Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption

Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga‐containing biomaterials for repairing bone defects under the pathological condition of excess...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 107; no. 6; pp. 1314 - 1323
Main Authors He, Fupo, Lu, Teliang, Fang, Xibo, Tian, Ye, Li, Yanhui, Zuo, Fei, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga‐containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga‐containing phosphate glasses (GPGs) were introduced to modify the honeycomb β‐tricalcium phosphate (β‐TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel‐like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid‐sintering of β‐TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis‐related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314–1323, 2019.
AbstractList Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.
Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.
Author Fang, Xibo
Ye, Jiandong
Li, Yanhui
Lu, Teliang
Zuo, Fei
Tian, Ye
He, Fupo
Author_xml – sequence: 1
  givenname: Fupo
  surname: He
  fullname: He, Fupo
  email: fphe@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Teliang
  surname: Lu
  fullname: Lu, Teliang
  organization: South China University of Technology
– sequence: 3
  givenname: Xibo
  surname: Fang
  fullname: Fang, Xibo
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Yanhui
  surname: Li
  fullname: Li, Yanhui
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Fei
  surname: Zuo
  fullname: Zuo, Fei
  organization: Guangdong University of Technology
– sequence: 7
  givenname: Jiandong
  surname: Ye
  fullname: Ye, Jiandong
  email: jdye@scut.edu.cn
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30707498$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVIaR7tKvsiyKZQPNXDsq1lEtIkJaGbdi30uGo02NZEstvOv49mJrMJoat74X7ncDnnBB2OcQSEzihZUELY16UZFnrBm6auD9AxFYJVtWzE4WavZcWZbI7QSc7LAjdEsPfoiJOWtLXsjtH8EF3wweopxBFHjx-L-drGwWATooWkh2Bxttr72LuMfUzYFAQn-A1jOW918-gg4ekRsI2jC3sv-Gch5_AH9pIc02pz_IDeed1n-PgyT9Gvb9c_r26r-x83d1cX95WtG15Xom2YkNBSoqFzhHDGuJPcGd3xums9Fdrp1khJjDZec0ply60n1vOGa8L5Kfq8812l-DRDntQQsoW-1yPEOStGWylKFpwU9PwVuoxzGst3ijHaSdYJKQv16YWazQBOrVIYdFqrfaAFoDvApphzAq9smLYhTUmHXlGiNqWpUprSalta0Xx5pdnbvk2zHf039LD-H6q-Xz5c7ETPR5ypHw
CitedBy_id crossref_primary_10_1016_j_engreg_2023_02_003
crossref_primary_10_1007_s10853_021_06584_9
crossref_primary_10_1016_j_ceramint_2022_06_169
crossref_primary_10_1016_j_bioactmat_2021_12_034
crossref_primary_10_1016_j_ceramint_2023_08_127
crossref_primary_10_1088_1748_605X_ac3d9a
crossref_primary_10_1088_1748_605X_ac65cc
crossref_primary_10_1016_j_cej_2021_128709
crossref_primary_10_1021_acsnano_4c05558
crossref_primary_10_1021_acsami_4c06661
crossref_primary_10_3389_fbioe_2023_1303313
crossref_primary_10_1080_17460751_2024_2343555
crossref_primary_10_1016_j_mtbio_2025_101524
crossref_primary_10_1021_acsabm_1c01019
crossref_primary_10_1021_acsami_0c07304
crossref_primary_10_1016_j_actbio_2022_07_063
crossref_primary_10_3390_ma16247518
crossref_primary_10_1016_j_ceramint_2020_03_195
Cites_doi 10.1039/C5TB00654F
10.1016/j.jnoncrysol.2016.10.022
10.1039/C7TB00741H
10.1023/B:JMSM.0000004006.90399.b4
10.1021/jp504023k
10.1006/bbrc.2000.4108
10.1016/j.jtemb.2015.06.005
10.1002/adfm.201602631
10.1016/j.jmbbm.2018.06.036
10.1016/j.drudis.2012.06.007
10.1088/1748-6041/6/4/045004
10.1016/j.actbio.2012.11.029
10.1039/C5TB02062J
10.1016/j.tibtech.2013.06.005
10.1016/S8756-3282(01)00621-4
10.1126/science.289.5484.1504
10.1016/S0169-6009(08)80208-5
10.1016/S0142-9612(03)00546-5
10.1016/j.colsurfb.2012.10.018
10.1016/S0093-7754(03)00170-2
10.1016/j.actbio.2009.03.020
10.1016/j.jbspin.2010.11.015
10.1002/jbm.a.34265
10.1002/jbm.a.34966
10.1088/1758-5090/aa6a62
10.1016/j.msec.2008.06.012
10.1016/j.biomaterials.2013.09.056
10.1016/j.ceramint.2006.02.011
10.1016/j.pharmthera.2012.07.009
10.2217/fmb.14.3
10.1016/j.actbio.2018.06.036
10.1088/1748-6041/1/2/002
10.1016/0169-6009(90)90106-P
10.1002/jbmr.5650061014
10.1002/term.24
10.1002/jcb.240520309
10.1016/S8756-3282(00)00346-X
10.1111/j.1476-5381.2010.00665.x
10.1515/zna-2002-0811
10.1016/0169-6009(91)90030-4
10.1002/jbm.a.32915
10.1016/j.biomaterials.2011.01.004
10.1016/j.ceramint.2018.03.236
10.1016/j.jeurceramsoc.2007.07.012
10.1016/j.colsurfb.2018.04.028
10.1016/j.biomaterials.2012.03.069
10.1002/jbm.a.32436
10.1007/s10856-016-5777-3
10.1039/C4TB00837E
10.1016/S0022-3093(01)00361-1
10.1563/0-742.1
10.1016/j.addr.2014.09.005
10.1016/S0093-7754(03)00169-6
10.1016/j.biomaterials.2009.11.050
10.1016/j.amjmed.2018.04.028
10.1002/jcb.240480409
10.1023/A:1018538212328
10.1016/j.ceramint.2017.02.094
10.1002/term.2396
10.1111/jace.15819
10.1016/j.biomaterials.2005.01.006
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.a.36644
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 1323
ExternalDocumentID 30707498
10_1002_jbm_a_36644
JBMA36644
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31500770
– fundername: Pearl River S&T Nova Program of Guangzhou
  funderid: 201710010149
– fundername: Science and Technology Program of Guangzhou City of China
  funderid: 201508020017
– fundername: Science and Technology Program of Guangzhou City of China
  grantid: 201508020017
– fundername: National Natural Science Foundation of China
  grantid: 31500770
– fundername: Pearl River S&T Nova Program of Guangzhou
  grantid: 201710010149
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
1OB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4634-576259e710ae8d003223d93dba83487f15ada7b990babfa311973cf0cf363a033
IEDL.DBID DR2
ISSN 1549-3296
1552-4965
IngestDate Fri Jul 11 00:16:25 EDT 2025
Wed Aug 13 08:10:18 EDT 2025
Mon Jul 21 05:55:00 EDT 2025
Tue Jul 01 00:57:46 EDT 2025
Thu Apr 24 23:06:05 EDT 2025
Wed Jan 22 16:31:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords scaffolds
gallium
osteogenesis
osteoclastogenesis
calcium phosphate
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4634-576259e710ae8d003223d93dba83487f15ada7b990babfa311973cf0cf363a033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30707498
PQID 2218928599
PQPubID 2034572
PageCount 10
ParticipantIDs proquest_miscellaneous_2179507030
proquest_journals_2218928599
pubmed_primary_30707498
crossref_citationtrail_10_1002_jbm_a_36644
crossref_primary_10_1002_jbm_a_36644
wiley_primary_10_1002_jbm_a_36644_JBMA36644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J Biomed Mater Res A
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
1991; 12
2004; 25
2018; 167
2017; 43
2002; 57
2015; 32
2003; 14
1994; 25
2012; 17
2005; 26
2018; 44
2007; 33
2018; 86
2017; 9
2013; 9
1997; 8
2018; 131
2014; 2
2000; 289
2015; 84
2010; 159
2008; 28
2005; 31
1992; 48
2012; 136
2014; 9
2007; 1
2018; 76
2014; 118
2010; 31
2001; 283
2012; 100
2000; 27
2015; 3
2002; 30
2001; 280
2018; 101
2013; 103
2011; 32
2011; 78
2006; 1
2011; 6
2003; 30
2012; 33
2009; 29
1991; 6
2016; 4
2013; 33
2013; 34
2013; 31
1993; 52
2016; 454
2009; 5
2010; 92
2018; 12
2016; 27
1990; 8
2016; 26
2010; 95
2014; 102
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Wang X (e_1_2_6_11_1) 2010; 92
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
Saffarian Tousi N (e_1_2_6_61_1) 2013; 33
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 9
  start-page: 5855
  year: 2013
  end-page: 5875
  article-title: Sintering of calcium phosphate bioceramics
  publication-title: Acta Biomater
– volume: 27
  start-page: 170
  year: 2016
  article-title: Biocompatible nano‐gallium/hydroxyapatite nanocomposite with antimicrobial activity
  publication-title: J Mater Sci Mater Med
– volume: 454
  start-page: 31
  year: 2016
  end-page: 38
  article-title: Structural investigation and physical properties of Ga O –ZnO–P O glasses
  publication-title: J Non Cryst Solids
– volume: 9
  start-page: 379
  year: 2014
  end-page: 397
  article-title: Promises and failures of gallium as an antibacterial agent
  publication-title: Future Microbiol
– volume: 6
  start-page: 1121
  year: 1991
  end-page: 1126
  article-title: Gallium nitrate inhibits bone resorption and collagen synthesis in neonatal mouse calvariae
  publication-title: J Bone Miner Res
– volume: 1
  start-page: 56
  year: 2006
  end-page: 62
  article-title: A study on a tissue engineered bone using rhBMP‐2 induced periosteal cells with a porous nanohydroxyapatite/collagen/poly(L‐lactic acid) scaffold
  publication-title: Biomed Mater
– volume: 31
  start-page: 61
  year: 2005
  end-page: 67
  article-title: Effects of dissolved calcium and phosphorous on osteoblast responses
  publication-title: J Oral Implantol
– volume: 33
  start-page: 2757
  year: 2013
  end-page: 2765
  article-title: Combinatorial effect of Si , Ca , and Mg released from bioactive glasses on osteoblast osteocalcin expression and biomineralization
  publication-title: Korean J Couns Psychother
– volume: 17
  start-page: 1127
  year: 2012
  end-page: 1132
  article-title: Ga as a potential candidate for treatment of osteoporosis
  publication-title: Drug Discov Today
– volume: 12
  start-page: e854
  year: 2018
  end-page: e866
  article-title: Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial
  publication-title: J Tissue Eng Regen Med
– volume: 78
  start-page: 445
  year: 2011
  end-page: 450
  article-title: Bone disease in cystic fibrosis: What's new?
  publication-title: Joint Bone Spine
– volume: 52
  start-page: 330
  year: 1993
  end-page: 336
  article-title: Effect of gallium nitrate in vitro and in normal rats
  publication-title: J Cell Biochem
– volume: 12
  start-page: 167
  year: 1991
  end-page: 179
  article-title: Bone particles from gallium‐treated rats are resistant to resorption in vivo
  publication-title: Bone Miner
– volume: 283
  start-page: 195
  year: 2001
  end-page: 202
  article-title: Infrared and Raman spectra of Ga O ‐P O glasses
  publication-title: J Non Cryst Solids
– volume: 1
  start-page: 245
  year: 2007
  end-page: 260
  article-title: State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective
  publication-title: J Tissue Eng Regen Med
– volume: 76
  start-page: 333
  year: 2018
  end-page: 343
  article-title: The response of pre‐osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses
  publication-title: Acta Biomater
– volume: 2
  start-page: 6030
  year: 2014
  end-page: 6043
  article-title: Nutrient element‐based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation
  publication-title: J Mater Chem B
– volume: 102
  start-page: 2952
  year: 2014
  end-page: 2960
  article-title: Effect of geometry and microstructure of honeycomb TCP scaffolds on bone regeneration
  publication-title: J Biomed Mater Res A
– volume: 280
  start-page: 348
  year: 2001
  end-page: 352
  article-title: Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells
  publication-title: Biochem Biophys Res Commun
– volume: 25
  start-page: 491
  year: 2004
  end-page: 499
  article-title: Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary based P O –CaO–Na O glass system
  publication-title: Biomaterials
– volume: 26
  start-page: 6719
  year: 2016
  end-page: 6727
  article-title: Channeled β‐TCP scaffolds promoted vascularization and bone augmentation in mandible of beagle dogs
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 29
  year: 1997
  end-page: 37
  article-title: Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity
  publication-title: J Mater Sci Mater Med
– volume: 43
  start-page: 6778
  year: 2017
  end-page: 6785
  article-title: Fabrication and characterization of honeycomb β‐tricalcium phosphate scaffolds through an extrusion technique
  publication-title: Ceram Int
– volume: 31
  start-page: 594
  year: 2013
  end-page: 605
  article-title: Understanding of dopant‐induced osteogenesis and angiogenesis in calcium phosphate ceramics
  publication-title: Trends Biotechnol
– volume: 95
  start-page: 882
  year: 2010
  end-page: 890
  article-title: Effect of exogenous phosphorous and silicon on osteoblast differentiation at the interface with bioactive ceramics
  publication-title: J Biomed Mater Res A
– volume: 8
  start-page: 211
  year: 1990
  end-page: 216
  article-title: Gallium inhibits bone resorption by a direct effect on osteoclasts
  publication-title: Bone Miner
– volume: 31
  start-page: 1465
  year: 2010
  end-page: 1485
  article-title: Bioceramics of calcium orthophosphates
  publication-title: Biomaterials
– volume: 14
  start-page: 1089
  year: 2003
  end-page: 1097
  article-title: Effect of micro‐ and macroporosity of bone substitutes on their mechanical properties and cellular response
  publication-title: J Mater Sci Mater Med
– volume: 159
  start-page: 1681
  year: 2010
  end-page: 1692
  article-title: Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
  publication-title: Br J Pharmacol
– volume: 100
  start-page: 3239
  year: 2012
  end-page: 3250
  article-title: In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure
  publication-title: J Biomed Mater Res A
– volume: 136
  start-page: 216
  year: 2012
  end-page: 226
  article-title: Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis
  publication-title: Pharmacol Ther
– volume: 32
  start-page: 86
  year: 2015
  end-page: 106
  article-title: Effects of thirty elements on bone metabolism
  publication-title: J Trace Elem Med Biol
– volume: 4
  start-page: 71
  year: 2016
  end-page: 86
  article-title: Gallium‐containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy
  publication-title: J Mater Chem B
– volume: 101
  start-page: 5811
  year: 2018
  end-page: 5826
  article-title: Fabrication of β‐tricalcium phosphate composite ceramic scaffolds based on spheres prepared by extrusion‐spheronization
  publication-title: J Am Ceram Soc
– volume: 289
  start-page: 1504
  year: 2000
  end-page: 1508
  article-title: Bone resorption by osteoclasts
  publication-title: Science
– volume: 48
  start-page: 401
  year: 1992
  end-page: 410
  article-title: Reversible inhibition of osteoclastic activity by bone‐bound gallium (III)
  publication-title: J Cell Biochem
– volume: 29
  start-page: 216
  year: 2009
  end-page: 221
  article-title: Effect of coprecipitation temperature on the properties and activity of fibroblast growth factor‐2 apatite composite layer
  publication-title: Mat Sci Eng C‐Bio S
– volume: 86
  start-page: 215
  year: 2018
  end-page: 223
  article-title: Tailoring the mechanical property and cell‐biological response of β‐tricalcium phosphate composite bioceramics by SrO‐P O ‐Na O based additive
  publication-title: J Mech Behav Biomed
– volume: 84
  start-page: 1
  year: 2015
  end-page: 29
  article-title: Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies
  publication-title: Adv Drug Deliv Rev
– volume: 33
  start-page: 5076
  year: 2012
  end-page: 5084
  article-title: The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long‐term estrogen deficient goats
  publication-title: Biomaterials
– volume: 103
  start-page: 209
  year: 2013
  end-page: 216
  article-title: Improvement of cell response of the poly (lactic‐co‐glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment
  publication-title: Colloids Surf B Biointerfaces
– volume: 34
  start-page: 10028
  year: 2013
  end-page: 10042
  article-title: Enhanced osteoporotic bone regeneration by strontium‐substituted calcium silicate bioactive ceramics
  publication-title: Biomaterials
– volume: 30
  start-page: 1
  year: 2003
  end-page: 4
  article-title: Gallium nitrate revisited
  publication-title: Semin Oncol
– volume: 5
  start-page: 6175
  year: 2017
  end-page: 6192
  article-title: Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone
  publication-title: J Mater Chem B
– volume: 30
  start-page: 5
  year: 2003
  end-page: 12
  article-title: The effects of gallium nitrate on bone resorption
  publication-title: Semin Oncol
– volume: 6
  year: 2011
  article-title: BMP‐2 and ALP gene expression induced by a BMP‐2 gene‐fibronectin‐apatite composite layer
  publication-title: Biomed Mater
– volume: 25
  start-page: 59
  year: 1994
  end-page: 69
  article-title: The effects of gallium nitrate on osteopenia induced by ovariectomy and a low‐calcium diet in rats
  publication-title: Bone Miner
– volume: 26
  start-page: 4847
  year: 2005
  end-page: 4855
  article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture
  publication-title: Biomaterials
– volume: 3
  start-page: 4626
  year: 2015
  end-page: 4640
  article-title: Strontium modified calcium phosphate cements − Approaches towards targeted stimulation of bone turnover
  publication-title: J Mater Chem B
– volume: 27
  start-page: 359
  year: 2000
  end-page: 366
  article-title: Inorganic phosphate induces apoptosis of osteoblast‐like cells in culture
  publication-title: Bone
– volume: 5
  start-page: 2647
  year: 2009
  end-page: 2656
  article-title: Ascorbate‐apatite composite and ascorbate‐FGF‐2‐apatite composite layers formed on external fixation rods and their effects on cell activity in vitro
  publication-title: Acta Biomater
– volume: 92
  start-page: 1181
  year: 2010
  end-page: 1189
  article-title: Silicate‐apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast
  publication-title: J Biomed Mater Res A
– volume: 167
  start-page: 318
  year: 2018
  end-page: 327
  article-title: β‐Tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities
  publication-title: Colloids Surf B Biointerfaces
– volume: 28
  start-page: 539
  year: 2008
  end-page: 545
  article-title: Spark plasma sintering of macroporous calcium phosphate scaffolds from nano crystalline powders
  publication-title: J Eur Ceram Soc
– volume: 30
  start-page: 207
  year: 2002
  end-page: 216
  article-title: Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius
  publication-title: Bone
– volume: 9
  year: 2017
  article-title: Fabrication of β‐tricalcium phosphate composite ceramic sphere‐based scaffolds with hierarchical pore structure for bone regeneration
  publication-title: Biofabrication
– volume: 118
  start-page: 15386
  year: 2014
  end-page: 15403
  article-title: Intermediate role of gallium in oxidic glasses: Solid state NMR structural studies of the Ga O − NaPO system
  publication-title: J Phys Chem C
– volume: 131
  start-page: 1298
  year: 2018
  end-page: 1303
  article-title: Paget's disease of bone: Diagnosis and treatment
  publication-title: Am J Med
– volume: 33
  start-page: 979
  year: 2007
  end-page: 985
  article-title: Properties of β‐Ca (PO ) bioceramics prepared using nano‐size powders
  publication-title: Ceram Int
– volume: 57
  start-page: 709
  year: 2002
  end-page: 715
  article-title: The structure of gallium phosphate glasses by high energy X‐ray diffraction
  publication-title: Z Naturforsch A
– volume: 44
  start-page: 11622
  year: 2018
  end-page: 11627
  article-title: Improvements in phase stability and densification of β‐tricalcium phosphate bioceramics by strontium‐containing phosphate‐based glass additive
  publication-title: Ceram Int
– volume: 32
  start-page: 2757
  year: 2011
  end-page: 2774
  article-title: A review of the biological response to ionic dissolution products from bioactive glasses and glass‐ceramics
  publication-title: Biomaterials
– ident: e_1_2_6_15_1
  doi: 10.1039/C5TB00654F
– ident: e_1_2_6_51_1
  doi: 10.1016/j.jnoncrysol.2016.10.022
– ident: e_1_2_6_2_1
  doi: 10.1039/C7TB00741H
– ident: e_1_2_6_47_1
  doi: 10.1023/B:JMSM.0000004006.90399.b4
– ident: e_1_2_6_48_1
  doi: 10.1021/jp504023k
– ident: e_1_2_6_58_1
  doi: 10.1006/bbrc.2000.4108
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jtemb.2015.06.005
– ident: e_1_2_6_42_1
  doi: 10.1002/adfm.201602631
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jmbbm.2018.06.036
– ident: e_1_2_6_20_1
  doi: 10.1016/j.drudis.2012.06.007
– ident: e_1_2_6_8_1
  doi: 10.1088/1748-6041/6/4/045004
– ident: e_1_2_6_32_1
  doi: 10.1016/j.actbio.2012.11.029
– ident: e_1_2_6_53_1
  doi: 10.1039/C5TB02062J
– ident: e_1_2_6_12_1
  doi: 10.1016/j.tibtech.2013.06.005
– ident: e_1_2_6_6_1
  doi: 10.1016/S8756-3282(01)00621-4
– ident: e_1_2_6_4_1
  doi: 10.1126/science.289.5484.1504
– ident: e_1_2_6_26_1
  doi: 10.1016/S0169-6009(08)80208-5
– ident: e_1_2_6_46_1
  doi: 10.1016/S0142-9612(03)00546-5
– ident: e_1_2_6_43_1
  doi: 10.1016/j.colsurfb.2012.10.018
– ident: e_1_2_6_22_1
  doi: 10.1016/S0093-7754(03)00170-2
– volume: 33
  start-page: 2757
  year: 2013
  ident: e_1_2_6_61_1
  article-title: Combinatorial effect of Si4+, Ca2+, and Mg2+ released from bioactive glasses on osteoblast osteocalcin expression and biomineralization
  publication-title: Korean J Couns Psychother
– ident: e_1_2_6_9_1
  doi: 10.1016/j.actbio.2009.03.020
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jbspin.2010.11.015
– ident: e_1_2_6_44_1
  doi: 10.1002/jbm.a.34265
– ident: e_1_2_6_41_1
  doi: 10.1002/jbm.a.34966
– ident: e_1_2_6_38_1
  doi: 10.1088/1758-5090/aa6a62
– ident: e_1_2_6_10_1
  doi: 10.1016/j.msec.2008.06.012
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biomaterials.2013.09.056
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ceramint.2006.02.011
– ident: e_1_2_6_14_1
  doi: 10.1016/j.pharmthera.2012.07.009
– ident: e_1_2_6_27_1
  doi: 10.2217/fmb.14.3
– ident: e_1_2_6_29_1
  doi: 10.1016/j.actbio.2018.06.036
– ident: e_1_2_6_40_1
  doi: 10.1088/1748-6041/1/2/002
– ident: e_1_2_6_24_1
  doi: 10.1016/0169-6009(90)90106-P
– ident: e_1_2_6_25_1
  doi: 10.1002/jbmr.5650061014
– ident: e_1_2_6_39_1
  doi: 10.1002/term.24
– ident: e_1_2_6_57_1
  doi: 10.1002/jcb.240520309
– ident: e_1_2_6_52_1
  doi: 10.1016/S8756-3282(00)00346-X
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1476-5381.2010.00665.x
– ident: e_1_2_6_49_1
  doi: 10.1515/zna-2002-0811
– ident: e_1_2_6_62_1
  doi: 10.1016/0169-6009(91)90030-4
– ident: e_1_2_6_60_1
  doi: 10.1002/jbm.a.32915
– ident: e_1_2_6_13_1
  doi: 10.1016/j.biomaterials.2011.01.004
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ceramint.2018.03.236
– ident: e_1_2_6_34_1
  doi: 10.1016/j.jeurceramsoc.2007.07.012
– ident: e_1_2_6_19_1
  doi: 10.1016/j.colsurfb.2018.04.028
– ident: e_1_2_6_28_1
  doi: 10.1016/j.biomaterials.2012.03.069
– volume: 92
  start-page: 1181
  year: 2010
  ident: e_1_2_6_11_1
  article-title: Silicate‐apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.32436
– ident: e_1_2_6_54_1
  doi: 10.1007/s10856-016-5777-3
– ident: e_1_2_6_17_1
  doi: 10.1039/C4TB00837E
– ident: e_1_2_6_50_1
  doi: 10.1016/S0022-3093(01)00361-1
– ident: e_1_2_6_59_1
  doi: 10.1563/0-742.1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.addr.2014.09.005
– ident: e_1_2_6_23_1
  doi: 10.1016/S0093-7754(03)00169-6
– ident: e_1_2_6_31_1
  doi: 10.1016/j.biomaterials.2009.11.050
– ident: e_1_2_6_7_1
  doi: 10.1016/j.amjmed.2018.04.028
– ident: e_1_2_6_63_1
  doi: 10.1002/jcb.240480409
– ident: e_1_2_6_35_1
  doi: 10.1023/A:1018538212328
– ident: e_1_2_6_45_1
  doi: 10.1016/j.ceramint.2017.02.094
– ident: e_1_2_6_30_1
  doi: 10.1002/term.2396
– ident: e_1_2_6_37_1
  doi: 10.1111/jace.15819
– ident: e_1_2_6_56_1
  doi: 10.1016/j.biomaterials.2005.01.006
SSID ssj0026052
Score 2.3674178
Snippet Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1314
SubjectTerms Bioceramics
Biocompatibility
Biomaterials
Biomedical materials
Bone biomaterials
Bone growth
Bone resorption
calcium phosphate
Calcium phosphates
Cell proliferation
Compressive strength
Densification
Extrusion
Gallium
Ions
Maintenance
Mesenchyme
Monocytes
Osteoclastogenesis
osteogenesis
Porosity
Regeneration
Regeneration (physiology)
Scaffolds
Sintering (powder metallurgy)
Stem cell transplantation
Stem cells
Tricalcium phosphate
Title Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36644
https://www.ncbi.nlm.nih.gov/pubmed/30707498
https://www.proquest.com/docview/2218928599
https://www.proquest.com/docview/2179507030
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJzjQ8ihNC8iVOFFlycZOSI6AQAhpOSCQuEUzsQ0UuqmSXantr2fGyYankNpbJI_tJM7MfBPPfBZiO0siayxCaCIDoYYIQyQvHhKUSDExOhtGXO88OktPLvXpVXLV5eZwLUzLD9H_cGPN8PaaFRyw2X0kDf2BPwcwUCk5dLLAnK3FkOi8J49ioO73OikCClWcp111HrXsPun73B-9ApnPMat3Oscf2pNVG89VyLkmd4PpBAfl3xdMjv_9PB_FUgdH5X77_SyLOTteEYtPSApXxXRUGc4n8ksoKydvqrH9Q6OjxFvyfjWfaC-bEpyr7k0jCQVLJBFZ22vPae37ca1aLQltSgrAze1sLPubyxTI4s66NFXtjdiauDw-ujg8CbvDGsJSp0qHFLdQJGUJsIDNDNkKwh0mVwYhUxQUuWECBvaQnB8COlC8falKF5VOpQoipT6J-THN9FlIjc6hid1QA2jCp3nsVASKxHWaxiYKxM5syYqyYzLnAzXui5aDOS7oXRZQ-HcZiO1e-FdL4PG22MZs7YtOi5siJvyTM8NfHohvfTPpH2-qwNhWU5Ihi5Z4uxmI9fab6edhe7qn8ywQ3_3Kv3cDxenBaN9fffkn6a9igTBc3mavbYj5ST21m4STJrjl1eEBb78PVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Vemg5QFtaSKHUlTiBsmRjJyRHqIoWynKoQOJmjWOb8tqg7K4E_fWMnUehrZDKLZLHeXgyM9_Yns8A61kSGW0UhjrSGAqMVKgoiocEJVKVaJH1I1fvPDxKByfi4DQ5bSbcXC1MzQ_RTbg5y_D-2hm4m5De-s0aeqGue9jjKUX0GXjpzvT2KdWPjj7KQXW_2kk5UMjjPG3q86hl60HnxxHpL5j5GLX6sLO3ALJ94Xq3yWVvOlG94tcfXI7P_6I3MN8gUrZT_0Jv4YUZvYO5BzyFizAdltptKfJaZKVlP8uRuaPbK6bOKQBW7lB7Ni7Q2vJKjxkBYaZIhFXmzNNa-36uXK1iBDgZ5eD6vL2XuXWVCuR02y7jsvJ-7D2c7H07_joIm_MawkKkXISUulAyZQizoMk0uQuCHjrnWmHGKS-y_QQ1biuKfwqVRe5WMHlho8LylGPE-QeYHdGTloEJZa3Sse0LREEQNY8tj5CTuEjTWEcBbLQ6k0VDZu7O1LiSNQ1zLGksJUo_lgGsd8I3NYfHv8VWW-XLxpDHMiYIlDuSvzyAL10zmaBbV8GRKackQ04t8a4zgKX6p-me41zqtsizADa96p96AXmwO9zxVx__S_ozvBocDw_l4f7R9xV4TZAurzezrcLspJqaTwSbJmrN28Y9TxcTcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAcWr4KoQWM1BMoW2_suMmxUFalsBVCVOrNGsc2FMqmSnalwq9n7GRDCwgJbpE8thPbM_Mm9jwDbBU5d9YZTC23mErkJjXkxVOCEsrkVhZjHvKdp4dq_0geHOfH_dmckAvT8UMMP9yCZkR7HRT8zPrtn6Shn83XEY6EIod-Fa5JxYuwqPfeD-xRAanHzU4KgVKRlapPz6OS7QuVLzuk31DmZdAavc5krbtatY1kheGwyZfRYm5G1fdfqBz_-4NuwWqPR9lut4BuwxU3uwM3L7AU3oXFtLbhQFGcQ1Z79qmeuW_UumHmhNxfE660Z22F3tentmUEg5khEda4j5HUOtYLyWoNI7jJKAK3J8u23HnIUyCTu6zS1k20YvfgaPLqw8v9tL-tIa2kEjKlwIVCKUeIBV1hyVgQ8LClsAYLQVGRH-docceQ9zNoPIqwfykqzysvlEAuxDqszKinB8Ck8d7YzI8loiSAWmZecBQkLpXKLE_g2XLKdNVTmYcbNU51R8KcaRpLjTqOZQJbg_BZx-DxZ7HN5dzrXo1bnREAKgPFX5nA06GYFDDsquDM1QuSIZOWR8OZwP1uzQz9BIO6I8sigedx5v_2AvrgxXQ3Pj38J-kncP3d3kS_fX34ZgNuEJ4ru5Nsm7AybxbuEWGmuXkcNeMHKWkSKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+honeycomb+bioceramic+scaffolds+for+bone+regeneration+under+the+condition+of+excessive+bone+resorption&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=He%2C+Fupo&rft.au=Lu%2C+Teliang&rft.au=Fang%2C+Xibo&rft.au=Tian%2C+Ye&rft.date=2019-06-01&rft.eissn=1552-4965&rft.volume=107&rft.issue=6&rft.spage=1314&rft_id=info:doi/10.1002%2Fjbm.a.36644&rft_id=info%3Apmid%2F30707498&rft.externalDocID=30707498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon