Evaluation of downscaled, gridded climate data for the conterminous United States
Weather and climate affect many ecological processes, making spatially continuous yet fineâresolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this...
Saved in:
Published in | Ecological applications Vol. 26; no. 5; pp. 1338 - 1351 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Ltd
01.07.2016
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Weather and climate affect many ecological processes, making spatially continuous yet fineâresolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application. |
---|---|
AbstractList | Weather and climate affect many ecological processes, making spatially continuous yet fineâresolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application. Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application. |
Author | V. C. Radeloff Behnke, R T. Albright S. Vavrus A. Allstadt W. E. Thogmartin |
Author_xml | – sequence: 1 fullname: Behnke, R – sequence: 2 fullname: S. Vavrus – sequence: 3 fullname: A. Allstadt – sequence: 4 fullname: T. Albright – sequence: 5 fullname: W. E. Thogmartin – sequence: 6 fullname: V. C. Radeloff |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27755764$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j1tLAzEUhINU7EXxH2h-gKsnySbZfZRSL1AQqfu8nOaiK9tN2aSK_95AdV5mHr45nJmTyRAGR8glg1sGwO-YLBgodkJmrBZ1IWXFJzmDZAVoxaZkHuMnZHHOz8iUay2lVuWMvK6-sD9g6sJAg6c2fA_RYO_sDX0fO2udpabvdpgctZiQ-jDS9OGoCUNy464bwiHSZuhSBjcpY_GcnHrso7v48wVpHlZvy6di_fL4vLxfF6ZUQhcCSm_BCeu8MBVsHVcara2w9DVIBxUYQG2kNQJrRGG1Y1YA3woFUJXAF-TqeHd_2O6cbfdjfnP8af-3ZeD6CHgMLeY1sW02HFjus0opJvgvkDxaPA |
CitedBy_id | crossref_primary_10_1175_JCLI_D_21_0067_1 crossref_primary_10_3354_cr01672 crossref_primary_10_1029_2021GH000527 crossref_primary_10_5194_essd_12_629_2020 crossref_primary_10_1002_joc_6716 crossref_primary_10_1016_j_jafrearsci_2020_103959 crossref_primary_10_1016_j_ufug_2023_128180 crossref_primary_10_1111_ele_12782 crossref_primary_10_1029_2020GL088185 crossref_primary_10_1016_j_wace_2023_100554 crossref_primary_10_1016_j_compag_2024_109258 crossref_primary_10_1029_2021EF002635 crossref_primary_10_1002_joc_5990 crossref_primary_10_1016_j_rse_2021_112368 crossref_primary_10_1175_JCLI_D_17_0410_1 crossref_primary_10_1061_JCRGEI_CRENG_580 crossref_primary_10_1002_joc_5995 crossref_primary_10_3389_fenvs_2023_1055771 crossref_primary_10_5194_hess_29_85_2025 crossref_primary_10_1002_ajim_23506 crossref_primary_10_3390_forecast6010001 crossref_primary_10_5194_hess_26_2245_2022 crossref_primary_10_1016_j_foreco_2022_120533 crossref_primary_10_1038_s41467_021_21977_9 crossref_primary_10_2139_ssrn_4127061 crossref_primary_10_1038_s41598_021_82145_z crossref_primary_10_3354_cr01574 crossref_primary_10_1002_joc_6852 crossref_primary_10_1038_s41598_023_48650_z crossref_primary_10_1111_aec_13142 crossref_primary_10_1029_2018WR023087 crossref_primary_10_3390_su17051976 crossref_primary_10_1016_j_scitotenv_2024_176150 crossref_primary_10_1371_journal_pone_0189496 crossref_primary_10_1002_ps_6500 crossref_primary_10_1007_s00442_021_05085_5 crossref_primary_10_1002_rse2_39 crossref_primary_10_1016_j_rse_2020_112277 crossref_primary_10_1002_eap_2641 crossref_primary_10_1016_j_jhydrol_2023_129304 crossref_primary_10_1002_joc_5898 crossref_primary_10_1029_2020GL090411 crossref_primary_10_1175_JHM_D_21_0025_1 crossref_primary_10_1111_ecog_06833 crossref_primary_10_1016_j_agwat_2021_107187 crossref_primary_10_3390_atmos14040610 crossref_primary_10_1007_s10584_017_1899_y crossref_primary_10_1038_s41598_020_79480_y crossref_primary_10_1038_s41598_019_51666_z crossref_primary_10_1080_02723646_2021_1928878 crossref_primary_10_1002_eap_2240 crossref_primary_10_3390_w11020301 crossref_primary_10_1002_joc_8655 crossref_primary_10_3389_feart_2021_640304 crossref_primary_10_1111_ddi_12527 crossref_primary_10_5194_hess_25_2685_2021 crossref_primary_10_1002_eap_1904 crossref_primary_10_5194_essd_14_4949_2022 crossref_primary_10_1029_2021GL094697 crossref_primary_10_1016_j_agrformet_2017_11_005 crossref_primary_10_3390_rs11070798 crossref_primary_10_3390_w15061019 crossref_primary_10_5194_esd_14_121_2023 crossref_primary_10_3390_app10196878 crossref_primary_10_1175_JAMC_D_22_0008_1 crossref_primary_10_1002_csc2_21440 crossref_primary_10_3390_rs14163860 crossref_primary_10_3390_atmos16020229 crossref_primary_10_1038_s41598_020_67511_7 crossref_primary_10_1088_1748_9326_ab5ebb crossref_primary_10_3390_cli8120138 crossref_primary_10_1111_1365_2656_14201 crossref_primary_10_1186_s42408_024_00288_6 crossref_primary_10_1002_2017JD026535 crossref_primary_10_1073_pnas_1613625114 crossref_primary_10_1038_s41597_024_03995_6 crossref_primary_10_1002_joc_7060 crossref_primary_10_1016_j_rsase_2021_100670 crossref_primary_10_1002_ecs2_3451 crossref_primary_10_1016_j_agwat_2020_106376 crossref_primary_10_1002_env_2822 crossref_primary_10_1016_j_envsoft_2019_104570 crossref_primary_10_1007_s13201_024_02135_0 crossref_primary_10_1111_geb_12887 crossref_primary_10_32438_WPE_262021 crossref_primary_10_1007_s40808_018_0477_2 crossref_primary_10_1002_joc_8438 crossref_primary_10_1111_jfr3_12342 crossref_primary_10_1175_JHM_D_21_0045_1 crossref_primary_10_1016_j_uclim_2022_101322 crossref_primary_10_1002_ece3_70484 crossref_primary_10_1088_1748_9326_aade09 crossref_primary_10_3390_rs12091362 crossref_primary_10_1175_JHM_D_19_0113_1 crossref_primary_10_1007_s00506_021_00767_z crossref_primary_10_3390_ijerph191811583 crossref_primary_10_1175_JCLI_D_18_0019_1 crossref_primary_10_1007_s00704_022_04035_2 crossref_primary_10_1029_2018WR023458 crossref_primary_10_1002_joc_7756 crossref_primary_10_1007_s00382_018_4537_0 crossref_primary_10_1016_j_hydroa_2019_100045 crossref_primary_10_1002_hyp_13566 crossref_primary_10_1371_journal_pone_0223362 crossref_primary_10_1016_j_rse_2019_111514 crossref_primary_10_3390_atmos12050593 crossref_primary_10_1029_2019EA000984 crossref_primary_10_1111_1752_1688_12819 |
ContentType | Journal Article |
Copyright | 2016 by the Ecological Society of America. |
Copyright_xml | – notice: 2016 by the Ecological Society of America. |
DBID | FBQ CGR CUY CVF ECM EIF NPM |
DOI | 10.1002/15-1061 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1939-5582 |
EndPage | 1351 |
ExternalDocumentID | 27755764 US201600186613 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -ET -~X .-4 ..I 0R~ 1OB 1OC 29G 2AX 33P 4.4 42X 53G 5GY 85S 8WZ A6W AAESR AAHHS AAHKG AAIHA AAIKC AAISJ AAKGQ AAMNW AANLZ AASGY AAXRX AAYJJ AAZKR ABBHK ABCUV ABEFU ABHUG ABJNI ABLJU ABPFR ABPLY ABPPZ ABTLG ABYAD ACAHQ ACCFJ ACCZN ACGFS ACNCT ACPOU ACSTJ ACTWD ACUBG ACXBN ACXQS ADBBV ADDAD ADKYN ADMGS ADNWM ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFFPM AFGKR AFMIJ AFXHP AFZJQ AGHSJ AGJLS AGUYK AI. AIDAL AIHXQ AIRJO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ANHSF AS~ AZFZN AZVAB BFHJK BMXJE BRXPI CBGCD CS3 CUYZI CWIXF DCZOG DDYGU DEVKO DOOOF DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY F5P FBQ FVMVE GTFYD HGD HQ2 HTVGU HVGLF H~9 IAG IAO IEA IEP IGH IOF ITC JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JSODD JST L7B LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MV1 MVM MXFUL MXSTM NHB NXSMM O9- P0- P2P P2W PALCI RJQFR ROL RSZ SA0 SAMSI SUPJJ TN5 UKR V62 VH1 VOH VQA WBKPD WH7 WOHZO WXSBR XIH XSW Y6R YV5 YXE YYM YYP Z0I ZCA ZCG ZO4 ZZTAW ~02 ~KM AAHBH AAHQN AAMNL AAYCA ABPQH ABXSQ ACHIC AFWVQ AHBTC AHXOZ AILXY AITYG ALVPJ AQVQM CGR CUY CVF ECM EIF HGLYW IPSME NPM |
ID | FETCH-LOGICAL-c4637-304fd0e3def3c80be267add8a4f905e080c0a7c5dc3a9aa3d7e1d302b36008402 |
ISSN | 1051-0761 |
IngestDate | Wed Feb 19 02:40:43 EST 2025 Wed Dec 27 19:21:06 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ecoregions data set weather climate extremes gridded resolution |
Language | English |
License | 2016 by the Ecological Society of America. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4637-304fd0e3def3c80be267add8a4f905e080c0a7c5dc3a9aa3d7e1d302b36008402 |
Notes | http://dx.doi.org/10.1002/15-1061 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/15-1061 |
PMID | 27755764 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_27755764 fao_agris_US201600186613 |
PublicationCentury | 2000 |
PublicationDate | July 2016 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Ecological applications |
PublicationTitleAlternate | Ecol Appl |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
SSID | ssj0000222 |
Score | 2.5252063 |
Snippet | Weather and climate affect many ecological processes, making spatially continuous yet fineâresolution weather data desirable for ecological research and... Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and... |
SourceID | pubmed fao |
SourceType | Index Database Publisher |
StartPage | 1338 |
SubjectTerms | climate Climate Change Conservation of Natural Resources data collection ecoregions Environmental Monitoring - methods meteorological data Models, Theoretical prediction Rain Temperature United States weather stations |
Title | Evaluation of downscaled, gridded climate data for the conterminous United States |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27755764 |
Volume | 26 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoERIXxKu05SEfuC1Zkjh2NsctWlQhtaLqLupt5fhBD9UuareV4Nf3mzg4CRQJuFiWtfEmns_2N-OZMWNvfVmXBkQhMUrZpKg05pz0NrG59XleayMExTsfHavDRfHpTJ51Bv0mumRTj82PO-NK_keqaINcKUr2HyQbO0UD6pAvSkgY5V_JeBZTdRPns2QoxpAH8-XXS0oOYin0EaTUjcgVNPoUkoN64wVDDrAD2jmw1Ju4MvbPuaMG785XwbUnnhadjkdf9M3ldfzNdDyaXlyAgdroXjOnproxCvRNDpmK7qntdvC7T09jRNj0orFA27KEbCRhnwltlagSKSeD1TfEy7cok72llJTn3rZMNwneueSHFLIZ5VP9-W-D_NmLU_oEunwQVERssS3oE5QO9OCk27HDaVN85xBcTT2_b_sF8_B6_Yvq0VCQ-WP2qNUd-DQA4Qm751ZP2YNwm-h31IK8UNuZdeGLeKBdv6-esZMOMXzteYeYd7zFC2_xwgkvHHjhwAvv44UHvPCAl-ds8XE2_3CYtJdqJKZQAhtKWnibOmGdF2aS1i5XJfa4iS58lUoHBcKkGtPXGqErrYUtXWZFmtdC0d0Lab7DtlfrldtlXJW5dF6D0XpZgBnWXilvUkMneZmS1R7bxaAtNT7gajkUwx57EUZy-S0kVVnmZSmh-xb7f37oJXvYofEVu-8xjd1rcMJN_aYRKMrjz0e3ijJfzA |
linkProvider | FAO Food and Agriculture Organization of the United Nations |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+downscaled%2C+gridded+climate+data+for+the+conterminous+United+States&rft.jtitle=Ecological+applications&rft.au=Behnke%2C+R&rft.au=S.+Vavrus&rft.au=A.+Allstadt&rft.au=T.+Albright&rft.date=2016-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=26&rft.issue=5&rft.spage=1338&rft.epage=1351&rft_id=info:doi/10.1002%2F15-1061&rft.externalDocID=US201600186613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon |