9WJ5V_yYunG3weIm9H7CYDAVi40bH9E77YvvXqfRGTfuCh1ssYwWi9gXc_S-WLqHQY8uhkvyutc-4dvje0HurxZ386_l7bfrm_mX29LwejaWtOaWA3Yt2KaVGjuQdddB37NeGNTAWM87ZsGKmdayM9AwypGJBtrGmobPLsjnQ-5m6tZoDYZx0F5tBrfWw05F7dSfP8E9qoe4VTVQXjOZAz4cA4b4c8I0qrVLGaPXAeOUFAPRcA411Fn6_veuXyUv9LLg00FghpjSgL3KlJ5x5GrnFQW1n0qt1GEqtZ9KgVDZnc38L_NL_n9sRwCYKW8dDioZt9_MugHNqGx0_w54ApY0r_4 |
CitedBy_id | crossref_primary_10_1007_s10585_021_10102_1 crossref_primary_10_3389_fphar_2023_1129709 crossref_primary_10_1158_0008_5472_CAN_21_4370 crossref_primary_10_3390_jcm8101658 crossref_primary_10_1126_sciadv_abi7640 crossref_primary_10_3390_cancers13246163 crossref_primary_10_1016_j_bone_2020_115693 crossref_primary_10_7554_eLife_74433 crossref_primary_10_3390_cancers12061697 crossref_primary_10_3390_jcm8070941 crossref_primary_10_1016_j_heliyon_2022_e08713 crossref_primary_10_1248_bpb_b23_00256 crossref_primary_10_1101_gr_275308_121 crossref_primary_10_3390_ijms232012249 crossref_primary_10_1016_j_devcel_2019_04_026 crossref_primary_10_1038_s41568_021_00332_6 crossref_primary_10_3389_fcell_2022_929495 crossref_primary_10_1016_j_isci_2024_111730 crossref_primary_10_3390_biomedicines9091265 crossref_primary_10_1016_j_celrep_2022_110490 crossref_primary_10_3389_fphar_2022_944773 crossref_primary_10_3390_ijms24010198 crossref_primary_10_7554_eLife_61461 crossref_primary_10_1016_j_devcel_2021_02_028 crossref_primary_10_1084_jem_20181827 crossref_primary_10_1016_j_jtbi_2023_111630 crossref_primary_10_1053_j_gastro_2023_02_049 crossref_primary_10_1038_s41418_020_0599_8 crossref_primary_10_1016_j_devcel_2019_04_012 crossref_primary_10_1016_j_ebiom_2024_105325 crossref_primary_10_1016_j_devcel_2019_04_010 crossref_primary_10_1038_s41580_021_00375_5 crossref_primary_10_3390_cancers15072169 crossref_primary_10_1146_annurev_cancerbio_030518_055425 crossref_primary_10_1186_s13059_020_02171_4 crossref_primary_10_1146_annurev_cancerbio_030419_033413 crossref_primary_10_1038_s43018_020_0068_9 crossref_primary_10_3390_cancers13194979 crossref_primary_10_3390_cancers11101432 crossref_primary_10_1158_0008_5472_CAN_20_0014 crossref_primary_10_1016_j_tcb_2018_12_001 crossref_primary_10_1038_s41401_022_01035_w crossref_primary_10_1186_s12967_020_02694_1 crossref_primary_10_3390_diagnostics15050644 crossref_primary_10_26508_lsa_201900425 crossref_primary_10_1111_boc_202200023 crossref_primary_10_1097_ICU_0000000000001119 crossref_primary_10_1007_s00432_022_04242_4 crossref_primary_10_3390_cancers12103018 crossref_primary_10_1093_carcin_bgz119 crossref_primary_10_1210_endocr_bqad100 crossref_primary_10_1007_s00795_022_00321_0 crossref_primary_10_1098_rstb_2020_0087 crossref_primary_10_1158_2159_8290_CD_20_0603 crossref_primary_10_3390_cancers15030581 crossref_primary_10_3390_cancers14092057 crossref_primary_10_1038_s41556_020_0556_2 crossref_primary_10_1007_s10911_022_09515_9 crossref_primary_10_1186_s40792_023_01607_w crossref_primary_10_1038_s41598_024_64907_7 crossref_primary_10_3390_cancers14040973 crossref_primary_10_62347_JVBV7887 crossref_primary_10_3390_cancers15225315 crossref_primary_10_3390_cancers12061545 crossref_primary_10_7554_eLife_64811 crossref_primary_10_1158_1535_7163_MCT_20_0825 crossref_primary_10_1080_15476286_2023_2294222 crossref_primary_10_1007_s10555_023_10132_z crossref_primary_10_1515_med_2023_0665 crossref_primary_10_1016_j_ymthe_2020_12_019 crossref_primary_10_3390_biomedicines11061738 crossref_primary_10_1016_j_ejmcr_2023_100103 crossref_primary_10_1038_s41416_020_01150_7 crossref_primary_10_3390_microorganisms8101519 crossref_primary_10_1007_s12195_023_00776_w crossref_primary_10_3389_fcell_2022_837585 crossref_primary_10_1016_j_yexcr_2019_111785 crossref_primary_10_1158_0008_5472_CAN_18_2828 crossref_primary_10_1159_000512218 crossref_primary_10_1111_cei_13337 crossref_primary_10_1038_s41467_023_36439_7 crossref_primary_10_1002_cbin_11634 crossref_primary_10_2147_CMAR_S389825 crossref_primary_10_1021_acs_nanolett_1c00199 crossref_primary_10_3389_fonc_2022_977618 crossref_primary_10_3390_cancers12051305 crossref_primary_10_1007_s00401_019_02116_7 crossref_primary_10_1038_s41389_019_0125_3 crossref_primary_10_3389_fimmu_2022_940164 crossref_primary_10_3390_cells13090780 crossref_primary_10_1016_j_semcancer_2019_07_020 crossref_primary_10_1186_s13058_019_1182_4 crossref_primary_10_3390_cancers13215408 crossref_primary_10_1088_1478_3975_ac482c crossref_primary_10_1242_dmm_049699 crossref_primary_10_1158_0008_5472_CAN_22_2945 crossref_primary_10_1038_s41580_019_0172_9 crossref_primary_10_1088_1758_5090_ad3b70 crossref_primary_10_3390_cells9041040 crossref_primary_10_1371_journal_pbio_3000382 crossref_primary_10_1007_s10555_023_10164_5 crossref_primary_10_1038_s41374_020_0373_z crossref_primary_10_3390_ijms23169183 crossref_primary_10_1360_SSV_2022_0058 crossref_primary_10_3390_ijms23010146 crossref_primary_10_1002_cso2_1028 crossref_primary_10_1111_febs_16021 crossref_primary_10_1038_s41467_019_10269_y crossref_primary_10_3389_fonc_2020_585980 crossref_primary_10_1016_j_isci_2023_106396 crossref_primary_10_3390_biom12121786 crossref_primary_10_1038_s41388_022_02190_4 crossref_primary_10_1038_s42005_019_0198_5 crossref_primary_10_3390_biomedicines10020349 crossref_primary_10_3390_ph15060737 crossref_primary_10_3390_cancers15041275 crossref_primary_10_1016_j_bbrc_2025_151323 crossref_primary_10_3390_cancers13184541 crossref_primary_10_3390_cancers15235605 crossref_primary_10_3390_cancers13184663 crossref_primary_10_1016_j_ccell_2023_12_002 crossref_primary_10_3390_cancers14010209 crossref_primary_10_1038_s41467_024_49718_8 crossref_primary_10_3390_ijms26062652 crossref_primary_10_1073_pnas_2010872117 crossref_primary_10_1091_mbc_E21_09_0432 crossref_primary_10_1186_s12885_023_10581_3 crossref_primary_10_3390_jdb11030029 crossref_primary_10_1002_cbf_3952 crossref_primary_10_1016_j_labinv_2023_100228 crossref_primary_10_1158_0008_5472_CAN_22_0906 crossref_primary_10_3389_fcell_2021_753456 crossref_primary_10_1158_2159_8290_CD_19_1299 crossref_primary_10_1007_s12094_022_02851_6 crossref_primary_10_1038_s41588_022_01141_9 crossref_primary_10_3390_cancers11010059 crossref_primary_10_1038_s41423_023_00980_8 crossref_primary_10_1042_BST20210048 crossref_primary_10_1101_cshperspect_a036905 crossref_primary_10_3389_fonc_2020_00472 crossref_primary_10_1016_j_devcel_2021_11_006 crossref_primary_10_1084_jem_20200388 crossref_primary_10_1038_s41418_023_01126_z crossref_primary_10_1080_15384047_2021_1905138 crossref_primary_10_1073_pnas_2209563119 crossref_primary_10_1371_journal_pbio_3002487 crossref_primary_10_1007_s13402_020_00549_x crossref_primary_10_1016_j_canlet_2023_216391 crossref_primary_10_3389_fimmu_2021_633654 crossref_primary_10_1002_cbin_12256 crossref_primary_10_12688_f1000research_24803_1 crossref_primary_10_3390_ijms21217872 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_1016_j_jcmgh_2021_04_016 crossref_primary_10_3390_biomedicines9101478 crossref_primary_10_1038_s43018_023_00575_2 crossref_primary_10_3390_jcm8050725 crossref_primary_10_1042_BCJ20210083 crossref_primary_10_3390_cancers13246328 crossref_primary_10_1038_s41598_022_11634_6 crossref_primary_10_3390_cancers11081136 crossref_primary_10_1158_1541_7786_MCR_19_1244 crossref_primary_10_3390_biom14121523 crossref_primary_10_3892_mmr_2022_12614 crossref_primary_10_1073_pnas_2121453119 crossref_primary_10_1039_D2EN00031H crossref_primary_10_3390_cancers14163985 crossref_primary_10_1016_j_phymed_2021_153670 crossref_primary_10_1016_j_tranon_2020_100845 crossref_primary_10_1042_CS20190145 crossref_primary_10_1111_cas_15774 crossref_primary_10_1007_s12094_024_03715_x crossref_primary_10_1186_s12944_022_01726_7 crossref_primary_10_1002_ijc_32672 crossref_primary_10_1016_j_celrep_2023_112581 crossref_primary_10_1016_j_immuni_2019_12_018 crossref_primary_10_1038_s41388_021_01868_5 crossref_primary_10_1152_ajpcell_00452_2024 crossref_primary_10_1186_s12885_020_6686_x crossref_primary_10_1038_s41467_020_16066_2 crossref_primary_10_11569_wcjd_v32_i11_827 crossref_primary_10_3390_biology8040071 crossref_primary_10_1007_s11427_021_2054_3 crossref_primary_10_18632_oncotarget_28585 crossref_primary_10_1016_j_celrep_2020_107568 crossref_primary_10_1152_ajplung_00066_2024 crossref_primary_10_3390_jcm10112403 crossref_primary_10_1016_j_semcancer_2022_10_006 crossref_primary_10_3390_cancers14194599 crossref_primary_10_1038_s41467_019_13441_6 crossref_primary_10_1186_s40104_024_01038_z crossref_primary_10_1007_s10555_023_10109_y crossref_primary_10_1021_acs_jproteome_4c00277 crossref_primary_10_1158_2159_8290_CD_24_0137 crossref_primary_10_3389_fcimb_2022_864479 crossref_primary_10_1007_s10911_021_09503_5 crossref_primary_10_1093_jmcb_mjz007 crossref_primary_10_1016_j_isci_2022_103857 crossref_primary_10_1016_j_oraloncology_2024_106798 crossref_primary_10_1111_odi_14321 crossref_primary_10_1111_odi_13351 crossref_primary_10_1155_2021_3108933 crossref_primary_10_3389_fonc_2020_00304 crossref_primary_10_1016_j_toxlet_2022_09_010 crossref_primary_10_1152_ajpcell_00218_2019 crossref_primary_10_3390_jcm13154302 crossref_primary_10_3724_abbs_2024185 crossref_primary_10_1016_j_tips_2023_01_003 crossref_primary_10_3390_cancers11091368 crossref_primary_10_1038_s41467_020_16836_y crossref_primary_10_3390_ijms22041821 crossref_primary_10_1038_s42003_025_07814_5 crossref_primary_10_1016_j_isci_2021_102113 crossref_primary_10_1096_fj_202001063R crossref_primary_10_1158_2159_8290_CD_20_1098 crossref_primary_10_1158_0008_5472_CAN_21_3302 crossref_primary_10_1038_s41556_025_01617_w crossref_primary_10_15252_embj_2021108647 crossref_primary_10_1111_jop_13524 crossref_primary_10_1158_2159_8290_CD_19_0015 crossref_primary_10_15252_embr_202051872 crossref_primary_10_3390_cancers15153949 crossref_primary_10_1172_JCI162054 crossref_primary_10_1002_advs_202413882 crossref_primary_10_3389_fonc_2019_01049 crossref_primary_10_3390_ijms242015116 crossref_primary_10_1038_s41588_019_0489_5 crossref_primary_10_1016_j_bcp_2022_115212 crossref_primary_10_1038_s41568_019_0180_2 crossref_primary_10_3390_ijms22147359 crossref_primary_10_1016_j_trecan_2022_03_006 crossref_primary_10_1080_21688370_2021_2005420 crossref_primary_10_1016_j_isci_2022_105190 crossref_primary_10_1016_j_isci_2023_106321 crossref_primary_10_1016_j_stem_2021_03_005 crossref_primary_10_1016_j_celrep_2019_10_107 crossref_primary_10_3892_mmr_2021_12440 crossref_primary_10_1016_j_bbamcr_2020_118784 crossref_primary_10_1016_j_ijnonlinmec_2022_104063 crossref_primary_10_1007_s10585_021_10077_z crossref_primary_10_3892_ijo_2024_5645 crossref_primary_10_3390_cells10020351 crossref_primary_10_1021_acsnano_2c01252 crossref_primary_10_3390_jcm10184076 crossref_primary_10_4103_jomfp_jomfp_28_23 crossref_primary_10_1080_15384101_2021_2015670 crossref_primary_10_1038_s42003_022_03642_z crossref_primary_10_1111_boc_202000129 crossref_primary_10_1016_j_cpt_2024_01_001 crossref_primary_10_1016_j_tranon_2024_101879 crossref_primary_10_1038_s41598_021_82634_1 crossref_primary_10_1080_07435800_2021_1895829 crossref_primary_10_1038_s41580_020_0237_9 crossref_primary_10_1155_2024_8125193 crossref_primary_10_1016_j_archoralbio_2023_105675 crossref_primary_10_3390_biom10040528 crossref_primary_10_1038_s42003_022_03994_6 crossref_primary_10_1007_s12192_021_01196_3 crossref_primary_10_1038_s41571_020_0340_z crossref_primary_10_1038_s41417_021_00419_0 crossref_primary_10_1038_s43018_023_00595_y crossref_primary_10_1016_j_devcel_2018_05_025 crossref_primary_10_1186_s13014_019_1345_6 crossref_primary_10_3390_cells9030623 crossref_primary_10_7554_eLife_77055 crossref_primary_10_1093_jb_mvaa003 crossref_primary_10_1158_0008_5472_CAN_24_0400 crossref_primary_10_1007_s12195_023_00792_w crossref_primary_10_1038_s41388_022_02448_x crossref_primary_10_1016_j_devcel_2018_05_033 crossref_primary_10_3390_cancers13040717 crossref_primary_10_3390_cells9091930 crossref_primary_10_1039_C9AN01358J crossref_primary_10_1186_s12967_023_04102_w crossref_primary_10_3390_cancers13205099 crossref_primary_10_3390_ph14080740 crossref_primary_10_1038_s42003_021_02934_0 crossref_primary_10_1002_cbf_3742 crossref_primary_10_3892_mmr_2019_10528 crossref_primary_10_1126_scitranslmed_abn7571 crossref_primary_10_1111_1440_1681_13754 crossref_primary_10_1093_intbio_zyaa012 crossref_primary_10_3390_cancers12010217 crossref_primary_10_3390_cancers14235797 crossref_primary_10_3892_mmr_2020_11519 crossref_primary_10_1146_annurev_pathmechdis_031521_023557 crossref_primary_10_1038_s41467_022_32523_6 crossref_primary_10_1042_BST20210230 crossref_primary_10_1158_2159_8290_CD_23_0231 crossref_primary_10_1158_0008_5472_CAN_23_1067 crossref_primary_10_1038_s41575_020_0300_1 crossref_primary_10_1146_annurev_biophys_121219_081557 crossref_primary_10_1016_j_celrep_2021_108990 crossref_primary_10_1016_j_phyplu_2022_100265 crossref_primary_10_3390_cancers16213684 crossref_primary_10_1186_s12967_024_05307_3 crossref_primary_10_1111_cas_14701 crossref_primary_10_1158_1541_7786_MCR_21_0657 crossref_primary_10_1016_j_semcdb_2022_07_001 crossref_primary_10_1172_jci_insight_130811 crossref_primary_10_3390_jcm8050747 crossref_primary_10_1371_journal_pcbi_1007682 crossref_primary_10_1096_fj_202002061R crossref_primary_10_1097_XCS_0000000000000034 crossref_primary_10_1186_s13046_020_01553_7 crossref_primary_10_1016_j_yexcr_2024_113980 crossref_primary_10_1158_1078_0432_CCR_20_4459 crossref_primary_10_3389_fcell_2023_1251540 crossref_primary_10_1007_s12032_024_02433_2 crossref_primary_10_1159_000515289 crossref_primary_10_1038_s41416_019_0679_z crossref_primary_10_1038_s41568_019_0213_x crossref_primary_10_15252_embr_202051921 crossref_primary_10_3389_fendo_2025_1511348 crossref_primary_10_3389_fgene_2021_651882 crossref_primary_10_1002_adtp_201900121 crossref_primary_10_2147_CMAR_S264682 crossref_primary_10_1007_s10555_023_10116_z crossref_primary_10_1016_j_stem_2021_03_022 crossref_primary_10_1016_j_actbio_2024_08_026 crossref_primary_10_3389_fcell_2023_1147625 crossref_primary_10_1016_j_biopha_2024_117726 crossref_primary_10_3390_jcm8050646 crossref_primary_10_1016_j_molcel_2023_01_015 crossref_primary_10_15252_embj_2021109221 crossref_primary_10_1007_s10555_021_10003_5 crossref_primary_10_1038_s41467_021_27513_z crossref_primary_10_3390_ijms25021121 crossref_primary_10_3892_ijo_2024_5627 crossref_primary_10_1016_j_cell_2021_09_014 crossref_primary_10_1016_j_omtn_2023_102054 crossref_primary_10_1186_s13148_020_0821_z crossref_primary_10_1083_jcb_201908036 crossref_primary_10_7717_peerj_10062 crossref_primary_10_1097_MD_0000000000030112 crossref_primary_10_1016_j_neo_2021_07_002 crossref_primary_10_1158_1541_7786_MCR_22_0509 crossref_primary_10_1016_j_tcb_2020_07_003 crossref_primary_10_1158_0008_5472_CAN_19_1427 crossref_primary_10_3389_fmolb_2020_00071 crossref_primary_10_7759_cureus_68761 crossref_primary_10_1038_s41556_022_01045_0 crossref_primary_10_3389_fneur_2022_865171 crossref_primary_10_3390_cells10112863 crossref_primary_10_31083_j_ceog5012272 crossref_primary_10_1038_s41416_021_01350_9 crossref_primary_10_3389_fmolb_2021_633951 crossref_primary_10_3390_cancers14030844 crossref_primary_10_1016_j_isci_2022_105224 crossref_primary_10_1038_s41568_018_0056_x crossref_primary_10_3389_fonc_2022_912065 crossref_primary_10_1016_j_bbcan_2021_188564 crossref_primary_10_3389_fonc_2022_975981 crossref_primary_10_1158_1541_7786_MCR_21_0483 crossref_primary_10_1016_j_tcb_2022_03_007 crossref_primary_10_1158_0008_5472_CAN_19_1523 crossref_primary_10_3390_genes11010006 crossref_primary_10_1097_JU9_0000000000000257 crossref_primary_10_3390_cancers12113362 crossref_primary_10_1007_s12013_023_01179_4 crossref_primary_10_3390_cancers15020558 crossref_primary_10_1136_gutjnl_2020_321397 crossref_primary_10_3390_cancers12113475 crossref_primary_10_3389_fonc_2022_1101901 crossref_primary_10_1038_s41467_023_36296_4 crossref_primary_10_3390_medicina58040467 crossref_primary_10_1186_s13046_023_02597_1 crossref_primary_10_3390_cancers12051227 crossref_primary_10_3390_molecules29215214 crossref_primary_10_1088_1478_3975_aaffa1 crossref_primary_10_1002_adbi_202300109 crossref_primary_10_3389_fphar_2021_808735 crossref_primary_10_1515_med_2024_1074 crossref_primary_10_3390_ijms24021229 crossref_primary_10_1146_annurev_pathmechdis_051222_122423 crossref_primary_10_1101_gad_343632_120 crossref_primary_10_1186_s13045_020_00958_3 crossref_primary_10_1186_s40364_023_00514_4 crossref_primary_10_1186_s12935_023_02971_1 crossref_primary_10_1038_s41419_023_06032_3 crossref_primary_10_1038_s41590_024_01960_4 crossref_primary_10_1002_cbin_11967 crossref_primary_10_1016_j_drup_2024_101119 crossref_primary_10_1007_s12064_023_00410_3 crossref_primary_10_1016_j_molmet_2020_02_005 crossref_primary_10_1186_s13046_023_02903_x crossref_primary_10_1016_j_adcanc_2022_100057 crossref_primary_10_1245_s10434_019_08043_x crossref_primary_10_1016_j_heliyon_2023_e18792 crossref_primary_10_1038_s41588_019_0566_9 crossref_primary_10_3389_fcell_2020_565355 crossref_primary_10_7554_eLife_66608 crossref_primary_10_1002_jcp_30862 crossref_primary_10_1016_j_clbc_2021_10_008 crossref_primary_10_3390_cells9030578 crossref_primary_10_1016_j_biochi_2023_03_014 crossref_primary_10_3390_jpm12050727 crossref_primary_10_2174_1389557519666190327163644 crossref_primary_10_1073_pnas_1914915116 crossref_primary_10_1097_CAD_0000000000001233 crossref_primary_10_1016_j_trecan_2021_06_010 crossref_primary_10_3389_fonc_2021_695525 crossref_primary_10_1038_s41556_020_0552_6 crossref_primary_10_1016_j_jbc_2024_107826 crossref_primary_10_1038_s41467_022_29723_5 crossref_primary_10_1242_dev_197392 crossref_primary_10_1007_s10735_024_10268_4 crossref_primary_10_1007_s00210_024_03048_0 crossref_primary_10_1080_17476348_2024_2449079 crossref_primary_10_3390_cancers12102792 crossref_primary_10_3390_cancers12123674 crossref_primary_10_1038_s41419_021_04149_x crossref_primary_10_1146_annurev_pathmechdis_031621_025610 crossref_primary_10_3390_biomedicines10092148 crossref_primary_10_1016_j_bbrc_2024_149829 crossref_primary_10_1007_s10585_021_10111_0 crossref_primary_10_1016_j_canlet_2020_07_041 crossref_primary_10_1016_j_semcancer_2023_02_001 crossref_primary_10_3390_cells11223683 crossref_primary_10_1038_s42003_024_06441_w crossref_primary_10_1002_cre2_543 crossref_primary_10_1016_j_tranon_2023_101837 crossref_primary_10_3390_ph17030326 crossref_primary_10_1007_s10555_023_10124_z crossref_primary_10_1016_j_ebiom_2019_07_044 crossref_primary_10_1038_s41467_020_18841_7 crossref_primary_10_1038_s41598_023_38848_6 crossref_primary_10_1111_bph_15403 crossref_primary_10_1016_j_yexcr_2021_112722 crossref_primary_10_1038_s41588_022_01134_8 crossref_primary_10_3389_fgene_2020_586726 crossref_primary_10_1038_s41698_022_00302_7 crossref_primary_10_1016_j_snb_2023_134896 crossref_primary_10_1038_s41419_023_05785_1 crossref_primary_10_3390_cancers12123570 crossref_primary_10_1016_j_ccell_2021_05_005 crossref_primary_10_1038_s41388_019_1081_2 crossref_primary_10_1186_s12943_023_01793_z crossref_primary_10_1172_JCI143762 crossref_primary_10_1186_s13046_022_02245_0 crossref_primary_10_1186_s13046_021_02006_5 crossref_primary_10_3389_fonc_2020_00094 crossref_primary_10_1002_path_6240 crossref_primary_10_3389_fcell_2023_1272730 crossref_primary_10_1038_s41416_021_01328_7 crossref_primary_10_1016_j_pharmthera_2018_09_007 crossref_primary_10_2147_CMAR_S239664 |
Cites_doi | 10.1016/j.cell.2013.11.029 10.1242/dev.056499 10.1038/sj.onc.1209083 10.1186/1471-2407-11-529 10.1016/j.cell.2006.03.048 10.1038/nrc3265 10.1083/jcb.200205115 10.1016/j.ccr.2005.04.023 10.3389/fonc.2015.00155 10.2741/4012 10.1172/JCI77767 10.1038/ng.3398 10.1016/bs.ctdb.2014.11.021 10.1093/bioinformatics/bts635 10.1186/1471-2105-12-323 10.1038/ncb3478 10.1016/j.cell.2016.06.028 10.1038/nature11412 10.3389/fonc.2015.00045 10.1016/j.devcel.2018.05.025 10.1016/j.ccr.2012.09.022 10.1016/j.cell.2016.11.037 10.1245/s10434-007-9583-5 10.1016/j.tcb.2015.06.003 10.1186/s13059-014-0550-8 10.1038/nrm3758 10.1002/1878-0261.12083 10.1242/dev.02805 10.1038/onc.2015.441 10.1053/j.gastro.2013.09.050 10.1073/pnas.0810111105 10.1016/j.ccr.2007.01.012 10.1073/pnas.0810097105 10.1016/j.trecan.2016.01.001 10.1016/j.cell.2011.11.025 10.1038/sj.onc.1208927 10.1016/j.stem.2016.03.016 10.1016/j.cell.2014.07.013 10.1038/nm.3336 10.1038/nature11003 10.1016/j.gde.2009.04.007 10.1038/nature16965 10.1038/ncb1973 10.1158/2159-8290.CD-15-0120 10.1073/pnas.191367098 10.1016/j.ccr.2011.02.007 10.1038/nm.2344 10.1093/bioinformatics/btu638 10.1158/0008-5472.CAN-13-2444 10.1016/j.devcel.2013.01.016 10.1038/ncb2548 10.1038/sj.onc.1206887 10.1016/j.stem.2016.10.018 10.1016/j.ccr.2012.10.012 10.1016/j.tcb.2015.07.012 10.1126/science.aaf6546 10.1111/j.1600-0854.2008.00862.x 10.4161/21688362.2014.969112 10.1101/cshperspect.a029140 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.devcel.2018.05.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
EndPage | 695.e4 |
ExternalDocumentID | PMC6014628 29920274 10_1016_j_devcel_2018_05_027 S1534580718304209 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: K12 CA076931 – fundername: NIDDK NIH HHS grantid: K08 DK109492 – fundername: NIDDK NIH HHS grantid: P30 DK050306 – fundername: NCI NIH HHS grantid: F31 CA177163 – fundername: NCI NIH HHS grantid: P30 CA016087 – fundername: NCI NIH HHS grantid: R01 CA169123 |
GroupedDBID | --- --K 0R~ 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c463t-164d40eb90d798aeb086bb0ff2f5cea022f4b2d0d53aa8bc07214e257097dc743 |
IEDL.DBID | IXB |
ISSN | 1534-5807 1878-1551 |
IngestDate | Thu Aug 21 18:19:47 EDT 2025 Mon Jul 21 10:46:44 EDT 2025 Mon Jul 21 05:52:08 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 00:48:09 EDT 2025 Fri Feb 23 02:26:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | pancreatic cancer partial EMT metastasis tumor cell clusters epithelial-mesenchymal transition lineage tracing circulating tumor cells collective migration E-cadherin |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-164d40eb90d798aeb086bb0ff2f5cea022f4b2d0d53aa8bc07214e257097dc743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1534580718304209 |
PMID | 29920274 |
PQID | 2057440606 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6014628 proquest_miscellaneous_2057440606 pubmed_primary_29920274 crossref_citationtrail_10_1016_j_devcel_2018_05_027 crossref_primary_10_1016_j_devcel_2018_05_027 elsevier_sciencedirect_doi_10_1016_j_devcel_2018_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-18 |
PublicationDateYYYYMMDD | 2018-06-18 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cheung, Ewald (bib10) 2016; 352 Maddipati, Stanger (bib39) 2015; 5 Tam, Weinberg (bib53) 2013; 19 Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehar, Kryukov, Sonkin (bib7) 2012; 483 Liu, Yi, Wen, Radhakrishnan, Tremayne, Dao, Johnson, Hollingsworth (bib37) 2014; 74 Westphalen, Takemoto, Tanaka, Macchini, Jiang, Renz, Chen, Ormanns, Nagar, Tailor (bib57) 2016; 18 Kopp, Dubois, Schaffer, Hao, Shih, Seymour, Ma, Sander (bib29) 2011; 138 Anastassiou, Rumjantseva, Cheng, Huang, Canoll, Yamashiro, Kandel (bib2) 2011; 11 Shah, Summy, Zhang, Park, Parikh, Gallick (bib49) 2007; 14 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib16) 2013; 29 Latil, Nassar, Beck, Boumahdi, Wang, Brisebarre, Dubois, Nkusi, Lenglez, Checinska (bib33) 2017; 20 Liu, Huang, Remmers, Hollingsworth (bib36) 2014; 2 Cheung, Gabrielson, Werb, Ewald (bib11) 2013; 155 Haeger, Wolf, Zegers, Friedl (bib23) 2015; 25 Giampieri, Manning, Hooper, Jones, Hill, Sahai (bib18) 2009; 11 Friedl, Locker, Sahai, Segall (bib17) 2012; 14 Ocana, Corcoles, Fabra, Moreno-Bueno, Acloque, Vega, Barrallo-Gimeno, Cano, Nieto (bib42) 2012; 22 Corallino, Malabarba, Zobel, Di Fiore, Scita (bib13) 2015; 5 Labernadie, Kato, Brugues, Serra-Picamal, Derzsi, Arwert, Weston, Gonzalez-Tarrago, Elosegui-Artola, Albertazzi (bib30) 2017; 19 Li, Dewey (bib34) 2011; 12 (bib54) 2012; 490 Westcott, Prechtl, Maine, Dang, Esparza, Sun, Zhou, Xie, Pearson (bib56) 2015; 125 De La, Emerson, Goodman, Froebe, Illum, Curtis, Murtaugh (bib14) 2008; 105 Brabletz (bib8) 2012; 12 Love, Huber, Anders (bib38) 2014; 15 Rhim, Mirek, Aiello, Maitra, Bailey, McAllister, Reichert, Beatty, Rustgi, Vonderheide (bib47) 2012; 148 Puram, Tirosh, Parikh, Patel, Yizhak, Gillespie, Rodman, Luo, Mroz, Emerick (bib44) 2017; 172 Song, Eckerle, Onichtchouk, Marrs, Nitschke, Driever (bib50) 2013; 24 Jolly, Boareto, Huang, Jia, Lu, Ben-Jacob, Onuchic, Levine (bib27) 2015; 5 Bailey, Hendley, Lafaro, Pruski, Jones, Alsina, Younes, Maitra, McAllister, Iacobuzio-Donahue (bib5) 2016; 35 Jechlinger, Grunert, Tamir, Janda, Ludemann, Waerner, Seither, Weith, Beug, Kraut (bib26) 2003; 22 Li, Kang (bib35) 2016; 2 Lambert, Pattabiraman, Weinberg (bib31) 2017; 168 Stairs, Bayne, Rhoades, Vega, Waldron, Kalabis, Klein-Szanto, Lee, Katz, Diehl (bib52) 2011; 19 Bailey, Chang, Nones, Johns, Patch, Gingras, Miller, Christ, Bruxner, Quinn (bib6) 2016; 531 Grigore, Jolly, Jia, Farach-Carson, Levine (bib20) 2016; 5 Pieters, van Roy, van Hengel (bib43) 2012; 17 Zohn, Li, Skolnik, Anderson, Han, Niswander (bib61) 2006; 125 Savagner (bib48) 2015; 112 Ye, Weinberg (bib59) 2015; 25 Guerra, Schuhmacher, Canamero, Grippo, Verdaguer, Perez-Gallego, Dubus, Sandgren, Barbacid (bib21) 2007; 11 Sorlie, Perou, Tibshirani, Aas, Geisler, Johnsen, Hastie, Eisen, van de Rijn, Jeffrey (bib51) 2001; 98 Wu, McClay (bib58) 2007; 134 Reichert, Bakir, Moreira, Pitarresi, Feldmann, Simon, Suzuki, Maddipati, Rhim, Schlitter (bib45) 2018; 45 Nieto, Huang, Jackson, Thiery (bib41) 2016; 166 Anders, Pyl, Huber (bib3) 2015; 31 Revenu, Gilmour (bib46) 2009; 19 Habbe, Shi, Meguid, Fendrich, Esni, Chen, Feldmann, Stoffers, Konieczny, Leach (bib22) 2008; 105 Collisson, Sadanandam, Olson, Gibb, Truitt, Gu, Cooc, Weinkle, Kim, Jakkula (bib12) 2011; 17 Ireton, Davis, van Hengel, Mariner, Barnes, Thoreson, Anastasiadis, Matrisian, Bundy, Sealy (bib25) 2002; 159 Zavadil, Bottinger (bib60) 2005; 24 Jolly, Ware, Gilja, Somarelli, Levine (bib28) 2017; 11 Delva, Kowalczyk (bib15) 2009; 10 Gotzmann, Fischer, Zojer, Mikula, Proell, Huber, Jechlinger, Waerner, Weith, Beug (bib19) 2006; 25 Lamouille, Xu, Derynck (bib32) 2014; 15 Bailey, Alsina, Rasheed, McAllister, Fu, Plentz, Zhang, Pasricha, Bardeesy, Matsui (bib4) 2014; 146 Moffitt, Marayati, Flate, Volmar, Loeza, Hoadley, Rashid, Williams, Eaton, Chung (bib40) 2015; 47 Aceto, Bardia, Miyamoto, Donaldson, Wittner, Spencer, Yu, Pely, Engstrom, Zhu (bib1) 2014; 158 Bruser, Bogdan (bib9) 2017; 9 Hingorani, Wang, Multani, Combs, Deramaudt, Hruban, Rustgi, Chang, Tuveson (bib24) 2005; 7 Tsai, Donaher, Murphy, Chau, Yang (bib55) 2012; 22 Corallino (10.1016/j.devcel.2018.05.027_bib13) 2015; 5 Hingorani (10.1016/j.devcel.2018.05.027_bib24) 2005; 7 Jechlinger (10.1016/j.devcel.2018.05.027_bib26) 2003; 22 Li (10.1016/j.devcel.2018.05.027_bib34) 2011; 12 Giampieri (10.1016/j.devcel.2018.05.027_bib18) 2009; 11 Lamouille (10.1016/j.devcel.2018.05.027_bib32) 2014; 15 Haeger (10.1016/j.devcel.2018.05.027_bib23) 2015; 25 Liu (10.1016/j.devcel.2018.05.027_bib36) 2014; 2 Jolly (10.1016/j.devcel.2018.05.027_bib27) 2015; 5 Ye (10.1016/j.devcel.2018.05.027_bib59) 2015; 25 De La (10.1016/j.devcel.2018.05.027_bib14) 2008; 105 Aceto (10.1016/j.devcel.2018.05.027_bib1) 2014; 158 Li (10.1016/j.devcel.2018.05.027_bib35) 2016; 2 Tam (10.1016/j.devcel.2018.05.027_bib53) 2013; 19 Anastassiou (10.1016/j.devcel.2018.05.027_bib2) 2011; 11 Savagner (10.1016/j.devcel.2018.05.027_bib48) 2015; 112 Tsai (10.1016/j.devcel.2018.05.027_bib55) 2012; 22 Collisson (10.1016/j.devcel.2018.05.027_bib12) 2011; 17 Lambert (10.1016/j.devcel.2018.05.027_bib31) 2017; 168 Puram (10.1016/j.devcel.2018.05.027_bib44) 2017; 172 Sorlie (10.1016/j.devcel.2018.05.027_bib51) 2001; 98 Song (10.1016/j.devcel.2018.05.027_bib50) 2013; 24 Labernadie (10.1016/j.devcel.2018.05.027_bib30) 2017; 19 Friedl (10.1016/j.devcel.2018.05.027_bib17) 2012; 14 Ireton (10.1016/j.devcel.2018.05.027_bib25) 2002; 159 Dobin (10.1016/j.devcel.2018.05.027_bib16) 2013; 29 Bailey (10.1016/j.devcel.2018.05.027_bib5) 2016; 35 Maddipati (10.1016/j.devcel.2018.05.027_bib39) 2015; 5 Zohn (10.1016/j.devcel.2018.05.027_bib61) 2006; 125 Pieters (10.1016/j.devcel.2018.05.027_bib43) 2012; 17 Westphalen (10.1016/j.devcel.2018.05.027_bib57) 2016; 18 Liu (10.1016/j.devcel.2018.05.027_bib37) 2014; 74 Rhim (10.1016/j.devcel.2018.05.027_bib47) 2012; 148 Gotzmann (10.1016/j.devcel.2018.05.027_bib19) 2006; 25 Bruser (10.1016/j.devcel.2018.05.027_bib9) 2017; 9 Jolly (10.1016/j.devcel.2018.05.027_bib28) 2017; 11 Shah (10.1016/j.devcel.2018.05.027_bib49) 2007; 14 Delva (10.1016/j.devcel.2018.05.027_bib15) 2009; 10 Westcott (10.1016/j.devcel.2018.05.027_bib56) 2015; 125 Wu (10.1016/j.devcel.2018.05.027_bib58) 2007; 134 Bailey (10.1016/j.devcel.2018.05.027_bib4) 2014; 146 Latil (10.1016/j.devcel.2018.05.027_bib33) 2017; 20 Ocana (10.1016/j.devcel.2018.05.027_bib42) 2012; 22 Nieto (10.1016/j.devcel.2018.05.027_bib41) 2016; 166 Guerra (10.1016/j.devcel.2018.05.027_bib21) 2007; 11 Brabletz (10.1016/j.devcel.2018.05.027_bib8) 2012; 12 Reichert (10.1016/j.devcel.2018.05.027_bib45) 2018; 45 Anders (10.1016/j.devcel.2018.05.027_bib3) 2015; 31 (10.1016/j.devcel.2018.05.027_bib54) 2012; 490 Zavadil (10.1016/j.devcel.2018.05.027_bib60) 2005; 24 Stairs (10.1016/j.devcel.2018.05.027_bib52) 2011; 19 Bailey (10.1016/j.devcel.2018.05.027_bib6) 2016; 531 Barretina (10.1016/j.devcel.2018.05.027_bib7) 2012; 483 Cheung (10.1016/j.devcel.2018.05.027_bib10) 2016; 352 Kopp (10.1016/j.devcel.2018.05.027_bib29) 2011; 138 Grigore (10.1016/j.devcel.2018.05.027_bib20) 2016; 5 Love (10.1016/j.devcel.2018.05.027_bib38) 2014; 15 Moffitt (10.1016/j.devcel.2018.05.027_bib40) 2015; 47 Revenu (10.1016/j.devcel.2018.05.027_bib46) 2009; 19 Cheung (10.1016/j.devcel.2018.05.027_bib11) 2013; 155 Habbe (10.1016/j.devcel.2018.05.027_bib22) 2008; 105 29920271 - Dev Cell. 2018 Jun 18;45(6):663-665 |
References_xml | – volume: 15 start-page: 178 year: 2014 end-page: 196 ident: bib32 article-title: Molecular mechanisms of epithelial-mesenchymal transition publication-title: Nat. Rev. Mol. Cell Biol. – volume: 172 start-page: 1 year: 2017 end-page: 14 ident: bib44 article-title: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer publication-title: Cell – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: bib54 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 19 start-page: 1438 year: 2013 end-page: 1449 ident: bib53 article-title: The epigenetics of epithelial-mesenchymal plasticity in cancer publication-title: Nat. Med. – volume: 14 start-page: 3629 year: 2007 end-page: 3637 ident: bib49 article-title: Development and characterization of gemcitabine-resistant pancreatic tumor cells publication-title: Ann. Surg. Oncol. – volume: 17 start-page: 1669 year: 2012 end-page: 1694 ident: bib43 article-title: Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling publication-title: Front Biosci. (Landmark Ed.) – volume: 11 start-page: 529 year: 2011 ident: bib2 article-title: Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo publication-title: BMC Cancer – volume: 5 start-page: 155 year: 2015 ident: bib27 article-title: Implications of the hybrid epithelial/mesenchymal phenotype in metastasis publication-title: Front. Oncol. – volume: 125 start-page: 957 year: 2006 end-page: 969 ident: bib61 article-title: p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation publication-title: Cell – volume: 45 start-page: 696 year: 2018 end-page: 711 ident: bib45 article-title: Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer publication-title: Dev. Cell – volume: 159 start-page: 465 year: 2002 end-page: 476 ident: bib25 article-title: A novel role for p120 catenin in E-cadherin function publication-title: J. Cell Biol. – volume: 19 start-page: 470 year: 2011 end-page: 483 ident: bib52 article-title: Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene publication-title: Cancer Cell – volume: 10 start-page: 259 year: 2009 end-page: 267 ident: bib15 article-title: Regulation of cadherin trafficking publication-title: Traffic – volume: 11 start-page: 755 year: 2017 end-page: 769 ident: bib28 article-title: EMT and MET: necessary or permissive for metastasis? publication-title: Mol. Oncol. – volume: 22 start-page: 709 year: 2012 end-page: 724 ident: bib42 article-title: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1 publication-title: Cancer Cell – volume: 35 start-page: 4282 year: 2016 end-page: 4288 ident: bib5 article-title: p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells publication-title: Oncogene – volume: 25 start-page: 3170 year: 2006 end-page: 3185 ident: bib19 article-title: A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes publication-title: Oncogene – volume: 125 start-page: 1927 year: 2015 end-page: 1943 ident: bib56 article-title: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion publication-title: J. Clin. Invest. – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib3 article-title: HTSeq–a python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 158 start-page: 1110 year: 2014 end-page: 1122 ident: bib1 article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis publication-title: Cell – volume: 22 start-page: 7155 year: 2003 end-page: 7169 ident: bib26 article-title: Expression profiling of epithelial plasticity in tumor progression publication-title: Oncogene – volume: 12 start-page: 323 year: 2011 ident: bib34 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 15 start-page: 550 year: 2014 ident: bib38 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 47 start-page: 1168 year: 2015 end-page: 1178 ident: bib40 article-title: Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma publication-title: Nat. Genet. – volume: 352 start-page: 167 year: 2016 end-page: 169 ident: bib10 article-title: A collective route to metastasis: seeding by tumor cell clusters publication-title: Science – volume: 105 start-page: 18907 year: 2008 end-page: 18912 ident: bib14 article-title: Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia publication-title: Proc. Natl. Acad. Sci. USA – volume: 138 start-page: 653 year: 2011 end-page: 665 ident: bib29 article-title: Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas publication-title: Development – volume: 112 start-page: 273 year: 2015 end-page: 300 ident: bib48 article-title: Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity publication-title: Curr. Top. Dev. Biol. – volume: 18 start-page: 441 year: 2016 end-page: 455 ident: bib57 article-title: Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis publication-title: Cell Stem Cell – volume: 155 start-page: 1639 year: 2013 end-page: 1651 ident: bib11 article-title: Collective invasion in breast cancer requires a conserved basal epithelial program publication-title: Cell – volume: 7 start-page: 469 year: 2005 end-page: 483 ident: bib24 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell – volume: 134 start-page: 1061 year: 2007 end-page: 1070 ident: bib58 article-title: The snail repressor is required for PMC ingression in the sea urchin embryo publication-title: Development – volume: 5 start-page: 1086 year: 2015 end-page: 1097 ident: bib39 article-title: Pancreatic cancer metastases harbor evidence of polyclonality publication-title: Cancer Discov. – volume: 166 start-page: 21 year: 2016 end-page: 45 ident: bib41 article-title: EMT: 2016 publication-title: Cell – volume: 9 year: 2017 ident: bib9 article-title: Adherens junctions on the move-membrane trafficking of E-Cadherin publication-title: Cold Spring Harb. Perspect. Biol. – volume: 5 start-page: 45 year: 2015 ident: bib13 article-title: Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries publication-title: Front. Oncol. – volume: 11 start-page: 291 year: 2007 end-page: 302 ident: bib21 article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice publication-title: Cancer Cell – volume: 148 start-page: 349 year: 2012 end-page: 361 ident: bib47 article-title: EMT and dissemination precede pancreatic tumor formation publication-title: Cell – volume: 19 start-page: 338 year: 2009 end-page: 342 ident: bib46 article-title: EMT 2.0: shaping epithelia through collective migration publication-title: Curr. Opin. Genet. Dev. – volume: 531 start-page: 47 year: 2016 end-page: 52 ident: bib6 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature – volume: 20 start-page: 191 year: 2017 end-page: 204.e5 ident: bib33 article-title: Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition publication-title: Cell Stem Cell – volume: 98 start-page: 10869 year: 2001 end-page: 10874 ident: bib51 article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications publication-title: Proc. Natl. Acad. Sci. USA – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: bib7 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature – volume: 2 start-page: 65 year: 2016 end-page: 67 ident: bib35 article-title: Probing the fifty shades of EMT in metastasis publication-title: Trends Cancer – volume: 14 start-page: 777 year: 2012 end-page: 783 ident: bib17 article-title: Classifying collective cancer cell invasion publication-title: Nat. Cell Biol. – volume: 2 start-page: e969112 year: 2014 ident: bib36 article-title: Loss of E-cadherin and epithelial to mesenchymal transition is not required for cell motility in tissues or for metastasis publication-title: Tissue Barriers – volume: 22 start-page: 725 year: 2012 end-page: 736 ident: bib55 article-title: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis publication-title: Cancer Cell – volume: 24 start-page: 486 year: 2013 end-page: 501 ident: bib50 article-title: Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements publication-title: Dev. Cell – volume: 168 start-page: 670 year: 2017 end-page: 691 ident: bib31 article-title: Emerging biological principles of metastasis publication-title: Cell – volume: 146 start-page: 245 year: 2014 end-page: 256 ident: bib4 article-title: DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer publication-title: Gastroenterology – volume: 12 start-page: 425 year: 2012 end-page: 436 ident: bib8 article-title: To differentiate or not–routes towards metastasis publication-title: Nat. Rev. Cancer – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib16 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 105 start-page: 18913 year: 2008 end-page: 18918 ident: bib22 article-title: Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 556 year: 2015 end-page: 566 ident: bib23 article-title: Collective cell migration: guidance principles and hierarchies publication-title: Trends Cell Biol. – volume: 19 start-page: 224 year: 2017 end-page: 237 ident: bib30 article-title: A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion publication-title: Nat. Cell Biol. – volume: 24 start-page: 5764 year: 2005 end-page: 5774 ident: bib60 article-title: TGF-beta and epithelial-to-mesenchymal transitions publication-title: Oncogene – volume: 74 start-page: 1609 year: 2014 end-page: 1620 ident: bib37 article-title: Interactions between MUC1 and p120 catenin regulate dynamic features of cell adhesion, motility, and metastasis publication-title: Cancer Res. – volume: 17 start-page: 500 year: 2011 end-page: 503 ident: bib12 article-title: Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy publication-title: Nat. Med. – volume: 5 year: 2016 ident: bib20 article-title: Tumor budding: the name is EMT. Partial EMT publication-title: J. Clin. Med. – volume: 25 start-page: 675 year: 2015 end-page: 686 ident: bib59 article-title: Epithelial-mesenchymal plasticity: a central regulator of cancer progression publication-title: Trends Cell Biol. – volume: 11 start-page: 1287 year: 2009 end-page: 1296 ident: bib18 article-title: Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility publication-title: Nat. Cell Biol. – volume: 155 start-page: 1639 year: 2013 ident: 10.1016/j.devcel.2018.05.027_bib11 article-title: Collective invasion in breast cancer requires a conserved basal epithelial program publication-title: Cell doi: 10.1016/j.cell.2013.11.029 – volume: 138 start-page: 653 year: 2011 ident: 10.1016/j.devcel.2018.05.027_bib29 article-title: Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas publication-title: Development doi: 10.1242/dev.056499 – volume: 25 start-page: 3170 year: 2006 ident: 10.1016/j.devcel.2018.05.027_bib19 article-title: A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes publication-title: Oncogene doi: 10.1038/sj.onc.1209083 – volume: 11 start-page: 529 year: 2011 ident: 10.1016/j.devcel.2018.05.027_bib2 article-title: Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo publication-title: BMC Cancer doi: 10.1186/1471-2407-11-529 – volume: 125 start-page: 957 year: 2006 ident: 10.1016/j.devcel.2018.05.027_bib61 article-title: p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation publication-title: Cell doi: 10.1016/j.cell.2006.03.048 – volume: 12 start-page: 425 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib8 article-title: To differentiate or not–routes towards metastasis publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3265 – volume: 159 start-page: 465 year: 2002 ident: 10.1016/j.devcel.2018.05.027_bib25 article-title: A novel role for p120 catenin in E-cadherin function publication-title: J. Cell Biol. doi: 10.1083/jcb.200205115 – volume: 7 start-page: 469 year: 2005 ident: 10.1016/j.devcel.2018.05.027_bib24 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 – volume: 5 start-page: 155 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib27 article-title: Implications of the hybrid epithelial/mesenchymal phenotype in metastasis publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00155 – volume: 17 start-page: 1669 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib43 article-title: Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling publication-title: Front Biosci. (Landmark Ed.) doi: 10.2741/4012 – volume: 125 start-page: 1927 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib56 article-title: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion publication-title: J. Clin. Invest. doi: 10.1172/JCI77767 – volume: 47 start-page: 1168 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib40 article-title: Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma publication-title: Nat. Genet. doi: 10.1038/ng.3398 – volume: 112 start-page: 273 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib48 article-title: Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2014.11.021 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.devcel.2018.05.027_bib16 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.devcel.2018.05.027_bib34 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 19 start-page: 224 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib30 article-title: A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion publication-title: Nat. Cell Biol. doi: 10.1038/ncb3478 – volume: 166 start-page: 21 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib41 article-title: EMT: 2016 publication-title: Cell doi: 10.1016/j.cell.2016.06.028 – volume: 490 start-page: 61 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib54 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 5 start-page: 45 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib13 article-title: Epithelial-to-mesenchymal plasticity harnesses endocytic circuitries publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00045 – volume: 45 start-page: 696 year: 2018 ident: 10.1016/j.devcel.2018.05.027_bib45 article-title: Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.05.025 – volume: 22 start-page: 725 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib55 article-title: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.09.022 – volume: 168 start-page: 670 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib31 article-title: Emerging biological principles of metastasis publication-title: Cell doi: 10.1016/j.cell.2016.11.037 – volume: 14 start-page: 3629 year: 2007 ident: 10.1016/j.devcel.2018.05.027_bib49 article-title: Development and characterization of gemcitabine-resistant pancreatic tumor cells publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-007-9583-5 – volume: 25 start-page: 556 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib23 article-title: Collective cell migration: guidance principles and hierarchies publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.06.003 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib38 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 15 start-page: 178 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib32 article-title: Molecular mechanisms of epithelial-mesenchymal transition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3758 – volume: 11 start-page: 755 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib28 article-title: EMT and MET: necessary or permissive for metastasis? publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12083 – volume: 172 start-page: 1 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib44 article-title: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer publication-title: Cell – volume: 134 start-page: 1061 year: 2007 ident: 10.1016/j.devcel.2018.05.027_bib58 article-title: The snail repressor is required for PMC ingression in the sea urchin embryo publication-title: Development doi: 10.1242/dev.02805 – volume: 35 start-page: 4282 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib5 article-title: p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells publication-title: Oncogene doi: 10.1038/onc.2015.441 – volume: 146 start-page: 245 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib4 article-title: DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.09.050 – volume: 105 start-page: 18907 year: 2008 ident: 10.1016/j.devcel.2018.05.027_bib14 article-title: Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810111105 – volume: 11 start-page: 291 year: 2007 ident: 10.1016/j.devcel.2018.05.027_bib21 article-title: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.01.012 – volume: 105 start-page: 18913 year: 2008 ident: 10.1016/j.devcel.2018.05.027_bib22 article-title: Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810097105 – volume: 2 start-page: 65 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib35 article-title: Probing the fifty shades of EMT in metastasis publication-title: Trends Cancer doi: 10.1016/j.trecan.2016.01.001 – volume: 148 start-page: 349 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib47 article-title: EMT and dissemination precede pancreatic tumor formation publication-title: Cell doi: 10.1016/j.cell.2011.11.025 – volume: 24 start-page: 5764 year: 2005 ident: 10.1016/j.devcel.2018.05.027_bib60 article-title: TGF-beta and epithelial-to-mesenchymal transitions publication-title: Oncogene doi: 10.1038/sj.onc.1208927 – volume: 18 start-page: 441 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib57 article-title: Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.016 – volume: 158 start-page: 1110 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib1 article-title: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis publication-title: Cell doi: 10.1016/j.cell.2014.07.013 – volume: 19 start-page: 1438 year: 2013 ident: 10.1016/j.devcel.2018.05.027_bib53 article-title: The epigenetics of epithelial-mesenchymal plasticity in cancer publication-title: Nat. Med. doi: 10.1038/nm.3336 – volume: 483 start-page: 603 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib7 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 19 start-page: 338 year: 2009 ident: 10.1016/j.devcel.2018.05.027_bib46 article-title: EMT 2.0: shaping epithelia through collective migration publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2009.04.007 – volume: 531 start-page: 47 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib6 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature doi: 10.1038/nature16965 – volume: 11 start-page: 1287 year: 2009 ident: 10.1016/j.devcel.2018.05.027_bib18 article-title: Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility publication-title: Nat. Cell Biol. doi: 10.1038/ncb1973 – volume: 5 start-page: 1086 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib39 article-title: Pancreatic cancer metastases harbor evidence of polyclonality publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0120 – volume: 98 start-page: 10869 year: 2001 ident: 10.1016/j.devcel.2018.05.027_bib51 article-title: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.191367098 – volume: 19 start-page: 470 year: 2011 ident: 10.1016/j.devcel.2018.05.027_bib52 article-title: Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.007 – volume: 17 start-page: 500 year: 2011 ident: 10.1016/j.devcel.2018.05.027_bib12 article-title: Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy publication-title: Nat. Med. doi: 10.1038/nm.2344 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib3 article-title: HTSeq–a python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 74 start-page: 1609 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib37 article-title: Interactions between MUC1 and p120 catenin regulate dynamic features of cell adhesion, motility, and metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2444 – volume: 24 start-page: 486 year: 2013 ident: 10.1016/j.devcel.2018.05.027_bib50 article-title: Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.01.016 – volume: 14 start-page: 777 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib17 article-title: Classifying collective cancer cell invasion publication-title: Nat. Cell Biol. doi: 10.1038/ncb2548 – volume: 22 start-page: 7155 year: 2003 ident: 10.1016/j.devcel.2018.05.027_bib26 article-title: Expression profiling of epithelial plasticity in tumor progression publication-title: Oncogene doi: 10.1038/sj.onc.1206887 – volume: 20 start-page: 191 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib33 article-title: Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.10.018 – volume: 22 start-page: 709 year: 2012 ident: 10.1016/j.devcel.2018.05.027_bib42 article-title: Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.10.012 – volume: 25 start-page: 675 year: 2015 ident: 10.1016/j.devcel.2018.05.027_bib59 article-title: Epithelial-mesenchymal plasticity: a central regulator of cancer progression publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.07.012 – volume: 352 start-page: 167 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib10 article-title: A collective route to metastasis: seeding by tumor cell clusters publication-title: Science doi: 10.1126/science.aaf6546 – volume: 10 start-page: 259 year: 2009 ident: 10.1016/j.devcel.2018.05.027_bib15 article-title: Regulation of cadherin trafficking publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00862.x – volume: 5 year: 2016 ident: 10.1016/j.devcel.2018.05.027_bib20 article-title: Tumor budding: the name is EMT. Partial EMT publication-title: J. Clin. Med. – volume: 2 start-page: e969112 year: 2014 ident: 10.1016/j.devcel.2018.05.027_bib36 article-title: Loss of E-cadherin and epithelial to mesenchymal transition is not required for cell motility in tissues or for metastasis publication-title: Tissue Barriers doi: 10.4161/21688362.2014.969112 – volume: 9 year: 2017 ident: 10.1016/j.devcel.2018.05.027_bib9 article-title: Adherens junctions on the move-membrane trafficking of E-Cadherin publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a029140 – reference: 29920271 - Dev Cell. 2018 Jun 18;45(6):663-665 |
SSID | ssj0016180 |
Score | 2.678623 |
Snippet | Epithelial-mesenchymal transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the... Epithelial-mesenchymal-transition (EMT) is strongly implicated in tumor cell invasion and metastasis. EMT is thought to be regulated primarily at the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 681 |
SubjectTerms | Animals Cadherins - metabolism Cadherins - physiology Cell Line, Tumor Cell Movement - genetics Cell Plasticity - physiology circulating tumor cells collective migration E-cadherin Epithelial Cells - physiology epithelial-mesenchymal transition Epithelial-Mesenchymal Transition - physiology Gene Expression Regulation, Neoplastic - genetics Humans lineage tracing metastasis Mice Neoplasm Invasiveness - genetics pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - metabolism partial EMT Signal Transduction Transcription Factors - metabolism tumor cell clusters |
Title | EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration |
URI | https://dx.doi.org/10.1016/j.devcel.2018.05.027 https://www.ncbi.nlm.nih.gov/pubmed/29920274 https://www.proquest.com/docview/2057440606 https://pubmed.ncbi.nlm.nih.gov/PMC6014628 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEHwRv51fRPA1rGvTNH3UMZ3CRHCDvYWkSXUyuuGm4H_vXdoOp4LgY9sLDXeXu1xy9ztCLnQ7MqFxmllhUgb-NmVpYCSLbJZAzCxF5usr-veiN-R3o3i0Rjp1LQymVVa2v7Tp3lpXb1oVN1uz8bj1CGuVxxJcpMSQ3BfxRVz6Ir7R1fImQbR99zQkZkhdl8_5HC_r3jOHFxBt6fE7sbfM7-7p5_bzexblF7d0vUU2q_0kvSynvE3WXLFD1ssOkx-75KbbH1AwDnjSSm_rhiRz2p1hLcYElI8-wP4ZU6sXH1QXlmJzNDrNacdNJrQ_fio1ZI8Mr7uDTo9VvRNYxkW0YBAFWR44kwY2SaV2BkIXY4I8D_M4cxo8d85NaAMbR1pLkyFMGnfY0i5NQEw82ieNYlq4Q0K5yHKTGiEsBJNhjAh6XAttchMGURKaJolqlqmsAhbH_hYTVWeQvaiS0QoZrYJYAaObhC1HzUpgjT_ok1oaakVBFNj-P0ae18JTsHbwQkQXbvo2B6IY8REhhmuSg1KYy7mAm8ZzIQ7_XRHzkgBxuVe_FONnj88tEJAnlEf_nvEx2cAnzEhryxPSWLy-uVPY-yzMmVfuTzY2Aj0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxLOEp5HgaGXj9Xq9Bw5tSUloUyGRSrkZe-2FoGgTkRSU39U_2Jl9RASQKiH1urZ3vTP2POyZbwDe2F7shAuWe-Uyjvo241nkNI99nqLPrFVe5VeMTtXgTH6cJJMduGhzYSisspH9tUyvpHXzpNtQs7uYTrufca_KRKOK1OSSR1kTWXkc1r_Qb1u-G75HJr8V4qg_PhzwprQAz6WKVxydBC-j4LLIp5m2waFl71xUFKJI8mBRsRXSCR_5JLZWu5xQxGSgim9Zin8hY3zvDbiJ1kdK0mA4OdhcXaheVa6NZsdpem2-XhVU5sPPPNCNR09XgKFUzObf-vBve_fPsM3f9ODRPbjbGLBsv6bRfdgJ5QO4VZe0XD-ED_3RmKE0oqNdNmwroCxZf0HJHzNc7ewTGuwUy71aM1t6RtXY2Lxgh2E2Y6Pp13pJPoKza6HoY9gt52V4AkyqvHCZU8qj9yoSguyTVllXOBHFqXAdiFuSmbxBMqeCGjPThqx9NzWhDRHaRIlBQneAb0YtaiSPK_qnLTfM1oo0qGyuGPm6ZZ7BzUo3MLYM8_MldkoIkBGdxg7s1czczAXtAjqIkvjdLTZvOhAQ-HZLOf1WAYIrQgAS-ul_z_gV3B6MRyfmZHh6_AzuUAuFw_X0c9hd_TgPL9DwWrmX1UJn8OW6d9YlsP4_yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMT+Subtype+Influences+Epithelial+Plasticity+and+Mode+of+Cell+Migration&rft.jtitle=Developmental+cell&rft.au=Aiello%2C+Nicole+M&rft.au=Maddipati%2C+Ravikanth&rft.au=Norgard%2C+Robert+J&rft.au=Balli%2C+David&rft.date=2018-06-18&rft.eissn=1878-1551&rft.volume=45&rft.issue=6&rft.spage=681&rft_id=info:doi/10.1016%2Fj.devcel.2018.05.027&rft_id=info%3Apmid%2F29920274&rft.externalDocID=29920274 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |