Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation
Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population‐level effect of group‐based interventions. One important application of CRTs is the control of vector‐borne disease, such as malaria. However, a particular challenge for designing these...
Saved in:
Published in | Biometrical journal Vol. 63; no. 5; pp. 1052 - 1071 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population‐level effect of group‐based interventions. One important application of CRTs is the control of vector‐borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed‐form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation. |
---|---|
AbstractList | Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population‐level effect of group‐based interventions. One important application of CRTs is the control of vector‐borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed‐form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation. Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population‐level effect of group‐based interventions. One important application of CRTs is the control of vector‐borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed‐form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation. Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population-level effect of group-based interventions. One important application of CRTs is the control of vector-borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed-form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation.Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population-level effect of group-based interventions. One important application of CRTs is the control of vector-borne disease, such as malaria. However, a particular challenge for designing these trials is that the primary outcome involves counts of episodes that are subject to right truncation. While sample size formulas have been developed for CRTs with clustered counts, they are not directly applicable when the counts are right truncated. To address this limitation, we discuss two marginal modeling approaches for the analysis of CRTs with truncated counts and develop two corresponding closed-form sample size formulas to facilitate the design of such trials. The proposed sample size formulas allow investigators to explore the power under a large number of scenarios without computationally intensive simulations. The proposed formulas are validated in extensive simulations. We further explore the implication of right truncation on power and apply the proposed formulas to illustrate the power calculation for a malaria control CRT where the primary outcome is subject to right truncation. |
Author | Li, Fan Tong, Guangyu |
AuthorAffiliation | 3 Yale Center for Analytical Sciences, New Haven, CT, USA 1 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA 2 Center for Methods in Implementation and Prevention Science, Yale University, New Haven, CT, USA |
AuthorAffiliation_xml | – name: 2 Center for Methods in Implementation and Prevention Science, Yale University, New Haven, CT, USA – name: 1 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA – name: 3 Yale Center for Analytical Sciences, New Haven, CT, USA |
Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0001-6183-1893 surname: Li fullname: Li, Fan email: fan.f.li@yale.edu organization: Yale Center for Analytical Sciences – sequence: 2 givenname: Guangyu orcidid: 0000-0002-7697-5029 surname: Tong fullname: Tong, Guangyu organization: Yale Center for Analytical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33751620$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv3CAUhVGVqJlMu-2yQuqmG094GexNpTbqI1WiLtquEcY4w8iGKeCOkl-fm0dHTTZZcYHvHO7lHKODEIND6A0lK0oIO-n8tFkxwghsOHmBFrRmtBKEywO0IJzxijdCHaHjnDfAtESwl-iIc1VTycgCpZ9m2o4OZ3_tsAk93sadS9jGkH3vkikeKjxEOBrnXOAqARUnwHtckjdjxjtf1qCYQ8FxLjZOLuM8dxtnCy4RJ3-5hiLNwd7ZvUKHA8jc64d1iX5_-fzr9Ft1_uPr2enH88oKyWXFuG1qWfOaQddusE42g2h5T9u2NcY2lNSt65QiDTFM2pZZMTilupooaXti-RJ9uPfdzt3keutCSWbU2-Qnk650NF4_vgl-rS_jX91SziRVYPD-wSDFP7PLRU8-WzeOJrg4Z81qIqA9QQmg756gmzinAOMBxaXiQkE-S_T2_472rfyLA4DVPWBTzDm5YY9Qom_z1rd5633eIBBPBNaXu1-Gifz4rGznR3f1zCP609nFd8a45DecasCR |
CitedBy_id | crossref_primary_10_1002_bimj_202100112 crossref_primary_10_1002_sim_9541 crossref_primary_10_1002_bimj_202200002 crossref_primary_10_1002_sim_9811 crossref_primary_10_1093_ije_dyac131 crossref_primary_10_1002_bimj_202200113 crossref_primary_10_1002_bimj_202200135 crossref_primary_10_1002_sim_9966 crossref_primary_10_1177_17407745231186094 crossref_primary_10_1002_bimj_202100081 crossref_primary_10_1002_sim_9283 crossref_primary_10_1002_sim_9375 |
Cites_doi | 10.1111/biom.12918 10.1371/journal.pmed.1001594 10.1177/0962280220932962 10.1093/ije/dyz277 10.1093/biomet/73.1.13 10.1002/sim.1379 10.1186/s12874-015-0026-x 10.1002/sim.6344 10.1002/bimj.201600182 10.1177/1536867X20931001 10.1191/0962280204sm368ra 10.1093/ije/dyl129 10.1002/sim.1650 10.1111/j.1541-0420.2009.01374.x 10.1093/ije/dyaa037 10.1002/sim.5819 10.1002/sim.8575 10.1177/009286150303700113 10.1080/03610926.2018.1532004 10.1016/S0140-6736(18)32321-3 10.1136/bmj.d5886 10.1111/j.0006-341X.2001.00126.x 10.1002/sim.8415 10.1002/sim.2740 10.1016/S0197-2456(01)00131-3 10.1198/016214501753382309 10.1002/sim.7995 10.2105/AJPH.2017.303706 10.1093/ije/dyv113 10.1002/bimj.201700125 10.1002/sim.7410 10.1177/0962280212439578 10.2105/AJPH.94.3.423 10.1038/ncomms1879 10.1002/sim.3857 10.1201/9781584888178 10.1099/jmm.0.041277-0 10.1002/bimj.201600262 10.2105/AJPH.2017.303707 10.1002/1521-4036(200102)43:1<75::AID-BIMJ75>3.0.CO;2-N 10.1111/j.0006-341X.2001.01198.x 10.2307/2290687 10.1177/0193841X02239019 10.1080/10543401003619205 10.1111/j.1751-5823.2009.00092.x 10.1016/S1473-3099(15)00239-X 10.1177/0962280219859915 10.1177/0962280206071931 10.1002/sim.8378 10.1136/bmj.e5661 10.1002/sim.3518 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/bimj.202000230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Public Health |
EISSN | 1521-4036 |
EndPage | 1071 |
ExternalDocumentID | PMC9132617 33751620 10_1002_bimj_202000230 BIMJ2236 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Center for Advancing Translational Sciences funderid: UL1 TR000142 – fundername: NCATS NIH HHS grantid: UL1 TR000142 – fundername: NCATS NIH HHS grantid: UL1 TR001863 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4636-23c8565352090efce68f493d1999aac81059eb77080a26c92c4fe77b5076cd0c3 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Thu Aug 21 13:44:49 EDT 2025 Fri Jul 11 00:35:57 EDT 2025 Fri Jul 25 10:37:18 EDT 2025 Thu Apr 03 07:05:11 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 04:18:05 EDT 2025 Wed Jan 22 16:28:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | group-randomized trials Poisson distribution unequal cluster sizes arm-specific exchangeable correlation generalized estimating equations coefficient of variation |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4636-23c8565352090efce68f493d1999aac81059eb77080a26c92c4fe77b5076cd0c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6183-1893 0000-0002-7697-5029 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9132617 |
PMID | 33751620 |
PQID | 2536734702 |
PQPubID | 105592 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9132617 proquest_miscellaneous_2504352410 proquest_journals_2536734702 pubmed_primary_33751620 crossref_primary_10_1002_bimj_202000230 crossref_citationtrail_10_1002_bimj_202000230 wiley_primary_10_1002_bimj_202000230_BIMJ2236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2021 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2012; 61 2015; 15 1986; 73 2020; 20 2006; 35 1993; 88 2004; 23 2020; 39 1998 2019; 38 2003; 37 2017b; 107 2018; 60 2012; 345 2001; 22 2009; 28 2001; 43 2007; 16 2009; 77 2010; 66 2015a; 15 2010; 20 2004; 94 2017a; 107 2012; 3 2017; 59 2013; 32 2017; 36 2010; 29 2020 2015; 44 2004; 13 2020; 49 2003; 27 2018; 74 2019; 393 2001; 57 2012; 22 2011; 343 2014; 11 2001; 96 2015b; 34 2003; 22 2007; 26 2020; 29 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Murray D. M. (e_1_2_10_37_1) 1998 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 22 start-page: 211 year: 2001 end-page: 227 article-title: Sample size and power calculations with correlated binary data publication-title: Controlled Clinical Trials – volume: 77 start-page: 378 year: 2009 end-page: 394 article-title: The intra‐cluster correlation coefficient in cluster randomized trials: A review of definitions publication-title: International Statistical Review – volume: 32 start-page: 4162 year: 2013 end-page: 4179 article-title: Sample size determination for clustered count data publication-title: Statistics in Medicine – volume: 57 start-page: 1198 year: 2001 end-page: 1206 article-title: Small‐sample adjustments for Wald‐type tests using sandwich estimators publication-title: Biometrics – volume: 38 start-page: 636 year: 2019 end-page: 649 article-title: Power and sample size requirements for GEE analyses of cluster randomized crossover trials publication-title: Statistics in Medicine – volume: 74 start-page: 1450 year: 2018 end-page: 1458 article-title: Sample size determination for GEE analyses of stepped wedge cluster randomized trials publication-title: Biometrics – year: 1998 – volume: 88 start-page: 9 year: 1993 article-title: Approximate inference in generalized linear mixed models publication-title: Journal of the American Statistical Association – volume: 29 start-page: 1488 year: 2010 end-page: 1501 article-title: Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second‐order PQL mixed logistic regression publication-title: Statistics in Medicine – volume: 3 start-page: 1 year: 2012 end-page: 9 article-title: Estimating the potential public health impact of seasonal malaria chemoprevention in African children publication-title: Nature Communications – volume: 49 start-page: 954 year: 2020 end-page: 962 article-title: Power calculations for cluster randomized trials (CRTs) with right‐truncated Poisson‐distributed outcomes: A motivating example from a malaria vector control trial publication-title: International Journal of Epidemiology – volume: 94 start-page: 423 year: 2004 end-page: 432 article-title: Design and analysis of group‐randomized trials: A review of recent methodological developments publication-title: American Journal of Public Health – volume: 11 start-page: 1 year: 2014 end-page: 16 article-title: Impact of intermittent screening and treatment for malaria among school children in Kenya: A Cluster randomised trial publication-title: PLoS Medicine – volume: 49 start-page: 964 year: 2020 end-page: 967 article-title: Commentary: Right truncation in cluster randomized trials can attenuate the power of a marginal analysis publication-title: International Journal of Epidemiology – volume: 61 start-page: 904 year: 2012 end-page: 910 article-title: Enhancement of naturally acquired immunity against malaria by drug use publication-title: Journal of Medical Microbiology – volume: 57 start-page: 126 year: 2001 end-page: 134 article-title: A covariance estimator for GEE with improved small‐sample properties publication-title: Biometrics – volume: 37 start-page: 109 year: 2003 end-page: 114 article-title: Sample size calculation for dichotomous outcomes in cluster randomization trials with varying cluster size publication-title: Drug Information Journal – volume: 59 start-page: 478 year: 2017 end-page: 495 article-title: Improved standard error estimator for maintaining the validity of inference in cluster randomized trials with a small number of clusters publication-title: Biometrical Journal – volume: 29 start-page: 1338 year: 2020 end-page: 1353 article-title: Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate‐dependent missingness publication-title: Statistical Methods in Medical Research – volume: 28 start-page: 814 year: 2009 end-page: 827 article-title: Using second‐order generalized estimating equations to model heterogeneous intraclass correlation in cluster‐randomized trials publication-title: Statistics in Medicine – volume: 393 start-page: 1517 year: 2019 end-page: 1526 article-title: Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): A cluster‐randomised trial publication-title: The Lancet – volume: 96 start-page: 1387 year: 2001 end-page: 1396 article-title: A note on the efficiency of sandwich covariance matrix estimation publication-title: Journal of the American Statistical Association – volume: 66 start-page: 1230 year: 2010 end-page: 1237 article-title: Sample size considerations for GEE analyses of three‐level cluster randomized trials publication-title: Biometrics – volume: 343 start-page: 1 year: 2011 end-page: 14 article-title: Impact of CONSORT extension for cluster randomised trials on quality of reporting and study methodology: Review of random sample of 300 trials, 2000‐8 publication-title: BMJ – volume: 60 start-page: 616 year: 2018 end-page: 638 article-title: Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models publication-title: Biometrical Journal – volume: 16 start-page: 167 year: 2007 end-page: 184 article-title: Comparison of subject‐specific and population averaged models for count data from cluster‐unit intervention trials publication-title: Statistical Methods in Medical Research – volume: 22 start-page: 324 year: 2012 end-page: 345 article-title: Sample size and power calculations for medical studies by simulation when closed form expressions are not available publication-title: Statistical Methods in Medical Research – volume: 36 start-page: 3791 year: 2017 end-page: 3806 article-title: An evaluation of constrained randomization for the design and analysis of group‐randomized trials with binary outcomes publication-title: Statistics in Medicine – volume: 26 start-page: 2589 year: 2007 end-page: 2603 article-title: Relative efficiency of unequal versus equal cluster sizes in cluster randomized and multicentre trials publication-title: Statistics in Medicine – volume: 34 start-page: 281 year: 2015b end-page: 296 article-title: Small sample performance of bias‐corrected sandwich estimators for cluster‐randomized trials with binary outcomes publication-title: Statistics in Medicine – volume: 22 start-page: 1235 year: 2003 end-page: 1254 article-title: An integrated population‐averaged approach to the design, analysis and sample size determination of cluster‐unit trials publication-title: Statistics in Medicine – volume: 107 start-page: 1078 year: 2017b end-page: 1086 article-title: Review of recent methodological developments in group‐randomized trials: Part 2–analysis publication-title: American Journal of Public Health – volume: 38 start-page: 5413 year: 2019 end-page: 5427 article-title: Sample size calculation for clinical trials with correlated count measurements based on the negative binomial distribution publication-title: Statistics in Medicine – volume: 15 start-page: 1 year: 2015a end-page: 12 article-title: Comparing denominator degrees of freedom approximations for the generalized linear mixed model in analyzing binary outcome in small sample cluster‐randomized trials publication-title: BMC Medical Research Methodology – volume: 39 start-page: 2779 year: 2020 end-page: 2792 article-title: Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations publication-title: Statistics in Medicine – volume: 35 start-page: 1292 year: 2006 end-page: 1300 article-title: Sample size for cluster randomized trials: Effect of coefficient of variation of cluster size and analysis method publication-title: International Journal of Epidemiology – volume: 60 start-page: 903 year: 2018 end-page: 916 article-title: Blinded and unblinded sample size reestimation procedures for stepped‐wedge cluster randomized trials publication-title: Biometrical Journal – volume: 107 start-page: 907 year: 2017a end-page: 915 article-title: Review of recent methodological developments in group‐randomized trials: Part 1–design publication-title: American Journal of Public Health – volume: 23 start-page: 859 year: 2004 end-page: 874 article-title: Estimating equations for association structures publication-title: Statistics in Medicine – volume: 20 start-page: 1026 year: 2010 end-page: 1042 article-title: Sample size/power calculations for population pharmacodynamic experiments involving repeated‐count measurements publication-title: Journal of Biopharmaceutical Statistics – volume: 27 start-page: 79 year: 2003 end-page: 103 article-title: Methods to reduce the impact of intraclass correlation in group‐randomized trials publication-title: Evaluation Review – volume: 39 start-page: 438 year: 2020 end-page: 455 article-title: Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure publication-title: Statistics in Medicine – volume: 44 start-page: 1051 year: 2015 end-page: 1067 article-title: Methods for sample size determination in cluster randomized trials publication-title: International Journal of Epidemiology – volume: 13 start-page: 309 year: 2004 end-page: 323 article-title: Equivalence of conditional and marginal regression models for clustered and longitudinal data publication-title: Statistical Methods in Medical Research – volume: 43 start-page: 75 year: 2001 end-page: 86 article-title: Sample size estimation in cluster randomized studies with varying cluster size publication-title: Biometrical Journal – year: 2020 – volume: 15 start-page: 1450 year: 2015 end-page: 1458 article-title: Immunogenicity of the RTS, S/AS01 malaria vaccine and implications for duration of vaccine efficacy: Secondary analysis of data from a phase 3 randomised controlled trial publication-title: The Lancet Infectious Diseases – volume: 20 start-page: 363 year: 2020 end-page: 381 article-title: xtgeebcv: A command for bias‐corrected sandwich variance estimation for GEE analyses of cluster randomized trials publication-title: The Stata Journal – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 345 start-page: 1 year: 2012 end-page: 21 article-title: Consort 2010 statement: Extension to cluster randomised trials publication-title: BMJ – volume: 49 start-page: 116 year: 2020 end-page: 124 article-title: Sample size calculation for count outcomes in cluster randomization trials with varying cluster sizes publication-title: Communications in Statistics – Theory and Methods – ident: e_1_2_10_30_1 doi: 10.1111/biom.12918 – ident: e_1_2_10_18_1 doi: 10.1371/journal.pmed.1001594 – ident: e_1_2_10_28_1 doi: 10.1177/0962280220932962 – ident: e_1_2_10_40_1 doi: 10.1093/ije/dyz277 – ident: e_1_2_10_33_1 doi: 10.1093/biomet/73.1.13 – ident: e_1_2_10_43_1 doi: 10.1002/sim.1379 – ident: e_1_2_10_31_1 doi: 10.1186/s12874-015-0026-x – ident: e_1_2_10_32_1 doi: 10.1002/sim.6344 – ident: e_1_2_10_13_1 doi: 10.1002/bimj.201600182 – ident: e_1_2_10_16_1 doi: 10.1177/1536867X20931001 – ident: e_1_2_10_44_1 doi: 10.1191/0962280204sm368ra – ident: e_1_2_10_10_1 doi: 10.1093/ije/dyl129 – ident: e_1_2_10_53_1 doi: 10.1002/sim.1650 – ident: e_1_2_10_46_1 doi: 10.1111/j.1541-0420.2009.01374.x – ident: e_1_2_10_27_1 doi: 10.1093/ije/dyaa037 – ident: e_1_2_10_2_1 doi: 10.1002/sim.5819 – ident: e_1_2_10_14_1 doi: 10.1002/sim.8575 – ident: e_1_2_10_21_1 doi: 10.1177/009286150303700113 – ident: e_1_2_10_51_1 doi: 10.1080/03610926.2018.1532004 – ident: e_1_2_10_15_1 doi: 10.1016/S0140-6736(18)32321-3 – ident: e_1_2_10_20_1 doi: 10.1136/bmj.d5886 – ident: e_1_2_10_36_1 doi: 10.1111/j.0006-341X.2001.00126.x – ident: e_1_2_10_25_1 doi: 10.1002/sim.8415 – ident: e_1_2_10_50_1 doi: 10.1002/sim.2740 – ident: e_1_2_10_42_1 doi: 10.1016/S0197-2456(01)00131-3 – ident: e_1_2_10_22_1 doi: 10.1198/016214501753382309 – ident: e_1_2_10_26_1 doi: 10.1002/sim.7995 – ident: e_1_2_10_47_1 doi: 10.2105/AJPH.2017.303706 – ident: e_1_2_10_45_1 doi: 10.1093/ije/dyv113 – ident: e_1_2_10_17_1 doi: 10.1002/bimj.201700125 – ident: e_1_2_10_29_1 doi: 10.1002/sim.7410 – ident: e_1_2_10_23_1 doi: 10.1177/0962280212439578 – ident: e_1_2_10_39_1 doi: 10.2105/AJPH.94.3.423 – ident: e_1_2_10_5_1 doi: 10.1038/ncomms1879 – ident: e_1_2_10_7_1 doi: 10.1002/sim.3857 – ident: e_1_2_10_19_1 doi: 10.1201/9781584888178 – ident: e_1_2_10_3_1 doi: 10.1099/jmm.0.041277-0 – ident: e_1_2_10_9_1 – ident: e_1_2_10_34_1 doi: 10.1002/bimj.201600262 – ident: e_1_2_10_48_1 doi: 10.2105/AJPH.2017.303707 – ident: e_1_2_10_35_1 doi: 10.1002/1521-4036(200102)43:1<75::AID-BIMJ75>3.0.CO;2-N – ident: e_1_2_10_12_1 doi: 10.1111/j.0006-341X.2001.01198.x – ident: e_1_2_10_4_1 doi: 10.2307/2290687 – ident: e_1_2_10_38_1 doi: 10.1177/0193841X02239019 – volume-title: Design and analysis of group‐randomized trials year: 1998 ident: e_1_2_10_37_1 – ident: e_1_2_10_41_1 doi: 10.1080/10543401003619205 – ident: e_1_2_10_11_1 doi: 10.1111/j.1751-5823.2009.00092.x – ident: e_1_2_10_52_1 doi: 10.1016/S1473-3099(15)00239-X – ident: e_1_2_10_49_1 doi: 10.1177/0962280219859915 – ident: e_1_2_10_54_1 doi: 10.1177/0962280206071931 – ident: e_1_2_10_24_1 doi: 10.1002/sim.8378 – ident: e_1_2_10_6_1 doi: 10.1136/bmj.e5661 – ident: e_1_2_10_8_1 doi: 10.1002/sim.3518 |
SSID | ssj0009042 |
Score | 2.352539 |
Snippet | Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population‐level effect of group‐based interventions.... Cluster randomized trials (CRTs) are widely used in epidemiological and public health studies assessing population-level effect of group-based interventions.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1052 |
SubjectTerms | arm‐specific exchangeable correlation Cluster Analysis Clusters coefficient of variation Disease control Epidemiology generalized estimating equations group‐randomized trials Malaria Poisson distribution Population studies Public health Randomized Controlled Trials as Topic Research Design Sample Size unequal cluster sizes Vector-borne diseases |
Title | Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202000230 https://www.ncbi.nlm.nih.gov/pubmed/33751620 https://www.proquest.com/docview/2536734702 https://www.proquest.com/docview/2504352410 https://pubmed.ncbi.nlm.nih.gov/PMC9132617 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqJKReWqCvBYpcCamnQNbO2skRUBFFogceErfIHnvF0iVBzeYAv54ZOxtYEKqqnj1J_JjxfB5PvmFsW6LiFi63iRSABxRww6QwapQYyNGZC4VOnkIDJ7_U0UV2fDm6fPIXf-SH6ANuZBlhvyYDN7bZfSQNtZObazzfiUDZQod2StgiVHT6yB9VpFm8RhAykbgPz1kbU7G7-PiiV3oBNV9mTD5FssEVHb5nZj6ImIHye6ed2R24f8bv-D-jXGHvOpzK96JirbI3vlpjy7Fy5d0H9ufMEK0wbyb3npvK8VuqtsahK_8Zw4AcATGHaUtcDBx9oqtvUNzxUCmk4RQC5qFWBa_bGXbMN7xpLQWG-KzmIWyAsm0Vo4of2cXhj_ODo6Qr35AAsZAlQkKOcFFSok3qx-BVPs4K6Yj4wKAuELLzVmvErEYoKARkY6-1RYSqwKUgP7Glqq78F8ZFkZtUQC7VEDJntfVZZqXQoPDA5wozYMl8-UrouM2pxMa0jKzMoqR5LPt5HLDvvfxtZPV4VXJzrg1lZ91NKUZSaZnpVAzYt74Z7ZIuW0zl65ZkUkSiiI_wFZ-j8vSfklKPhkpgi15Qq16AOL8XW6rJVeD-LoaSOPRxwEFr_tL7cv_nyTECQLX-j_Ib7K2g5J0QbtpkS7jY_iuir5ndChb2AOUlKSU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQKwSXlm-WFjASEqe0WTtrJ0dAVNvS7QFaiVtkj73qQptUzeZAf31n7CRlqRBCnD3ZxMlM5s3L7BvG3kp03MLlNpECsEABN04KoyaJgRyTuVCY5IkamB2p6Ul28G3SdxPSf2GiPsRAuFFkhPc1BTgR0rs3qqF2cf4dCzwRNFuwal-nsd6hqvpyoyBVpFn8kCBkIvFN3Os2pmJ39fjVvHQLbN7umfwVy4ZktLfJbL-N2IPyY6dd2h24-k3h8b_2-YBtdFCVv4--9ZDd8dUjdjcOr_z5mF1-NaQszJvFleemcvyCBq5x6CaARiaQIybmcNaSHAPHtOjqczR3PAwLaTixwDyMq-B1u8Qr8w1vWkvcEF_WPDAHaNtWkVh8wk72Ph1_nCbdBIcESIgsERJyRIySem1SPwev8nlWSEfaBwbdgcCdt1ojbDVCQSEgm3utLYJUBS4F-ZStVXXlnzMuitykAnKpxpA5q63PMiuFBoU1nyvMiCX98yuhkzenKRtnZRRmFiXdx3K4jyP2brC_iMIef7Tc7t2h7AK8KcVEKi0znYoRezMsY2jS9xZT-bolmxTBKEIk_Iln0XuGU0mpJ2MlcEWv-NVgQLLfqyvV4jTIfxdjSTL6uOHgNn-5-vLD_uwAMaB68Y_2r9m96fHssDzcP_q8xe4L6uUJ7NM2W8MH718iGFvaVyHcrgFZ2i1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYgL78dCASMhcUqbtb12cgTKqi20QkCl3iJ77BULbbIimwP99czY2bRLhRDi7Enix4zn83jyDWMvJSpu6QuXSQF4QAE_zkqrJ5mFAp250OjkKTRwcKh3j9T-8eT4wl_8iR9iCLiRZcT9mgx84Wfb56Shbn76Dc93IlK24KH9qtJ5QXq98-mcQKrMVbpHEDKTuBGvaBtzsb3-_LpbuoQ1L6dMXoSy0RdNbzG7GkVKQfm-1S3dFpz9RvD4P8O8zW72QJW_Tpp1h10J9V12LZWu_HmP_fhsiVeYt_OzwG3t-YLKrXHo63-mOCBHRMzhpCMyBo5O0TenKO55LBXScooB81isgjfdEjsWWt52jiJDfNnwGDdA2a5OYcX77Gj67svb3ayv35AB0ZBlQkKBeFFSpk0eZhB0MVOl9MR8YFEZCNoFZwyCVis0lALULBjjEKJq8DnIB2yjburwiHFRFjYXUEg9BuWdcUEpJ4UBjSc-X9oRy1bLV0FPbk41Nk6qRMssKprHapjHEXs1yC8SrccfJTdX2lD15t1WYiK1kcrkYsReDM1omHTbYuvQdCSTIxRFgISveJiUZ_iUlGYy1gJbzJpaDQJE-r3eUs-_RvLvciyJRB8HHLXmL72v3uwd7CMC1I__Uf45u_5xZ1p92Dt8_4TdEJTIE0NPm2wD1z08RSS2dM-isf0C0Lsr-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+and+power+considerations+for+cluster+randomized+trials+with+count+outcomes+subject+to+right+truncation&rft.jtitle=Biometrical+journal&rft.au=Li%2C+Fan&rft.au=Tong%2C+Guangyu&rft.date=2021-06-01&rft.pub=Wiley+-+VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=63&rft.issue=5&rft.spage=1052&rft.epage=1071&rft_id=info:doi/10.1002%2Fbimj.202000230&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |