Functional redundancy and stability in plant communities
Questions: Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species extinctions. Yet, functional redundancy has only been inferred by indirect evidence or measured by methods that may not be the most appropriate....
Saved in:
Published in | Journal of vegetation science Vol. 24; no. 5; pp. 963 - 974 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Questions: Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species extinctions. Yet, functional redundancy has only been inferred by indirect evidence or measured by methods that may not be the most appropriate. Here, we apply an existing method to measure functional redundancy, which is the fraction of species diversity not expressed by functional diversity, to assess whether functional redundancy affects community resilience after disturbance. Location: Subtropical grassland, south Brazil (30°05′46″S, 51°40′37″W). Method: Species traits and community composition were assessed in quadrats before grazing and after community recovery. Grazing intensity (G) was measured in each quadrat. We used traits linked to grazing intensity to define functional redundancy (FR) as the difference of Gini–Simpson index of species diversity (D) and Rao's quadratic entropy (Q). Also, with the same traits, we defined community functional stability (S) as the similarity between trait-based community composition before grazing and 47 and 180 d after grazing ending. Using path analysis we assessed different postulated causal models linking functional diversity (Q), functional redundancy (FR), grazing intensity (G) and community-weighted mean traits to community stability (S) under grazing. Results: Path analysis revealed the most valid causal model FR → S ← G, with a significant positive path coefficient for FR → S and a marginally significant negative one for S ← G. Since FR and G were independent in their covariation and in their effects on S, the model discriminated community resistance to grazing (the effect of G on S) from community resilience after grazing caused by functional redundancy (indicated by the effect of FR on S). Conclusion: We show that expressing functional redundancy mathematically is a useful tool for testing causal models linking diversity to community stability. The results support the conclusion that functional redundancy enhanced community resilience, therefore corroborating the insurance hypothesis. |
---|---|
AbstractList | Questions Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species extinctions. Yet, functional redundancy has only been inferred by indirect evidence or measured by methods that may not be the most appropriate. Here, we apply an existing method to measure functional redundancy, which is the fraction of species diversity not expressed by functional diversity, to assess whether functional redundancy affects community resilience after disturbance. Location Subtropical grassland, south B razil (30 degree 05'46 double prime S, 51 degree 40'37 double prime W). Method Species traits and community composition were assessed in quadrats before grazing and after community recovery. Grazing intensity ( G ) was measured in each quadrat. We used traits linked to grazing intensity to define functional redundancy ( FR ) as the difference of G ini- S impson index of species diversity ( D ) and R ao's quadratic entropy ( Q ). Also, with the same traits, we defined community functional stability ( S ) as the similarity between trait-based community composition before grazing and 47 and 180 d after grazing ending. Using path analysis we assessed different postulated causal models linking functional diversity ( Q ), functional redundancy ( FR ), grazing intensity ( G ) and community-weighted mean traits to community stability ( S ) under grazing. Results Path analysis revealed the most valid causal model FR arrow right S arrow left G , with a significant positive path coefficient for FR arrow right S and a marginally significant negative one for S arrow left G . Since FR and G were independent in their covariation and in their effects on S , the model discriminated community resistance to grazing (the effect of G on S ) from community resilience after grazing caused by functional redundancy (indicated by the effect of FR on S ). Conclusion We show that expressing functional redundancy mathematically is a useful tool for testing causal models linking diversity to community stability. The results support the conclusion that functional redundancy enhanced community resilience, therefore corroborating the insurance hypothesis. Functional redundancy in assemblages may insure ecosystem processes after perturbation potentially causing local species extinctions. Here we measure functional redundancy as the fraction of species diversity not expressed by functional diversity. We test by path analysis causal models linking diversity to community stability and conclude that functional redundancy enhanced community resilience after grazing, therefore corroborating the insurance hypothesis. Questions Functional redundancy in assemblages may insure ecosystem processes after perturbation potentially causing temporary or permanent local species extinctions. Yet, functional redundancy has only been inferred by indirect evidence or measured by methods that may not be the most appropriate. Here, we apply an existing method to measure functional redundancy, which is the fraction of species diversity not expressed by functional diversity, to assess whether functional redundancy affects community resilience after disturbance. Location Subtropical grassland, south Brazil (30°05′46″S, 51°40′37″W). Method Species traits and community composition were assessed in quadrats before grazing and after community recovery. Grazing intensity (G) was measured in each quadrat. We used traits linked to grazing intensity to define functional redundancy (FR) as the difference of Gini–Simpson index of species diversity (D) and Rao's quadratic entropy (Q). Also, with the same traits, we defined community functional stability (S) as the similarity between trait‐based community composition before grazing and 47 and 180 d after grazing ending. Using path analysis we assessed different postulated causal models linking functional diversity (Q), functional redundancy (FR), grazing intensity (G) and community‐weighted mean traits to community stability (S) under grazing. Results Path analysis revealed the most valid causal model FR → S ← G, with a significant positive path coefficient for FR → S and a marginally significant negative one for S ← G. Since FR and G were independent in their covariation and in their effects on S, the model discriminated community resistance to grazing (the effect of G on S) from community resilience after grazing caused by functional redundancy (indicated by the effect of FR on S). Conclusion We show that expressing functional redundancy mathematically is a useful tool for testing causal models linking diversity to community stability. The results support the conclusion that functional redundancy enhanced community resilience, therefore corroborating the insurance hypothesis. Functional redundancy in assemblages may insure ecosystem processes after perturbation potentially causing local species extinctions. Here we measure functional redundancy as the fraction of species diversity not expressed by functional diversity. We test by path analysis causal models linking diversity to community stability and conclude that functional redundancy enhanced community resilience after grazing, therefore corroborating the insurance hypothesis. Questions: Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species extinctions. Yet, functional redundancy has only been inferred by indirect evidence or measured by methods that may not be the most appropriate. Here, we apply an existing method to measure functional redundancy, which is the fraction of species diversity not expressed by functional diversity, to assess whether functional redundancy affects community resilience after disturbance. Location: Subtropical grassland, south Brazil (30°05′46″S, 51°40′37″W). Method: Species traits and community composition were assessed in quadrats before grazing and after community recovery. Grazing intensity (G) was measured in each quadrat. We used traits linked to grazing intensity to define functional redundancy (FR) as the difference of Gini–Simpson index of species diversity (D) and Rao's quadratic entropy (Q). Also, with the same traits, we defined community functional stability (S) as the similarity between trait-based community composition before grazing and 47 and 180 d after grazing ending. Using path analysis we assessed different postulated causal models linking functional diversity (Q), functional redundancy (FR), grazing intensity (G) and community-weighted mean traits to community stability (S) under grazing. Results: Path analysis revealed the most valid causal model FR → S ← G, with a significant positive path coefficient for FR → S and a marginally significant negative one for S ← G. Since FR and G were independent in their covariation and in their effects on S, the model discriminated community resistance to grazing (the effect of G on S) from community resilience after grazing caused by functional redundancy (indicated by the effect of FR on S). Conclusion: We show that expressing functional redundancy mathematically is a useful tool for testing causal models linking diversity to community stability. The results support the conclusion that functional redundancy enhanced community resilience, therefore corroborating the insurance hypothesis. |
Author | Sosinski, Enio E. Müller, Sandra C. Blanco, Carolina C. Duarte, Leandro D. S. Joner, Fernando Pillar, Valério D. |
Author_xml | – sequence: 1 givenname: Valério D. surname: Pillar fullname: Pillar, Valério D. email: vpillar@ufrgs.br organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil – sequence: 2 givenname: Carolina C. surname: Blanco fullname: Blanco, Carolina C. email: carolynablanco@gmail.com organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil – sequence: 3 givenname: Sandra C. surname: Müller fullname: Müller, Sandra C. email: sandra.muller@ufrgs.br organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil – sequence: 4 givenname: Enio E. surname: Sosinski fullname: Sosinski, Enio E. email: enio.sosinski@cpact.embrapa.br organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil – sequence: 5 givenname: Fernando surname: Joner fullname: Joner, Fernando email: f.joner@gmail.com organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil – sequence: 6 givenname: Leandro D. S. surname: Duarte fullname: Duarte, Leandro D. S. email: duarte.ldas@gmail.com organization: Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, RS, 91540-000, Porto Alegre, Brazil |
BookMark | eNp9kDFPwzAQhS1UJNrCwA9AyghDWp_tOM0IFS2gUgYqGC3HcSSX1Cm2A_Tfk1LogAS33EnvfU-n10MdW1uN0CngAbQzXL75ARDM0gPUBZ6wGADTTnsDxnFGKD1CPe-XGEOaceii0aSxKpjayipyumhsIa3aRNIWkQ8yN5UJm8jYaF1JGyJVr1aNNcFof4wOS1l5ffK9-2gxuV6Mb-LZw_R2fDmLFeM0jQtepgWRhWallJJwjgvAkmS5YiOSYF5SCmmSQK7znGAoS6JIArxkoAsmCe2j813s2tWvjfZBrIxXumrf0XXjBTDKMKWcs9Z6sbMqV3vvdCnWzqyk2wjAYluOaMsRX-W03uEvrzJBbnsITprqP-LdVHrzd7S4e3r8Ic52xNKH2u0JQhlPYQStHu9044P-2OvSvQie0jQRz_OpyMh9cjVPMrGgny_MkHM |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_132029 crossref_primary_10_1080_11263504_2023_2165569 crossref_primary_10_3389_fevo_2018_00219 crossref_primary_10_1016_j_ecolind_2021_108397 crossref_primary_10_1007_s10201_020_00641_z crossref_primary_10_1111_1365_2435_12272 crossref_primary_10_1016_j_scitotenv_2022_160425 crossref_primary_10_1016_j_biocon_2019_03_019 crossref_primary_10_1093_aob_mcaa206 crossref_primary_10_3389_fevo_2022_780406 crossref_primary_10_1111_ele_12384 crossref_primary_10_1111_geb_12628 crossref_primary_10_1002_ecs2_4593 crossref_primary_10_1016_j_ecolind_2020_106488 crossref_primary_10_1111_jvs_12587 crossref_primary_10_1016_j_ecoleng_2020_105763 crossref_primary_10_1016_j_scitotenv_2023_161486 crossref_primary_10_1016_j_cels_2023_12_004 crossref_primary_10_1016_j_jaridenv_2022_104908 crossref_primary_10_1038_srep33907 crossref_primary_10_1371_journal_pone_0118837 crossref_primary_10_1002_ece3_9254 crossref_primary_10_1002_eap_2221 crossref_primary_10_1007_s11427_021_2135_3 crossref_primary_10_1016_j_apsoil_2016_09_021 crossref_primary_10_1111_1365_2435_13815 crossref_primary_10_1016_j_scitotenv_2024_176741 crossref_primary_10_1016_j_scitotenv_2022_155102 crossref_primary_10_1016_j_ecolind_2022_109777 crossref_primary_10_1017_S0031182024001483 crossref_primary_10_3389_fmars_2021_575885 crossref_primary_10_1016_j_agee_2014_08_011 crossref_primary_10_1016_j_ijhydene_2019_03_124 crossref_primary_10_1111_avsc_12496 crossref_primary_10_1016_j_csbj_2025_03_012 crossref_primary_10_3354_ame01992 crossref_primary_10_1016_j_tree_2018_06_002 crossref_primary_10_1590_1806_908820200000023 crossref_primary_10_1002_eap_1727 crossref_primary_10_1007_s11356_024_32834_9 crossref_primary_10_1111_eff_12615 crossref_primary_10_1016_j_scitotenv_2021_145729 crossref_primary_10_1111_gcb_14662 crossref_primary_10_1111_brv_12504 crossref_primary_10_1007_s11258_023_01314_4 crossref_primary_10_1002_eap_2095 crossref_primary_10_1111_gcb_13174 crossref_primary_10_1111_een_13069 crossref_primary_10_1016_j_fecs_2023_100142 crossref_primary_10_1111_ele_13347 crossref_primary_10_1007_s42974_022_00128_0 crossref_primary_10_1016_j_jembe_2022_151777 crossref_primary_10_1002_ece3_6684 crossref_primary_10_3389_fenvs_2022_899571 crossref_primary_10_1016_j_ncon_2015_11_001 crossref_primary_10_3390_land3030739 crossref_primary_10_1111_jvs_12097 crossref_primary_10_1002_ece3_9435 crossref_primary_10_1007_s11273_023_09933_4 crossref_primary_10_1007_s10021_014_9825_x crossref_primary_10_1007_s11258_020_01024_1 crossref_primary_10_1111_1365_2745_14442 crossref_primary_10_1016_j_ncon_2016_09_003 crossref_primary_10_1038_s41598_018_20823_1 crossref_primary_10_3390_w14182835 crossref_primary_10_1016_j_ecolind_2016_12_041 crossref_primary_10_1016_j_ncon_2016_09_006 crossref_primary_10_1016_j_tfp_2022_100260 crossref_primary_10_1007_s11104_017_3291_0 crossref_primary_10_1111_ele_12466 crossref_primary_10_1007_s10021_015_9905_6 crossref_primary_10_1007_s00267_015_0461_9 crossref_primary_10_1016_j_ecss_2018_08_030 crossref_primary_10_1111_avsc_12335 crossref_primary_10_1590_0102_33062017abb0075 crossref_primary_10_1007_s11258_015_0557_6 crossref_primary_10_1111_csp2_92 crossref_primary_10_1016_j_ecss_2023_108334 crossref_primary_10_1371_journal_pone_0145605 crossref_primary_10_1016_j_biocon_2015_08_033 crossref_primary_10_1111_jvs_70025 crossref_primary_10_5814_j_issn_1674_764x_2021_03_003 crossref_primary_10_1002_ece3_6979 crossref_primary_10_3390_d12030109 crossref_primary_10_1007_s11258_016_0564_2 crossref_primary_10_1002_ecs2_3184 crossref_primary_10_1111_1365_2745_14350 crossref_primary_10_1007_s00027_018_0576_1 crossref_primary_10_1016_j_tree_2016_02_003 crossref_primary_10_1590_18069657rbcs20170277 crossref_primary_10_1186_s13717_023_00463_8 crossref_primary_10_1016_j_foreco_2023_120981 crossref_primary_10_3389_fmars_2022_897947 crossref_primary_10_1016_j_pld_2021_11_004 crossref_primary_10_1111_1365_2664_13795 crossref_primary_10_1111_2041_210X_13353 crossref_primary_10_1590_1678_476620151053276287 crossref_primary_10_1371_journal_pone_0206138 crossref_primary_10_3390_f14071331 crossref_primary_10_1111_ele_14411 crossref_primary_10_1002_eap_2385 crossref_primary_10_1038_s41467_021_25507_5 crossref_primary_10_1016_j_jnc_2021_126108 crossref_primary_10_1111_ecog_03504 crossref_primary_10_3390_w11071478 crossref_primary_10_3390_agronomy10091291 crossref_primary_10_1007_s11427_023_2574_0 crossref_primary_10_1038_s44185_023_00015_5 crossref_primary_10_1002_ece3_4448 crossref_primary_10_1007_s11258_020_01084_3 crossref_primary_10_1007_s10113_018_1392_9 crossref_primary_10_1007_s10530_023_03233_x crossref_primary_10_1111_1365_2664_14811 crossref_primary_10_1371_journal_pone_0272791 crossref_primary_10_1038_s41467_023_39836_0 crossref_primary_10_1093_jpe_rtx015 crossref_primary_10_3390_biomimetics8020173 crossref_primary_10_1111_1365_2664_14255 crossref_primary_10_1111_1365_2435_13865 crossref_primary_10_3389_fpls_2025_1521596 crossref_primary_10_1016_j_ecolind_2015_05_019 crossref_primary_10_1016_j_biocon_2021_109326 crossref_primary_10_1111_aec_13462 crossref_primary_10_3389_fmicb_2024_1439216 crossref_primary_10_1007_s00027_025_01172_4 crossref_primary_10_1111_ddi_12423 crossref_primary_10_1038_s41467_017_01350_5 crossref_primary_10_1371_journal_pone_0238222 crossref_primary_10_1016_j_ecolind_2020_106509 crossref_primary_10_1111_ddi_13914 crossref_primary_10_1111_1365_2656_14010 crossref_primary_10_1016_j_scitotenv_2022_156150 crossref_primary_10_1017_S0376892918000334 crossref_primary_10_1111_1365_2745_14379 crossref_primary_10_1002_ecy_3347 crossref_primary_10_1111_jvs_13256 crossref_primary_10_1016_j_scitotenv_2023_167402 crossref_primary_10_1111_jvs_13259 crossref_primary_10_1016_j_scitotenv_2016_05_186 crossref_primary_10_1007_s10452_022_09946_w crossref_primary_10_1016_j_jenvman_2019_109579 crossref_primary_10_1016_j_quascirev_2020_106180 crossref_primary_10_1111_1365_2664_13930 crossref_primary_10_1111_conl_12817 crossref_primary_10_1111_2041_210X_14100 crossref_primary_10_1111_gcb_17057 crossref_primary_10_1111_gcb_14581 crossref_primary_10_1111_1365_2664_14740 crossref_primary_10_1080_11263504_2020_1857864 crossref_primary_10_1016_j_agee_2025_109544 crossref_primary_10_1093_jpe_rtab039 crossref_primary_10_1111_1365_2664_12619 crossref_primary_10_1371_journal_pone_0306342 crossref_primary_10_1016_j_jenvman_2021_114332 crossref_primary_10_1016_j_baae_2025_01_009 crossref_primary_10_1093_plankt_fbw083 crossref_primary_10_1111_1365_2745_13798 crossref_primary_10_3390_agronomy10091230 crossref_primary_10_1111_rec_12986 crossref_primary_10_1016_j_biocon_2025_111103 crossref_primary_10_1016_j_tree_2019_07_010 crossref_primary_10_1038_s41467_020_19940_1 crossref_primary_10_1111_1365_2435_12709 crossref_primary_10_1038_s44185_023_00029_z crossref_primary_10_1111_jvs_12219 crossref_primary_10_1111_ele_12617 crossref_primary_10_1590_0001_3765202220201894 crossref_primary_10_1016_j_ecolind_2016_06_009 crossref_primary_10_1016_j_ecss_2018_11_012 crossref_primary_10_1017_S026646742400021X crossref_primary_10_1016_j_actao_2016_06_003 crossref_primary_10_3389_fpls_2020_00857 crossref_primary_10_3389_fpls_2022_923219 crossref_primary_10_1002_rra_3975 crossref_primary_10_1093_aob_mcw130 crossref_primary_10_1007_s10750_025_05811_7 crossref_primary_10_3390_plants11233284 |
Cites_doi | 10.1016/S0169-5347(03)00007-7 10.1111/j.2006.0030-1299.15048.x 10.1111/j.1654-1103.2011.01339.x 10.1007/978-1-4614-3797-0_7 10.1046/j.1365-2435.2002.00664.x 10.1111/j.1654-1103.2009.01042.x 10.1890/08-1850.1 10.1016/S0304-3800(00)00203-9 10.1111/j.1461-0248.2006.00924.x 10.1111/j.1365-2656.2007.01271.x 10.1016/B978-0-444-53868-0.50018-6 10.1111/j.1654-1103.2009.05666.x 10.1111/j.1461-0248.2009.01403.x 10.1080/11956860.1995.11682297 10.1111/j.1654-1103.2003.tb02158.x 10.1086/283424 10.1016/j.tree.2011.11.014 10.1016/j.ppees.2007.07.005 10.1016/0040-5809(82)90004-1 10.1007/s004420100720 10.1046/j.1365-2745.2001.00528.x 10.2307/1310545 10.1023/A:1015170104476 10.1556/ComEc.8.2007.2.3 10.1016/j.flora.2005.11.004 10.1111/j.1600-0706.2011.19375.x 10.1016/j.tree.2009.03.018 10.1017/CBO9780511605949 10.1073/pnas.96.4.1463 10.1111/j.1523-1739.1998.96379.x 10.1111/j.1654-1103.2010.01195.x 10.1073/pnas.0704716104 10.1046/j.1523-1739.1992.610018.x 10.1556/ComEc.8.2007.1.8 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2 10.1890/0012-9658(1999)080[2508:HSAC]2.0.CO;2 10.1007/s10021-011-9475-1 10.1111/j.1461-0248.2008.01255.x 10.1111/j.1461-0248.2005.00731.x 10.1111/j.1654-1103.2005.tb02393.x 10.1016/j.agee.2009.02.002 10.1007/BF01896809 10.2307/1224438 10.1007/s100219900062 10.1007/s100219900002 10.1016/j.baae.2005.02.008 10.1046/j.1365-2664.2001.00658.x 10.2307/4003033 10.1007/s10021-001-0045-9 |
ContentType | Journal Article |
Copyright | Copyright © 2013 International Association for Vegetation Science 2013 International Association for Vegetation Science |
Copyright_xml | – notice: Copyright © 2013 International Association for Vegetation Science – notice: 2013 International Association for Vegetation Science |
DBID | BSCLL AAYXX CITATION 7SN 7ST 7U6 C1K |
DOI | 10.1111/jvs.12047 |
DatabaseName | Istex CrossRef Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1654-1103 |
Editor | de Bello, Francesco |
Editor_xml | – sequence: 7 givenname: Francesco surname: de Bello fullname: de Bello, Francesco |
EndPage | 974 |
ExternalDocumentID | 10_1111_jvs_12047 JVS12047 23467181 ark_67375_WNG_92M5BN59_T |
Genre | article |
GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29L 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AGUYK AHBTC AHXOZ AI. AICQM AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DC7 DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EQZMY ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HTVGU HVGLF HZ~ IAG IAO IEP IHR IPSME ITC J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RWI RX1 SA0 SUPJJ TEORI TUS UB1 VH1 VOH W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~8M ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACHIC ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION 7SN 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c4637-d6f7d2ade4faaa2660d10a29bc482506f3317551bebb201ff2c2516f41ed4a23 |
IEDL.DBID | DR2 |
ISSN | 1100-9233 |
IngestDate | Thu Jul 10 19:33:25 EDT 2025 Tue Jul 01 03:14:57 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 16:34:15 EST 2025 Sun Aug 24 12:10:49 EDT 2025 Wed Oct 30 09:50:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4637-d6f7d2ade4faaa2660d10a29bc482506f3317551bebb201ff2c2516f41ed4a23 |
Notes | istex:7DB209D37D09A6F13BFF43D0977058765CA0460D ArticleID:JVS12047 ark:/67375/WNG-92M5BN59-T Appendix S1. Trait subsets with maximum congruence r(XG). Appendix S2. Principal components analysis (PCA) of the traits by OTUs matrix. Appendix S3. Relations between species diversity, functional diversity, functional redundancy, grazing intensity and community functional stability. Appendix S4. Alternative causal models. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jvs.12047 |
PQID | 1434033664 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1434033664 crossref_primary_10_1111_jvs_12047 crossref_citationtrail_10_1111_jvs_12047 wiley_primary_10_1111_jvs_12047_JVS12047 jstor_primary_23467181 istex_primary_ark_67375_WNG_92M5BN59_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2013 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
PublicationDecade | 2010 |
PublicationTitle | Journal of vegetation science |
PublicationTitleAlternate | J Veg Sci |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Overbeck, G.E. & Pfadenhauer, J. 2007. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202: 27-49. Champely, S. & Chessel, D. 2002. Measuring biological diversity using Euclidean metrics. Environmental and Ecological Statistics 9: 167-177. Laliberté, E., Wells, J.A., DeClerck, F., Metcalfe, D.J., Catterall, C.P., Queiroz, C., Aubin, I., Bonser, S.P., Ding, Y., Fraterrigo, J.M., McNamara, S., Morgan, J.W., Merlos, D.S., Vesk, P.A. & Mayfield, M.M. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13: 76-86. Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 18-23. de Bello, F., Buchmann, N., Casals, P., Leps, J. & Sebastia, M.-T. 2009a. Relating plant species and functional diversity to community δ13C in NE Spain pastures. Agriculture, Ecosystems and Environment 131: 303-307. Carpenter, S., Walker, B., Anderies, J.M. & Abel, N. 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4: 765-781. de Bello, F., Lepš, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170. Blanco, C.C., Sosinski, E.E., Santos, B.R.C., Abreu da Silva, M. & Pillar, V.D. 2007. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8: 57-65. Flynn, D.F.B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B.T., Lin, B.B., Simpson, N., Mayfield, M.M. & DeClerck, F. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12: 22-33. Gower, J.C. & Legendre, P. 1986. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3: 5-48. Jackson, D.A. 1995. PROTEST: a procrustean randomization test of community environment concordance. Ecoscience 2: 297-303. Walker, B., Kinzig, A. & Langridge, J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95-113. Joner, F., Specht, G., Müller, S.C. & Pillar, V.D. 2011. Functional redundancy in a clipping experiment on grassland plant communities. Oikos 120: 1420-1426. Podani, J. 1999. Extending Gower's general coefficient of similarity to ordinal characters. Taxon 48: 331-340. Senft, R.L., Coughenour, M.B., Bailey, D.W., Rittenhouse, L.R., Sala, O.E. & Swift, D.M. 1987. Large herbivore foraging and ecological hierarchies. BioScience 37: 789-799. Legendre, L. & Legendre, P. 1998. Numerical ecology, 2nd edn. Elsevier, New York, NY, US. Stewart, K.E.J., Bourn, N.A.D. & Thomas, J.A. 2001. An evaluation of three quick methods commonly used to assess sward height in ecology. Journal of Applied Ecology 38: 1148-1154. de Bello, F., Lavergne, S., Meynard, C.N., Lepš, J. & Thuiller, W. 2010. The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 21: 992-1000. Legendre, P. & Legendre, L. 2012. Numerical ecology, 3rd edn. Elsevier, New York, NY, US. Fonseca, C.R. & Ganade, G. 2001. Functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89: 118-125. Rao, C.R. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology 21: 24-43. Ricotta, C. 2005. A note on functional diversity measures. Basic and Applied Ecology 6: 479-486. Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V. & Messier, J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244-252. Harrison, G.W. 1979. Stability under environmental stress: resistance, resilience, persistence, and variability. The American Naturalist 113: 659-669. Naeem, S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12: 39-45. Sasaki, T., Okubo, S., Okayasu, T., Jamsran, U., Ohkuro, T. & Takeuchi, K. 2009. Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology 90: 2598-2608. Peres-Neto, P.R. & Jackson, D.A. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178. Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B. & Norberg, J. 2003. Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment 1: 488-494. Moretti, M., de Bello, F., Ibanez, S., Fontana, S., Pezzatti, G., Dziock, F., Rixen, C. & Lavorel, S. Linking traits between plants and invertebrate herbivores to track functional effects of environmental changes. Journal of Vegetation Science. 24. Overbeck, G.E., Müller, S.C., Fidelis, A., Pfadenhauer, J., Pillar, V.D., Blanco, C.C., Boldrini, I.I., Both, R. & Forneck, E.D. 2007. Brazil's neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics 9: 101-116. Bergamaschi, H., Guadagnin, M.R., Cardoso, L.S. & Silva, M.I.G.d. 2003. Clima da Estação Experimental da UFRGS (e região de abrangência). Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Porto Alegre, BR. Peterson, G., Allen, C.R. & Holling, C.S. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1: 6-18. Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution 24: 505-514. Carlucci, M.B., Streit, H., Duarte, L.D.S. & Pillar, V.D. 2012. Individual-based trait analyses reveal assembly patterns in tree sapling communities. Journal of Vegetation Science 23: 176-186. Lavorel, S., Storkey, J., Bardgett, R., de Bello, F., Berg, M., Le Roux, X., Moretti, M., Mulder, C., Díaz, S. & Harrington, R.. Linking functional diversity of plants and other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science. 24. Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem function from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556. de Bello, F., Thuiller, W., Leps, J., Choler, P., Clément, J.-C., Macek, P., Sebastià, M.-T. & Lavorel, S. 2009b. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science 20: 475-486. Chillo, V., Anand, M. & Ojeda, R.A. 2011. Assessing the use of functional diversity as a measure of ecological resilience in arid rangelands. Ecosystems 14: 1168-1177. Coughenour, M.B. 1991. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems. Journal of Range Management 44: 530-541. Pillar, V.D., Duarte, L.S., Sosinski, E.E. & Joner, F. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science 20: 334-348. Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540. Díaz, S., Symstad, A.J., Chapin, F.S. III, Wardle, D.A. & Huenneke, L.F. 2003. Functional diversity revealed by removal experiments. Trends in Ecology and Evolution 18: 140-146. Yachi, S. & Loreau, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96: 1463-1468. Micheli, F. & Halpern, B.S. 2005. Low functional redundancy in coastal marine assemblages. Ecology Letters 8: 391-400. Pillar, V.D. & Sosinski, E.E. 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 323-332. Diaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K. & Robson, M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 20684-20689. Podani, J. & Schmera, D. 2006. On dendrogram-based measures of functional diversity. Oikos 115: 179-185. Shipley, B. 2000. Cause and correlation in biology: a user's guide to path analysis, structural equations, and causal inference. Cambridge University Press, Cambridge, UK. Pillar, V.D. 1999. How sharp are classifications? Ecology 80: 2508-2516. Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977-985. Pimm, S.L. 1991. The balance of nature: ecological issues in the conservation of species and communities. University of Chicago Press, Chicago, IL, US. Manly, B.F.J. 2007. Randomization, bootstrap, and Monte Carlo methods in biology. 3. Chapman & Hall/CRC Press, Boca Raton, FL, US. Izsák, J. & Papp, L. 2000. A link between ecological diversity indices and measures of biodiversity. Ecological Modelling 130: 151-156. Petchey, O.L. & Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741-758. 2002; 16 2007; 104 2010; 13 1999; 48 2003; 14 2000; 130 2003; 18 2011; 14 2001; 89 2007; 76 1999; 80 1987; 37 2009; 12 1992; 6 1979; 113 2010; 21 2000 1991; 44 1986; 3 1982; 21 2009; 90 2007; 8 2007; 9 1999; 96 2012; 27 2003; 1 2012; 23 2009b; 20 1998; 12 2011; 120 2007; 202 2009; 24 2009; 20 2002; 9 2012 2009a; 131 2006; 9 1998 2008 2007 1952 2003 1999; 2 1991 1995; 2 2001; 129 2006; 115 2001; 4 2005; 8 2005; 6 2001; 38 1998; 1 2005; 16 e_1_2_6_51_1 e_1_2_6_53_1 Lavorel S. (e_1_2_6_27_1) Mott G.O. (e_1_2_6_33_1) 1952 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 Moretti M. (e_1_2_6_32_1) e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Pimm S.L. (e_1_2_6_45_1) 1991 Manly B.F.J. (e_1_2_6_30_1) 2007 e_1_2_6_14_1 Legendre L. (e_1_2_6_28_1) 1998 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Bergamaschi H. (e_1_2_6_2_1) 2003 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – reference: Blanco, C.C., Sosinski, E.E., Santos, B.R.C., Abreu da Silva, M. & Pillar, V.D. 2007. On the overlap between effect and response plant functional types linked to grazing. Community Ecology 8: 57-65. – reference: Walker, B., Kinzig, A. & Langridge, J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95-113. – reference: Manly, B.F.J. 2007. Randomization, bootstrap, and Monte Carlo methods in biology. 3. Chapman & Hall/CRC Press, Boca Raton, FL, US. – reference: Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution 24: 505-514. – reference: Stewart, K.E.J., Bourn, N.A.D. & Thomas, J.A. 2001. An evaluation of three quick methods commonly used to assess sward height in ecology. Journal of Applied Ecology 38: 1148-1154. – reference: Bergamaschi, H., Guadagnin, M.R., Cardoso, L.S. & Silva, M.I.G.d. 2003. Clima da Estação Experimental da UFRGS (e região de abrangência). Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, Porto Alegre, BR. – reference: Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem function from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556. – reference: Rao, C.R. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology 21: 24-43. – reference: Chillo, V., Anand, M. & Ojeda, R.A. 2011. Assessing the use of functional diversity as a measure of ecological resilience in arid rangelands. Ecosystems 14: 1168-1177. – reference: Diaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K. & Robson, M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 20684-20689. – reference: Gower, J.C. & Legendre, P. 1986. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3: 5-48. – reference: Peres-Neto, P.R. & Jackson, D.A. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178. – reference: Pillar, V.D. & Sosinski, E.E. 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 323-332. – reference: Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B. & Norberg, J. 2003. Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment 1: 488-494. – reference: de Bello, F., Thuiller, W., Leps, J., Choler, P., Clément, J.-C., Macek, P., Sebastià, M.-T. & Lavorel, S. 2009b. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science 20: 475-486. – reference: Izsák, J. & Papp, L. 2000. A link between ecological diversity indices and measures of biodiversity. Ecological Modelling 130: 151-156. – reference: Ricotta, C. 2005. A note on functional diversity measures. Basic and Applied Ecology 6: 479-486. – reference: Joner, F., Specht, G., Müller, S.C. & Pillar, V.D. 2011. Functional redundancy in a clipping experiment on grassland plant communities. Oikos 120: 1420-1426. – reference: Legendre, P. & Legendre, L. 2012. Numerical ecology, 3rd edn. Elsevier, New York, NY, US. – reference: Pimm, S.L. 1991. The balance of nature: ecological issues in the conservation of species and communities. University of Chicago Press, Chicago, IL, US. – reference: Coughenour, M.B. 1991. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems. Journal of Range Management 44: 530-541. – reference: Shipley, B. 2000. Cause and correlation in biology: a user's guide to path analysis, structural equations, and causal inference. Cambridge University Press, Cambridge, UK. – reference: Pillar, V.D., Duarte, L.S., Sosinski, E.E. & Joner, F. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science 20: 334-348. – reference: Overbeck, G.E. & Pfadenhauer, J. 2007. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202: 27-49. – reference: Micheli, F. & Halpern, B.S. 2005. Low functional redundancy in coastal marine assemblages. Ecology Letters 8: 391-400. – reference: Petchey, O.L. & Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741-758. – reference: de Bello, F., Lepš, J., Lavorel, S. & Moretti, M. 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170. – reference: Fonseca, C.R. & Ganade, G. 2001. Functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89: 118-125. – reference: Flynn, D.F.B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B.T., Lin, B.B., Simpson, N., Mayfield, M.M. & DeClerck, F. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12: 22-33. – reference: Carpenter, S., Walker, B., Anderies, J.M. & Abel, N. 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4: 765-781. – reference: de Bello, F., Buchmann, N., Casals, P., Leps, J. & Sebastia, M.-T. 2009a. Relating plant species and functional diversity to community δ13C in NE Spain pastures. Agriculture, Ecosystems and Environment 131: 303-307. – reference: Moretti, M., de Bello, F., Ibanez, S., Fontana, S., Pezzatti, G., Dziock, F., Rixen, C. & Lavorel, S. Linking traits between plants and invertebrate herbivores to track functional effects of environmental changes. Journal of Vegetation Science. 24. – reference: Peterson, G., Allen, C.R. & Holling, C.S. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1: 6-18. – reference: Legendre, L. & Legendre, P. 1998. Numerical ecology, 2nd edn. Elsevier, New York, NY, US. – reference: Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977-985. – reference: Senft, R.L., Coughenour, M.B., Bailey, D.W., Rittenhouse, L.R., Sala, O.E. & Swift, D.M. 1987. Large herbivore foraging and ecological hierarchies. BioScience 37: 789-799. – reference: Harrison, G.W. 1979. Stability under environmental stress: resistance, resilience, persistence, and variability. The American Naturalist 113: 659-669. – reference: Overbeck, G.E., Müller, S.C., Fidelis, A., Pfadenhauer, J., Pillar, V.D., Blanco, C.C., Boldrini, I.I., Both, R. & Forneck, E.D. 2007. Brazil's neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics 9: 101-116. – reference: Pillar, V.D. 1999. How sharp are classifications? Ecology 80: 2508-2516. – reference: Yachi, S. & Loreau, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96: 1463-1468. – reference: Podani, J. 1999. Extending Gower's general coefficient of similarity to ordinal characters. Taxon 48: 331-340. – reference: Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540. – reference: de Bello, F., Lavergne, S., Meynard, C.N., Lepš, J. & Thuiller, W. 2010. The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 21: 992-1000. – reference: Díaz, S., Symstad, A.J., Chapin, F.S. III, Wardle, D.A. & Huenneke, L.F. 2003. Functional diversity revealed by removal experiments. Trends in Ecology and Evolution 18: 140-146. – reference: Laliberté, E., Wells, J.A., DeClerck, F., Metcalfe, D.J., Catterall, C.P., Queiroz, C., Aubin, I., Bonser, S.P., Ding, Y., Fraterrigo, J.M., McNamara, S., Morgan, J.W., Merlos, D.S., Vesk, P.A. & Mayfield, M.M. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13: 76-86. – reference: Sasaki, T., Okubo, S., Okayasu, T., Jamsran, U., Ohkuro, T. & Takeuchi, K. 2009. Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology 90: 2598-2608. – reference: Champely, S. & Chessel, D. 2002. Measuring biological diversity using Euclidean metrics. Environmental and Ecological Statistics 9: 167-177. – reference: Lavorel, S., Storkey, J., Bardgett, R., de Bello, F., Berg, M., Le Roux, X., Moretti, M., Mulder, C., Díaz, S. & Harrington, R.. Linking functional diversity of plants and other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science. 24. – reference: Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 18-23. – reference: Jackson, D.A. 1995. PROTEST: a procrustean randomization test of community environment concordance. Ecoscience 2: 297-303. – reference: Podani, J. & Schmera, D. 2006. On dendrogram-based measures of functional diversity. Oikos 115: 179-185. – reference: Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V. & Messier, J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244-252. – reference: Naeem, S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12: 39-45. – reference: Carlucci, M.B., Streit, H., Duarte, L.D.S. & Pillar, V.D. 2012. Individual-based trait analyses reveal assembly patterns in tree sapling communities. Journal of Vegetation Science 23: 176-186. – volume: 6 start-page: 479 year: 2005 end-page: 486 article-title: A note on functional diversity measures publication-title: Basic and Applied Ecology – volume: 9 start-page: 167 year: 2002 end-page: 177 article-title: Measuring biological diversity using Euclidean metrics publication-title: Environmental and Ecological Statistics – volume: 131 start-page: 303 year: 2009a end-page: 307 article-title: Relating plant species and functional diversity to community δ C in NE Spain pastures publication-title: Agriculture, Ecosystems and Environment – article-title: Linking traits between plants and invertebrate herbivores to track functional effects of environmental changes publication-title: Journal of Vegetation Science – volume: 90 start-page: 2598 year: 2009 end-page: 2608 article-title: Two‐phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands publication-title: Ecology – volume: 20 start-page: 475 year: 2009b end-page: 486 article-title: Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence publication-title: Journal of Vegetation Science – volume: 89 start-page: 118 year: 2001 end-page: 125 article-title: Functional redundancy, random extinctions and the stability of ecosystems publication-title: Journal of Ecology – volume: 27 start-page: 244 year: 2012 end-page: 252 article-title: The return of the variance: intraspecific variability in community ecology publication-title: Trends in Ecology & Evolution – volume: 202 start-page: 27 year: 2007 end-page: 49 article-title: Adaptive strategies in burned subtropical grassland in southern Brazil publication-title: Flora – volume: 76 start-page: 977 year: 2007 end-page: 985 article-title: Low functional diversity and no redundancy in British avian assemblages publication-title: Journal of Animal Ecology – volume: 16 start-page: 533 year: 2005 end-page: 540 article-title: Rao's quadratic entropy as a measure of functional diversity based on multiple traits publication-title: Journal of Vegetation Science – volume: 14 start-page: 1168 year: 2011 end-page: 1177 article-title: Assessing the use of functional diversity as a measure of ecological resilience in arid rangelands publication-title: Ecosystems – volume: 18 start-page: 140 year: 2003 end-page: 146 article-title: Functional diversity revealed by removal experiments publication-title: Trends in Ecology and Evolution – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem function from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 120 start-page: 1420 year: 2011 end-page: 1426 article-title: Functional redundancy in a clipping experiment on grassland plant communities publication-title: Oikos – year: 1998 – volume: 37 start-page: 789 year: 1987 end-page: 799 article-title: Large herbivore foraging and ecological hierarchies publication-title: BioScience – volume: 38 start-page: 1148 year: 2001 end-page: 1154 article-title: An evaluation of three quick methods commonly used to assess sward height in ecology publication-title: Journal of Applied Ecology – volume: 12 start-page: 39 year: 1998 end-page: 45 article-title: Species redundancy and ecosystem reliability publication-title: Conservation Biology – volume: 23 start-page: 176 year: 2012 end-page: 186 article-title: Individual‐based trait analyses reveal assembly patterns in tree sapling communities publication-title: Journal of Vegetation Science – volume: 2 start-page: 297 year: 1995 end-page: 303 article-title: PROTEST: a procrustean randomization test of community environment concordance publication-title: Ecoscience – volume: 1 start-page: 6 year: 1998 end-page: 18 article-title: Ecological resilience, biodiversity, and scale publication-title: Ecosystems – volume: 113 start-page: 659 year: 1979 end-page: 669 article-title: Stability under environmental stress: resistance, resilience, persistence, and variability publication-title: The American Naturalist – volume: 96 start-page: 1463 year: 1999 end-page: 1468 article-title: Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 24 year: 1982 end-page: 43 article-title: Diversity and dissimilarity coefficients: a unified approach publication-title: Theoretical Population Biology – volume: 1 start-page: 488 year: 2003 end-page: 494 article-title: Response diversity, ecosystem change, and resilience publication-title: Frontiers in Ecology and the Environment – volume: 24 start-page: 505 year: 2009 end-page: 514 article-title: Emerging horizons in biodiversity and ecosystem functioning research publication-title: Trends in Ecology & Evolution – volume: 130 start-page: 151 year: 2000 end-page: 156 article-title: A link between ecological diversity indices and measures of biodiversity publication-title: Ecological Modelling – volume: 80 start-page: 2508 year: 1999 end-page: 2516 article-title: How sharp are classifications? publication-title: Ecology – volume: 6 start-page: 18 year: 1992 end-page: 23 article-title: Biodiversity and ecological redundancy publication-title: Conservation Biology – article-title: Linking functional diversity of plants and other trophic levels for the quantification of ecosystem services publication-title: Journal of Vegetation Science – volume: 2 start-page: 95 year: 1999 end-page: 113 article-title: Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species publication-title: Ecosystems – volume: 48 start-page: 331 year: 1999 end-page: 340 article-title: Extending Gower's general coefficient of similarity to ordinal characters publication-title: Taxon – volume: 12 start-page: 22 year: 2009 end-page: 33 article-title: Loss of functional diversity under land use intensification across multiple taxa publication-title: Ecology Letters – volume: 4 start-page: 765 year: 2001 end-page: 781 article-title: From metaphor to measurement: resilience of what to what? publication-title: Ecosystems – volume: 8 start-page: 391 year: 2005 end-page: 400 article-title: Low functional redundancy in coastal marine assemblages publication-title: Ecology Letters – volume: 3 start-page: 5 year: 1986 end-page: 48 article-title: Metric and Euclidean properties of dissimilarity coefficients publication-title: Journal of Classification – year: 2007 – year: 2003 – year: 2000 – start-page: 1380 year: 1952 end-page: 1395 – volume: 104 start-page: 20684 year: 2007 end-page: 20689 article-title: Incorporating plant functional diversity effects in ecosystem service assessments publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 992 year: 2010 end-page: 1000 article-title: The partitioning of diversity: showing Theseus a way out of the labyrinth publication-title: Journal of Vegetation Science – year: 2012 – volume: 9 start-page: 101 year: 2007 end-page: 116 article-title: Brazil's neglected biome: the South Brazilian Campos publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 20 start-page: 334 year: 2009 end-page: 348 article-title: Discriminating trait‐convergence and trait‐divergence assembly patterns in ecological community gradients publication-title: Journal of Vegetation Science – volume: 44 start-page: 530 year: 1991 end-page: 541 article-title: Spatial components of plant–herbivore interactions in pastoral, ranching, and native ungulate ecosystems publication-title: Journal of Range Management – volume: 115 start-page: 179 year: 2006 end-page: 185 article-title: On dendrogram‐based measures of functional diversity publication-title: Oikos – volume: 8 start-page: 163 year: 2007 end-page: 170 article-title: Importance of species abundance for assessment of trait composition: an example based on pollinator communities publication-title: Community Ecology – volume: 13 start-page: 76 year: 2010 end-page: 86 article-title: Land‐use intensification reduces functional redundancy and response diversity in plant communities publication-title: Ecology Letters – volume: 8 start-page: 57 year: 2007 end-page: 65 article-title: On the overlap between effect and response plant functional types linked to grazing publication-title: Community Ecology – volume: 14 start-page: 323 year: 2003 end-page: 332 article-title: An improved method for searching plant functional types by numerical analysis publication-title: Journal of Vegetation Science – start-page: 167 year: 2012 end-page: 187 – volume: 129 start-page: 169 year: 2001 end-page: 178 article-title: How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test publication-title: Oecologia – volume: 9 start-page: 741 year: 2006 end-page: 758 article-title: Functional diversity: back to basics and looking forward publication-title: Ecology Letters – year: 1991 – year: 2008 article-title: Lehrstuhl fur Vegetationsokologie – ident: e_1_2_6_15_1 doi: 10.1016/S0169-5347(03)00007-7 – ident: e_1_2_6_47_1 doi: 10.1111/j.2006.0030-1299.15048.x – ident: e_1_2_6_5_1 doi: 10.1111/j.1654-1103.2011.01339.x – ident: e_1_2_6_34_1 doi: 10.1007/978-1-4614-3797-0_7 – ident: e_1_2_6_26_1 doi: 10.1046/j.1365-2435.2002.00664.x – volume-title: Numerical ecology year: 1998 ident: e_1_2_6_28_1 – ident: e_1_2_6_12_1 doi: 10.1111/j.1654-1103.2009.01042.x – ident: e_1_2_6_51_1 doi: 10.1890/08-1850.1 – ident: e_1_2_6_22_1 doi: 10.1016/S0304-3800(00)00203-9 – ident: e_1_2_6_39_1 doi: 10.1111/j.1461-0248.2006.00924.x – ident: e_1_2_6_40_1 doi: 10.1111/j.1365-2656.2007.01271.x – ident: e_1_2_6_29_1 doi: 10.1016/B978-0-444-53868-0.50018-6 – start-page: 1380 volume-title: Proceedings of the 6th International Grassland Congress year: 1952 ident: e_1_2_6_33_1 – ident: e_1_2_6_44_1 doi: 10.1111/j.1654-1103.2009.05666.x – ident: e_1_2_6_25_1 doi: 10.1111/j.1461-0248.2009.01403.x – volume-title: The balance of nature: ecological issues in the conservation of species and communities year: 1991 ident: e_1_2_6_45_1 – ident: e_1_2_6_23_1 doi: 10.1080/11956860.1995.11682297 – ident: e_1_2_6_43_1 doi: 10.1111/j.1654-1103.2003.tb02158.x – ident: e_1_2_6_21_1 doi: 10.1086/283424 – ident: e_1_2_6_55_1 doi: 10.1016/j.tree.2011.11.014 – volume-title: Clima da Estação Experimental da UFRGS (e região de abrangência) year: 2003 ident: e_1_2_6_2_1 – ident: e_1_2_6_37_1 doi: 10.1016/j.ppees.2007.07.005 – ident: e_1_2_6_48_1 doi: 10.1016/0040-5809(82)90004-1 – ident: e_1_2_6_38_1 doi: 10.1007/s004420100720 – ident: e_1_2_6_19_1 doi: 10.1046/j.1365-2745.2001.00528.x – ident: e_1_2_6_52_1 doi: 10.2307/1310545 – ident: e_1_2_6_7_1 doi: 10.1023/A:1015170104476 – ident: e_1_2_6_10_1 doi: 10.1556/ComEc.8.2007.2.3 – ident: e_1_2_6_36_1 doi: 10.1016/j.flora.2005.11.004 – ident: e_1_2_6_24_1 doi: 10.1111/j.1600-0706.2011.19375.x – ident: e_1_2_6_49_1 doi: 10.1016/j.tree.2009.03.018 – ident: e_1_2_6_53_1 doi: 10.1017/CBO9780511605949 – ident: e_1_2_6_58_1 doi: 10.1073/pnas.96.4.1463 – ident: e_1_2_6_35_1 doi: 10.1111/j.1523-1739.1998.96379.x – ident: e_1_2_6_13_1 doi: 10.1111/j.1654-1103.2010.01195.x – ident: e_1_2_6_14_1 doi: 10.1073/pnas.0704716104 – ident: e_1_2_6_56_1 doi: 10.1046/j.1523-1739.1992.610018.x – ident: e_1_2_6_3_1 doi: 10.1556/ComEc.8.2007.1.8 – ident: e_1_2_6_27_1 article-title: Linking functional diversity of plants and other trophic levels for the quantification of ecosystem services publication-title: Journal of Vegetation Science – volume-title: Randomization, bootstrap, and Monte Carlo methods in biology. 3 year: 2007 ident: e_1_2_6_30_1 – ident: e_1_2_6_16_1 doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2 – ident: e_1_2_6_17_1 – ident: e_1_2_6_42_1 doi: 10.1890/0012-9658(1999)080[2508:HSAC]2.0.CO;2 – ident: e_1_2_6_8_1 doi: 10.1007/s10021-011-9475-1 – ident: e_1_2_6_18_1 doi: 10.1111/j.1461-0248.2008.01255.x – ident: e_1_2_6_31_1 doi: 10.1111/j.1461-0248.2005.00731.x – ident: e_1_2_6_4_1 doi: 10.1111/j.1654-1103.2005.tb02393.x – ident: e_1_2_6_11_1 doi: 10.1016/j.agee.2009.02.002 – ident: e_1_2_6_20_1 doi: 10.1007/BF01896809 – ident: e_1_2_6_46_1 doi: 10.2307/1224438 – ident: e_1_2_6_57_1 doi: 10.1007/s100219900062 – ident: e_1_2_6_41_1 doi: 10.1007/s100219900002 – ident: e_1_2_6_32_1 article-title: Linking traits between plants and invertebrate herbivores to track functional effects of environmental changes publication-title: Journal of Vegetation Science – ident: e_1_2_6_50_1 doi: 10.1016/j.baae.2005.02.008 – ident: e_1_2_6_54_1 doi: 10.1046/j.1365-2664.2001.00658.x – ident: e_1_2_6_9_1 doi: 10.2307/4003033 – ident: e_1_2_6_6_1 doi: 10.1007/s10021-001-0045-9 |
SSID | ssj0017961 |
Score | 2.5004895 |
Snippet | Questions: Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species... Questions Functional redundancy in assemblages may insure ecosystem processes after perturbation potentially causing temporary or permanent local species... Questions Functional redundancy in assemblages may insure ecosystem processes after perturbation, potentially causing temporary or permanent local species... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 963 |
SubjectTerms | Causal models Communes Community resilience Disturbance Ecological redundancy Ecosystems Functional diversity Functional traits Grasses Grazing intensity Path analysis Plants Species Species diversity Vegetation |
Title | Functional redundancy and stability in plant communities |
URI | https://api.istex.fr/ark:/67375/WNG-92M5BN59-T/fulltext.pdf https://www.jstor.org/stable/23467181 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12047 https://www.proquest.com/docview/1434033664 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EfbiX8-vk1julyiG-dGmTNLvBJxVXEdyHc_V8EEqaDxClK_sh5_31zqTbouKB-NL2YUrTzEzml2TmF4BflvkEJz4KjZeZGCOejZVhHi9UjeBFlxW0o3vel6eX4uw6u56D_boWpuKHaBbcyDPCeE0OrovxSyd_HLdTlgiqJKdcLQJEvxvqKLSziis1TZIYQQyfsQqFLJ76zVexaIG69W-dlvgKcL6ErSHu9Jbgpm5xlW5y155Oirb594bM8ZO_tAxfZ3g0OqgMaAXmXLkKi4dDxIxPa9DtYdirVgujkaOCMxqMI13aCFFlyKt9im7L6OEeFRSZqtiEKFq_waB3PDg6jWdnLcRGSN6JrfQdy7R1wmutMWonNk00U4VBdWWJ9JyARpYWrigQM3jPDCIj6UXqrNCMr8N8OSzdd4hUqrSXylMFq7CSdZ20ynS41lLiTbRgr-703Mx4yOk4jPu8mY88jvPQDS3YaUQfKvKN94R2g-YaCT26o2y1Tpb_6Z_kip1nh_1M5YMWrAfVNoKMY5RAhNOC7VrXOToX7Zjo0g2n-AHBRcK5lNTqoLn_tyM_u7oIDxsfF_0BX1g4XoNy1n7C_GQ0dZsIcibFVrDmZ8hd9W4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NDQleNr4mOhgEhBAvqRLbcWqJl21Qylj7AAX2gizHHxLalE5dOzH-eu6cJtoQSIiXJA8XxfHd-X62734GeOFYyHDio9B4mU0x4rlUWRbwQtUIQQxYRTu644kcfRaHx8XxGrxua2EafohuwY08I47X5OC0IH3Vyy_O-znLRHkDNuhEb2LOf_OxI49CS2vYUvMsSxHG8BWvUMzjaV-9Fo02qGN_tImJ1yDnVeAaI89wC761bW4STk76y0XVtz9_o3P835-6A5srSJrsNTZ0F9Z8fQ9u7s8QNl7eh8EQI1-zYJjMPdWc0XicmNolCCxjau1l8r1Ozk5RR4lt6k2IpfUBTIdvpwejdHXcQmqF5GXqZCgdM86LYIzBwJ25PDNMVRY1VmQycMIaRV75qkLYEAKzCI5kELl3wjC-Dev1rPYPIVG5MkGqQEWswkk28NIpW3JjpMSb6MGrtte1XVGR04kYp7qbklyc69gNPXjeiZ41_Bt_EnoZVddJmPkJJayVhf46eacVGxf7k0LpaQ-2o247QcYxUCDI6cGzVtka_Ys2TUztZ0v8gOAi41xKanVU3d_boQ-_fIoPO_8u-hRujabjI330fvLhEdxm8bQNSmF7DOuL-dLvIuZZVE-iaf8CIbz5ig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gGMML4AfxQHA1xviyl27b7V7jEwgnolyMnsKDSdPtR0Ige5fjjoB_PdPu7QYMJsaX3X2YzXY7M51f25lfAd5Y6glOfCQaLzUpRjybSkM9XkI1guc9WoYd3aOBOPjBD0_ykwV439TC1PwQ7YJb8Iw4XgcHH1t_28kvL7oZJbx4AEtcEBnObdj71nJHoaHVZKkZISmiGDanFYppPM2rd4LRUujXqyYv8Q7ivI1bY-Dpr8Kvpsl1vslZdzYtu-b3H2yO__lPa7AyB6TJTm1Bj2HBVU_g4e4IQeP1U-j1Me7Vy4XJxIWKszAaJ7qyCcLKmFh7nZxWyfgcNZSYutokcLQ-g2F_f_jhIJ0ftpAaLliRWuELS7V13GutMWwTmxFNZWlQXzkRngWkkWelK0sEDd5Tg9BIeJ45yzVl67BYjSr3HBKZSe2F9KGElVtBe05YaQqmtRB44x1413S6MnMi8nAexrlqJySXFyp2Qwdet6Ljmn3jPqG3UXOthJ6chXS1IlfHg49K0qN8d5BLNezAelRtK0gZhgmEOB141ehaoXeFLRNdudEMP8AZJ4wJEVodNff3dqjDn9_jw8a_i76ER1_3-urLp8HnTVim8aiNkL_2Ahank5nbQsAzLbejYd8AO974OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+redundancy+and+stability+in+plant+communities&rft.jtitle=Journal+of+vegetation+science&rft.au=Pillar%2C+Valerio+D&rft.au=Blanco%2C+Carolina+C&rft.au=Mueller%2C+Sandra+C&rft.au=Sosinski%2C+Enio+E&rft.date=2013-09-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=24&rft.issue=5&rft.spage=963&rft.epage=974&rft_id=info:doi/10.1111%2Fjvs.12047&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon |