Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis
•For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regu...
Saved in:
Published in | Pattern recognition Vol. 88; pp. 370 - 382 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regularized multiple kernel learning method is designed.•An efficient block coordinate descent algorithm applicable to any case with p > 1 was derived to solve the proposed formulation.
Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparselyselect concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD. |
---|---|
AbstractList | Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD. Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ 1, p -norm ( p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ 2, 1 -norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparsely select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD. Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional and data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by -norm ( > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., -norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD. •For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p -norm (p > 1), regularized multiple kernel learning method is designed.•An efficient block coordinate descent algorithm applicable to any case with p > 1 was derived to solve the proposed formulation. Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional multi-modality imaging and genetic data for Alzheimer’s disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by ℓ1, p-norm (p > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., ℓ2, 1-norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to sparselyselect concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD. |
Author | Shen, Dinggang Zhu, Xiaofeng Wang, Ye Peng, Jialin An, Le |
AuthorAffiliation | b Xiamen Key Laboratory of CVPR, Huaqiao University, Xiamen, China c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA d Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea a College of Computer Science and Technology, Huaqiao University, Xiamen, China |
AuthorAffiliation_xml | – name: b Xiamen Key Laboratory of CVPR, Huaqiao University, Xiamen, China – name: d Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea – name: a College of Computer Science and Technology, Huaqiao University, Xiamen, China – name: c Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
Author_xml | – sequence: 1 givenname: Jialin orcidid: 0000-0002-1797-0762 surname: Peng fullname: Peng, Jialin email: 2004pjl@163.com organization: College of Computer Science and Technology, Huaqiao University, Xiamen, China – sequence: 2 givenname: Xiaofeng orcidid: 0000-0001-6840-0578 surname: Zhu fullname: Zhu, Xiaofeng organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 3 givenname: Ye surname: Wang fullname: Wang, Ye organization: College of Computer Science and Technology, Huaqiao University, Xiamen, China – sequence: 4 givenname: Le surname: An fullname: An, Le organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30872866$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnRb-AKEs2ST4OrGTsECqqvKQKrEAdkiW49ykHhw72E6ldsVv9Pf6JWQ0UwQsYHWke89DOueEHDnvkJDnQAugIF5ti1kl7ceCUWgKgIKy-hHZQFOXOYeKHZENpSXkJaPlMTmJcUsp1OvjCTkuaVOzRogN-fophUWnJWCfxVmFaNJNFnBcrArmdj1Oi01mtph9w-DQZhZVcMaN2eBDdmZvr9BMGO5_3MWsNxFVxBXV6Hw08Sl5PCgb8dkBT8mXtxefz9_nlx_ffTg_u8x1JcqUAwzNMDCoWs04Aw6q7-jARU1V15Rs4LTVJe-U4A3UWis90G7oagVMcU3bvjwlb_a-89JN2Gt0KSgr52AmFW6kV0b--XHmSo7-WooKKBdsNXh5MAj--4IxyclEjdYqh36JkkFbguCiFSv1xe9Zv0IeKl0Jr_cEHXyMAQepTVLJ-F20sRKo3O0nt3K_n9ztJwHkut8qrv4SP_j_R3YoANeWrw0GGbVBp7E3AXWSvTf_NvgJ78a67A |
CitedBy_id | crossref_primary_10_1109_TCDS_2022_3189701 crossref_primary_10_1109_TNNLS_2023_3269446 crossref_primary_10_1016_j_engappai_2020_103535 crossref_primary_10_1016_j_bspc_2023_105442 crossref_primary_10_1016_j_cie_2021_107904 crossref_primary_10_1016_j_cmpb_2021_106574 crossref_primary_10_1109_ACCESS_2021_3099999 crossref_primary_10_1016_j_neucom_2020_09_012 crossref_primary_10_1155_2021_9624269 crossref_primary_10_1016_j_compbiomed_2023_107765 crossref_primary_10_1016_j_media_2019_101625 crossref_primary_10_1016_j_patcog_2020_107247 crossref_primary_10_1049_ipr2_12605 crossref_primary_10_1109_TIT_2024_3451512 crossref_primary_10_1007_s13735_023_00271_y crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1007_s00521_022_07076_w crossref_primary_10_1016_j_patcog_2022_109031 crossref_primary_10_3389_fneur_2019_00904 crossref_primary_10_1016_j_smhl_2024_100478 crossref_primary_10_3389_fnagi_2022_1073909 crossref_primary_10_1049_ipr2_12618 crossref_primary_10_1016_j_bspc_2023_105669 crossref_primary_10_3390_biom13091391 crossref_primary_10_1109_JTEHM_2022_3219775 crossref_primary_10_3390_diagnostics14121281 crossref_primary_10_1109_TCBB_2022_3204619 crossref_primary_10_1016_j_ipm_2022_103113 crossref_primary_10_1016_j_cie_2023_109300 crossref_primary_10_1016_j_heliyon_2024_e39037 crossref_primary_10_1016_j_bspc_2024_107085 crossref_primary_10_1016_j_knosys_2021_107942 crossref_primary_10_1109_ACCESS_2022_3186888 crossref_primary_10_1016_j_compmedimag_2022_102057 crossref_primary_10_1007_s00521_021_06436_2 crossref_primary_10_1002_int_22690 crossref_primary_10_1007_s10586_023_04103_w crossref_primary_10_1177_09544119211060989 crossref_primary_10_1016_j_patcog_2021_107944 crossref_primary_10_1007_s10479_022_05086_4 crossref_primary_10_1007_s11042_020_10473_9 crossref_primary_10_3390_diagnostics12112632 crossref_primary_10_1007_s11042_021_10928_7 crossref_primary_10_1016_j_patcog_2020_107587 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_1016_j_patcog_2019_01_015 crossref_primary_10_1109_JBHI_2019_2961792 crossref_primary_10_1016_j_ijleo_2022_170347 crossref_primary_10_1016_j_neuroimage_2022_119054 crossref_primary_10_1007_s11571_023_09993_5 crossref_primary_10_1016_j_media_2020_101652 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1016_j_knosys_2024_111616 crossref_primary_10_1109_TNNLS_2021_3063516 crossref_primary_10_1145_3344998 crossref_primary_10_1002_hbm_25685 crossref_primary_10_1016_j_bspc_2022_103571 crossref_primary_10_1371_journal_pone_0238535 crossref_primary_10_3389_fnagi_2020_595322 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1016_j_patcog_2020_107470 crossref_primary_10_1109_JBHI_2021_3067798 crossref_primary_10_3389_fgene_2019_00976 crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_1109_ACCESS_2019_2936415 crossref_primary_10_1016_j_patcog_2020_107516 crossref_primary_10_1016_j_compbiomed_2022_106367 crossref_primary_10_1016_j_media_2021_102082 crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1109_JBHI_2021_3113668 crossref_primary_10_1109_TKDE_2024_3385712 crossref_primary_10_1016_j_patcog_2020_107519 |
Cites_doi | 10.1007/s11682-015-9430-4 10.1016/j.patcog.2018.01.028 10.1006/nimg.2000.0730 10.1111/j.1467-9868.2005.00532.x 10.1002/hbm.10062 10.1007/s10994-009-5150-6 10.1214/07-AOS584 10.1016/j.patcog.2017.02.029 10.1016/j.media.2015.10.008 10.1016/j.neulet.2009.10.086 10.1016/j.neuroimage.2014.06.077 10.1016/j.patcog.2016.09.023 10.1016/j.neuroimage.2011.09.069 10.1016/S0197-4580(99)00107-4 10.1109/TMM.2012.2188783 10.1109/42.906424 10.1016/j.neuroimage.2010.10.081 10.1016/j.neuroimage.2013.03.073 10.1016/j.patcog.2016.10.009 10.1109/TMI.2002.803111 10.1109/TBME.2014.2372011 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neuroimage.2008.02.010 10.1016/j.neurobiolaging.2010.04.022 10.1089/rej.2006.9.485 10.1007/s11682-013-9262-z 10.1016/j.jalz.2010.03.013 10.1002/hbm.22642 10.1016/j.neuroimage.2011.01.008 10.1109/TBME.2015.2466616 10.3174/ajnr.A1809 10.1016/j.neuroimage.2012.09.065 10.1016/j.neuroimage.2010.06.013 10.1016/j.neucom.2016.08.041 10.1016/j.neuroimage.2013.09.015 10.1007/s11682-015-9480-7 10.1007/s11220-015-0120-5 10.1109/42.668698 10.1016/j.acha.2009.05.006 10.1001/archneur.58.3.397 10.1016/j.neuroimage.2012.04.056 10.1002/gepi.20533 10.1093/bioinformatics/btr649 10.1109/JBHI.2013.2285378 10.1016/j.neuroimage.2013.08.015 10.1016/j.patcog.2017.07.018 10.1016/j.media.2014.04.006 10.1007/s11682-015-9437-x 10.1109/TNN.2011.2157521 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.patcog.2018.11.027 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 382 |
ExternalDocumentID | PMC6410562 30872866 10_1016_j_patcog_2018_11_027 S0031320318304151 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIMH NIH HHS grantid: U01 MH110274 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c463t-11f8ff2149c252151adb0f5670ab832f509c35ba65817ccacf0bfb7a12a5c09d3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Aug 21 18:18:26 EDT 2025 Fri Jul 11 15:12:13 EDT 2025 Thu Apr 03 07:01:47 EDT 2025 Tue Jul 01 02:36:28 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Fri Feb 23 02:25:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple kernel learning Structured sparsity Feature selection Alzheimer’s disease diagnosis Multimodal features |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-11f8ff2149c252151adb0f5670ab832f509c35ba65817ccacf0bfb7a12a5c09d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1797-0762 0000-0001-6840-0578 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6410562 |
PMID | 30872866 |
PQID | 2193165696 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410562 proquest_miscellaneous_2193165696 pubmed_primary_30872866 crossref_citationtrail_10_1016_j_patcog_2018_11_027 crossref_primary_10_1016_j_patcog_2018_11_027 elsevier_sciencedirect_doi_10_1016_j_patcog_2018_11_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pattern recognition |
PublicationTitleAlternate | Pattern Recognit |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Peck, Devore (bib0062) 2011 Wang, Nie, Huang, Ding (bib0067) 2013 Ahmed, Benois-Pineau, Allard, Catheline, Amar, Ben (bib0040) 2017; 220 Jenatton, Audibert, Bach (bib0018) 2011; 12 Wang, Nie, Huang, Risacher, Saykin, Shen (bib0005) 2011 Szafranski, Grandvalet, Rakotomamonjy (bib0047) 2010; 79 Jie, Zhang, Cheng, Shen (bib0038) 2015; 36 Yuan, Lin (bib0016) 2006; 68 Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0035) 2015; 62 Chen, Chen, Zhang (bib0050) 2015; 16 Hinrichs, Singh, Xu, Johnson (bib0022) 2009 Wang, Nie, Huang, Kim, Nho, Risacher, Saykin, Shen (bib0014) 2012; 28 Convit, De Asis, De Leon, Tarshish, De Santi, Rusinek (bib0063) 2000; 21 Xiang, Yuan, Fan, Wang, Thompson, Ye (bib0032) 2014; 102 Morris, Storandt, Miller, McKeel, Price, Rubin, Berg (bib0002) 2001; 58 Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert (bib0008) 2014; 18 Tong, Gray, Gao, Chen, Rueckert, Initiative (bib0042) 2017; 63 Duda, Hart, Stork (bib0043) 2012 Szafranski, Grandvalet, Morizet-Mahoudeaux (bib0052) 2007 Chiappelli, Borroni, Archetti, Calabrese, Corsi, Franceschi, Padovani, Licastro (bib0065) 2006; 9 Hinrichs, Singh, Xu, Johnson (bib0036) 2011; 55 Kowalski (bib0025) 2009; 27 Cao, Shan, Zhao, Huang, Zaiane (bib0019) 2017; 72 Gray, Aljabar, Heckemann, Hammers, Rueckert (bib0041) 2013; 65 Kannao, Guha (bib0068) 2017; 68 Scholkopf, Smola (bib0054) 2001 Liu, Wee, Chen, Shen (bib0028) 2014; 84 Bach, Lanckriet, Jordan (bib0045) 2004 Shattuck, Sandor-Leahy, Schaper, Rottenberg, Leahy (bib0056) 2001; 13 Zu, Jie, Liu, Chen, Shen, Zhang (bib0037) 2016; 10 Zhou, Liu, Narayan, Ye (bib0030) 2013; 78 Liu, Zhou, Shen, Yin (bib0023) 2014; 18 Kloft, Brefeld, Sonnenburg, Zien (bib0029) 2011; 12 Nocedal, Wright (bib0053) 2006 Zhou, Jin, Hoi (bib0026) 2010; 9 Guo, Wang, Li, Li, Qi, Jin, Yao, Chen (bib0003) 2010; 468 Shen, Thompson, Potkin, Bertram, Farrer, Foroud, Green, Hu, Huentelman, Kim (bib0013) 2014; 8 Zhang, Brady, Smith (bib0058) 2001; 20 Liu, Suk, Wee, Chen, Shen (bib0066) 2013 Li, Willer, Ding, Scheet, Abecasis (bib0061) 2010; 34 Peng, An, Zhu, Jin, Shen (bib0024) 2016 Rakotomamonjy, Bach, Canu (bib0046) 2008; 9 Lanckriet, Cristianini, Bartlett, Ghaoui, Jordan (bib0044) 2004; 5 Smith (bib0057) 2002; 17 Guerrero, Ledig, Schmidt-Richberg, Rueckert (bib0021) 2017; 63 Zhu, Suk, Lee, Shen (bib0011) 2016; 63 Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bib0034) 2010; 31 Tibshirani (bib0015) 1996; 58 Zhu, Suk, Wang, Lee, Shen, Alzheimer's Disease Neuroimaging Initiative (bib0070) 2017; 38 Suk, Lee, Shen (bib0007) 2014; 101 Walhovd, Fjell, Brewer, McEvoy, Fennema-Notestine, Hagler, Jennings, Karow, Dale (bib0033) 2010; 31 Westman, Muehlboeck, Simmons (bib0012) 2012; 62 Rakotomamonjy, Flamary, Gasso, Canu (bib0051) 2011; 22 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (bib0004) 2011; 56 Cao, Liu, Yang, Zhao, Huang, Zaiane (bib0020) 2018; 79 Sled, Zijdenbos, Evans (bib0055) 1998; 17 Saykin, Shen, Foroud, Potkin, Swaminathan, Kim, Risacher, Nho, Huentelman, Craig (bib0001) 2010; 6 Shen, Davatzikos (bib0059) 2002; 21 Yeh, Lin, Chung, Wang (bib0048) 2012; 14 Kabani (bib0060) 1998; 7 Zhao, Rocha, Yu (bib0049) 2009 Ye, Zu, Jie, Shen, Zhang, Initiative (bib0039) 2016; 10 Hua, Leow, Lee, Klunder, Toga, Lepore, Chou, Brun, Chiang, Barysheva (bib0064) 2008; 41 Zhang, Huang, Shen (bib0031) 2013; 6 Zhang, Wang, Zhou, Yuan, Shen (bib0010) 2011; 55 Friedman, Hastie, Tibshirani (bib0017) 2001; 1 Zhu, Suk, Lee, Shen (bib0009) 2015; 10 Kong, Fujimaki, Liu, Nie, Ding (bib0027) 2014 Zhang, Shen (bib0006) 2012; 59 Smith (10.1016/j.patcog.2018.11.027_bib0057) 2002; 17 Gray (10.1016/j.patcog.2018.11.027_bib0041) 2013; 65 Zhou (10.1016/j.patcog.2018.11.027_bib0030) 2013; 78 Wang (10.1016/j.patcog.2018.11.027_bib0014) 2012; 28 Kohannim (10.1016/j.patcog.2018.11.027_bib0034) 2010; 31 Jie (10.1016/j.patcog.2018.11.027_bib0038) 2015; 36 Wang (10.1016/j.patcog.2018.11.027_bib0067) 2013 Zhang (10.1016/j.patcog.2018.11.027_sbref0031) 2013; 6 Zhang (10.1016/j.patcog.2018.11.027_bib0058) 2001; 20 Zhu (10.1016/j.patcog.2018.11.027_bib0009) 2015; 10 Shen (10.1016/j.patcog.2018.11.027_bib0059) 2002; 21 Zhu (10.1016/j.patcog.2018.11.027_bib0070) 2017; 38 Rakotomamonjy (10.1016/j.patcog.2018.11.027_bib0051) 2011; 22 Scholkopf (10.1016/j.patcog.2018.11.027_bib0054) 2001 Zu (10.1016/j.patcog.2018.11.027_bib0037) 2016; 10 Chen (10.1016/j.patcog.2018.11.027_bib0050) 2015; 16 Convit (10.1016/j.patcog.2018.11.027_bib0063) 2000; 21 Suk (10.1016/j.patcog.2018.11.027_bib0007) 2014; 101 Ahmed (10.1016/j.patcog.2018.11.027_bib0040) 2017; 220 Tong (10.1016/j.patcog.2018.11.027_bib0042) 2017; 63 Yuan (10.1016/j.patcog.2018.11.027_bib0016) 2006; 68 Ye (10.1016/j.patcog.2018.11.027_bib0039) 2016; 10 Saykin (10.1016/j.patcog.2018.11.027_bib0001) 2010; 6 Cao (10.1016/j.patcog.2018.11.027_bib0020) 2018; 79 Zhu (10.1016/j.patcog.2018.11.027_bib0011) 2016; 63 Zhang (10.1016/j.patcog.2018.11.027_bib0006) 2012; 59 Chiappelli (10.1016/j.patcog.2018.11.027_bib0065) 2006; 9 Jenatton (10.1016/j.patcog.2018.11.027_bib0018) 2011; 12 Kowalski (10.1016/j.patcog.2018.11.027_bib0025) 2009; 27 Guerrero (10.1016/j.patcog.2018.11.027_bib0021) 2017; 63 Peck (10.1016/j.patcog.2018.11.027_bib0062) 2011 Lanckriet (10.1016/j.patcog.2018.11.027_bib0044) 2004; 5 Walhovd (10.1016/j.patcog.2018.11.027_bib0033) 2010; 31 Liu (10.1016/j.patcog.2018.11.027_bib0023) 2014; 18 Guo (10.1016/j.patcog.2018.11.027_bib0003) 2010; 468 Zhou (10.1016/j.patcog.2018.11.027_bib0026) 2010; 9 Szafranski (10.1016/j.patcog.2018.11.027_sbref0052) 2007 Hinrichs (10.1016/j.patcog.2018.11.027_bib0022) 2009 Szafranski (10.1016/j.patcog.2018.11.027_bib0047) 2010; 79 Cuingnet (10.1016/j.patcog.2018.11.027_bib0004) 2011; 56 Westman (10.1016/j.patcog.2018.11.027_bib0012) 2012; 62 Zhao (10.1016/j.patcog.2018.11.027_bib0049) 2009 Yeh (10.1016/j.patcog.2018.11.027_bib0048) 2012; 14 Xiang (10.1016/j.patcog.2018.11.027_bib0032) 2014; 102 Li (10.1016/j.patcog.2018.11.027_bib0061) 2010; 34 Sled (10.1016/j.patcog.2018.11.027_bib0055) 1998; 17 Shattuck (10.1016/j.patcog.2018.11.027_bib0056) 2001; 13 Kabani (10.1016/j.patcog.2018.11.027_bib0060) 1998; 7 Kloft (10.1016/j.patcog.2018.11.027_bib0029) 2011; 12 Morris (10.1016/j.patcog.2018.11.027_bib0002) 2001; 58 Wang (10.1016/j.patcog.2018.11.027_bib0005) 2011 Liu (10.1016/j.patcog.2018.11.027_bib0028) 2014; 84 Zhang (10.1016/j.patcog.2018.11.027_bib0010) 2011; 55 Rakotomamonjy (10.1016/j.patcog.2018.11.027_bib0046) 2008; 9 Friedman (10.1016/j.patcog.2018.11.027_bib0017) 2001; 1 Liu (10.1016/j.patcog.2018.11.027_bib0066) 2013 Tong (10.1016/j.patcog.2018.11.027_bib0008) 2014; 18 Duda (10.1016/j.patcog.2018.11.027_bib0043) 2012 Tibshirani (10.1016/j.patcog.2018.11.027_bib0015) 1996; 58 Kannao (10.1016/j.patcog.2018.11.027_bib0068) 2017; 68 Cao (10.1016/j.patcog.2018.11.027_bib0019) 2017; 72 Peng (10.1016/j.patcog.2018.11.027_bib0024) 2016 Shen (10.1016/j.patcog.2018.11.027_bib0013) 2014; 8 Liu (10.1016/j.patcog.2018.11.027_bib0035) 2015; 62 Nocedal (10.1016/j.patcog.2018.11.027_bib0053) 2006 Kong (10.1016/j.patcog.2018.11.027_bib0027) 2014 Hinrichs (10.1016/j.patcog.2018.11.027_bib0036) 2011; 55 Bach (10.1016/j.patcog.2018.11.027_bib0045) 2004 Hua (10.1016/j.patcog.2018.11.027_bib0064) 2008; 41 |
References_xml | – volume: 6 start-page: 265 year: 2010 end-page: 273 ident: bib0001 article-title: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans publication-title: Alzheimer’s Dementia – year: 2012 ident: bib0043 article-title: Pattern classification – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0058 article-title: Segmentation of brain publication-title: IEEE Trans. Med. Imaging – volume: 55 start-page: 574 year: 2011 end-page: 589 ident: bib0036 article-title: Predictive markers for publication-title: Neuroimage – volume: 14 start-page: 563 year: 2012 end-page: 574 ident: bib0048 article-title: A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection publication-title: IEEE Trans. Multimedia – volume: 7 start-page: P year: 1998 end-page: 0717 ident: bib0060 article-title: 3d anatomical atlas of the human brain publication-title: 20th Annual Meeting of the Organization for Human Brain Mapping – start-page: 311 year: 2013 end-page: 318 ident: bib0066 article-title: High-order graph matching based feature selection for publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bib0008 article-title: Multiple instance learning for classification of dementia in brain mri publication-title: Med. Image Anal. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib0057 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – start-page: 70 year: 2016 end-page: 78 ident: bib0024 article-title: Structured sparse kernel learning for imaging genetics based alzheimers disease diagnosis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 start-page: 2491 year: 2008 end-page: 2521 ident: bib0046 article-title: Simple publication-title: J. Mach. Learn. Res. – volume: 68 start-page: 38 year: 2017 end-page: 51 ident: bib0068 article-title: Success based locally weighted multiple kernel combination publication-title: Pattern Recognit. – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib0010 article-title: Multimodal classification of publication-title: Neuroimage – volume: 31 start-page: 1429 year: 2010 end-page: 1442 ident: bib0034 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging – start-page: 115 year: 2011 end-page: 123 ident: bib0005 article-title: Identifying publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 27 start-page: 303 year: 2009 end-page: 324 ident: bib0025 article-title: Sparse regression using mixed norms publication-title: Appl. Comput. Harmon. Anal. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0015 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. – volume: 63 start-page: 607 year: 2016 end-page: 618 ident: bib0011 article-title: Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification publication-title: IEEE Trans. Biomed. Eng. – volume: 6 year: 2013 ident: bib0031 article-title: Integrative analysis of multi-dimensional imaging genomics data for publication-title: Front. Aging Neurosci. – volume: 21 start-page: 1421 year: 2002 end-page: 1439 ident: bib0059 article-title: Hammer: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 27 year: 2004 end-page: 72 ident: bib0044 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – volume: 62 start-page: 229 year: 2012 end-page: 238 ident: bib0012 article-title: Combining publication-title: Neuroimage – volume: 63 start-page: 171 year: 2017 end-page: 181 ident: bib0042 article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion publication-title: Pattern Recognit. – volume: 9 start-page: 485 year: 2006 end-page: 493 ident: bib0065 article-title: gene and phenotype relation with publication-title: Rejuvenation Res. – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: bib0016 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. – volume: 65 start-page: 167 year: 2013 end-page: 175 ident: bib0041 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease publication-title: Neuroimage – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib0055 article-title: A nonparametric method for automatic correction of intensity nonuniformity in mri data publication-title: IEEE Trans. Med. Imaging – volume: 10 start-page: 739 year: 2016 end-page: 749 ident: bib0039 article-title: Discriminative multi-task feature selection for multi-modality classification of alzheimer disease publication-title: Brain Imaging Behav. – volume: 16 start-page: 17 year: 2015 ident: bib0050 article-title: Mixed norm regularized discrimination for image steganalysis publication-title: Sens. Imaging – volume: 78 start-page: 233 year: 2013 end-page: 248 ident: bib0030 article-title: Modeling disease progression via multi-task learning publication-title: Neuroimage – year: 2006 ident: bib0053 article-title: Numerical optimization – start-page: 1 year: 2004 end-page: 8 ident: bib0045 article-title: Multiple kernel learning, conic duality, and the publication-title: the 21th International Conference on Machine learning – start-page: 1655 year: 2014 end-page: 1663 ident: bib0027 article-title: Exclusive feature learning on arbitrary structures via publication-title: Advances in Neural Information Processing Systems – volume: 18 start-page: 984 year: 2014 end-page: 990 ident: bib0023 article-title: Multiple kernel learning in the primal for multimodal publication-title: IEEE J. Biomed. Health Inform. – volume: 31 start-page: 347 year: 2010 end-page: 354 ident: bib0033 article-title: Combining publication-title: Am. J. Neuroradiology – volume: 8 start-page: 183 year: 2014 end-page: 207 ident: bib0013 article-title: Genetic analysis of quantitative phenotypes in publication-title: Brain Imaging Behav. – volume: 9 start-page: 988 year: 2010 end-page: 995 ident: bib0026 article-title: Exclusive lasso for multi-task feature selection. publication-title: AISTATS – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib0007 article-title: Hierarchical feature representation and multimodal fusion with deep learning for publication-title: Neuroimage – volume: 22 start-page: 1307 year: 2011 end-page: 1320 ident: bib0051 article-title: Lp-Lq penalty for sparse linear and sparse multiple kernel multitask learning publication-title: IEEE Trans. Neural Netw. – start-page: 786 year: 2009 end-page: 794 ident: bib0022 article-title: for robust multi-modality publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 3468 year: 2009 end-page: 3497 ident: bib0049 article-title: The composite absolute penalties family for grouped and hierarchical variable selection publication-title: Ann. Stat. – volume: 72 start-page: 219 year: 2017 end-page: 235 ident: bib0019 article-title: Sparse shared structure based multi-task learning for mri based cognitive performance prediction of alzheimers disease publication-title: Pattern Recognit. – volume: 63 start-page: 570 year: 2017 end-page: 582 ident: bib0021 article-title: Group-constrained manifold learning: application to ad risk assessment publication-title: Pattern Recognit. – volume: 102 start-page: 192 year: 2014 end-page: 206 ident: bib0032 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: bib0035 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of publication-title: IEEE Trans. Biomed. Eng. – volume: 12 start-page: 2777 year: 2011 end-page: 2824 ident: bib0018 article-title: Structured variable selection with sparsity-inducing norms publication-title: J. Mach. Learn. Res. – year: 2011 ident: bib0062 article-title: Statistics: The exploration & analysis of data – volume: 10 start-page: 818 year: 2015 end-page: 828 ident: bib0009 article-title: Canonical feature selection for joint regression and multi-class identification in publication-title: Brain Imaging Behav. – start-page: 3097 year: 2013 end-page: 3102 ident: bib0067 article-title: Heterogeneous visual features fusion via sparse multimodal machine publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 1 year: 2001 ident: bib0017 article-title: The elements of statistical learning – volume: 34 start-page: 816 year: 2010 end-page: 834 ident: bib0061 article-title: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes publication-title: Genet. Epidemiol. – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: bib0006 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in publication-title: Neuroimage – volume: 13 start-page: 856 year: 2001 end-page: 876 ident: bib0056 article-title: Magnetic resonance image tissue classification using a partial volume model publication-title: Neuroimage – volume: 10 start-page: 1148 year: 2016 end-page: 1159 ident: bib0037 article-title: Label-aligned multi-task feature learning for multimodal classification of alzheimer’s disease and mild cognitive impairment publication-title: Brain Imaging Behav. – volume: 58 start-page: 397 year: 2001 end-page: 405 ident: bib0002 article-title: Mild cognitive impairment represents early-stage Alzheimer disease publication-title: Arch. Neurol. – year: 2001 ident: bib0054 article-title: Learning with kernels: support vector machines, regularization, optimization, and beyond – volume: 468 start-page: 146 year: 2010 end-page: 150 ident: bib0003 article-title: Voxel-based assessment of gray and white matter volumes in publication-title: Neurosci. Lett. – year: 2007 ident: bib0052 article-title: Hierarchical penalization publication-title: Advances in Neural Information Processing Systems 21 – volume: 41 start-page: 19 year: 2008 end-page: 34 ident: bib0064 article-title: 3 publication-title: Neuroimage – volume: 12 start-page: 953 year: 2011 end-page: 997 ident: bib0029 article-title: Lp-norm multiple kernel learning publication-title: J. Mach. Learn. Res. – volume: 79 start-page: 195 year: 2018 end-page: 215 ident: bib0020 article-title: L2,1-l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of publication-title: Pattern Recognit. – volume: 36 start-page: 489 year: 2015 end-page: 507 ident: bib0038 article-title: Manifold regularized multitask feature learning for multimodality disease classification publication-title: Hum. Brain Mapp. – volume: 28 start-page: 229 year: 2012 end-page: 237 ident: bib0014 article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the publication-title: Bioinformatics – volume: 21 start-page: 19 year: 2000 end-page: 26 ident: bib0063 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to publication-title: Neurobiol. Aging – volume: 84 start-page: 466 year: 2014 end-page: 475 ident: bib0028 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for publication-title: Neuroimage – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bib0004 article-title: Automatic classification of patients with publication-title: Neuroimage – volume: 79 start-page: 73 year: 2010 end-page: 103 ident: bib0047 article-title: Composite kernel learning publication-title: Mach. Learn. – volume: 38 start-page: 205 year: 2017 end-page: 214 ident: bib0070 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med. Image Anal. – volume: 220 start-page: 98 year: 2017 end-page: 110 ident: bib0040 article-title: Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning publication-title: Neurocomputing – volume: 10 start-page: 818 issue: 3 year: 2015 ident: 10.1016/j.patcog.2018.11.027_bib0009 article-title: Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9430-4 – volume: 79 start-page: 195 year: 2018 ident: 10.1016/j.patcog.2018.11.027_bib0020 article-title: L2,1-l1 regularized nonlinear multi-task representation learning based cognitive performance prediction of Alzheimer’s disease publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.01.028 – volume: 13 start-page: 856 issue: 5 year: 2001 ident: 10.1016/j.patcog.2018.11.027_bib0056 article-title: Magnetic resonance image tissue classification using a partial volume model publication-title: Neuroimage doi: 10.1006/nimg.2000.0730 – volume: 68 start-page: 49 issue: 1 year: 2006 ident: 10.1016/j.patcog.2018.11.027_bib0016 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00532.x – year: 2012 ident: 10.1016/j.patcog.2018.11.027_bib0043 – volume: 6 year: 2013 ident: 10.1016/j.patcog.2018.11.027_sbref0031 article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer’s disease prediction. publication-title: Front. Aging Neurosci. – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.patcog.2018.11.027_bib0057 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 79 start-page: 73 issue: 1–2 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0047 article-title: Composite kernel learning publication-title: Mach. Learn. doi: 10.1007/s10994-009-5150-6 – start-page: 3468 year: 2009 ident: 10.1016/j.patcog.2018.11.027_bib0049 article-title: The composite absolute penalties family for grouped and hierarchical variable selection publication-title: Ann. Stat. doi: 10.1214/07-AOS584 – volume: 68 start-page: 38 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0068 article-title: Success based locally weighted multiple kernel combination publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.029 – volume: 12 start-page: 953 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0029 article-title: Lp-norm multiple kernel learning publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 205 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0070 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.10.008 – volume: 468 start-page: 146 issue: 2 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0003 article-title: Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.10.086 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0007 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 63 start-page: 570 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0021 article-title: Group-constrained manifold learning: application to ad risk assessment publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.023 – volume: 12 start-page: 2777 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0018 article-title: Structured variable selection with sparsity-inducing norms publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 10.1016/j.patcog.2018.11.027_bib0006 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 21 start-page: 19 issue: 1 year: 2000 ident: 10.1016/j.patcog.2018.11.027_bib0063 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(99)00107-4 – volume: 14 start-page: 563 issue: 3 year: 2012 ident: 10.1016/j.patcog.2018.11.027_bib0048 article-title: A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2012.2188783 – year: 2006 ident: 10.1016/j.patcog.2018.11.027_bib0053 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.patcog.2018.11.027_bib0058 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 9 start-page: 988 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0026 article-title: Exclusive lasso for multi-task feature selection. – volume: 55 start-page: 574 issue: 2 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0036 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.081 – start-page: 3097 year: 2013 ident: 10.1016/j.patcog.2018.11.027_bib0067 article-title: Heterogeneous visual features fusion via sparse multimodal machine – volume: 78 start-page: 233 year: 2013 ident: 10.1016/j.patcog.2018.11.027_bib0030 article-title: Modeling disease progression via multi-task learning publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.073 – volume: 63 start-page: 171 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0042 article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.10.009 – volume: 21 start-page: 1421 issue: 11 year: 2002 ident: 10.1016/j.patcog.2018.11.027_bib0059 article-title: Hammer: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 7 start-page: P year: 1998 ident: 10.1016/j.patcog.2018.11.027_bib0060 article-title: 3d anatomical atlas of the human brain – volume: 62 start-page: 1132 issue: 4 year: 2015 ident: 10.1016/j.patcog.2018.11.027_bib0035 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.patcog.2018.11.027_bib0015 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 41 start-page: 19 issue: 1 year: 2008 ident: 10.1016/j.patcog.2018.11.027_bib0064 article-title: 3D characterization of brain atrophy in Alzheimer’s disease and mild cognitive impairment using tensor-based morphometry publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.010 – volume: 31 start-page: 1429 issue: 8 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0034 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.022 – volume: 9 start-page: 485 issue: 4 year: 2006 ident: 10.1016/j.patcog.2018.11.027_bib0065 article-title: VEGF gene and phenotype relation with Alzheimer’s disease and mild cognitive impairment publication-title: Rejuvenation Res. doi: 10.1089/rej.2006.9.485 – volume: 8 start-page: 183 issue: 2 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0013 article-title: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9262-z – volume: 5 start-page: 27 year: 2004 ident: 10.1016/j.patcog.2018.11.027_bib0044 article-title: Learning the kernel matrix with semidefinite programming publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 265 issue: 3 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0001 article-title: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2010.03.013 – start-page: 786 year: 2009 ident: 10.1016/j.patcog.2018.11.027_bib0022 article-title: MKL for robust multi-modality AD classification – start-page: 70 year: 2016 ident: 10.1016/j.patcog.2018.11.027_bib0024 article-title: Structured sparse kernel learning for imaging genetics based alzheimers disease diagnosis – start-page: 1655 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0027 article-title: Exclusive feature learning on arbitrary structures via L12-norm – volume: 36 start-page: 489 issue: 2 year: 2015 ident: 10.1016/j.patcog.2018.11.027_bib0038 article-title: Manifold regularized multitask feature learning for multimodality disease classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22642 – volume: 55 start-page: 856 issue: 3 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0010 article-title: Multimodal classification of Alzheimer’s disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 63 start-page: 607 issue: 3 year: 2016 ident: 10.1016/j.patcog.2018.11.027_bib0011 article-title: Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2466616 – volume: 31 start-page: 347 issue: 2 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0033 article-title: Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer’s disease publication-title: Am. J. Neuroradiology doi: 10.3174/ajnr.A1809 – volume: 65 start-page: 167 year: 2013 ident: 10.1016/j.patcog.2018.11.027_bib0041 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0004 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 220 start-page: 98 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0040 article-title: Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.041 – volume: 84 start-page: 466 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0028 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.015 – volume: 10 start-page: 1148 issue: 4 year: 2016 ident: 10.1016/j.patcog.2018.11.027_bib0037 article-title: Label-aligned multi-task feature learning for multimodal classification of alzheimer’s disease and mild cognitive impairment publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9480-7 – year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0062 – volume: 16 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.patcog.2018.11.027_bib0050 article-title: Mixed norm regularized discrimination for image steganalysis publication-title: Sens. Imaging doi: 10.1007/s11220-015-0120-5 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.patcog.2018.11.027_bib0055 article-title: A nonparametric method for automatic correction of intensity nonuniformity in mri data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 27 start-page: 303 issue: 3 year: 2009 ident: 10.1016/j.patcog.2018.11.027_bib0025 article-title: Sparse regression using mixed norms publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.05.006 – volume: 58 start-page: 397 issue: 3 year: 2001 ident: 10.1016/j.patcog.2018.11.027_bib0002 article-title: Mild cognitive impairment represents early-stage Alzheimer disease publication-title: Arch. Neurol. doi: 10.1001/archneur.58.3.397 – volume: 62 start-page: 229 issue: 1 year: 2012 ident: 10.1016/j.patcog.2018.11.027_bib0012 article-title: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 34 start-page: 816 issue: 8 year: 2010 ident: 10.1016/j.patcog.2018.11.027_bib0061 article-title: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20533 – year: 2007 ident: 10.1016/j.patcog.2018.11.027_sbref0052 article-title: Hierarchical penalization – volume: 28 start-page: 229 issue: 2 year: 2012 ident: 10.1016/j.patcog.2018.11.027_bib0014 article-title: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr649 – volume: 18 start-page: 984 issue: 3 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0023 article-title: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2285378 – volume: 102 start-page: 192 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0032 article-title: Bi-level multi-source learning for heterogeneous block-wise missing data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.015 – year: 2001 ident: 10.1016/j.patcog.2018.11.027_bib0054 – volume: 1 year: 2001 ident: 10.1016/j.patcog.2018.11.027_bib0017 – volume: 72 start-page: 219 year: 2017 ident: 10.1016/j.patcog.2018.11.027_bib0019 article-title: Sparse shared structure based multi-task learning for mri based cognitive performance prediction of alzheimers disease publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.07.018 – volume: 18 start-page: 808 issue: 5 year: 2014 ident: 10.1016/j.patcog.2018.11.027_bib0008 article-title: Multiple instance learning for classification of dementia in brain mri publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: 10 start-page: 739 issue: 3 year: 2016 ident: 10.1016/j.patcog.2018.11.027_bib0039 article-title: Discriminative multi-task feature selection for multi-modality classification of alzheimer disease publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9437-x – volume: 9 start-page: 2491 year: 2008 ident: 10.1016/j.patcog.2018.11.027_bib0046 article-title: Simple MKL publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2004 ident: 10.1016/j.patcog.2018.11.027_bib0045 article-title: Multiple kernel learning, conic duality, and the SMO algorithm – start-page: 311 year: 2013 ident: 10.1016/j.patcog.2018.11.027_bib0066 article-title: High-order graph matching based feature selection for Alzheimer’s disease identification – volume: 22 start-page: 1307 issue: 8 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0051 article-title: Lp-Lq penalty for sparse linear and sparse multiple kernel multitask learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2157521 – start-page: 115 year: 2011 ident: 10.1016/j.patcog.2018.11.027_bib0005 article-title: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression |
SSID | ssj0017142 |
Score | 2.5691 |
Snippet | •For Alzheimer’s disease (AD) diagnosis, we consider the integration of multi-modality imaging and genetic data which encode different level of knowledge.•With... Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 370 |
SubjectTerms | Alzheimer’s disease diagnosis Feature selection Multimodal features Multiple kernel learning Structured sparsity |
Title | Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis |
URI | https://dx.doi.org/10.1016/j.patcog.2018.11.027 https://www.ncbi.nlm.nih.gov/pubmed/30872866 https://www.proquest.com/docview/2193165696 https://pubmed.ncbi.nlm.nih.gov/PMC6410562 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9swGBahu-zSdR_d0q5Bg16d-EuyfQylJdtYLmuhh4GQZSnxmjrBSS45lP6N_r3-kr2vLIdlGwR2MrZlEH4_JT3v8xJyrnzNAgjsXhpKjrtVqZdmTIG5a5PlElZFCvc7vo356Cb-cstuO-SirYVBWKXz_Y1Pt97aPRm4vzlYlCXW-CLtoFVKrDO3Fexxglref9jCPLC_d8MYHgUejm7L5yzGawHubj5BgFfaRy5P7C3z7_D0d_r5J4ryt7B0dUQOXT5Jh82UX5OOrt6QV22vBupM9y358d0Sxa5rXVBwIhaKQWvbiL4uN_CwRRbSO11XekZdO4kJhayWDmebqS7vdf38-LSk7lAHrhamVy7fkZury-uLkec6K3gq5tHKCwKTGhPC6kiFDIO-LHLfMJ74MgcTN5BFqIjlEtKTIAEZK-PnJk9kEEqm_KyIjslBNa_0B0KZMlGRBAYiYRHLMMpgTSRl5ivm-5qncZdE7Q8VytGOY_eLmWjxZT9FIwaBYoAViQAxdIm3_WrR0G7sGZ-0shI76iMgMuz58lMrWgGWhcclstLz9VKAL4-QmyjjXfK-EfV2LsijGKYc3iQ7SrAdgKzdu2-qcmrZuzkCa3l48t8zPiUv4S5r4EMfyQGojz6DzGiV96zq98iL4eevo_Ev8RERZw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB0Y9qG9dE_rdGOBXJVoIyUdjaCB0zi-NAF8CEBQFJkodWVDTi4-5Tf6e_2SzkiUUbcFDPQkgAtAaDgb-fgG4ED7hgfo2L00VIJOq1IvzbhGdTc2yxVmRZrOO86nYnwZf5nxWQ-Ou7cwBKt0tr-16Y21di1H7m8eLcuS3vgS7WCzKemdOaZAA2Kn4n0YjE7PxtPNZUISxC1peBR4NKF7QdfAvJZo8RbXhPFKD4nOk8rL_NtD_R2B_gmk_M0znTyDJy6kZKN21c-hZ6oX8LQr18Cc9r6Eq68NV-x9bQqGdqRBY7C6qUVfl2ts7MCF7JupKzNnrqLENcPAlo3m6xtTfjf1z4cfK-budfDbIPXK1Su4PPl8cTz2XHEFT8ciuvOCwKbWhpgg6ZCT31dF7lsuEl_lqOUWAwkd8VxhhBIkKGZt_dzmiQpCxbWfFdEe9KtFZd4A49pGRRJYdIZFrMIow7RIqczX3PeNSOMhRN0Pldoxj1MBjLnsIGa3shWDJDFgUiJRDEPwNrOWLfPGjvFJJyu5tYMkOocdMz91opWoXHRjoiqzuF9JNOcR0RNlYgivW1Fv1kJUimEqsCfZ2gSbAUTcvd1TlTcNgbcgbK0I9_97xR_h0fjifCInp9Ozt_AYe7IWTfQO-riVzHsMlO7yD04RfgE27RQY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+sparsity+regularized+multiple+kernel+learning+for+Alzheimer%E2%80%99s+disease+diagnosis&rft.jtitle=Pattern+recognition&rft.au=Peng%2C+Jialin&rft.au=Zhu%2C+Xiaofeng&rft.au=Wang%2C+Ye&rft.au=An%2C+Le&rft.date=2019-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=88&rft.spage=370&rft.epage=382&rft_id=info:doi/10.1016%2Fj.patcog.2018.11.027&rft.externalDocID=S0031320318304151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |