Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis

•For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regu...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 88; pp. 370 - 382
Main Authors Peng, Jialin, Zhu, Xiaofeng, Wang, Ye, An, Le, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regularized multiple kernel learning method is designed.•An efficient block coordinate descent algorithm applicable to any case with p > 1 was derived to solve the proposed formulation. Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparselyselect concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
AbstractList Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p -norm ( p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1 -norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional and data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by -norm ( > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., -norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
•For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regularized multiple kernel learning method is designed.•An efficient block coordinate descent algorithm applicable to any case with p > 1 was derived to solve the proposed formulation. Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparselyselect concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
Author Shen, Dinggang
Zhu, Xiaofeng
Wang, Ye
Peng, Jialin
An, Le
AuthorAffiliation b Xiamen Key Laboratory of CVPR, Huaqiao University, Xiamen, China
c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
d Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
a College of Computer Science and Technology, Huaqiao University, Xiamen, China
AuthorAffiliation_xml – name: b Xiamen Key Laboratory of CVPR, Huaqiao University, Xiamen, China
– name: d Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
– name: a College of Computer Science and Technology, Huaqiao University, Xiamen, China
– name: c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Author_xml – sequence: 1
  givenname: Jialin
  orcidid: 0000-0002-1797-0762
  surname: Peng
  fullname: Peng, Jialin
  email: 2004pjl@163.com
  organization: College of Computer Science and Technology, Huaqiao University, Xiamen, China
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0001-6840-0578
  surname: Zhu
  fullname: Zhu, Xiaofeng
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 3
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: College of Computer Science and Technology, Huaqiao University, Xiamen, China
– sequence: 4
  givenname: Le
  surname: An
  fullname: An, Le
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30872866$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVARnRb-AKEs2ST4OrGTsECqqvKQKrEAdkiW49ykHhw72E6ldsVv9Pf6JWQ0UwQsYHWke89DOueEHDnvkJDnQAugIF5ti1kl7ceCUWgKgIKy-hHZQFOXOYeKHZENpSXkJaPlMTmJcUsp1OvjCTkuaVOzRogN-fophUWnJWCfxVmFaNJNFnBcrArmdj1Oi01mtph9w-DQZhZVcMaN2eBDdmZvr9BMGO5_3MWsNxFVxBXV6Hw08Sl5PCgb8dkBT8mXtxefz9_nlx_ffTg_u8x1JcqUAwzNMDCoWs04Aw6q7-jARU1V15Rs4LTVJe-U4A3UWis90G7oagVMcU3bvjwlb_a-89JN2Gt0KSgr52AmFW6kV0b--XHmSo7-WooKKBdsNXh5MAj--4IxyclEjdYqh36JkkFbguCiFSv1xe9Zv0IeKl0Jr_cEHXyMAQepTVLJ-F20sRKo3O0nt3K_n9ztJwHkut8qrv4SP_j_R3YoANeWrw0GGbVBp7E3AXWSvTf_NvgJ78a67A
CitedBy_id crossref_primary_10_1109_TCDS_2022_3189701
crossref_primary_10_1109_TNNLS_2023_3269446
crossref_primary_10_1016_j_engappai_2020_103535
crossref_primary_10_1016_j_bspc_2023_105442
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_1016_j_cmpb_2021_106574
crossref_primary_10_1109_ACCESS_2021_3099999
crossref_primary_10_1016_j_neucom_2020_09_012
crossref_primary_10_1155_2021_9624269
crossref_primary_10_1016_j_compbiomed_2023_107765
crossref_primary_10_1016_j_media_2019_101625
crossref_primary_10_1016_j_patcog_2020_107247
crossref_primary_10_1049_ipr2_12605
crossref_primary_10_1109_TIT_2024_3451512
crossref_primary_10_1007_s13735_023_00271_y
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1007_s00521_022_07076_w
crossref_primary_10_1016_j_patcog_2022_109031
crossref_primary_10_3389_fneur_2019_00904
crossref_primary_10_1016_j_smhl_2024_100478
crossref_primary_10_3389_fnagi_2022_1073909
crossref_primary_10_1049_ipr2_12618
crossref_primary_10_1016_j_bspc_2023_105669
crossref_primary_10_3390_biom13091391
crossref_primary_10_1109_JTEHM_2022_3219775
crossref_primary_10_3390_diagnostics14121281
crossref_primary_10_1109_TCBB_2022_3204619
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1016_j_cie_2023_109300
crossref_primary_10_1016_j_heliyon_2024_e39037
crossref_primary_10_1016_j_bspc_2024_107085
crossref_primary_10_1016_j_knosys_2021_107942
crossref_primary_10_1109_ACCESS_2022_3186888
crossref_primary_10_1016_j_compmedimag_2022_102057
crossref_primary_10_1007_s00521_021_06436_2
crossref_primary_10_1002_int_22690
crossref_primary_10_1007_s10586_023_04103_w
crossref_primary_10_1177_09544119211060989
crossref_primary_10_1016_j_patcog_2021_107944
crossref_primary_10_1007_s10479_022_05086_4
crossref_primary_10_1007_s11042_020_10473_9
crossref_primary_10_3390_diagnostics12112632
crossref_primary_10_1007_s11042_021_10928_7
crossref_primary_10_1016_j_patcog_2020_107587
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1016_j_patcog_2019_01_015
crossref_primary_10_1109_JBHI_2019_2961792
crossref_primary_10_1016_j_ijleo_2022_170347
crossref_primary_10_1016_j_neuroimage_2022_119054
crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_1016_j_media_2020_101652
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1016_j_knosys_2024_111616
crossref_primary_10_1109_TNNLS_2021_3063516
crossref_primary_10_1145_3344998
crossref_primary_10_1002_hbm_25685
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1371_journal_pone_0238535
crossref_primary_10_3389_fnagi_2020_595322
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1016_j_patcog_2020_107470
crossref_primary_10_1109_JBHI_2021_3067798
crossref_primary_10_3389_fgene_2019_00976
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_1109_ACCESS_2019_2936415
crossref_primary_10_1016_j_patcog_2020_107516
crossref_primary_10_1016_j_compbiomed_2022_106367
crossref_primary_10_1016_j_media_2021_102082
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1109_JBHI_2021_3113668
crossref_primary_10_1109_TKDE_2024_3385712
crossref_primary_10_1016_j_patcog_2020_107519
Cites_doi 10.1007/s11682-015-9430-4
10.1016/j.patcog.2018.01.028
10.1006/nimg.2000.0730
10.1111/j.1467-9868.2005.00532.x
10.1002/hbm.10062
10.1007/s10994-009-5150-6
10.1214/07-AOS584
10.1016/j.patcog.2017.02.029
10.1016/j.media.2015.10.008
10.1016/j.neulet.2009.10.086
10.1016/j.neuroimage.2014.06.077
10.1016/j.patcog.2016.09.023
10.1016/j.neuroimage.2011.09.069
10.1016/S0197-4580(99)00107-4
10.1109/TMM.2012.2188783
10.1109/42.906424
10.1016/j.neuroimage.2010.10.081
10.1016/j.neuroimage.2013.03.073
10.1016/j.patcog.2016.10.009
10.1109/TMI.2002.803111
10.1109/TBME.2014.2372011
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neuroimage.2008.02.010
10.1016/j.neurobiolaging.2010.04.022
10.1089/rej.2006.9.485
10.1007/s11682-013-9262-z
10.1016/j.jalz.2010.03.013
10.1002/hbm.22642
10.1016/j.neuroimage.2011.01.008
10.1109/TBME.2015.2466616
10.3174/ajnr.A1809
10.1016/j.neuroimage.2012.09.065
10.1016/j.neuroimage.2010.06.013
10.1016/j.neucom.2016.08.041
10.1016/j.neuroimage.2013.09.015
10.1007/s11682-015-9480-7
10.1007/s11220-015-0120-5
10.1109/42.668698
10.1016/j.acha.2009.05.006
10.1001/archneur.58.3.397
10.1016/j.neuroimage.2012.04.056
10.1002/gepi.20533
10.1093/bioinformatics/btr649
10.1109/JBHI.2013.2285378
10.1016/j.neuroimage.2013.08.015
10.1016/j.patcog.2017.07.018
10.1016/j.media.2014.04.006
10.1007/s11682-015-9437-x
10.1109/TNN.2011.2157521
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.patcog.2018.11.027
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 382
ExternalDocumentID PMC6410562
30872866
10_1016_j_patcog_2018_11_027
S0031320318304151
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIMH NIH HHS
  grantid: U01 MH110274
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c463t-11f8ff2149c252151adb0f5670ab832f509c35ba65817ccacf0bfb7a12a5c09d3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Aug 21 18:18:26 EDT 2025
Fri Jul 11 15:12:13 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Tue Jul 01 02:36:28 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Fri Feb 23 02:25:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiple kernel learning
Structured sparsity
Feature selection
Alzheimer’s disease diagnosis
Multimodal features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-11f8ff2149c252151adb0f5670ab832f509c35ba65817ccacf0bfb7a12a5c09d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1797-0762
0000-0001-6840-0578
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6410562
PMID 30872866
PQID 2193165696
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410562
proquest_miscellaneous_2193165696
pubmed_primary_30872866
crossref_citationtrail_10_1016_j_patcog_2018_11_027
crossref_primary_10_1016_j_patcog_2018_11_027
elsevier_sciencedirect_doi_10_1016_j_patcog_2018_11_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Pattern recognition
PublicationTitleAlternate Pattern Recognit
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peck, Devore (bib0062) 2011
Wang, Nie, Huang, Ding (bib0067) 2013
Ahmed, Benois-Pineau, Allard, Catheline, Amar, Ben (bib0040) 2017; 220
Jenatton, Audibert, Bach (bib0018) 2011; 12
Wang, Nie, Huang, Risacher, Saykin, Shen (bib0005) 2011
Szafranski, Grandvalet, Rakotomamonjy (bib0047) 2010; 79
Jie, Zhang, Cheng, Shen (bib0038) 2015; 36
Yuan, Lin (bib0016) 2006; 68
Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0035) 2015; 62
Chen, Chen, Zhang (bib0050) 2015; 16
Hinrichs, Singh, Xu, Johnson (bib0022) 2009
Wang, Nie, Huang, Kim, Nho, Risacher, Saykin, Shen (bib0014) 2012; 28
Convit, De Asis, De Leon, Tarshish, De Santi, Rusinek (bib0063) 2000; 21
Xiang, Yuan, Fan, Wang, Thompson, Ye (bib0032) 2014; 102
Morris, Storandt, Miller, McKeel, Price, Rubin, Berg (bib0002) 2001; 58
Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert (bib0008) 2014; 18
Tong, Gray, Gao, Chen, Rueckert, Initiative (bib0042) 2017; 63
Duda, Hart, Stork (bib0043) 2012
Szafranski, Grandvalet, Morizet-Mahoudeaux (bib0052) 2007
Chiappelli, Borroni, Archetti, Calabrese, Corsi, Franceschi, Padovani, Licastro (bib0065) 2006; 9
Hinrichs, Singh, Xu, Johnson (bib0036) 2011; 55
Kowalski (bib0025) 2009; 27
Cao, Shan, Zhao, Huang, Zaiane (bib0019) 2017; 72
Gray, Aljabar, Heckemann, Hammers, Rueckert (bib0041) 2013; 65
Kannao, Guha (bib0068) 2017; 68
Scholkopf, Smola (bib0054) 2001
Liu, Wee, Chen, Shen (bib0028) 2014; 84
Bach, Lanckriet, Jordan (bib0045) 2004
Shattuck, Sandor-Leahy, Schaper, Rottenberg, Leahy (bib0056) 2001; 13
Zu, Jie, Liu, Chen, Shen, Zhang (bib0037) 2016; 10
Zhou, Liu, Narayan, Ye (bib0030) 2013; 78
Liu, Zhou, Shen, Yin (bib0023) 2014; 18
Kloft, Brefeld, Sonnenburg, Zien (bib0029) 2011; 12
Nocedal, Wright (bib0053) 2006
Zhou, Jin, Hoi (bib0026) 2010; 9
Guo, Wang, Li, Li, Qi, Jin, Yao, Chen (bib0003) 2010; 468
Shen, Thompson, Potkin, Bertram, Farrer, Foroud, Green, Hu, Huentelman, Kim (bib0013) 2014; 8
Zhang, Brady, Smith (bib0058) 2001; 20
Liu, Suk, Wee, Chen, Shen (bib0066) 2013
Li, Willer, Ding, Scheet, Abecasis (bib0061) 2010; 34
Peng, An, Zhu, Jin, Shen (bib0024) 2016
Rakotomamonjy, Bach, Canu (bib0046) 2008; 9
Lanckriet, Cristianini, Bartlett, Ghaoui, Jordan (bib0044) 2004; 5
Smith (bib0057) 2002; 17
Guerrero, Ledig, Schmidt-Richberg, Rueckert (bib0021) 2017; 63
Zhu, Suk, Lee, Shen (bib0011) 2016; 63
Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bib0034) 2010; 31
Tibshirani (bib0015) 1996; 58
Zhu, Suk, Wang, Lee, Shen, Alzheimer's Disease Neuroimaging Initiative (bib0070) 2017; 38
Suk, Lee, Shen (bib0007) 2014; 101
Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bib0033) 2010; 31
Westman, Muehlboeck, Simmons (bib0012) 2012; 62
Rakotomamonjy, Flamary, Gasso, Canu (bib0051) 2011; 22
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bib0004) 2011; 56
Cao, Liu, Yang, Zhao, Huang, Zaiane (bib0020) 2018; 79
Sled, Zijdenbos, Evans (bib0055) 1998; 17
Saykin, Shen, Foroud, Potkin, Swaminathan, Kim, Risacher, Nho, Huentelman, Craig (bib0001) 2010; 6
Shen, Davatzikos (bib0059) 2002; 21
Yeh, Lin, Chung, Wang (bib0048) 2012; 14
Kabani (bib0060) 1998; 7
Zhao, Rocha, Yu (bib0049) 2009
Ye, Zu, Jie, Shen, Zhang, Initiative (bib0039) 2016; 10
Hua, Leow, Lee, Klunder, Toga, Lepore, Chou, Brun, Chiang, Barysheva (bib0064) 2008; 41
Zhang, Huang, Shen (bib0031) 2013; 6
Zhang, Wang, Zhou, Yuan, Shen (bib0010) 2011; 55
Friedman, Hastie, Tibshirani (bib0017) 2001; 1
Zhu, Suk, Lee, Shen (bib0009) 2015; 10
Kong, Fujimaki, Liu, Nie, Ding (bib0027) 2014
Zhang, Shen (bib0006) 2012; 59
Smith (10.1016/j.patcog.2018.11.027_bib0057) 2002; 17
Gray (10.1016/j.patcog.2018.11.027_bib0041) 2013; 65
Zhou (10.1016/j.patcog.2018.11.027_bib0030) 2013; 78
Wang (10.1016/j.patcog.2018.11.027_bib0014) 2012; 28
Kohannim (10.1016/j.patcog.2018.11.027_bib0034) 2010; 31
Jie (10.1016/j.patcog.2018.11.027_bib0038) 2015; 36
Wang (10.1016/j.patcog.2018.11.027_bib0067) 2013
Zhang (10.1016/j.patcog.2018.11.027_sbref0031) 2013; 6
Zhang (10.1016/j.patcog.2018.11.027_bib0058) 2001; 20
Zhu (10.1016/j.patcog.2018.11.027_bib0009) 2015; 10
Shen (10.1016/j.patcog.2018.11.027_bib0059) 2002; 21
Zhu (10.1016/j.patcog.2018.11.027_bib0070) 2017; 38
Rakotomamonjy (10.1016/j.patcog.2018.11.027_bib0051) 2011; 22
Scholkopf (10.1016/j.patcog.2018.11.027_bib0054) 2001
Zu (10.1016/j.patcog.2018.11.027_bib0037) 2016; 10
Chen (10.1016/j.patcog.2018.11.027_bib0050) 2015; 16
Convit (10.1016/j.patcog.2018.11.027_bib0063) 2000; 21
Suk (10.1016/j.patcog.2018.11.027_bib0007) 2014; 101
Ahmed (10.1016/j.patcog.2018.11.027_bib0040) 2017; 220
Tong (10.1016/j.patcog.2018.11.027_bib0042) 2017; 63
Yuan (10.1016/j.patcog.2018.11.027_bib0016) 2006; 68
Ye (10.1016/j.patcog.2018.11.027_bib0039) 2016; 10
Saykin (10.1016/j.patcog.2018.11.027_bib0001) 2010; 6
Cao (10.1016/j.patcog.2018.11.027_bib0020) 2018; 79
Zhu (10.1016/j.patcog.2018.11.027_bib0011) 2016; 63
Zhang (10.1016/j.patcog.2018.11.027_bib0006) 2012; 59
Chiappelli (10.1016/j.patcog.2018.11.027_bib0065) 2006; 9
Jenatton (10.1016/j.patcog.2018.11.027_bib0018) 2011; 12
Kowalski (10.1016/j.patcog.2018.11.027_bib0025) 2009; 27
Guerrero (10.1016/j.patcog.2018.11.027_bib0021) 2017; 63
Peck (10.1016/j.patcog.2018.11.027_bib0062) 2011
Lanckriet (10.1016/j.patcog.2018.11.027_bib0044) 2004; 5
Walhovd (10.1016/j.patcog.2018.11.027_bib0033) 2010; 31
Liu (10.1016/j.patcog.2018.11.027_bib0023) 2014; 18
Guo (10.1016/j.patcog.2018.11.027_bib0003) 2010; 468
Zhou (10.1016/j.patcog.2018.11.027_bib0026) 2010; 9
Szafranski (10.1016/j.patcog.2018.11.027_sbref0052) 2007
Hinrichs (10.1016/j.patcog.2018.11.027_bib0022) 2009
Szafranski (10.1016/j.patcog.2018.11.027_bib0047) 2010; 79
Cuingnet (10.1016/j.patcog.2018.11.027_bib0004) 2011; 56
Westman (10.1016/j.patcog.2018.11.027_bib0012) 2012; 62
Zhao (10.1016/j.patcog.2018.11.027_bib0049) 2009
Yeh (10.1016/j.patcog.2018.11.027_bib0048) 2012; 14
Xiang (10.1016/j.patcog.2018.11.027_bib0032) 2014; 102
Li (10.1016/j.patcog.2018.11.027_bib0061) 2010; 34
Sled (10.1016/j.patcog.2018.11.027_bib0055) 1998; 17
Shattuck (10.1016/j.patcog.2018.11.027_bib0056) 2001; 13
Kabani (10.1016/j.patcog.2018.11.027_bib0060) 1998; 7
Kloft (10.1016/j.patcog.2018.11.027_bib0029) 2011; 12
Morris (10.1016/j.patcog.2018.11.027_bib0002) 2001; 58
Wang (10.1016/j.patcog.2018.11.027_bib0005) 2011
Liu (10.1016/j.patcog.2018.11.027_bib0028) 2014; 84
Zhang (10.1016/j.patcog.2018.11.027_bib0010) 2011; 55
Rakotomamonjy (10.1016/j.patcog.2018.11.027_bib0046) 2008; 9
Friedman (10.1016/j.patcog.2018.11.027_bib0017) 2001; 1
Liu (10.1016/j.patcog.2018.11.027_bib0066) 2013
Tong (10.1016/j.patcog.2018.11.027_bib0008) 2014; 18
Duda (10.1016/j.patcog.2018.11.027_bib0043) 2012
Tibshirani (10.1016/j.patcog.2018.11.027_bib0015) 1996; 58
Kannao (10.1016/j.patcog.2018.11.027_bib0068) 2017; 68
Cao (10.1016/j.patcog.2018.11.027_bib0019) 2017; 72
Peng (10.1016/j.patcog.2018.11.027_bib0024) 2016
Shen (10.1016/j.patcog.2018.11.027_bib0013) 2014; 8
Liu (10.1016/j.patcog.2018.11.027_bib0035) 2015; 62
Nocedal (10.1016/j.patcog.2018.11.027_bib0053) 2006
Kong (10.1016/j.patcog.2018.11.027_bib0027) 2014
Hinrichs (10.1016/j.patcog.2018.11.027_bib0036) 2011; 55
Bach (10.1016/j.patcog.2018.11.027_bib0045) 2004
Hua (10.1016/j.patcog.2018.11.027_bib0064) 2008; 41
References_xml – volume: 6
  start-page: 265
  year: 2010
  end-page: 273
  ident: bib0001
  article-title: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans
  publication-title: Alzheimer’s Dementia
– year: 2012
  ident: bib0043
  article-title: Pattern classification
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0058
  article-title: Segmentation of brain
  publication-title: IEEE Trans. Med. Imaging
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: bib0036
  article-title: Predictive markers for
  publication-title: Neuroimage
– volume: 14
  start-page: 563
  year: 2012
  end-page: 574
  ident: bib0048
  article-title: A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection
  publication-title: IEEE Trans. Multimedia
– volume: 7
  start-page: P
  year: 1998
  end-page: 0717
  ident: bib0060
  article-title: 3d anatomical atlas of the human brain
  publication-title: 20th Annual Meeting of the Organization for Human Brain Mapping
– start-page: 311
  year: 2013
  end-page: 318
  ident: bib0066
  article-title: High-order graph matching based feature selection for
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: bib0008
  article-title: Multiple instance learning for classification of dementia in brain mri
  publication-title: Med. Image Anal.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0057
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– start-page: 70
  year: 2016
  end-page: 78
  ident: bib0024
  article-title: Structured sparse kernel learning for imaging genetics based alzheimers disease diagnosis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: bib0046
  article-title: Simple
  publication-title: J. Mach. Learn. Res.
– volume: 68
  start-page: 38
  year: 2017
  end-page: 51
  ident: bib0068
  article-title: Success based locally weighted multiple kernel combination
  publication-title: Pattern Recognit.
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib0010
  article-title: Multimodal classification of
  publication-title: Neuroimage
– volume: 31
  start-page: 1429
  year: 2010
  end-page: 1442
  ident: bib0034
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
– start-page: 115
  year: 2011
  end-page: 123
  ident: bib0005
  article-title: Identifying
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 27
  start-page: 303
  year: 2009
  end-page: 324
  ident: bib0025
  article-title: Sparse regression using mixed norms
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0015
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
– volume: 63
  start-page: 607
  year: 2016
  end-page: 618
  ident: bib0011
  article-title: Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  year: 2013
  ident: bib0031
  article-title: Integrative analysis of multi-dimensional imaging genomics data for
  publication-title: Front. Aging Neurosci.
– volume: 21
  start-page: 1421
  year: 2002
  end-page: 1439
  ident: bib0059
  article-title: Hammer: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 5
  start-page: 27
  year: 2004
  end-page: 72
  ident: bib0044
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– volume: 62
  start-page: 229
  year: 2012
  end-page: 238
  ident: bib0012
  article-title: Combining
  publication-title: Neuroimage
– volume: 63
  start-page: 171
  year: 2017
  end-page: 181
  ident: bib0042
  article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 485
  year: 2006
  end-page: 493
  ident: bib0065
  article-title: gene and phenotype relation with
  publication-title: Rejuvenation Res.
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: bib0016
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc.
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: bib0041
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: Neuroimage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib0055
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in mri data
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 739
  year: 2016
  end-page: 749
  ident: bib0039
  article-title: Discriminative multi-task feature selection for multi-modality classification of alzheimer disease
  publication-title: Brain Imaging Behav.
– volume: 16
  start-page: 17
  year: 2015
  ident: bib0050
  article-title: Mixed norm regularized discrimination for image steganalysis
  publication-title: Sens. Imaging
– volume: 78
  start-page: 233
  year: 2013
  end-page: 248
  ident: bib0030
  article-title: Modeling disease progression via multi-task learning
  publication-title: Neuroimage
– year: 2006
  ident: bib0053
  article-title: Numerical optimization
– start-page: 1
  year: 2004
  end-page: 8
  ident: bib0045
  article-title: Multiple kernel learning, conic duality, and the
  publication-title: the 21th International Conference on Machine learning
– start-page: 1655
  year: 2014
  end-page: 1663
  ident: bib0027
  article-title: Exclusive feature learning on arbitrary structures via
  publication-title: Advances in Neural Information Processing Systems
– volume: 18
  start-page: 984
  year: 2014
  end-page: 990
  ident: bib0023
  article-title: Multiple kernel learning in the primal for multimodal
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 31
  start-page: 347
  year: 2010
  end-page: 354
  ident: bib0033
  article-title: Combining
  publication-title: Am. J. Neuroradiology
– volume: 8
  start-page: 183
  year: 2014
  end-page: 207
  ident: bib0013
  article-title: Genetic analysis of quantitative phenotypes in
  publication-title: Brain Imaging Behav.
– volume: 9
  start-page: 988
  year: 2010
  end-page: 995
  ident: bib0026
  article-title: Exclusive lasso for multi-task feature selection.
  publication-title: AISTATS
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0007
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for
  publication-title: Neuroimage
– volume: 22
  start-page: 1307
  year: 2011
  end-page: 1320
  ident: bib0051
  article-title: Lp-Lq penalty for sparse linear and sparse multiple kernel multitask learning
  publication-title: IEEE Trans. Neural Netw.
– start-page: 786
  year: 2009
  end-page: 794
  ident: bib0022
  article-title: for robust multi-modality
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– start-page: 3468
  year: 2009
  end-page: 3497
  ident: bib0049
  article-title: The composite absolute penalties family for grouped and hierarchical variable selection
  publication-title: Ann. Stat.
– volume: 72
  start-page: 219
  year: 2017
  end-page: 235
  ident: bib0019
  article-title: Sparse shared structure based multi-task learning for mri based cognitive performance prediction of alzheimers disease
  publication-title: Pattern Recognit.
– volume: 63
  start-page: 570
  year: 2017
  end-page: 582
  ident: bib0021
  article-title: Group-constrained manifold learning: application to ad risk assessment
  publication-title: Pattern Recognit.
– volume: 102
  start-page: 192
  year: 2014
  end-page: 206
  ident: bib0032
  article-title: Bi-level multi-source learning for heterogeneous block-wise missing data
  publication-title: Neuroimage
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: bib0035
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 12
  start-page: 2777
  year: 2011
  end-page: 2824
  ident: bib0018
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J. Mach. Learn. Res.
– year: 2011
  ident: bib0062
  article-title: Statistics: The exploration & analysis of data
– volume: 10
  start-page: 818
  year: 2015
  end-page: 828
  ident: bib0009
  article-title: Canonical feature selection for joint regression and multi-class identification in
  publication-title: Brain Imaging Behav.
– start-page: 3097
  year: 2013
  end-page: 3102
  ident: bib0067
  article-title: Heterogeneous visual features fusion via sparse multimodal machine
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1
  year: 2001
  ident: bib0017
  article-title: The elements of statistical learning
– volume: 34
  start-page: 816
  year: 2010
  end-page: 834
  ident: bib0061
  article-title: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes
  publication-title: Genet. Epidemiol.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bib0006
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in
  publication-title: Neuroimage
– volume: 13
  start-page: 856
  year: 2001
  end-page: 876
  ident: bib0056
  article-title: Magnetic resonance image tissue classification using a partial volume model
  publication-title: Neuroimage
– volume: 10
  start-page: 1148
  year: 2016
  end-page: 1159
  ident: bib0037
  article-title: Label-aligned multi-task feature learning for multimodal classification of alzheimer’s disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
– volume: 58
  start-page: 397
  year: 2001
  end-page: 405
  ident: bib0002
  article-title: Mild cognitive impairment represents early-stage Alzheimer disease
  publication-title: Arch. Neurol.
– year: 2001
  ident: bib0054
  article-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
– volume: 468
  start-page: 146
  year: 2010
  end-page: 150
  ident: bib0003
  article-title: Voxel-based assessment of gray and white matter volumes in
  publication-title: Neurosci. Lett.
– year: 2007
  ident: bib0052
  article-title: Hierarchical penalization
  publication-title: Advances in Neural Information Processing Systems 21
– volume: 41
  start-page: 19
  year: 2008
  end-page: 34
  ident: bib0064
  article-title: 3
  publication-title: Neuroimage
– volume: 12
  start-page: 953
  year: 2011
  end-page: 997
  ident: bib0029
  article-title: Lp-norm multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 195
  year: 2018
  end-page: 215
  ident: bib0020
  article-title: L2,1-l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 489
  year: 2015
  end-page: 507
  ident: bib0038
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Hum. Brain Mapp.
– volume: 28
  start-page: 229
  year: 2012
  end-page: 237
  ident: bib0014
  article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the
  publication-title: Bioinformatics
– volume: 21
  start-page: 19
  year: 2000
  end-page: 26
  ident: bib0063
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to
  publication-title: Neurobiol. Aging
– volume: 84
  start-page: 466
  year: 2014
  end-page: 475
  ident: bib0028
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for
  publication-title: Neuroimage
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bib0004
  article-title: Automatic classification of patients with
  publication-title: Neuroimage
– volume: 79
  start-page: 73
  year: 2010
  end-page: 103
  ident: bib0047
  article-title: Composite kernel learning
  publication-title: Mach. Learn.
– volume: 38
  start-page: 205
  year: 2017
  end-page: 214
  ident: bib0070
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med. Image Anal.
– volume: 220
  start-page: 98
  year: 2017
  end-page: 110
  ident: bib0040
  article-title: Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning
  publication-title: Neurocomputing
– volume: 10
  start-page: 818
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2018.11.027_bib0009
  article-title: Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9430-4
– volume: 79
  start-page: 195
  year: 2018
  ident: 10.1016/j.patcog.2018.11.027_bib0020
  article-title: L2,1-l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of Alzheimer’s disease
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.01.028
– volume: 13
  start-page: 856
  issue: 5
  year: 2001
  ident: 10.1016/j.patcog.2018.11.027_bib0056
  article-title: Magnetic resonance image tissue classification using a partial volume model
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0730
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  ident: 10.1016/j.patcog.2018.11.027_bib0016
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00532.x
– year: 2012
  ident: 10.1016/j.patcog.2018.11.027_bib0043
– volume: 6
  year: 2013
  ident: 10.1016/j.patcog.2018.11.027_sbref0031
  article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer’s disease prediction.
  publication-title: Front. Aging Neurosci.
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2018.11.027_bib0057
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 79
  start-page: 73
  issue: 1–2
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0047
  article-title: Composite kernel learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5150-6
– start-page: 3468
  year: 2009
  ident: 10.1016/j.patcog.2018.11.027_bib0049
  article-title: The composite absolute penalties family for grouped and hierarchical variable selection
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS584
– volume: 68
  start-page: 38
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0068
  article-title: Success based locally weighted multiple kernel combination
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.029
– volume: 12
  start-page: 953
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0029
  article-title: Lp-norm multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 205
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0070
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.10.008
– volume: 468
  start-page: 146
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0003
  article-title: Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.10.086
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0007
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 63
  start-page: 570
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0021
  article-title: Group-constrained manifold learning: application to ad risk assessment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.023
– volume: 12
  start-page: 2777
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0018
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2018.11.027_bib0006
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 21
  start-page: 19
  issue: 1
  year: 2000
  ident: 10.1016/j.patcog.2018.11.027_bib0063
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(99)00107-4
– volume: 14
  start-page: 563
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2018.11.027_bib0048
  article-title: A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2012.2188783
– year: 2006
  ident: 10.1016/j.patcog.2018.11.027_bib0053
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.patcog.2018.11.027_bib0058
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 9
  start-page: 988
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0026
  article-title: Exclusive lasso for multi-task feature selection.
– volume: 55
  start-page: 574
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0036
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.081
– start-page: 3097
  year: 2013
  ident: 10.1016/j.patcog.2018.11.027_bib0067
  article-title: Heterogeneous visual features fusion via sparse multimodal machine
– volume: 78
  start-page: 233
  year: 2013
  ident: 10.1016/j.patcog.2018.11.027_bib0030
  article-title: Modeling disease progression via multi-task learning
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.073
– volume: 63
  start-page: 171
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0042
  article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.009
– volume: 21
  start-page: 1421
  issue: 11
  year: 2002
  ident: 10.1016/j.patcog.2018.11.027_bib0059
  article-title: Hammer: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 7
  start-page: P
  year: 1998
  ident: 10.1016/j.patcog.2018.11.027_bib0060
  article-title: 3d anatomical atlas of the human brain
– volume: 62
  start-page: 1132
  issue: 4
  year: 2015
  ident: 10.1016/j.patcog.2018.11.027_bib0035
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.patcog.2018.11.027_bib0015
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 41
  start-page: 19
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2018.11.027_bib0064
  article-title: 3D characterization of brain atrophy in Alzheimer’s disease and mild cognitive impairment using tensor-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.010
– volume: 31
  start-page: 1429
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0034
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.04.022
– volume: 9
  start-page: 485
  issue: 4
  year: 2006
  ident: 10.1016/j.patcog.2018.11.027_bib0065
  article-title: VEGF gene and phenotype relation with Alzheimer’s disease and mild cognitive impairment
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2006.9.485
– volume: 8
  start-page: 183
  issue: 2
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0013
  article-title: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9262-z
– volume: 5
  start-page: 27
  year: 2004
  ident: 10.1016/j.patcog.2018.11.027_bib0044
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 265
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0001
  article-title: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2010.03.013
– start-page: 786
  year: 2009
  ident: 10.1016/j.patcog.2018.11.027_bib0022
  article-title: MKL for robust multi-modality AD classification
– start-page: 70
  year: 2016
  ident: 10.1016/j.patcog.2018.11.027_bib0024
  article-title: Structured sparse kernel learning for imaging genetics based alzheimers disease diagnosis
– start-page: 1655
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0027
  article-title: Exclusive feature learning on arbitrary structures via L12-norm
– volume: 36
  start-page: 489
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2018.11.027_bib0038
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22642
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0010
  article-title: Multimodal classification of Alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 63
  start-page: 607
  issue: 3
  year: 2016
  ident: 10.1016/j.patcog.2018.11.027_bib0011
  article-title: Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2466616
– volume: 31
  start-page: 347
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0033
  article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer’s disease
  publication-title: Am. J. Neuroradiology
  doi: 10.3174/ajnr.A1809
– volume: 65
  start-page: 167
  year: 2013
  ident: 10.1016/j.patcog.2018.11.027_bib0041
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0004
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 220
  start-page: 98
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0040
  article-title: Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.041
– volume: 84
  start-page: 466
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0028
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.015
– volume: 10
  start-page: 1148
  issue: 4
  year: 2016
  ident: 10.1016/j.patcog.2018.11.027_bib0037
  article-title: Label-aligned multi-task feature learning for multimodal classification of alzheimer’s disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9480-7
– year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0062
– volume: 16
  start-page: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2018.11.027_bib0050
  article-title: Mixed norm regularized discrimination for image steganalysis
  publication-title: Sens. Imaging
  doi: 10.1007/s11220-015-0120-5
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.patcog.2018.11.027_bib0055
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in mri data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 27
  start-page: 303
  issue: 3
  year: 2009
  ident: 10.1016/j.patcog.2018.11.027_bib0025
  article-title: Sparse regression using mixed norms
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.05.006
– volume: 58
  start-page: 397
  issue: 3
  year: 2001
  ident: 10.1016/j.patcog.2018.11.027_bib0002
  article-title: Mild cognitive impairment represents early-stage Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.58.3.397
– volume: 62
  start-page: 229
  issue: 1
  year: 2012
  ident: 10.1016/j.patcog.2018.11.027_bib0012
  article-title: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.04.056
– volume: 34
  start-page: 816
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2018.11.027_bib0061
  article-title: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20533
– year: 2007
  ident: 10.1016/j.patcog.2018.11.027_sbref0052
  article-title: Hierarchical penalization
– volume: 28
  start-page: 229
  issue: 2
  year: 2012
  ident: 10.1016/j.patcog.2018.11.027_bib0014
  article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr649
– volume: 18
  start-page: 984
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0023
  article-title: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2285378
– volume: 102
  start-page: 192
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0032
  article-title: Bi-level multi-source learning for heterogeneous block-wise missing data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.015
– year: 2001
  ident: 10.1016/j.patcog.2018.11.027_bib0054
– volume: 1
  year: 2001
  ident: 10.1016/j.patcog.2018.11.027_bib0017
– volume: 72
  start-page: 219
  year: 2017
  ident: 10.1016/j.patcog.2018.11.027_bib0019
  article-title: Sparse shared structure based multi-task learning for mri based cognitive performance prediction of alzheimers disease
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.07.018
– volume: 18
  start-page: 808
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2018.11.027_bib0008
  article-title: Multiple instance learning for classification of dementia in brain mri
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.006
– volume: 10
  start-page: 739
  issue: 3
  year: 2016
  ident: 10.1016/j.patcog.2018.11.027_bib0039
  article-title: Discriminative multi-task feature selection for multi-modality classification of alzheimer disease
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9437-x
– volume: 9
  start-page: 2491
  year: 2008
  ident: 10.1016/j.patcog.2018.11.027_bib0046
  article-title: Simple MKL
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2004
  ident: 10.1016/j.patcog.2018.11.027_bib0045
  article-title: Multiple kernel learning, conic duality, and the SMO algorithm
– start-page: 311
  year: 2013
  ident: 10.1016/j.patcog.2018.11.027_bib0066
  article-title: High-order graph matching based feature selection for Alzheimer’s disease identification
– volume: 22
  start-page: 1307
  issue: 8
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0051
  article-title: Lp-Lq penalty for sparse linear and sparse multiple kernel multitask learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2157521
– start-page: 115
  year: 2011
  ident: 10.1016/j.patcog.2018.11.027_bib0005
  article-title: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression
SSID ssj0017142
Score 2.5691
Snippet •For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With...
Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Alzheimer’s disease diagnosis
Feature selection
Multimodal features
Multiple kernel learning
Structured sparsity
Title Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis
URI https://dx.doi.org/10.1016/j.patcog.2018.11.027
https://www.ncbi.nlm.nih.gov/pubmed/30872866
https://www.proquest.com/docview/2193165696
https://pubmed.ncbi.nlm.nih.gov/PMC6410562
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBahu-zSdR_d0q5Bg16d-EuyfQylJdtYLmuhh4GQZSnxmjrBSS45lP6N_r3-kr2vLIdlGwR2MrZlEH4_JT3v8xJyrnzNAgjsXhpKjrtVqZdmTIG5a5PlElZFCvc7vo356Cb-cstuO-SirYVBWKXz_Y1Pt97aPRm4vzlYlCXW-CLtoFVKrDO3Fexxglref9jCPLC_d8MYHgUejm7L5yzGawHubj5BgFfaRy5P7C3z7_D0d_r5J4ryt7B0dUQOXT5Jh82UX5OOrt6QV22vBupM9y358d0Sxa5rXVBwIhaKQWvbiL4uN_CwRRbSO11XekZdO4kJhayWDmebqS7vdf38-LSk7lAHrhamVy7fkZury-uLkec6K3gq5tHKCwKTGhPC6kiFDIO-LHLfMJ74MgcTN5BFqIjlEtKTIAEZK-PnJk9kEEqm_KyIjslBNa_0B0KZMlGRBAYiYRHLMMpgTSRl5ivm-5qncZdE7Q8VytGOY_eLmWjxZT9FIwaBYoAViQAxdIm3_WrR0G7sGZ-0shI76iMgMuz58lMrWgGWhcclstLz9VKAL4-QmyjjXfK-EfV2LsijGKYc3iQ7SrAdgKzdu2-qcmrZuzkCa3l48t8zPiUv4S5r4EMfyQGojz6DzGiV96zq98iL4eevo_Ev8RERZw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0Y9qG9dE_rdGOBXJVoIyUdjaCB0zi-NAF8CEBQFJkodWVDTi4-5Tf6e_2SzkiUUbcFDPQkgAtAaDgb-fgG4ED7hgfo2L00VIJOq1IvzbhGdTc2yxVmRZrOO86nYnwZf5nxWQ-Ou7cwBKt0tr-16Y21di1H7m8eLcuS3vgS7WCzKemdOaZAA2Kn4n0YjE7PxtPNZUISxC1peBR4NKF7QdfAvJZo8RbXhPFKD4nOk8rL_NtD_R2B_gmk_M0znTyDJy6kZKN21c-hZ6oX8LQr18Cc9r6Eq68NV-x9bQqGdqRBY7C6qUVfl2ts7MCF7JupKzNnrqLENcPAlo3m6xtTfjf1z4cfK-budfDbIPXK1Su4PPl8cTz2XHEFT8ciuvOCwKbWhpgg6ZCT31dF7lsuEl_lqOUWAwkd8VxhhBIkKGZt_dzmiQpCxbWfFdEe9KtFZd4A49pGRRJYdIZFrMIow7RIqczX3PeNSOMhRN0Pldoxj1MBjLnsIGa3shWDJDFgUiJRDEPwNrOWLfPGjvFJJyu5tYMkOocdMz91opWoXHRjoiqzuF9JNOcR0RNlYgivW1Fv1kJUimEqsCfZ2gSbAUTcvd1TlTcNgbcgbK0I9_97xR_h0fjifCInp9Ozt_AYe7IWTfQO-riVzHsMlO7yD04RfgE27RQY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+sparsity+regularized+multiple+kernel+learning+for+Alzheimer%E2%80%99s+disease+diagnosis&rft.jtitle=Pattern+recognition&rft.au=Peng%2C+Jialin&rft.au=Zhu%2C+Xiaofeng&rft.au=Wang%2C+Ye&rft.au=An%2C+Le&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=88&rft.spage=370&rft.epage=382&rft_id=info:doi/10.1016%2Fj.patcog.2018.11.027&rft.externalDocID=S0031320318304151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon