Evaluation of downscaled, gridded climate data for the conterminous United States

Weather and climate affect many ecological processes, making spatially continuous yet fine‐resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 26; no. 5; pp. 1338 - 1351
Main Authors Behnke, R, S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, V. C. Radeloff
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Ltd 01.07.2016
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Weather and climate affect many ecological processes, making spatially continuous yet fine‐resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.
AbstractList Weather and climate affect many ecological processes, making spatially continuous yet fine‐resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.
Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.
Author V. C. Radeloff
Behnke, R
T. Albright
S. Vavrus
A. Allstadt
W. E. Thogmartin
Author_xml – sequence: 1
  fullname: Behnke, R
– sequence: 2
  fullname: S. Vavrus
– sequence: 3
  fullname: A. Allstadt
– sequence: 4
  fullname: T. Albright
– sequence: 5
  fullname: W. E. Thogmartin
– sequence: 6
  fullname: V. C. Radeloff
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27755764$$D View this record in MEDLINE/PubMed
BookMark eNo1j1tLAzEUhINU7EXxH2h-gKsnySbZfZRSL1AQqfu8nOaiK9tN2aSK_95AdV5mHr45nJmTyRAGR8glg1sGwO-YLBgodkJmrBZ1IWXFJzmDZAVoxaZkHuMnZHHOz8iUay2lVuWMvK6-sD9g6sJAg6c2fA_RYO_sDX0fO2udpabvdpgctZiQ-jDS9OGoCUNy464bwiHSZuhSBjcpY_GcnHrso7v48wVpHlZvy6di_fL4vLxfF6ZUQhcCSm_BCeu8MBVsHVcara2w9DVIBxUYQG2kNQJrRGG1Y1YA3woFUJXAF-TqeHd_2O6cbfdjfnP8af-3ZeD6CHgMLeY1sW02HFjus0opJvgvkDxaPA
CitedBy_id crossref_primary_10_1175_JCLI_D_21_0067_1
crossref_primary_10_3354_cr01672
crossref_primary_10_1029_2021GH000527
crossref_primary_10_5194_essd_12_629_2020
crossref_primary_10_1002_joc_6716
crossref_primary_10_1016_j_jafrearsci_2020_103959
crossref_primary_10_1016_j_ufug_2023_128180
crossref_primary_10_1111_ele_12782
crossref_primary_10_1029_2020GL088185
crossref_primary_10_1016_j_wace_2023_100554
crossref_primary_10_1016_j_compag_2024_109258
crossref_primary_10_1029_2021EF002635
crossref_primary_10_1002_joc_5990
crossref_primary_10_1016_j_rse_2021_112368
crossref_primary_10_1175_JCLI_D_17_0410_1
crossref_primary_10_1061_JCRGEI_CRENG_580
crossref_primary_10_1002_joc_5995
crossref_primary_10_3389_fenvs_2023_1055771
crossref_primary_10_5194_hess_29_85_2025
crossref_primary_10_1002_ajim_23506
crossref_primary_10_3390_forecast6010001
crossref_primary_10_5194_hess_26_2245_2022
crossref_primary_10_1016_j_foreco_2022_120533
crossref_primary_10_1038_s41467_021_21977_9
crossref_primary_10_2139_ssrn_4127061
crossref_primary_10_1038_s41598_021_82145_z
crossref_primary_10_3354_cr01574
crossref_primary_10_1002_joc_6852
crossref_primary_10_1038_s41598_023_48650_z
crossref_primary_10_1111_aec_13142
crossref_primary_10_1029_2018WR023087
crossref_primary_10_3390_su17051976
crossref_primary_10_1016_j_scitotenv_2024_176150
crossref_primary_10_1371_journal_pone_0189496
crossref_primary_10_1002_ps_6500
crossref_primary_10_1007_s00442_021_05085_5
crossref_primary_10_1002_rse2_39
crossref_primary_10_1016_j_rse_2020_112277
crossref_primary_10_1002_eap_2641
crossref_primary_10_1016_j_jhydrol_2023_129304
crossref_primary_10_1002_joc_5898
crossref_primary_10_1029_2020GL090411
crossref_primary_10_1175_JHM_D_21_0025_1
crossref_primary_10_1111_ecog_06833
crossref_primary_10_1016_j_agwat_2021_107187
crossref_primary_10_3390_atmos14040610
crossref_primary_10_1007_s10584_017_1899_y
crossref_primary_10_1038_s41598_020_79480_y
crossref_primary_10_1038_s41598_019_51666_z
crossref_primary_10_1080_02723646_2021_1928878
crossref_primary_10_1002_eap_2240
crossref_primary_10_3390_w11020301
crossref_primary_10_1002_joc_8655
crossref_primary_10_3389_feart_2021_640304
crossref_primary_10_1111_ddi_12527
crossref_primary_10_5194_hess_25_2685_2021
crossref_primary_10_1002_eap_1904
crossref_primary_10_5194_essd_14_4949_2022
crossref_primary_10_1029_2021GL094697
crossref_primary_10_1016_j_agrformet_2017_11_005
crossref_primary_10_3390_rs11070798
crossref_primary_10_3390_w15061019
crossref_primary_10_5194_esd_14_121_2023
crossref_primary_10_3390_app10196878
crossref_primary_10_1175_JAMC_D_22_0008_1
crossref_primary_10_1002_csc2_21440
crossref_primary_10_3390_rs14163860
crossref_primary_10_3390_atmos16020229
crossref_primary_10_1038_s41598_020_67511_7
crossref_primary_10_1088_1748_9326_ab5ebb
crossref_primary_10_3390_cli8120138
crossref_primary_10_1111_1365_2656_14201
crossref_primary_10_1186_s42408_024_00288_6
crossref_primary_10_1002_2017JD026535
crossref_primary_10_1073_pnas_1613625114
crossref_primary_10_1038_s41597_024_03995_6
crossref_primary_10_1002_joc_7060
crossref_primary_10_1016_j_rsase_2021_100670
crossref_primary_10_1002_ecs2_3451
crossref_primary_10_1016_j_agwat_2020_106376
crossref_primary_10_1002_env_2822
crossref_primary_10_1016_j_envsoft_2019_104570
crossref_primary_10_1007_s13201_024_02135_0
crossref_primary_10_1111_geb_12887
crossref_primary_10_32438_WPE_262021
crossref_primary_10_1007_s40808_018_0477_2
crossref_primary_10_1002_joc_8438
crossref_primary_10_1111_jfr3_12342
crossref_primary_10_1175_JHM_D_21_0045_1
crossref_primary_10_1016_j_uclim_2022_101322
crossref_primary_10_1002_ece3_70484
crossref_primary_10_1088_1748_9326_aade09
crossref_primary_10_3390_rs12091362
crossref_primary_10_1175_JHM_D_19_0113_1
crossref_primary_10_1007_s00506_021_00767_z
crossref_primary_10_3390_ijerph191811583
crossref_primary_10_1175_JCLI_D_18_0019_1
crossref_primary_10_1007_s00704_022_04035_2
crossref_primary_10_1029_2018WR023458
crossref_primary_10_1002_joc_7756
crossref_primary_10_1007_s00382_018_4537_0
crossref_primary_10_1016_j_hydroa_2019_100045
crossref_primary_10_1002_hyp_13566
crossref_primary_10_1371_journal_pone_0223362
crossref_primary_10_1016_j_rse_2019_111514
crossref_primary_10_3390_atmos12050593
crossref_primary_10_1029_2019EA000984
crossref_primary_10_1111_1752_1688_12819
ContentType Journal Article
Copyright 2016 by the Ecological Society of America.
Copyright_xml – notice: 2016 by the Ecological Society of America.
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/15-1061
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1939-5582
EndPage 1351
ExternalDocumentID 27755764
US201600186613
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-ET
-~X
.-4
..I
0R~
1OB
1OC
29G
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHHS
AAHKG
AAIHA
AAIKC
AAISJ
AAKGQ
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAZKR
ABBHK
ABCUV
ABEFU
ABHUG
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABTLG
ABYAD
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADDAD
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFPM
AFGKR
AFMIJ
AFXHP
AFZJQ
AGHSJ
AGJLS
AGUYK
AI.
AIDAL
AIHXQ
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ANHSF
AS~
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
CWIXF
DCZOG
DDYGU
DEVKO
DOOOF
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
F5P
FBQ
FVMVE
GTFYD
HGD
HQ2
HTVGU
HVGLF
H~9
IAG
IAO
IEA
IEP
IGH
IOF
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MVM
MXFUL
MXSTM
NHB
NXSMM
O9-
P0-
P2P
P2W
PALCI
RJQFR
ROL
RSZ
SA0
SAMSI
SUPJJ
TN5
UKR
V62
VH1
VOH
VQA
WBKPD
WH7
WOHZO
WXSBR
XIH
XSW
Y6R
YV5
YXE
YYM
YYP
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
AAHBH
AAHQN
AAMNL
AAYCA
ABPQH
ABXSQ
ACHIC
AFWVQ
AHBTC
AHXOZ
AILXY
AITYG
ALVPJ
AQVQM
CGR
CUY
CVF
ECM
EIF
HGLYW
IPSME
NPM
ID FETCH-LOGICAL-c4637-304fd0e3def3c80be267add8a4f905e080c0a7c5dc3a9aa3d7e1d302b36008402
ISSN 1051-0761
IngestDate Wed Feb 19 02:40:43 EST 2025
Wed Dec 27 19:21:06 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ecoregions
data set
weather
climate
extremes
gridded
resolution
Language English
License 2016 by the Ecological Society of America.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4637-304fd0e3def3c80be267add8a4f905e080c0a7c5dc3a9aa3d7e1d302b36008402
Notes http://dx.doi.org/10.1002/15-1061
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/15-1061
PMID 27755764
PageCount 14
ParticipantIDs pubmed_primary_27755764
fao_agris_US201600186613
PublicationCentury 2000
PublicationDate July 2016
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2016
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
SSID ssj0000222
Score 2.5252063
Snippet Weather and climate affect many ecological processes, making spatially continuous yet fine‐resolution weather data desirable for ecological research and...
Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and...
SourceID pubmed
fao
SourceType Index Database
Publisher
StartPage 1338
SubjectTerms climate
Climate Change
Conservation of Natural Resources
data collection
ecoregions
Environmental Monitoring - methods
meteorological data
Models, Theoretical
prediction
Rain
Temperature
United States
weather stations
Title Evaluation of downscaled, gridded climate data for the conterminous United States
URI https://www.ncbi.nlm.nih.gov/pubmed/27755764
Volume 26
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoERIXxKu05SEfuC1Zkjh2NsctWlQhtaLqLupt5fhBD9UuareV4Nf3mzg4CRQJuFiWtfEmns_2N-OZMWNvfVmXBkQhMUrZpKg05pz0NrG59XleayMExTsfHavDRfHpTJ51Bv0mumRTj82PO-NK_keqaINcKUr2HyQbO0UD6pAvSkgY5V_JeBZTdRPns2QoxpAH8-XXS0oOYin0EaTUjcgVNPoUkoN64wVDDrAD2jmw1Ju4MvbPuaMG785XwbUnnhadjkdf9M3ldfzNdDyaXlyAgdroXjOnproxCvRNDpmK7qntdvC7T09jRNj0orFA27KEbCRhnwltlagSKSeD1TfEy7cok72llJTn3rZMNwneueSHFLIZ5VP9-W-D_NmLU_oEunwQVERssS3oE5QO9OCk27HDaVN85xBcTT2_b_sF8_B6_Yvq0VCQ-WP2qNUd-DQA4Qm751ZP2YNwm-h31IK8UNuZdeGLeKBdv6-esZMOMXzteYeYd7zFC2_xwgkvHHjhwAvv44UHvPCAl-ds8XE2_3CYtJdqJKZQAhtKWnibOmGdF2aS1i5XJfa4iS58lUoHBcKkGtPXGqErrYUtXWZFmtdC0d0Lab7DtlfrldtlXJW5dF6D0XpZgBnWXilvUkMneZmS1R7bxaAtNT7gajkUwx57EUZy-S0kVVnmZSmh-xb7f37oJXvYofEVu-8xjd1rcMJN_aYRKMrjz0e3ijJfzA
linkProvider FAO Food and Agriculture Organization of the United Nations
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+downscaled%2C+gridded+climate+data+for+the+conterminous+United+States&rft.jtitle=Ecological+applications&rft.au=Behnke%2C+R&rft.au=S.+Vavrus&rft.au=A.+Allstadt&rft.au=T.+Albright&rft.date=2016-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=26&rft.issue=5&rft.spage=1338&rft.epage=1351&rft_id=info:doi/10.1002%2F15-1061&rft.externalDocID=US201600186613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon