Recent developments of HDAC inhibitors: Emerging indications and novel molecules
The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further...
Saved in:
Published in | British journal of clinical pharmacology Vol. 87; no. 12; pp. 4577 - 4597 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC‐inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non‐oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA‐approved agents; however, it often results in increased treatment‐related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising. |
---|---|
AbstractList | The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising. The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising.The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising. |
Author | Jonsson, Jörgen Schiöth, Helgi B. Chubarev, Vladimir N. Tarasov, Vadim V. Bondarev, Andrey D. Attwood, Misty M. |
Author_xml | – sequence: 1 givenname: Andrey D. surname: Bondarev fullname: Bondarev, Andrey D. organization: Uppsala University – sequence: 2 givenname: Misty M. surname: Attwood fullname: Attwood, Misty M. organization: Uppsala University – sequence: 3 givenname: Jörgen surname: Jonsson fullname: Jonsson, Jörgen organization: Uppsala University – sequence: 4 givenname: Vladimir N. surname: Chubarev fullname: Chubarev, Vladimir N. organization: Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University – sequence: 5 givenname: Vadim V. surname: Tarasov fullname: Tarasov, Vadim V. organization: I. M. Sechenov First Moscow State Medical University – sequence: 6 givenname: Helgi B. orcidid: 0000-0001-7112-0921 surname: Schiöth fullname: Schiöth, Helgi B. email: helgis@bmc.uu.se organization: I. M. Sechenov First Moscow State Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33971031$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-469673$$DView record from Swedish Publication Index |
BookMark | eNp9kU9L7DAUxYMoOo4u_ALSpYLVpmnSxt288S8IiqjbkKS38yJt0pe0Dn57o6MuHui9i1zC75zFOdto3ToLCO3h7BjHOVG6P8ZFVfE1NMGE0TTHOV1Hk4xkLKU5xVtoO4TnLMMEM7qJtgjhJc4InqC7e9Bgh6SGF2hd38U7JK5Jrs5m88TYv0aZwflwmpx34BfGLuJnbbQcjLMhkbZOrIvKpHMt6LGFsIM2GtkG2P18p-jx4vxhfpXe3F5ez2c3qS4Y4SnPG66LSpImbqlkqXRJc6bicN5oKlXBVFU0mGpWFqTIG6hVLmWVYcqlrskUHa18wxL6UYnem076V-GkEWfmaSacX4hxFAXjrCQRP1jhvXf_RgiD6EzQ0LbSghuDyGNMjBEad4r2P9FRdVB_O3-FFoHDFaC9C8FD843gTLwXImIh4qOQyJ78x2ozfKQ3eGna3xRL08Lrz9biz_xupXgDF1CcPw |
CitedBy_id | crossref_primary_10_1016_j_drudis_2024_104193 crossref_primary_10_3390_ijms252212010 crossref_primary_10_3390_cancers15010138 crossref_primary_10_1002_ardp_202400437 crossref_primary_10_32604_or_2022_026913 crossref_primary_10_1002_advs_202408845 crossref_primary_10_1038_s41380_023_02208_7 crossref_primary_10_3390_ijms241612588 crossref_primary_10_1007_s00726_023_03249_6 crossref_primary_10_1016_j_cclet_2023_108359 crossref_primary_10_3389_fonc_2023_1244035 crossref_primary_10_3390_ijms252010982 crossref_primary_10_1016_j_bioorg_2023_106477 crossref_primary_10_3390_ijms25115593 crossref_primary_10_1002_mog2_50 crossref_primary_10_1007_s00253_024_13302_3 crossref_primary_10_1158_0008_5472_CAN_22_1270 crossref_primary_10_1073_pnas_2213363120 crossref_primary_10_3390_jpm14070704 crossref_primary_10_1039_D4MD00175C crossref_primary_10_3389_fnmol_2024_1398026 crossref_primary_10_1016_j_bioorg_2022_106181 crossref_primary_10_1002_pro_4917 crossref_primary_10_1021_acs_jmedchem_4c02024 crossref_primary_10_1016_j_ejmech_2023_115594 crossref_primary_10_1002_ardp_202300149 crossref_primary_10_3389_fcell_2024_1368171 crossref_primary_10_3390_cancers14235926 crossref_primary_10_1186_s12929_022_00893_0 crossref_primary_10_1039_D5CP00002E crossref_primary_10_3390_toxins15100588 crossref_primary_10_3390_molecules29010238 crossref_primary_10_2147_DDDT_S460575 crossref_primary_10_1158_2159_8290_CD_24_0174 crossref_primary_10_1016_j_biopha_2023_115212 crossref_primary_10_1038_s41598_024_79136_1 crossref_primary_10_3390_molecules27238438 crossref_primary_10_1016_j_bmc_2024_117680 crossref_primary_10_3389_fphar_2022_863677 crossref_primary_10_1016_j_bbrc_2023_09_023 crossref_primary_10_3390_jcm13082423 crossref_primary_10_1039_D3DT01876H crossref_primary_10_1002_cbdv_202201030 crossref_primary_10_1021_acs_jmedchem_3c01160 crossref_primary_10_1016_j_acthis_2024_152144 crossref_primary_10_1080_13543776_2024_2363890 crossref_primary_10_3389_fonc_2024_1327933 crossref_primary_10_1007_s12032_024_02303_x crossref_primary_10_1080_14756366_2023_2241118 crossref_primary_10_1016_j_bmc_2025_118143 crossref_primary_10_3390_ijms231710014 crossref_primary_10_1007_s00296_021_04951_y crossref_primary_10_3390_ijms25169054 crossref_primary_10_1002_btm2_10710 crossref_primary_10_3389_fcimb_2024_1308362 crossref_primary_10_3390_cancers15204985 crossref_primary_10_1186_s12967_024_05563_3 crossref_primary_10_3389_fnins_2022_836476 crossref_primary_10_1186_s40779_023_00496_2 crossref_primary_10_1016_j_bioorg_2024_107883 crossref_primary_10_1002_cbic_202500096 crossref_primary_10_1007_s00535_022_01915_2 crossref_primary_10_1016_j_bmc_2024_117587 crossref_primary_10_2174_1568026622666220303113445 crossref_primary_10_3389_fmolb_2022_986405 crossref_primary_10_1038_s12276_022_00864_3 crossref_primary_10_1158_1078_0432_CCR_23_1795 crossref_primary_10_1182_bloodadvances_2023010330 crossref_primary_10_3390_cancers16213565 crossref_primary_10_1186_s12964_023_01298_8 crossref_primary_10_3390_ijms23158645 crossref_primary_10_31083_j_ceog4910227 crossref_primary_10_1016_j_jbc_2022_102800 crossref_primary_10_30773_pi_2022_0113 crossref_primary_10_1016_j_metabol_2021_154920 crossref_primary_10_1002_cmdc_202300023 crossref_primary_10_3390_ph17040425 crossref_primary_10_1016_j_bioorg_2025_108348 crossref_primary_10_1021_acs_jmedchem_3c01269 crossref_primary_10_1007_s12035_025_04866_w crossref_primary_10_1016_j_mam_2023_101194 crossref_primary_10_1016_j_hsr_2023_100137 crossref_primary_10_31083_j_fbl2908287 crossref_primary_10_3390_ijms25042181 crossref_primary_10_1158_1078_0432_CCR_22_3897 crossref_primary_10_1016_j_drudis_2024_104052 crossref_primary_10_1113_JP286505 crossref_primary_10_1080_07391102_2024_2335293 crossref_primary_10_3390_ijms24065964 crossref_primary_10_1089_jop_2023_0163 crossref_primary_10_1016_j_phrs_2024_107431 crossref_primary_10_1152_physiolgenomics_00102_2021 crossref_primary_10_1038_s41417_022_00578_8 crossref_primary_10_1093_nargab_lqae157 crossref_primary_10_3390_ph15040438 crossref_primary_10_3892_br_2024_1884 crossref_primary_10_1021_acs_jmedchem_4c00706 crossref_primary_10_3390_ijms231810211 crossref_primary_10_1111_aji_70007 crossref_primary_10_3390_cancers15143650 crossref_primary_10_3390_ijms222111810 crossref_primary_10_1016_j_semcancer_2023_10_005 crossref_primary_10_3390_molecules28041973 crossref_primary_10_3390_ijms242115913 crossref_primary_10_1016_j_intimp_2024_112246 crossref_primary_10_3103_S0095452724050116 crossref_primary_10_1126_sciadv_adp3687 crossref_primary_10_1172_JCI183391 crossref_primary_10_3390_cancers14215472 crossref_primary_10_1007_s11060_023_04445_w crossref_primary_10_1111_cbdd_14366 crossref_primary_10_1007_s00277_024_05691_2 crossref_primary_10_1016_j_snb_2022_131882 crossref_primary_10_1016_j_pharmthera_2024_108732 crossref_primary_10_1016_j_heliyon_2024_e33997 crossref_primary_10_1080_15592294_2024_2400423 crossref_primary_10_3390_molecules27123960 crossref_primary_10_1002_1878_0261_13266 crossref_primary_10_3390_pathogens12060810 crossref_primary_10_1080_07391102_2022_2142668 crossref_primary_10_1186_s13148_023_01562_1 crossref_primary_10_1016_j_bcp_2024_116257 crossref_primary_10_1038_s41467_024_49784_y crossref_primary_10_1016_j_bbi_2022_02_025 crossref_primary_10_3390_ijms25115885 crossref_primary_10_1021_acsmedchemlett_4c00293 crossref_primary_10_3390_genes14020347 crossref_primary_10_2174_0113892029265046231011100327 crossref_primary_10_3389_fmolb_2022_981963 crossref_primary_10_1016_j_tips_2021_07_002 crossref_primary_10_3390_medicina60060888 crossref_primary_10_1016_j_neubiorev_2021_10_042 crossref_primary_10_1016_j_lfs_2022_121211 crossref_primary_10_1101_gad_351444_123 crossref_primary_10_1248_cpb_c23_00027 crossref_primary_10_1631_jzus_B2100780 crossref_primary_10_3390_life14121555 crossref_primary_10_1124_pharmrev_123_000835 crossref_primary_10_1248_cpb_c23_00026 crossref_primary_10_3390_ph17081072 crossref_primary_10_1182_bloodadvances_2022007998 crossref_primary_10_3390_cells13040319 crossref_primary_10_3390_ph15101260 crossref_primary_10_1080_17446651_2023_2183840 crossref_primary_10_1007_s11064_023_03913_z crossref_primary_10_1016_j_ejmech_2025_117463 crossref_primary_10_1186_s12864_024_10029_3 crossref_primary_10_3390_vaccines12060626 crossref_primary_10_1016_j_mehy_2021_110724 crossref_primary_10_1002_ardp_202300410 crossref_primary_10_1038_s41467_024_48724_0 crossref_primary_10_37349_etat_2023_00166 crossref_primary_10_1007_s12032_023_02049_y crossref_primary_10_1002_tcr_202300347 crossref_primary_10_1111_cas_16032 crossref_primary_10_1016_j_arr_2023_102003 crossref_primary_10_1016_j_molstruc_2024_139238 crossref_primary_10_3390_ph16020227 crossref_primary_10_3390_ph18020207 crossref_primary_10_1016_j_bbagrm_2024_195007 crossref_primary_10_1016_j_exppara_2024_108716 crossref_primary_10_3748_wjg_v28_i18_1934 crossref_primary_10_14283_jpad_2023_111 crossref_primary_10_1080_07391102_2024_2325104 crossref_primary_10_1186_s40001_024_02108_8 crossref_primary_10_3390_ijms242317072 crossref_primary_10_1007_s13205_023_03912_5 crossref_primary_10_3389_fnins_2023_1259405 crossref_primary_10_2174_0113895575303614240527093106 crossref_primary_10_4110_in_2023_23_e5 crossref_primary_10_1016_j_ccr_2022_214899 crossref_primary_10_1007_s00210_023_02674_4 crossref_primary_10_1016_j_lfs_2022_120946 crossref_primary_10_1016_j_brainres_2024_149121 crossref_primary_10_1039_D2NJ04894A crossref_primary_10_1080_19768354_2025_2477024 crossref_primary_10_1186_s12964_023_01253_7 crossref_primary_10_1080_14737140_2025_2458156 crossref_primary_10_1242_dmm_050056 crossref_primary_10_1021_acs_jmedchem_3c00226 crossref_primary_10_1007_s00018_024_05406_w crossref_primary_10_1080_09603123_2024_2399210 crossref_primary_10_1007_s13353_023_00824_1 crossref_primary_10_1016_j_bbcan_2023_188999 crossref_primary_10_1007_s11010_023_04857_2 crossref_primary_10_1016_j_biopha_2024_116374 crossref_primary_10_3390_biom13091301 crossref_primary_10_3390_ph17050620 crossref_primary_10_1073_pnas_2321502121 crossref_primary_10_3892_or_2023_8687 crossref_primary_10_1007_s00726_023_03297_y crossref_primary_10_1002_psc_3603 crossref_primary_10_3390_ijms23062996 crossref_primary_10_1016_j_arr_2024_102324 crossref_primary_10_1007_s12312_024_01412_y crossref_primary_10_3389_fcimb_2022_1002817 crossref_primary_10_1016_j_pharmthera_2022_108301 crossref_primary_10_1038_s41598_024_59110_7 crossref_primary_10_3390_separations10060333 crossref_primary_10_1186_s12885_023_11645_0 crossref_primary_10_1080_15548627_2024_2439649 crossref_primary_10_1080_17501911_2024_2430169 crossref_primary_10_1186_s13148_023_01604_8 crossref_primary_10_3389_fimmu_2023_1164514 crossref_primary_10_1002_cmdc_202400194 crossref_primary_10_1016_j_bioorg_2024_108116 crossref_primary_10_1111_febs_16437 crossref_primary_10_3390_ijms23063021 crossref_primary_10_1002_cncr_34974 crossref_primary_10_1016_j_ejmech_2024_116696 crossref_primary_10_1080_17568919_2025_2459589 crossref_primary_10_1002_cmdc_202300655 crossref_primary_10_1021_acschemneuro_4c00346 crossref_primary_10_1002_smll_202300244 crossref_primary_10_1016_j_molmed_2021_07_012 crossref_primary_10_3390_ijms25158429 crossref_primary_10_3390_ijms24054306 crossref_primary_10_1016_j_celrep_2024_114911 crossref_primary_10_1016_j_tins_2022_06_001 crossref_primary_10_1007_s00044_024_03210_6 crossref_primary_10_1016_j_semcdb_2022_09_009 crossref_primary_10_1016_j_rechem_2023_101253 crossref_primary_10_1038_s41598_023_36555_w crossref_primary_10_1016_j_phymed_2023_154670 crossref_primary_10_1002_btm2_10541 crossref_primary_10_3390_biology12081049 crossref_primary_10_1186_s13072_024_00564_4 crossref_primary_10_1016_j_canlet_2023_216121 crossref_primary_10_1016_j_jneumeth_2025_110365 crossref_primary_10_1007_s11033_024_09353_4 crossref_primary_10_1186_s44356_024_00011_2 crossref_primary_10_1016_j_ejmech_2024_116324 crossref_primary_10_1007_s11060_023_04526_w |
Cites_doi | 10.1038/s41576-018-0074-2 10.1016/0092-8674(78)90305-7 10.1182/blood-2012-10-461988 10.1146/annurev.pharmtox.45.120403.095825 10.1073/pnas.172511699 10.1158/1078-0432.CCR-10-0925 10.7164/antibiotics.43.1524 10.1038/s41467-020-17099-3 10.3816/CLM.2009.n.082 10.1016/j.ebiom.2019.07.053 10.1093/bioinformatics/17.8.754 10.1073/pnas.1805436115 10.1634/theoncologist.2017-0644 10.1038/43710 10.1016/j.neurobiolaging.2016.03.001 10.1182/blood-2006-06-025999 10.1200/JCO.2010.28.9066 10.1097/COH.0b013e328341242d 10.1016/j.nbd.2011.02.016 10.1080/10428194.2018.1515937 10.1182/blood-2010-10-312603 10.1073/pnas.191375098 10.1002/ana.24260 10.1016/j.ctrv.2018.09.001 10.1158/1078-0432.CCR-16-2526 10.1016/S2352-3018(14)70014-1 10.1038/nchembio.313 10.1016/S1470-2045(16)30375-8 10.1007/s00125-016-4113-2 10.3324/haematol.2018.187617 10.1111/bph.14752 10.1158/1078-0432.CCR-08-1215 10.1182/blood-2016-01-643569 10.1111/febs.15468 10.2217/epi.15.16 10.1073/pnas.51.5.786 10.3109/10428194.2015.1137292 10.1038/sj.onc.1210599 10.1074/jbc.M109861200 10.1042/bj20021321 10.1038/s41580-018-0076-0 10.1016/B978-0-12-394387-3.00002-1 10.1074/jbc.M104935200 10.1186/s13045-016-0266-1 10.1021/acschembio.7b00942 10.1016/j.jmb.2004.02.006 10.1002/ijc.2910490113 10.1038/nature07925 10.1016/S0021-9258(17)44885-X 10.2340/00015555-1886 10.1093/bioinformatics/btu033 10.1056/NEJMoa1916945 10.1073/pnas.0706487104 10.1021/acs.chemrev.7b00181 10.1007/s00280-011-1693-x 10.3109/10428194.2012.656625 10.1038/ncomms15368 10.1016/j.bbagrm.2017.12.002 10.1002/hon.2691 10.1172/JCI92684 10.1080/17460441.2017.1295954 10.1146/annurev-pharmtox-011613-135943 10.1021/acs.biochem.8b00079 10.1074/jbc.M110.146860 10.1038/s41580-018-0081-3 10.1056/NEJMoa041892 10.1016/j.ejmech.2016.05.047 10.1021/acs.jmedchem.0c00830 10.1182/blood-2013-12-516245 10.1215/S1152851704000183 10.1124/jpet.117.244939 10.1093/nar/gkx1037 10.1007/s00277-013-1910-2 10.1016/j.chembiol.2018.04.007 10.2337/db11-0440 10.3109/10428194.2012.664844 10.1007/s13277-015-3781-8 10.1101/cshperspect.a018713 10.1111/j.1474-9726.2011.00680.x 10.1186/s13045-017-0439-6 10.1093/annonc/mdv237 10.1038/nbt.1678 10.1038/nrd4360 10.1159/000498905 10.1093/nar/gkw107 10.1016/j.ccr.2010.10.022 10.1111/bjh.13222 10.1182/blood-2018-11-881268 10.1387/ijdb.082649rb 10.1016/S2352-3026(16)30165-X 10.1038/nrd3478 10.1200/JCO.2014.59.2782 10.1016/S2352-3026(15)00023-X 10.1097/FPC.0b013e32834a8639 10.1016/j.nmd.2016.07.002 10.1111/cen.13154 10.1371/journal.ppat.1005142 10.1074/jbc.M114.596247 10.1080/10428194.2016.1247956 10.1016/j.tips.2015.04.013 10.1038/nn.2333 10.1016/bs.acr.2018.02.006 10.2183/pjab.93.019 10.1093/nar/25.18.3693 10.1093/nar/gky1033 10.1200/JCO.2019.37.15_suppl.7551 10.1021/acschembio.6b00396 10.1016/S1470-2045(14)70440-1 10.1200/JCO.2006.10.2434 10.1002/ana.24249 10.1016/S0092-8674(02)00861-9 10.1016/S2352-3026(18)30174-1 10.1182/bloodadvances.2018019240 10.1172/jci.insight.97903 10.1182/blood.2019001285 10.1016/j.lungcan.2004.03.002 10.1073/pnas.96.9.4868 10.1111/dom.12470 10.1038/s41408-018-0154-8 10.5582/irdr.2016.01024 10.1182/blood-2011-06-362434 10.1038/nbt.1685 10.2217/epi-2016-0160 10.1038/nrg2485 10.1074/jbc.M114.605428 10.1080/13543784.2017.1291630 10.1200/jco.2004.22.90140.7279 10.1080/10428194.2017.1372575 10.1016/j.cell.2011.03.043 10.1016/S2352-3018(16)30055-8 10.1182/blood-2015-09-665018 10.1158/1078-0432.CCR-17-1178 10.1007/s40264-018-0773-9 10.1172/JCI133753 10.1186/s13045-018-0654-9 10.1016/S0002-9440(10)63320-2 10.3390/ijms20071605 10.1074/jbc.M108931200 10.1002/ajh.25577 10.1021/acs.jmedchem.8b01597 10.1080/09546634.2017.1412064 10.1042/BST20130010 10.1021/jm0303094 10.1038/s41588-019-0514-8 10.1182/blood-2012-07-441949 10.1016/S1074-7613(03)00109-2 10.1182/blood-2017-09-806737 10.1016/j.tips.2018.03.003 10.1200/JCO.2008.21.6150 10.1186/1750-1326-8-7 10.1158/1078-0432.CCR-19-2152 10.1002/jcph.625 10.1182/blood-2012-08-450916 10.1002/art.30238 10.3390/cells4020135 10.1016/S0092-8674(03)00939-5 10.1074/jbc.M807045200 10.1016/S1470-2045(19)30164-0 10.1016/S1470-2045(19)30279-7 10.1074/jbc.M111871200 10.1186/s40673-017-0062-x 10.1186/s12885-016-2957-y 10.14348/molcells.2017.0116 10.1001/jamaoncol.2016.0004 10.3109/10428194.2012.661175 10.1101/gad.1809209 10.1200/JCO.2011.37.4223 10.1038/nrdp.2017.46 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. 2021 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. – notice: 2021 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1111/bcp.14889 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1365-2125 |
EndPage | 4597 |
ExternalDocumentID | oai_DiVA_org_uu_469673 33971031 10_1111_bcp_14889 BCP14889 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Swedish Brain Foundation – fundername: Swedish Research Council – fundername: Novo Nordisk Foundation |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c4639-92f9c48a3f3f37ba7bc7526bbbb99fc5ab46b84f15c674342fedb2aa80159acd3 |
IEDL.DBID | DR2 |
ISSN | 0306-5251 1365-2125 |
IngestDate | Thu Aug 21 06:50:31 EDT 2025 Thu Jul 10 23:31:22 EDT 2025 Thu Apr 03 06:59:45 EDT 2025 Tue Jul 01 01:59:26 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Wed Jan 22 16:26:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | HDAC inhibition belinostat vorinostat romidepsin panobinostat epigenetics |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2021 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4639-92f9c48a3f3f37ba7bc7526bbbb99fc5ab46b84f15c674342fedb2aa80159acd3 |
Notes | Funding information Novo Nordisk Foundation; Swedish Brain Foundation; Swedish Research Council ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7112-0921 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.14889 |
PMID | 33971031 |
PQID | 2525663535 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_469673 proquest_miscellaneous_2525663535 pubmed_primary_33971031 crossref_primary_10_1111_bcp_14889 crossref_citationtrail_10_1111_bcp_14889 wiley_primary_10_1111_bcp_14889_BCP14889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | British journal of clinical pharmacology |
PublicationTitleAlternate | Br J Clin Pharmacol |
PublicationYear | 2021 |
References | 2007; 104 2004; 22 2004; 165 2017; 86 2019; 94 2011; 117 2021; 288 2010; 18 2011; 60 2002; 99 2002; 277 2020; 11 2013; 121 2013; 8 2007; 109 2016; 37 2018; 46 2009; 12 2018; 39 1990; 43 2018; 2 2009; 10 2018; 5 2018; 1861 2019; 20 2010; 28 2003; 46 2014; 15 2016; 42 2011; 63 2014; 13 2011; 68 2004; 338 2014; 93 2010; 6 2009; 15 2014; 123 2016; 44 2018; 29 2019; 9 2019; 4 2017; 60 2005; 352 2020; 383 2015; 127 1997; 25 2019; 37 2004; 45 2018; 103 2002; 8 2009; 459 2018; 23 2016; 17 2011; 6 2016; 16 2018; 25 2012; 30 2016; 11 2001; 276 2016; 5 2016; 2 2016; 3 2019; 42 2017; 58 2018; 118 2019; 46 2018; 115 2019; 47 2020; 26 2005; 7 2014; 30 2018; 11 2012; 116 2016; 26 2011; 145 2016; 9 2012; 119 2018; 13 2019; 176 2017; 40 2018; 364 2015; 36 2017; 8 2019; 51 2017; 3 2017; 4 2020; 63 2002; 110 2015; 33 2011; 10 2003; 18 2011; 17 2003; 115 1999; 401 1990; 265 2017; 9 2012; 53 2018; 131 2014; 1 2019; 60 1991; 49 2015; 290 2019; 62 2009; 53 2018; 138 2020; 130 2018; 70 2011; 21 1999; 96 2001; 17 2014; 6 2007; 25 2017; 127 2007; 26 2014; 54 2011; 286 2001; 98 2009; 23 2015; 2 2015; 17 2015; 4 2017; 26 2015; 95 2015; 168 2015; 11 2013; 41 2017; 23 2009 2003; 370 2008 2016; 121 2016; 127 1978; 14 2019; 141 2015; 7 2009; 27 2005; 45 2008; 283 2016; 57 2016; 56 2015; 26 2017; 93 2017; 10 2017; 12 2011; 42 2019 2018 2009; 9 2019; 133 1964; 51 2019; 134 2018; 59 2014; 76 2018; 57 e_1_2_14_114_1 e_1_2_14_137_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 Byun SK (e_1_2_14_55_1) 2017; 40 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_182_1 e_1_2_14_6_1 e_1_2_14_140_1 e_1_2_14_121_1 e_1_2_14_163_1 e_1_2_14_107_1 e_1_2_14_144_1 e_1_2_14_125_1 e_1_2_14_167_1 e_1_2_14_103_1 e_1_2_14_148_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 e_1_2_14_170_1 e_1_2_14_151_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_174_1 e_1_2_14_155_1 e_1_2_14_115_1 e_1_2_14_136_1 e_1_2_14_178_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_159_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_181_1 e_1_2_14_120_1 e_1_2_14_143_1 e_1_2_14_162_1 e_1_2_14_185_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_124_1 e_1_2_14_147_1 e_1_2_14_166_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 e_1_2_14_150_1 e_1_2_14_131_1 e_1_2_14_154_1 e_1_2_14_173_1 e_1_2_14_116_1 e_1_2_14_135_1 e_1_2_14_158_1 e_1_2_14_177_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_161_1 e_1_2_14_180_1 e_1_2_14_165_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_142_1 e_1_2_14_184_1 e_1_2_14_123_1 e_1_2_14_169_1 e_1_2_14_105_1 e_1_2_14_146_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_172_1 e_1_2_14_130_1 e_1_2_14_176_1 e_1_2_14_153_1 e_1_2_14_117_1 e_1_2_14_134_1 e_1_2_14_157_1 Patnaik A (e_1_2_14_175_1) 2002; 8 e_1_2_14_113_1 e_1_2_14_138_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_160_1 e_1_2_14_183_1 e_1_2_14_141_1 e_1_2_14_164_1 e_1_2_14_5_1 Subramanian K (e_1_2_14_139_1) 2019 e_1_2_14_122_1 e_1_2_14_145_1 e_1_2_14_168_1 e_1_2_14_9_1 e_1_2_14_106_1 Rozewicki J (e_1_2_14_77_1) 2019; 47 e_1_2_14_126_1 e_1_2_14_149_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_171_1 e_1_2_14_152_1 e_1_2_14_118_1 e_1_2_14_133_1 e_1_2_14_156_1 e_1_2_14_179_1 |
References_xml | – volume: 9 start-page: 711 issue: 5 year: 2017 end-page: 720 article-title: Phenylbutyrate and β‐cell function: contribution of histone deacetylases and ER stress inhibition publication-title: Epigenomics – volume: 8 start-page: 2142 issue: 7 year: 2002 end-page: 2148 article-title: A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies publication-title: Clin Cancer Res – volume: 277 start-page: 25748 issue: 28 year: 2002 end-page: 25755 article-title: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family publication-title: J Biol Chem – volume: 60 start-page: 116 issue: 1 year: 2017 end-page: 125 article-title: HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells publication-title: Diabetologia – volume: 59 start-page: 1271 issue: 5 year: 2018 end-page: 1273 article-title: Updated results of a phase 2 study of panobinostat combined with melphalan, thalidomide and prednisone (MPT) in relapsed/refractory multiple myeloma publication-title: Leuk Lymphoma – volume: 134 start-page: 1395 issue: 17 year: 2019 end-page: 1405 article-title: Oral 5‐azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study publication-title: Blood – volume: 25 start-page: 3693 issue: 18 year: 1997 end-page: 3697 article-title: Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily publication-title: Nucleic Acids Res – volume: 115 start-page: E11148 issue: 47 year: 2018 end-page: E11157 article-title: Inhibition of HDAC3 reverses Alzheimer's disease‐related pathologies in vitro and in the 3xTg‐AD mouse model publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 1000 issue: 5 year: 2020 end-page: 1008 article-title: Romidepsin plus liposomal doxorubicin is safe and effective in patients with relapsed or refractory T‐cell lymphoma: results of a phase I dose‐escalation study publication-title: Clin Cancer Res – volume: 364 start-page: 97 year: 2018 end-page: 109 article-title: Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy publication-title: J Pharmacol Exp Ther – volume: 118 start-page: 1216 issue: 3 year: 2018 end-page: 1252 article-title: Lysine acetylation goes global: from epigenetics to metabolism and therapeutics publication-title: Chem Rev – volume: 95 start-page: 72 issue: 1 year: 2015 end-page: 77 article-title: Vorinostat for refractory or relapsing epidermotropic T‐cell lymphoma: a retrospective cohort study of 15 patients publication-title: Acta Derm Venereol – volume: 115 start-page: 727 issue: 6 year: 2003 end-page: 738 article-title: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress publication-title: Cell – volume: 459 start-page: 55 issue: 7243 year: 2009 end-page: 60 article-title: HDAC2 negatively regulates memory formation and synaptic plasticity publication-title: Nature – volume: 23 start-page: 3307 issue: 13 year: 2017 end-page: 3315 article-title: Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma publication-title: Clin Cancer Res – volume: 2 start-page: e160 issue: 4 year: 2015 end-page: e165 article-title: Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T‐cell lymphoma: a non‐randomised, phase 1b/2 study publication-title: The Lancet Haematology – volume: 338 start-page: 17 issue: 1 year: 2004 end-page: 31 article-title: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis publication-title: J Mol Biol – volume: 20 start-page: 102 issue: 2 year: 2019 end-page: 115 article-title: Integrative regulation of physiology by histone deacetylase 3 publication-title: Nat Rev Mol Cell Biol – volume: 28 start-page: 4485 issue: 29 year: 2010 end-page: 4491 article-title: Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T‐cell lymphoma publication-title: J Clin Oncol – volume: 39 start-page: 525 issue: 6 year: 2018 end-page: 535 article-title: Orphan drugs and their impact on pharmaceutical development publication-title: Trends Pharmacol Sci – volume: 277 start-page: 187 issue: 1 year: 2002 end-page: 193 article-title: Isolation and characterization of mammalian HDAC10, a novel histone deacetylase publication-title: J Biol Chem – volume: 43 start-page: 1524 issue: 12 year: 1990 end-page: 1532 article-title: Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents publication-title: J Antibiot (Tokyo) – volume: 123 start-page: 2636 issue: 17 year: 2014 end-page: 2644 article-title: How I treat the peripheral T‐cell lymphomas publication-title: Blood – volume: 60 start-page: 912 issue: 4 year: 2019 end-page: 919 article-title: A phase I study of romidepsin, gemcitabine, dexamethasone and cisplatin combination therapy in the treatment of peripheral T‐cell and diffuse large B‐cell lymphoma; the Canadian cancer trials group LY.15 study publication-title: Leuk Lymphoma – volume: 121 start-page: 451 year: 2016 end-page: 483 article-title: Inside HDACs with more selective HDAC inhibitors publication-title: Eur J Med Chem – volume: 26 start-page: 5310 issue: 37 year: 2007 end-page: 5318 article-title: HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention publication-title: Oncogene – volume: 96 start-page: 4868 issue: 9 year: 1999 end-page: 4873 article-title: Three proteins define a class of human histone deacetylases related to yeast Hda1p publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 69 issue: 1 year: 2017 article-title: Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real‐world study in China publication-title: J Hematol Oncol – volume: 17 start-page: 754 issue: 8 year: 2001 end-page: 755 article-title: MRBAYES: Bayesian inference of phylogenetic trees publication-title: Bioinformatics – volume: 176 start-page: S297 issue: S1 year: 2019 end-page: S396 article-title: The Concise Guide to Pharmacology 2019/20: Enzymes publication-title: Br J Pharmacol – volume: 4 issue: 5 year: 2019 article-title: PTHrP targets HDAC4 and HDAC5 to repress chondrocyte hypertrophy publication-title: JCI Insight – volume: 37 start-page: 931 issue: 1 year: 2016 end-page: 942 article-title: Phenylbutyrate‐a pan‐HDAC inhibitor‐suppresses proliferation of glioblastoma LN‐229 cell line publication-title: Tumour Biol – volume: 1 start-page: e13 issue: 1 year: 2014 end-page: e21 article-title: Panobinostat, a histone deacetylase inhibitor, for latent‐virus reactivation in HIV‐infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial publication-title: Lancet HIV – volume: 53 start-page: 1501 issue: 8 year: 2012 end-page: 1508 article-title: Vorinostat combined with bexarotene for treatment of cutaneous T‐cell lymphoma: in vitro and phase I clinical evidence supporting augmentation of retinoic acid receptor/retinoid X receptor activation by histone deacetylase inhibition publication-title: Leuk Lymphoma – volume: 3 start-page: e463 issue: 10 year: 2016 end-page: e472 article-title: Combined effect of Vacc‐4x, recombinant human granulocyte macrophage colony‐stimulating factor vaccination, and romidepsin on the HIV‐1 reservoir (REDUC): a single‐arm, phase 1B/2A trial publication-title: Lancet HIV – year: 2008 – volume: 11 start-page: 3282 issue: 1 year: 2020 article-title: A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction publication-title: Nat Commun – volume: 401 start-page: 188 issue: 6749 year: 1999 end-page: 193 article-title: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors publication-title: Nature – volume: 18 start-page: 687 issue: 5 year: 2003 end-page: 698 article-title: HDAC7, a thymus‐specific class II histone deacetylase, regulates Nur77 transcription and TCR‐mediated apoptosis publication-title: Immunity – volume: 26 start-page: 643 issue: 10 year: 2016 end-page: 649 article-title: Histological effects of givinostat in boys with Duchenne muscular dystrophy publication-title: Neuromuscul Disord – volume: 121 start-page: 2038 issue: 11 year: 2013 end-page: 2050 article-title: Dosage‐dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c‐Myc collaborating genes and p53 function publication-title: Blood – volume: 5 start-page: e628 issue: 12 year: 2018 end-page: e640 article-title: Bortezomib, lenalidomide, and dexamethasone with panobinostat for front‐line treatment of patients with multiple myeloma who are eligible for transplantation: a phase 1 trial publication-title: Lancet Haematol – volume: 11 issue: 9 year: 2015 article-title: The depsipeptide romidepsin reverses HIV‐1 latency in vivo publication-title: PLoS Pathog – year: 2019 – volume: 10 start-page: 32 issue: 1 year: 2009 end-page: 42 article-title: The many roles of histone deacetylases in development and physiology: implications for disease and therapy publication-title: Nat Rev Genet – volume: 22 start-page: 7279 issue: 14_suppl year: 2004 end-page: 7279 article-title: Dose escalation study of pivanex (a histone deacetylase inhibitor) in combination with docetaxel for advanced non‐small cell lung cancer publication-title: J Clin Oncol – volume: 116 start-page: 39 year: 2012 end-page: 86 article-title: Mechanisms of resistance to histone deacetylase inhibitors publication-title: Adv Cancer Res – volume: 63 start-page: 12460 issue: 21 year: 2020 end-page: 12484 article-title: Thirty years of HDAC inhibitors: 2020 insight and hindsight publication-title: J Med Chem – volume: 370 start-page: 737 issue: Pt 3 year: 2003 end-page: 749 article-title: Histone deacetylases (HDACs): characterization of the classical HDAC family publication-title: Biochem J – volume: 109 start-page: 31 issue: 1 year: 2007 end-page: 39 article-title: Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T‐cell lymphoma (CTCL) publication-title: Blood – volume: 45 start-page: 381 issue: 3 year: 2004 end-page: 386 article-title: Phase II trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN‐9) in advanced non‐small cell lung cancer publication-title: Lung Cancer – volume: 28 start-page: 1069 issue: 10 year: 2010 end-page: 1078 article-title: Epigenetic modifications as therapeutic targets publication-title: Nat Biotechnol – volume: 3 start-page: e572 issue: 12 year: 2016 end-page: e580 article-title: Bortezomib, thalidomide, dexamethasone, and panobinostat for patients with relapsed multiple myeloma (MUK‐six): a multicentre, open‐label, phase 1/2 trial publication-title: Lancet Haematol – volume: 12 start-page: 345 issue: 4 year: 2017 end-page: 362 article-title: Exploring the epigenetic drug discovery landscape publication-title: Expert Opin Drug Discovery – volume: 53 start-page: 1820 issue: 9 year: 2012 end-page: 1823 article-title: Phase II trial of the pan‐deacetylase inhibitor panobinostat as a single agent in advanced relapsed/refractory multiple myeloma publication-title: Leuk Lymphoma – year: 2019 article-title: Correction of Niemann‐Pick type C1 disease with the histone deacetylase inhibitor valproic acid publication-title: bioRxiv – volume: 6 start-page: 238 issue: 3 year: 2010 end-page: 243 article-title: Chemical phylogenetics of histone deacetylases publication-title: Nat Chem Biol – volume: 130 start-page: 2966 issue: 6 year: 2020 end-page: 2977 article-title: Salt‐inducible kinase 1 maintains HDAC7 stability to promote pathologic cardiac remodeling publication-title: J Clin Invest – volume: 288 start-page: 1201 issue: 4 year: 2021 end-page: 1223 article-title: Loss of HDAC11 accelerates skeletal muscle regeneration in mice publication-title: FEBS J – volume: 49 start-page: 66 issue: 1 year: 1991 end-page: 72 article-title: Derivatives of butyric acid as potential anti‐neoplastic agents publication-title: Int J Cancer – volume: 145 start-page: 607 issue: 4 year: 2011 end-page: 621 article-title: Class IIa histone deacetylases are hormone‐activated regulators of FOXO and mammalian glucose homeostasis publication-title: Cell – volume: 27 start-page: 5410 issue: 32 year: 2009 end-page: 5417 article-title: Phase II multi‐institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T‐cell lymphoma publication-title: J Clin Oncol – volume: 17 start-page: 703 issue: 7 year: 2015 end-page: 707 article-title: Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats publication-title: Diabetes Obes Metab – volume: 127 start-page: 713 year: 2015 end-page: 721 article-title: Panobinostat plus bortezomib and dexamethasone in previously treated multiple myeloma: outcomes by prior treatment publication-title: Blood – volume: 13 start-page: 673 issue: 9 year: 2014 end-page: 691 article-title: Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders publication-title: Nat Rev Drug Discov – volume: 9 start-page: 412 issue: 6 year: 2009 end-page: 416 article-title: Evaluation of the long‐term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T‐cell lymphoma publication-title: Clin Lymphoma Myeloma – volume: 352 start-page: 1967 issue: 19 year: 2005 end-page: 1976 article-title: Decreased histone deacetylase activity in chronic obstructive pulmonary disease publication-title: N Engl J Med – volume: 41 start-page: 741 issue: 3 year: 2013 end-page: 749 article-title: The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co‐stars with multiple leading parts publication-title: Biochem Soc Trans – volume: 37 start-page: 7551 issue: 15_suppl year: 2019 end-page: 7551 article-title: A phase Ib/II study of oral nanatinostat (N) and valganciclovir (VG) in subjects with Epstein‐Barr virus (EBV)‐associated lymphomas publication-title: J Clin Oncol – volume: 20 start-page: 156 issue: 3 year: 2019 end-page: 174 article-title: Functions and mechanisms of non‐histone protein acetylation publication-title: Nat Rev Mol Cell Biol – volume: 98 start-page: 10572 issue: 19 year: 2001 end-page: 10577 article-title: Cloning and characterization of a histone deacetylase, HDAC9 publication-title: Proc Natl Acad Sci U S A – volume: 15 start-page: 1195 issue: 11 year: 2014 end-page: 1206 article-title: Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double‐blind phase 3 trial publication-title: Lancet Oncol – volume: 6 issue: 4 year: 2014 article-title: Erasers of histone acetylation: the histone deacetylase enzymes publication-title: Cold Spring Harb Perspect Biol – volume: 46 start-page: 170 year: 2019 end-page: 183 article-title: Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma publication-title: EBioMedicine – volume: 58 start-page: 1306 issue: 6 year: 2017 end-page: 1319 article-title: Targeting histone deacetylases in T‐cell lymphoma publication-title: Leuk Lymphoma – volume: 9 start-page: 38 issue: 1 year: 2016 article-title: A phase II study on the role of gemcitabine plus romidepsin (GEMRO regimen) in the treatment of relapsed/refractory peripheral T‐cell lymphoma patients publication-title: J Hematol Oncol – volume: 121 start-page: 1335 issue: 8 year: 2013 end-page: 1344 article-title: Histone deacetylase 1 and 2 are essential for normal T‐cell development and genomic stability in mice publication-title: Blood – volume: 70 start-page: 199 year: 2018 end-page: 208 article-title: Drug resistance in multiple myeloma publication-title: Cancer Treat Rev – volume: 8 issue: 1 year: 2017 article-title: Histone deacetylase 10 structure and molecular function as a polyamine deacetylase publication-title: Nat Commun – volume: 47 start-page: D1102 issue: D1 year: 2019 end-page: D1109 article-title: PubChem 2019 update: improved access to chemical data publication-title: Nucleic Acids Res – volume: 8 year: 2013 article-title: HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? publication-title: Mol Neurodegener – volume: 57 start-page: 3105 issue: 22 year: 2018 end-page: 3114 article-title: Polyamine deacetylase structure and catalysis: prokaryotic acetylpolyamine amidohydrolase and eukaryotic HDAC10 publication-title: Biochemistry – volume: 16 start-page: 918 issue: 1 year: 2016 article-title: Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck‐V‐CHANCE trial publication-title: BMC Cancer – volume: 68 start-page: 805 issue: 3 year: 2011 end-page: 813 article-title: Effect of ketoconazole‐mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor publication-title: Cancer Chemother Pharmacol – volume: 165 start-page: 553 issue: 2 year: 2004 end-page: 564 article-title: Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues publication-title: Am J Pathol – volume: 131 start-page: 397 issue: 4 year: 2018 end-page: 407 article-title: A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T‐cell lymphoma publication-title: Blood – volume: 276 start-page: 35826 issue: 38 year: 2001 end-page: 35835 article-title: Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo publication-title: J Biol Chem – volume: 42 start-page: 496 issue: 3 year: 2011 end-page: 505 article-title: Prolonged treatment with pimelic o‐aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model publication-title: Neurobiol Dis – volume: 13 start-page: 685 issue: 3 year: 2018 end-page: 693 article-title: Histone deacetylase 11 is a fatty‐acid deacylase publication-title: ACS Chem Biol – volume: 6 start-page: 25 issue: 1 year: 2011 end-page: 29 article-title: Histone deacetylase inhibitors and HIV latency publication-title: Curr Opin HIV AIDS – volume: 56 start-page: 461 issue: 4 year: 2016 end-page: 473 article-title: Effects of UGT1A1 genotype on the pharmacokinetics, pharmacodynamics, and toxicities of belinostat administered by 48‐hour continuous infusion in patients with cancer publication-title: J Clin Pharmacol – volume: 2 start-page: 1386 issue: 12 year: 2018 end-page: 1392 article-title: Valproate in combination with rituximab and CHOP as first‐line therapy in diffuse large B‐cell lymphoma (VALFRID) publication-title: Blood Adv – year: 2009 – volume: 20 issue: 7 year: 2019 article-title: HDAC6 modulates signaling pathways relevant to synaptic biology and neuronal differentiation in human stem‐cell‐derived neurons publication-title: Int J Mol Sci – volume: 18 start-page: 436 issue: 5 year: 2010 end-page: 447 article-title: Hdac3 is essential for the maintenance of chromatin structure and genome stability publication-title: Cancer Cell – volume: 76 start-page: 522 issue: 4 year: 2014 end-page: 528 article-title: Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length publication-title: Ann Neurol – volume: 11 start-page: 2685 issue: 10 year: 2016 end-page: 2692 article-title: HDAC8 catalyzes the hydrolysis of long chain fatty acyl lysine publication-title: ACS Chem Biol – volume: 21 start-page: 760 issue: 11 year: 2011 end-page: 768 article-title: Impact of UDP‐gluconoryltransferase 2B17 genotype on vorinostat metabolism and clinical outcomes in Asian women with breast cancer publication-title: Pharmacogenet Genomics – volume: 283 start-page: 35402 issue: 51 year: 2008 end-page: 35409 article-title: Pimelic diphenylamide 106 is a slow, tight‐binding inhibitor of class I histone deacetylases publication-title: J Biol Chem – volume: 9 start-page: 1 year: 2019 end-page: 9 article-title: Combining carfilzomib and panobinostat to treat relapsed/refractory multiple myeloma: results of a Multiple Myeloma Research Consortium Phase I Study publication-title: Blood Cancer J – volume: 36 start-page: 481 issue: 7 year: 2015 end-page: 492 article-title: HDAC8: a multifaceted target for therapeutic interventions publication-title: Trends Pharmacol Sci – volume: 44 start-page: 5095 issue: 11 year: 2016 end-page: 5104 article-title: Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor publication-title: Nucleic Acids Res – year: 2018 – volume: 46 start-page: 5097 issue: 24 year: 2003 end-page: 5116 article-title: Histone deacetylase inhibitors publication-title: J Med Chem – volume: 47 start-page: W5 issue: W1 year: 2019 end-page: W10 article-title: MAFFT‐DASH: integrated protein sequence and structural alignment publication-title: Nucleic Acids Res – volume: 42 start-page: 35 year: 2016 end-page: 40 article-title: Suberoylanilide hydroxamic acid increases progranulin production in iPSC‐derived cortical neurons of frontotemporal dementia patients publication-title: Neurobiol Aging – volume: 286 start-page: 4819 issue: 6 year: 2011 end-page: 4828 article-title: Neuroprotection by histone deacetylase‐7 (HDAC7) occurs by inhibition of c‐jun expression through a deacetylase‐independent mechanism publication-title: J Biol Chem – volume: 23 start-page: 516 issue: 5 year: 2018 end-page: 517 article-title: Panobinostat and multiple myeloma in 2018 publication-title: Oncologist – volume: 26 start-page: 481 issue: 4 year: 2017 end-page: 487 article-title: Efficacy of hydralazine and valproate in cutaneous T‐cell lymphoma, a phase II study publication-title: Expert Opin Investig Drugs – volume: 10 start-page: 579 issue: 8 year: 2011 end-page: 590 article-title: Trends in the exploitation of novel drug targets publication-title: Nat Rev Drug Discov – volume: 30 start-page: 1312 issue: 9 year: 2014 end-page: 1313 article-title: RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies publication-title: Bioinformatics – volume: 133 start-page: 1703 issue: 16 year: 2019 end-page: 1714 article-title: The 2018 update of the WHO‐EORTC classification for primary cutaneous lymphomas publication-title: Blood – volume: 138 start-page: 183 year: 2018 end-page: 211 article-title: Advances and challenges of HDAC inhibitors in cancer therapeutics publication-title: Adv Cancer Res – volume: 20 start-page: 109 issue: 2 year: 2019 end-page: 127 article-title: Clinical epigenetics: seizing opportunities for translation publication-title: Nat Rev Genet – volume: 11 start-page: 111 issue: 1 year: 2018 article-title: Histone deacetylase 6 in cancer publication-title: J Hematol Oncol – volume: 10 start-page: 418 issue: 3 year: 2011 end-page: 428 article-title: Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice publication-title: Aging Cell – volume: 17 start-page: 937 issue: 4 year: 2011 end-page: 946 article-title: Impact of ABCB1 allelic variants on QTc interval prolongation publication-title: Clin Cancer Res – volume: 20 start-page: 746 issue: 6 year: 2019 end-page: 748 article-title: Genetics to epigenetics: targeting histone deacetylases in hormone receptor‐positive metastatic breast cancer publication-title: Lancet Oncol – volume: 37 start-page: 569 issue: 5 year: 2019 end-page: 577 article-title: Romidepsin treatment for relapsed or refractory peripheral and cutaneous T‐cell lymphoma: real‐life data from a national multicenter observational study publication-title: Hematol Oncol – volume: 4 start-page: 135 issue: 2 year: 2015 end-page: 168 article-title: HDAC family members intertwined in the regulation of autophagy: a druggable vulnerability in aggressive tumor entities publication-title: Cell – volume: 51 start-page: 1580 issue: 11 year: 2019 end-page: 1587 article-title: HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype publication-title: Nat Genet – volume: 42 start-page: 235 issue: 2 year: 2019 end-page: 245 article-title: Safety and tolerability of histone deacetylase (HDAC) inhibitors in oncology publication-title: Drug Saf – volume: 117 start-page: 5827 issue: 22 year: 2011 end-page: 5834 article-title: Phase 2 trial of romidepsin in patients with peripheral T‐cell lymphoma publication-title: Blood – volume: 168 start-page: 811 issue: 6 year: 2015 end-page: 819 article-title: A Phase II trial of belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T‐cell lymphoma publication-title: Br J Haematol – volume: 20 start-page: 806 issue: 6 year: 2019 end-page: 815 article-title: Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor‐positive breast cancer (ACE): a randomised, double‐blind, placebo‐controlled, phase 3 trial publication-title: Lancet Oncol – volume: 63 start-page: 1452 issue: 5 year: 2011 end-page: 1458 article-title: Safety and efficacy of an oral histone deacetylase inhibitor in systemic‐onset juvenile idiopathic arthritis publication-title: Arthritis Rheum – volume: 94 start-page: 1027 issue: 9 year: 2019 end-page: 1041 article-title: Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk‐stratification, and management publication-title: Am J Hematol – volume: 57 start-page: 2370 issue: 10 year: 2016 end-page: 2374 article-title: Romidepsin in relapsed/refractory T‐cell lymphomas: Italian experience and results of a named patient program publication-title: Leuk Lymphoma – volume: 290 start-page: 118 issue: 1 year: 2015 end-page: 126 article-title: Histone deacetylase 7 (Hdac7) suppresses chondrocyte proliferation and β‐catenin activity during endochondral ossification publication-title: J Biol Chem – volume: 26 start-page: 1766 issue: 8 year: 2015 end-page: 1771 article-title: Results from a multicenter, open‐label, pivotal phase II study of chidamide in relapsed or refractory peripheral T‐cell lymphoma publication-title: Ann Oncol – volume: 99 start-page: 13425 issue: 21 year: 2002 end-page: 13430 article-title: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 3109 issue: 21 year: 2007 end-page: 3115 article-title: Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T‐cell lymphoma publication-title: J Clin Oncol – volume: 53 start-page: 275 issue: 2–3 year: 2009 end-page: 289 article-title: Histone deacetylase HDAC1/HDAC2‐controlled embryonic development and cell differentiation publication-title: Int J Dev Biol – volume: 3 start-page: 17046 issue: 1 year: 2017 article-title: Multiple myeloma publication-title: Nat Rev Dis Primers – volume: 127 start-page: 3126 issue: 8 year: 2017 end-page: 3135 article-title: Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency publication-title: J Clin Invest – volume: 7 start-page: 177 issue: 2 year: 2005 end-page: 182 article-title: Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study publication-title: Neuro Oncol – volume: 30 start-page: 631 issue: 6 year: 2012 end-page: 636 article-title: Results from a pivotal, open‐label, phase II study of romidepsin in relapsed or refractory peripheral T‐cell lymphoma after prior systemic therapy publication-title: J Clin Oncol – volume: 93 start-page: 297 issue: 5 year: 2017 end-page: 321 article-title: Chemical and structural biology of protein lysine deacetylases publication-title: Proc Jpn Acad Ser B Phys Biol Sci – volume: 103 start-page: 416 year: 2018 end-page: 418 article-title: A phase I study of romidepsin and ifosfamide, carboplatin, etoposide for the treatment of patients with relapsed or refractory peripheral T‐cell lymphoma publication-title: Haematologica – volume: 53 start-page: 1722 issue: 9 year: 2012 end-page: 1727 article-title: Phase II study of melphalan, thalidomide and prednisone combined with oral panobinostat in patients with relapsed/refractory multiple myeloma publication-title: Leuk Lymphoma – volume: 76 start-page: 489 issue: 4 year: 2014 end-page: 508 article-title: Epigenetic therapy for Friedreich ataxia publication-title: Ann Neurol – volume: 60 start-page: 2861 issue: 11 year: 2011 end-page: 2871 article-title: Specific control of pancreatic endocrine β‐ and δ‐cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9 publication-title: Diabetes – volume: 290 start-page: 5028 issue: 8 year: 2015 end-page: 5040 article-title: Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1 publication-title: J Biol Chem – volume: 46 start-page: 1074 year: 2018 end-page: 1082 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res – volume: 119 start-page: 1008 issue: 4 year: 2012 end-page: 1017 article-title: Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents publication-title: Blood – volume: 2 start-page: 790 issue: 6 year: 2016 end-page: 793 article-title: Durable responses with maintenance dose‐sparing regimens of romidepsin in cutaneous T‐cell lymphoma publication-title: JAMA Oncol – volume: 45 start-page: 495 issue: 1 year: 2005 end-page: 528 article-title: Clinical development of histone deacetylase inhibitors as anticancer agents publication-title: Annu Rev Pharmacol Toxicol – volume: 14 start-page: 105 issue: 1 year: 1978 end-page: 113 article-title: Sodium butyrate inhibits histone deacetylation in cultured cells publication-title: Cell – volume: 7 start-page: 641 issue: 4 year: 2015 end-page: 652 article-title: Epigenetic modulation with histone deacetylase inhibitors in combination with immunotherapy publication-title: Epigenomics – volume: 86 start-page: 128 issue: 1 year: 2017 end-page: 133 article-title: A phase II trial of valproic acid in patients with advanced, radioiodine‐resistant thyroid cancers of follicular cell origin publication-title: Clin Endocrinol (Oxf) – volume: 104 start-page: 17335 issue: 44 year: 2007 end-page: 17340 article-title: Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases publication-title: Proc Natl Acad Sci U S A – volume: 265 start-page: 17174 issue: 28 year: 1990 end-page: 17179 article-title: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A publication-title: J Biol Chem – volume: 23 start-page: 1625 issue: 14 year: 2009 end-page: 1630 article-title: Epigenetic control of skull morphogenesis by histone deacetylase 8 publication-title: Genes Dev – volume: 25 start-page: 849 issue: 7 year: 2018 end-page: 856.e8 article-title: Histone deacetylase 11 is an ε‐N‐myristoyllysine hydrolase publication-title: Cell Chem Biol – volume: 93 start-page: 89 issue: 1 year: 2014 end-page: 98 article-title: A phase 1/2 study of oral panobinostat combined with melphalan for patients with relapsed or refractory multiple myeloma publication-title: Ann Hematol – volume: 141 start-page: 216 issue: 4 year: 2019 end-page: 221 article-title: Romidepsin‐bendamustine combination for relapsed/refractory T cell lymphoma publication-title: Acta Haematol – volume: 23 start-page: 7199 issue: 23 year: 2017 end-page: 7208 article-title: Immunomodulation by entinostat in renal cell carcinoma patients receiving high‐dose interleukin 2: a multicenter, single‐arm, phase I/II trial (NCI‐CTEP#7870) publication-title: Clin Cancer Res – volume: 17 start-page: 1569 issue: 11 year: 2016 end-page: 1578 article-title: Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial publication-title: Lancet Oncol – volume: 121 start-page: 3459 issue: 17 year: 2013 end-page: 3468 article-title: A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance publication-title: Blood – volume: 62 start-page: 3898 issue: 8 year: 2019 end-page: 3923 article-title: Discovery of novel Janus kinase (JAK) and histone deacetylase (HDAC) dual inhibitors for the treatment of hematological malignancies publication-title: J Med Chem – volume: 33 start-page: 2492 issue: 23 year: 2015 end-page: 2499 article-title: Belinostat in patients with relapsed or refractory peripheral T‐cell lymphoma: results of the pivotal phase II BELIEF (CLN‐19) study publication-title: J Clin Oncol – volume: 5 start-page: 185 issue: 3 year: 2016 end-page: 191 article-title: Development of chidamide for peripheral T‐cell lymphoma, the first orphan drug approved in China publication-title: Intractable Rare Dis Res – volume: 383 start-page: 919 issue: 10 year: 2020 end-page: 930 article-title: Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis publication-title: N Engl J Med – volume: 40 start-page: 667 issue: 9 year: 2017 end-page: 676 article-title: HDAC11 inhibits myoblast differentiation through repression of MyoD‐dependent transcription publication-title: Mol Cells – volume: 15 start-page: 1496 issue: 4 year: 2009 end-page: 1503 article-title: Population pharmacokinetics of romidepsin in patients with cutaneous T‐cell lymphoma and relapsed peripheral T‐cell lymphoma publication-title: Clin Cancer Res – volume: 1861 start-page: 54 issue: 1 year: 2018 end-page: 59 article-title: HDAC11 is a regulator of diverse immune functions publication-title: Biochim Biophys Acta Gene Regul Mech – volume: 127 start-page: 2375 issue: 20 year: 2016 end-page: 2390 article-title: The 2016 revision of the World Health Organization classification of lymphoid neoplasms publication-title: Blood – volume: 28 start-page: 1057 issue: 10 year: 2010 end-page: 1068 article-title: Epigenetic modifications and human disease publication-title: Nat Biotechnol – volume: 51 start-page: 786 issue: 5 year: 1964 end-page: 794 article-title: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis publication-title: Proc Natl Acad Sci U S A – volume: 110 start-page: 479 issue: 4 year: 2002 end-page: 488 article-title: Class II histone deacetylases act as signal‐responsive repressors of cardiac hypertrophy publication-title: Cell – volume: 4 start-page: 4 issue: 1 year: 2017 article-title: Friedreich ataxia: current status and future prospects publication-title: Cerebellum Ataxias – volume: 277 start-page: 3350 issue: 5 year: 2002 end-page: 3356 article-title: Molecular cloning and characterization of a novel histone deacetylase HDAC10 publication-title: J Biol Chem – volume: 54 start-page: 9 issue: 1 year: 2014 end-page: 26 article-title: The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication publication-title: Annu Rev Pharmacol Toxicol – volume: 12 start-page: 829 issue: 7 year: 2009 end-page: 838 article-title: HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta‐catenin‐TCF interaction publication-title: Nat Neurosci – volume: 29 start-page: 522 issue: 5 year: 2018 end-page: 530 article-title: An exploratory cost‐effectiveness analysis of systemic treatments for cutaneous T‐cell lymphoma publication-title: J Dermatolog Treat – ident: e_1_2_14_4_1 doi: 10.1038/s41576-018-0074-2 – ident: e_1_2_14_76_1 doi: 10.1016/0092-8674(78)90305-7 – ident: e_1_2_14_59_1 doi: 10.1182/blood-2012-10-461988 – ident: e_1_2_14_73_1 doi: 10.1146/annurev.pharmtox.45.120403.095825 – ident: e_1_2_14_19_1 doi: 10.1073/pnas.172511699 – ident: e_1_2_14_101_1 doi: 10.1158/1078-0432.CCR-10-0925 – ident: e_1_2_14_71_1 doi: 10.7164/antibiotics.43.1524 – ident: e_1_2_14_45_1 doi: 10.1038/s41467-020-17099-3 – ident: e_1_2_14_94_1 doi: 10.3816/CLM.2009.n.082 – ident: e_1_2_14_180_1 doi: 10.1016/j.ebiom.2019.07.053 – ident: e_1_2_14_79_1 doi: 10.1093/bioinformatics/17.8.754 – ident: e_1_2_14_173_1 – ident: e_1_2_14_63_1 doi: 10.1073/pnas.1805436115 – ident: e_1_2_14_136_1 doi: 10.1634/theoncologist.2017-0644 – ident: e_1_2_14_74_1 doi: 10.1038/43710 – ident: e_1_2_14_140_1 doi: 10.1016/j.neurobiolaging.2016.03.001 – ident: e_1_2_14_93_1 doi: 10.1182/blood-2006-06-025999 – ident: e_1_2_14_98_1 doi: 10.1200/JCO.2010.28.9066 – ident: e_1_2_14_64_1 doi: 10.1097/COH.0b013e328341242d – ident: e_1_2_14_155_1 doi: 10.1016/j.nbd.2011.02.016 – ident: e_1_2_14_117_1 doi: 10.1080/10428194.2018.1515937 – ident: e_1_2_14_111_1 doi: 10.1182/blood-2010-10-312603 – ident: e_1_2_14_30_1 doi: 10.1073/pnas.191375098 – ident: e_1_2_14_158_1 doi: 10.1002/ana.24260 – ident: e_1_2_14_87_1 – ident: e_1_2_14_126_1 doi: 10.1016/j.ctrv.2018.09.001 – ident: e_1_2_14_147_1 doi: 10.1158/1078-0432.CCR-16-2526 – ident: e_1_2_14_142_1 doi: 10.1016/S2352-3018(14)70014-1 – ident: e_1_2_14_38_1 doi: 10.1038/nchembio.313 – ident: e_1_2_14_146_1 doi: 10.1016/S1470-2045(16)30375-8 – ident: e_1_2_14_160_1 – ident: e_1_2_14_68_1 doi: 10.1007/s00125-016-4113-2 – ident: e_1_2_14_115_1 doi: 10.3324/haematol.2018.187617 – ident: e_1_2_14_185_1 doi: 10.1111/bph.14752 – ident: e_1_2_14_100_1 doi: 10.1158/1078-0432.CCR-08-1215 – ident: e_1_2_14_86_1 – ident: e_1_2_14_108_1 doi: 10.1182/blood-2016-01-643569 – ident: e_1_2_14_54_1 doi: 10.1111/febs.15468 – ident: e_1_2_14_151_1 doi: 10.2217/epi.15.16 – ident: e_1_2_14_7_1 doi: 10.1073/pnas.51.5.786 – ident: e_1_2_14_102_1 doi: 10.3109/10428194.2015.1137292 – ident: e_1_2_14_6_1 doi: 10.1038/sj.onc.1210599 – ident: e_1_2_14_20_1 doi: 10.1074/jbc.M109861200 – ident: e_1_2_14_21_1 doi: 10.1042/bj20021321 – ident: e_1_2_14_24_1 doi: 10.1038/s41580-018-0076-0 – ident: e_1_2_14_179_1 doi: 10.1016/B978-0-12-394387-3.00002-1 – ident: e_1_2_14_29_1 doi: 10.1074/jbc.M104935200 – ident: e_1_2_14_113_1 doi: 10.1186/s13045-016-0266-1 – ident: e_1_2_14_36_1 doi: 10.1021/acschembio.7b00942 – ident: e_1_2_14_17_1 doi: 10.1016/j.jmb.2004.02.006 – ident: e_1_2_14_174_1 doi: 10.1002/ijc.2910490113 – ident: e_1_2_14_61_1 doi: 10.1038/nature07925 – ident: e_1_2_14_80_1 – start-page: 724187 year: 2019 ident: e_1_2_14_139_1 article-title: Correction of Niemann‐Pick type C1 disease with the histone deacetylase inhibitor valproic acid publication-title: bioRxiv – ident: e_1_2_14_70_1 doi: 10.1016/S0021-9258(17)44885-X – ident: e_1_2_14_96_1 doi: 10.2340/00015555-1886 – ident: e_1_2_14_78_1 doi: 10.1093/bioinformatics/btu033 – ident: e_1_2_14_172_1 doi: 10.1056/NEJMoa1916945 – ident: e_1_2_14_39_1 doi: 10.1073/pnas.0706487104 – ident: e_1_2_14_183_1 – ident: e_1_2_14_9_1 doi: 10.1021/acs.chemrev.7b00181 – ident: e_1_2_14_129_1 doi: 10.1007/s00280-011-1693-x – ident: e_1_2_14_97_1 doi: 10.3109/10428194.2012.656625 – ident: e_1_2_14_161_1 – ident: e_1_2_14_33_1 doi: 10.1038/ncomms15368 – ident: e_1_2_14_53_1 doi: 10.1016/j.bbagrm.2017.12.002 – volume: 47 start-page: W5 issue: 1 year: 2019 ident: e_1_2_14_77_1 article-title: MAFFT‐DASH: integrated protein sequence and structural alignment publication-title: Nucleic Acids Res – ident: e_1_2_14_103_1 doi: 10.1002/hon.2691 – ident: e_1_2_14_145_1 doi: 10.1172/JCI92684 – ident: e_1_2_14_5_1 doi: 10.1080/17460441.2017.1295954 – ident: e_1_2_14_13_1 doi: 10.1146/annurev-pharmtox-011613-135943 – ident: e_1_2_14_34_1 doi: 10.1021/acs.biochem.8b00079 – ident: e_1_2_14_48_1 doi: 10.1074/jbc.M110.146860 – ident: e_1_2_14_8_1 doi: 10.1038/s41580-018-0081-3 – ident: e_1_2_14_69_1 doi: 10.1056/NEJMoa041892 – ident: e_1_2_14_88_1 doi: 10.1016/j.ejmech.2016.05.047 – ident: e_1_2_14_11_1 doi: 10.1021/acs.jmedchem.0c00830 – ident: e_1_2_14_109_1 doi: 10.1182/blood-2013-12-516245 – ident: e_1_2_14_171_1 doi: 10.1215/S1152851704000183 – ident: e_1_2_14_163_1 doi: 10.1124/jpet.117.244939 – ident: e_1_2_14_82_1 doi: 10.1093/nar/gkx1037 – ident: e_1_2_14_134_1 doi: 10.1007/s00277-013-1910-2 – ident: e_1_2_14_37_1 doi: 10.1016/j.chembiol.2018.04.007 – ident: e_1_2_14_65_1 doi: 10.2337/db11-0440 – ident: e_1_2_14_132_1 doi: 10.3109/10428194.2012.664844 – ident: e_1_2_14_168_1 doi: 10.1007/s13277-015-3781-8 – ident: e_1_2_14_16_1 doi: 10.1101/cshperspect.a018713 – ident: e_1_2_14_169_1 doi: 10.1111/j.1474-9726.2011.00680.x – ident: e_1_2_14_124_1 doi: 10.1186/s13045-017-0439-6 – ident: e_1_2_14_122_1 doi: 10.1093/annonc/mdv237 – ident: e_1_2_14_2_1 doi: 10.1038/nbt.1678 – ident: e_1_2_14_10_1 doi: 10.1038/nrd4360 – ident: e_1_2_14_116_1 doi: 10.1159/000498905 – ident: e_1_2_14_156_1 doi: 10.1093/nar/gkw107 – ident: e_1_2_14_60_1 doi: 10.1016/j.ccr.2010.10.022 – ident: e_1_2_14_120_1 doi: 10.1111/bjh.13222 – ident: e_1_2_14_90_1 doi: 10.1182/blood-2018-11-881268 – ident: e_1_2_14_41_1 doi: 10.1387/ijdb.082649rb – ident: e_1_2_14_130_1 doi: 10.1016/S2352-3026(16)30165-X – ident: e_1_2_14_14_1 doi: 10.1038/nrd3478 – ident: e_1_2_14_119_1 doi: 10.1200/JCO.2014.59.2782 – ident: e_1_2_14_112_1 doi: 10.1016/S2352-3026(15)00023-X – ident: e_1_2_14_95_1 doi: 10.1097/FPC.0b013e32834a8639 – ident: e_1_2_14_153_1 doi: 10.1016/j.nmd.2016.07.002 – ident: e_1_2_14_166_1 doi: 10.1111/cen.13154 – ident: e_1_2_14_143_1 doi: 10.1371/journal.ppat.1005142 – ident: e_1_2_14_49_1 doi: 10.1074/jbc.M114.596247 – ident: e_1_2_14_106_1 doi: 10.1080/10428194.2016.1247956 – ident: e_1_2_14_25_1 doi: 10.1016/j.tips.2015.04.013 – ident: e_1_2_14_83_1 – ident: e_1_2_14_42_1 doi: 10.1038/nn.2333 – ident: e_1_2_14_40_1 doi: 10.1016/bs.acr.2018.02.006 – ident: e_1_2_14_56_1 doi: 10.2183/pjab.93.019 – ident: e_1_2_14_15_1 doi: 10.1093/nar/25.18.3693 – ident: e_1_2_14_89_1 doi: 10.1093/nar/gky1033 – ident: e_1_2_14_149_1 doi: 10.1200/JCO.2019.37.15_suppl.7551 – ident: e_1_2_14_26_1 doi: 10.1021/acschembio.6b00396 – ident: e_1_2_14_84_1 – ident: e_1_2_14_127_1 doi: 10.1016/S1470-2045(14)70440-1 – ident: e_1_2_14_81_1 – ident: e_1_2_14_92_1 doi: 10.1200/JCO.2006.10.2434 – ident: e_1_2_14_157_1 doi: 10.1002/ana.24249 – ident: e_1_2_14_50_1 doi: 10.1016/S0092-8674(02)00861-9 – ident: e_1_2_14_131_1 doi: 10.1016/S2352-3026(18)30174-1 – ident: e_1_2_14_164_1 doi: 10.1182/bloodadvances.2018019240 – ident: e_1_2_14_44_1 doi: 10.1172/jci.insight.97903 – ident: e_1_2_14_118_1 doi: 10.1182/blood.2019001285 – ident: e_1_2_14_176_1 doi: 10.1016/j.lungcan.2004.03.002 – ident: e_1_2_14_27_1 doi: 10.1073/pnas.96.9.4868 – ident: e_1_2_14_66_1 doi: 10.1111/dom.12470 – ident: e_1_2_14_135_1 doi: 10.1038/s41408-018-0154-8 – ident: e_1_2_14_123_1 doi: 10.5582/irdr.2016.01024 – ident: e_1_2_14_150_1 doi: 10.1182/blood-2011-06-362434 – ident: e_1_2_14_3_1 doi: 10.1038/nbt.1685 – ident: e_1_2_14_170_1 doi: 10.2217/epi-2016-0160 – ident: e_1_2_14_18_1 doi: 10.1038/nrg2485 – ident: e_1_2_14_141_1 doi: 10.1074/jbc.M114.605428 – ident: e_1_2_14_165_1 doi: 10.1080/13543784.2017.1291630 – ident: e_1_2_14_177_1 doi: 10.1200/jco.2004.22.90140.7279 – ident: e_1_2_14_133_1 doi: 10.1080/10428194.2017.1372575 – ident: e_1_2_14_67_1 doi: 10.1016/j.cell.2011.03.043 – ident: e_1_2_14_144_1 doi: 10.1016/S2352-3018(16)30055-8 – ident: e_1_2_14_85_1 – ident: e_1_2_14_128_1 doi: 10.1182/blood-2015-09-665018 – ident: e_1_2_14_152_1 doi: 10.1158/1078-0432.CCR-17-1178 – ident: e_1_2_14_178_1 doi: 10.1007/s40264-018-0773-9 – ident: e_1_2_14_184_1 – volume: 8 start-page: 2142 issue: 7 year: 2002 ident: e_1_2_14_175_1 article-title: A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies publication-title: Clin Cancer Res – ident: e_1_2_14_47_1 doi: 10.1172/JCI133753 – ident: e_1_2_14_32_1 doi: 10.1186/s13045-018-0654-9 – ident: e_1_2_14_22_1 doi: 10.1016/S0002-9440(10)63320-2 – ident: e_1_2_14_46_1 doi: 10.3390/ijms20071605 – ident: e_1_2_14_31_1 doi: 10.1074/jbc.M108931200 – ident: e_1_2_14_91_1 doi: 10.1002/ajh.25577 – ident: e_1_2_14_181_1 doi: 10.1021/acs.jmedchem.8b01597 – ident: e_1_2_14_107_1 doi: 10.1080/09546634.2017.1412064 – ident: e_1_2_14_23_1 doi: 10.1042/BST20130010 – ident: e_1_2_14_72_1 doi: 10.1021/jm0303094 – ident: e_1_2_14_51_1 doi: 10.1038/s41588-019-0514-8 – ident: e_1_2_14_57_1 doi: 10.1182/blood-2012-07-441949 – ident: e_1_2_14_28_1 doi: 10.1016/S1074-7613(03)00109-2 – ident: e_1_2_14_114_1 doi: 10.1182/blood-2017-09-806737 – ident: e_1_2_14_12_1 doi: 10.1016/j.tips.2018.03.003 – ident: e_1_2_14_99_1 doi: 10.1200/JCO.2008.21.6150 – ident: e_1_2_14_62_1 doi: 10.1186/1750-1326-8-7 – ident: e_1_2_14_105_1 doi: 10.1158/1078-0432.CCR-19-2152 – ident: e_1_2_14_121_1 doi: 10.1002/jcph.625 – ident: e_1_2_14_58_1 doi: 10.1182/blood-2012-08-450916 – ident: e_1_2_14_154_1 doi: 10.1002/art.30238 – ident: e_1_2_14_52_1 doi: 10.3390/cells4020135 – ident: e_1_2_14_148_1 doi: 10.1016/S0092-8674(03)00939-5 – ident: e_1_2_14_75_1 doi: 10.1074/jbc.M807045200 – ident: e_1_2_14_138_1 doi: 10.1016/S1470-2045(19)30164-0 – ident: e_1_2_14_182_1 doi: 10.1016/S1470-2045(19)30279-7 – ident: e_1_2_14_162_1 – ident: e_1_2_14_35_1 doi: 10.1074/jbc.M111871200 – ident: e_1_2_14_159_1 doi: 10.1186/s40673-017-0062-x – ident: e_1_2_14_167_1 doi: 10.1186/s12885-016-2957-y – volume: 40 start-page: 667 issue: 9 year: 2017 ident: e_1_2_14_55_1 article-title: HDAC11 inhibits myoblast differentiation through repression of MyoD‐dependent transcription publication-title: Mol Cells doi: 10.14348/molcells.2017.0116 – ident: e_1_2_14_104_1 doi: 10.1001/jamaoncol.2016.0004 – ident: e_1_2_14_137_1 doi: 10.3109/10428194.2012.661175 – ident: e_1_2_14_43_1 doi: 10.1101/gad.1809209 – ident: e_1_2_14_110_1 doi: 10.1200/JCO.2011.37.4223 – ident: e_1_2_14_125_1 doi: 10.1038/nrdp.2017.46 |
SSID | ssj0013165 |
Score | 2.6910355 |
SecondaryResourceType | review_article |
Snippet | The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4577 |
SubjectTerms | Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use belinostat epigenetics HDAC inhibition Histone Deacetylase Inhibitors - pharmacology Histone Deacetylase Inhibitors - therapeutic use HIV Infections - drug therapy Humans panobinostat romidepsin vorinostat |
Title | Recent developments of HDAC inhibitors: Emerging indications and novel molecules |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.14889 https://www.ncbi.nlm.nih.gov/pubmed/33971031 https://www.proquest.com/docview/2525663535 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-469673 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RTlzaAn1sH8hULeqBIK3jvNrTsoBWlVpFFVQcKlkex4EVbYLI5gC_vjN5bWmphJpcIsWOHI_H89me-QbgrYzQ2oiWqYh57CmrnIe03vHQz2RiciQLylsDn7-EsxP16TQ4XYGPfSxMyw8xbLixZjTzNSu4weo3JUd7SWoexxy8x75aDIi-yuUJwrhJI8mQmBZbwbhjFWIvnqHmbVv0F8Ac2ENvA9fG8hw9gu99m1uHk4u9eoF79uYPOsf__KnH8LBDpGLSDqF1WHHFBuykLaX19a44XkZoVbtiR6RLsuvrTUgJd5LdEtnS-agSZS5mB5OpmBfnc5xzPp8Pgne_OCGS4EPybp9QmCITRUk1xc82Ta-rnsDJ0eHxdOZ1WRo8qwjeeInME6ti4-d0R2hI-FEgQ6QrSXIbGFQhxiofB5YDHpTMXYbSGDKNQWJs5j-F1aIs3HMQVskoYsyHMSozDmOnLAa-pDnGxVRvBO97eWnbUZhzJo0ful_KUP_ppv9G8GYoetnydtxVaLsXuiat4qMSU7iyrrSkIcNYzA9G8KwdDcNnfIJwnBxjBO_a4TG8Yarug_m3iS6vznRdaxUmYeRTqxuR_7sden-aNg8v7l_0JaxJdq9pPGteweriqnavCR8tcAseSJVuNerwC7UoDUA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAL78fyNAgqDk2ldZwX4rJsqRZoqxXaol4qy-M4dFVIqu7mUH49M85jKQ8JkVwixY4c2-P5Zjz-BuCFTNDahMxUxCINlFUuQLJ3AgxzmZkCSYOya2BvP54cqA-H0eEavOnOwjT8EL3DjSXDr9cs4OyQ_knK0Z6SnKdpdgkuc0Zvb1B9kqs9hKFPJMmgmMytaNjyCnEcT1_1ojb6DWL2_KEXoavXPTvX4ahrdRNycrJVL3HLfv-F0PF_f-sGXGtBqRg1s-gmrLnyFmxMG1br800xWx3SWmyKDTFd8V2f34YpQU9SXSJfxR8tRFWIyfZoLObl8RznnNLntWAHGOdEErxP3roKhSlzUVZUU3xrMvW6xR042Hk3G0-CNlFDYBUhnCCTRWZVasKC7gQNjX8SyRjpyrLCRgZVjKkqhpHlMw9KFi5HaQxpxygzNg_vwnpZle4-CKtkkjDswxSVGcapUxajUNIy41KqN4BX3YBp27KYczKNr7qzZqj_tO-_ATzvi5421B1_KvSsG3VNgsW7JaZ0Vb3QkuYMw7EwGsC9Zjr0nwkJxXF-jAG8bOZH_4bZurfnn0e6Ovui61qrOIuTkFrtx_zv7dBvx1P_8ODfiz6FK5PZ3q7efb__8SFclRxt4wNtHsH68qx2jwkuLfGJl4ofG0AQhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiEutLyXFjAIKg5NxTpO4sBp2WW1vKoItagHJMvj2LACklV3cyi_nnFeS3lIiOQSKXbk2DOeb-zxNwCPeILGJOSmIjoZCCNsgOTvBBjmPNUOyYL6pYF3h_HsWLw-iU424Hl3Fqbhh-gX3Lxm1PO1V_BF7n5ScjQLUnMp0wtwUcRPpRfpyXu-3kIY1nkkPSYmbysatrRCPoynr3reGP2GMHv60PPItTY90y342DW6iTj5clCt8MB8_4XP8T__ahuutJCUjRoZugobtrgGe1nDaX22z47WR7SW-2yPZWu267PrkBHwJMPF8nX00ZKVjs0mozGbF5_nOPcJfZ4xv_zlMyIxv0veLhQyXeSsKKkm-9bk6bXLG3A8fXk0ngVtmobACMI3QcpdaoTUoaM7QU2jn0Q8RrrS1JlIo4hRCjeMjD_xILizOXKtyTZGqTZ5eBM2i7Kwt4EZwZPEgz6UKPQwllYYjEJOk4yVVG8AT7rxUqblMPepNL6qzpeh_lN1_w3gYV900RB3_KnQg27QFamV3yvRhS2rpeIkMh6MhdEAbjXS0H8mJAzns2MM4HEjHv0bz9U9mX8YqfL0k6oqJeI0TkJqdT3kf2-HejHO6oc7_170PlzKJlP19tXhmx24zH2oTR1lswubq9PK3iWstMJ7tU78AACvDzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+of+HDAC+inhibitors%3A+Emerging+indications+and+novel+molecules&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Bondarev%2C+Andrey+D&rft.au=Attwood%2C+Misty+M&rft.au=Jonsson%2C+J%C3%B6rgen&rft.au=Chubarev%2C+Vladimir+N&rft.date=2021-12-01&rft.eissn=1365-2125&rft.volume=87&rft.issue=12&rft.spage=4577&rft_id=info:doi/10.1111%2Fbcp.14889&rft_id=info%3Apmid%2F33971031&rft.externalDocID=33971031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon |