Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption
Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga‐containing biomaterials for repairing bone defects under the pathological condition of excess...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 107; no. 6; pp. 1314 - 1323 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga‐containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga‐containing phosphate glasses (GPGs) were introduced to modify the honeycomb β‐tricalcium phosphate (β‐TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel‐like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid‐sintering of β‐TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis‐related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314–1323, 2019. |
---|---|
AbstractList | Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019. Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb β-tricalcium phosphate (β-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of β-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019. |
Author | Fang, Xibo Ye, Jiandong Li, Yanhui Lu, Teliang Zuo, Fei Tian, Ye He, Fupo |
Author_xml | – sequence: 1 givenname: Fupo surname: He fullname: He, Fupo email: fphe@gdut.edu.cn organization: Guangdong University of Technology – sequence: 2 givenname: Teliang surname: Lu fullname: Lu, Teliang organization: South China University of Technology – sequence: 3 givenname: Xibo surname: Fang fullname: Fang, Xibo organization: Guangdong University of Technology – sequence: 4 givenname: Ye surname: Tian fullname: Tian, Ye organization: Guangdong University of Technology – sequence: 5 givenname: Yanhui surname: Li fullname: Li, Yanhui organization: Guangdong University of Technology – sequence: 6 givenname: Fei surname: Zuo fullname: Zuo, Fei organization: Guangdong University of Technology – sequence: 7 givenname: Jiandong surname: Ye fullname: Ye, Jiandong email: jdye@scut.edu.cn organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30707498$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVIaR7tKvsiyKZQPNXDsq1lEtIkJaGbdi30uGo02NZEstvOv49mJrMJoat74X7ncDnnBB2OcQSEzihZUELY16UZFnrBm6auD9AxFYJVtWzE4WavZcWZbI7QSc7LAjdEsPfoiJOWtLXsjtH8EF3wweopxBFHjx-L-drGwWATooWkh2Bxttr72LuMfUzYFAQn-A1jOW918-gg4ekRsI2jC3sv-Gch5_AH9pIc02pz_IDeed1n-PgyT9Gvb9c_r26r-x83d1cX95WtG15Xom2YkNBSoqFzhHDGuJPcGd3xums9Fdrp1khJjDZec0ply60n1vOGa8L5Kfq8812l-DRDntQQsoW-1yPEOStGWylKFpwU9PwVuoxzGst3ijHaSdYJKQv16YWazQBOrVIYdFqrfaAFoDvApphzAq9smLYhTUmHXlGiNqWpUprSalta0Xx5pdnbvk2zHf039LD-H6q-Xz5c7ETPR5ypHw |
CitedBy_id | crossref_primary_10_1016_j_engreg_2023_02_003 crossref_primary_10_1007_s10853_021_06584_9 crossref_primary_10_1016_j_ceramint_2022_06_169 crossref_primary_10_1016_j_bioactmat_2021_12_034 crossref_primary_10_1016_j_ceramint_2023_08_127 crossref_primary_10_1088_1748_605X_ac3d9a crossref_primary_10_1088_1748_605X_ac65cc crossref_primary_10_1016_j_cej_2021_128709 crossref_primary_10_1021_acsnano_4c05558 crossref_primary_10_1021_acsami_4c06661 crossref_primary_10_3389_fbioe_2023_1303313 crossref_primary_10_1080_17460751_2024_2343555 crossref_primary_10_1016_j_mtbio_2025_101524 crossref_primary_10_1021_acsabm_1c01019 crossref_primary_10_1021_acsami_0c07304 crossref_primary_10_1016_j_actbio_2022_07_063 crossref_primary_10_3390_ma16247518 crossref_primary_10_1016_j_ceramint_2020_03_195 |
Cites_doi | 10.1039/C5TB00654F 10.1016/j.jnoncrysol.2016.10.022 10.1039/C7TB00741H 10.1023/B:JMSM.0000004006.90399.b4 10.1021/jp504023k 10.1006/bbrc.2000.4108 10.1016/j.jtemb.2015.06.005 10.1002/adfm.201602631 10.1016/j.jmbbm.2018.06.036 10.1016/j.drudis.2012.06.007 10.1088/1748-6041/6/4/045004 10.1016/j.actbio.2012.11.029 10.1039/C5TB02062J 10.1016/j.tibtech.2013.06.005 10.1016/S8756-3282(01)00621-4 10.1126/science.289.5484.1504 10.1016/S0169-6009(08)80208-5 10.1016/S0142-9612(03)00546-5 10.1016/j.colsurfb.2012.10.018 10.1016/S0093-7754(03)00170-2 10.1016/j.actbio.2009.03.020 10.1016/j.jbspin.2010.11.015 10.1002/jbm.a.34265 10.1002/jbm.a.34966 10.1088/1758-5090/aa6a62 10.1016/j.msec.2008.06.012 10.1016/j.biomaterials.2013.09.056 10.1016/j.ceramint.2006.02.011 10.1016/j.pharmthera.2012.07.009 10.2217/fmb.14.3 10.1016/j.actbio.2018.06.036 10.1088/1748-6041/1/2/002 10.1016/0169-6009(90)90106-P 10.1002/jbmr.5650061014 10.1002/term.24 10.1002/jcb.240520309 10.1016/S8756-3282(00)00346-X 10.1111/j.1476-5381.2010.00665.x 10.1515/zna-2002-0811 10.1016/0169-6009(91)90030-4 10.1002/jbm.a.32915 10.1016/j.biomaterials.2011.01.004 10.1016/j.ceramint.2018.03.236 10.1016/j.jeurceramsoc.2007.07.012 10.1016/j.colsurfb.2018.04.028 10.1016/j.biomaterials.2012.03.069 10.1002/jbm.a.32436 10.1007/s10856-016-5777-3 10.1039/C4TB00837E 10.1016/S0022-3093(01)00361-1 10.1563/0-742.1 10.1016/j.addr.2014.09.005 10.1016/S0093-7754(03)00169-6 10.1016/j.biomaterials.2009.11.050 10.1016/j.amjmed.2018.04.028 10.1002/jcb.240480409 10.1023/A:1018538212328 10.1016/j.ceramint.2017.02.094 10.1002/term.2396 10.1111/jace.15819 10.1016/j.biomaterials.2005.01.006 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.36644 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1323 |
ExternalDocumentID | 30707498 10_1002_jbm_a_36644 JBMA36644 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31500770 – fundername: Pearl River S&T Nova Program of Guangzhou funderid: 201710010149 – fundername: Science and Technology Program of Guangzhou City of China funderid: 201508020017 – fundername: Science and Technology Program of Guangzhou City of China grantid: 201508020017 – fundername: National Natural Science Foundation of China grantid: 31500770 – fundername: Pearl River S&T Nova Program of Guangzhou grantid: 201710010149 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 1OB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4634-576259e710ae8d003223d93dba83487f15ada7b990babfa311973cf0cf363a033 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Fri Jul 11 00:16:25 EDT 2025 Wed Aug 13 08:10:18 EDT 2025 Mon Jul 21 05:55:00 EDT 2025 Tue Jul 01 00:57:46 EDT 2025 Thu Apr 24 23:06:05 EDT 2025 Wed Jan 22 16:31:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | scaffolds gallium osteogenesis osteoclastogenesis calcium phosphate |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4634-576259e710ae8d003223d93dba83487f15ada7b990babfa311973cf0cf363a033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30707498 |
PQID | 2218928599 |
PQPubID | 2034572 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2179507030 proquest_journals_2218928599 pubmed_primary_30707498 crossref_citationtrail_10_1002_jbm_a_36644 crossref_primary_10_1002_jbm_a_36644 wiley_primary_10_1002_jbm_a_36644_JBMA36644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 5 1991; 12 2004; 25 2018; 167 2017; 43 2002; 57 2015; 32 2003; 14 1994; 25 2012; 17 2005; 26 2018; 44 2007; 33 2018; 86 2017; 9 2013; 9 1997; 8 2018; 131 2014; 2 2000; 289 2015; 84 2010; 159 2008; 28 2005; 31 1992; 48 2012; 136 2014; 9 2007; 1 2018; 76 2014; 118 2010; 31 2001; 283 2012; 100 2000; 27 2015; 3 2002; 30 2001; 280 2018; 101 2013; 103 2011; 32 2011; 78 2006; 1 2011; 6 2003; 30 2012; 33 2009; 29 1991; 6 2016; 4 2013; 33 2013; 34 2013; 31 1993; 52 2016; 454 2009; 5 2010; 92 2018; 12 2016; 27 1990; 8 2016; 26 2010; 95 2014; 102 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Wang X (e_1_2_6_11_1) 2010; 92 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 Saffarian Tousi N (e_1_2_6_61_1) 2013; 33 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 9 start-page: 5855 year: 2013 end-page: 5875 article-title: Sintering of calcium phosphate bioceramics publication-title: Acta Biomater – volume: 27 start-page: 170 year: 2016 article-title: Biocompatible nano‐gallium/hydroxyapatite nanocomposite with antimicrobial activity publication-title: J Mater Sci Mater Med – volume: 454 start-page: 31 year: 2016 end-page: 38 article-title: Structural investigation and physical properties of Ga O –ZnO–P O glasses publication-title: J Non Cryst Solids – volume: 9 start-page: 379 year: 2014 end-page: 397 article-title: Promises and failures of gallium as an antibacterial agent publication-title: Future Microbiol – volume: 6 start-page: 1121 year: 1991 end-page: 1126 article-title: Gallium nitrate inhibits bone resorption and collagen synthesis in neonatal mouse calvariae publication-title: J Bone Miner Res – volume: 1 start-page: 56 year: 2006 end-page: 62 article-title: A study on a tissue engineered bone using rhBMP‐2 induced periosteal cells with a porous nanohydroxyapatite/collagen/poly(L‐lactic acid) scaffold publication-title: Biomed Mater – volume: 31 start-page: 61 year: 2005 end-page: 67 article-title: Effects of dissolved calcium and phosphorous on osteoblast responses publication-title: J Oral Implantol – volume: 33 start-page: 2757 year: 2013 end-page: 2765 article-title: Combinatorial effect of Si , Ca , and Mg released from bioactive glasses on osteoblast osteocalcin expression and biomineralization publication-title: Korean J Couns Psychother – volume: 17 start-page: 1127 year: 2012 end-page: 1132 article-title: Ga as a potential candidate for treatment of osteoporosis publication-title: Drug Discov Today – volume: 12 start-page: e854 year: 2018 end-page: e866 article-title: Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial publication-title: J Tissue Eng Regen Med – volume: 78 start-page: 445 year: 2011 end-page: 450 article-title: Bone disease in cystic fibrosis: What's new? publication-title: Joint Bone Spine – volume: 52 start-page: 330 year: 1993 end-page: 336 article-title: Effect of gallium nitrate in vitro and in normal rats publication-title: J Cell Biochem – volume: 12 start-page: 167 year: 1991 end-page: 179 article-title: Bone particles from gallium‐treated rats are resistant to resorption in vivo publication-title: Bone Miner – volume: 283 start-page: 195 year: 2001 end-page: 202 article-title: Infrared and Raman spectra of Ga O ‐P O glasses publication-title: J Non Cryst Solids – volume: 1 start-page: 245 year: 2007 end-page: 260 article-title: State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective publication-title: J Tissue Eng Regen Med – volume: 76 start-page: 333 year: 2018 end-page: 343 article-title: The response of pre‐osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses publication-title: Acta Biomater – volume: 2 start-page: 6030 year: 2014 end-page: 6043 article-title: Nutrient element‐based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation publication-title: J Mater Chem B – volume: 102 start-page: 2952 year: 2014 end-page: 2960 article-title: Effect of geometry and microstructure of honeycomb TCP scaffolds on bone regeneration publication-title: J Biomed Mater Res A – volume: 280 start-page: 348 year: 2001 end-page: 352 article-title: Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells publication-title: Biochem Biophys Res Commun – volume: 25 start-page: 491 year: 2004 end-page: 499 article-title: Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary based P O –CaO–Na O glass system publication-title: Biomaterials – volume: 26 start-page: 6719 year: 2016 end-page: 6727 article-title: Channeled β‐TCP scaffolds promoted vascularization and bone augmentation in mandible of beagle dogs publication-title: Adv Funct Mater – volume: 8 start-page: 29 year: 1997 end-page: 37 article-title: Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity publication-title: J Mater Sci Mater Med – volume: 43 start-page: 6778 year: 2017 end-page: 6785 article-title: Fabrication and characterization of honeycomb β‐tricalcium phosphate scaffolds through an extrusion technique publication-title: Ceram Int – volume: 31 start-page: 594 year: 2013 end-page: 605 article-title: Understanding of dopant‐induced osteogenesis and angiogenesis in calcium phosphate ceramics publication-title: Trends Biotechnol – volume: 95 start-page: 882 year: 2010 end-page: 890 article-title: Effect of exogenous phosphorous and silicon on osteoblast differentiation at the interface with bioactive ceramics publication-title: J Biomed Mater Res A – volume: 8 start-page: 211 year: 1990 end-page: 216 article-title: Gallium inhibits bone resorption by a direct effect on osteoclasts publication-title: Bone Miner – volume: 31 start-page: 1465 year: 2010 end-page: 1485 article-title: Bioceramics of calcium orthophosphates publication-title: Biomaterials – volume: 14 start-page: 1089 year: 2003 end-page: 1097 article-title: Effect of micro‐ and macroporosity of bone substitutes on their mechanical properties and cellular response publication-title: J Mater Sci Mater Med – volume: 159 start-page: 1681 year: 2010 end-page: 1692 article-title: Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts publication-title: Br J Pharmacol – volume: 100 start-page: 3239 year: 2012 end-page: 3250 article-title: In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure publication-title: J Biomed Mater Res A – volume: 136 start-page: 216 year: 2012 end-page: 226 article-title: Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis publication-title: Pharmacol Ther – volume: 32 start-page: 86 year: 2015 end-page: 106 article-title: Effects of thirty elements on bone metabolism publication-title: J Trace Elem Med Biol – volume: 4 start-page: 71 year: 2016 end-page: 86 article-title: Gallium‐containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy publication-title: J Mater Chem B – volume: 101 start-page: 5811 year: 2018 end-page: 5826 article-title: Fabrication of β‐tricalcium phosphate composite ceramic scaffolds based on spheres prepared by extrusion‐spheronization publication-title: J Am Ceram Soc – volume: 289 start-page: 1504 year: 2000 end-page: 1508 article-title: Bone resorption by osteoclasts publication-title: Science – volume: 48 start-page: 401 year: 1992 end-page: 410 article-title: Reversible inhibition of osteoclastic activity by bone‐bound gallium (III) publication-title: J Cell Biochem – volume: 29 start-page: 216 year: 2009 end-page: 221 article-title: Effect of coprecipitation temperature on the properties and activity of fibroblast growth factor‐2 apatite composite layer publication-title: Mat Sci Eng C‐Bio S – volume: 86 start-page: 215 year: 2018 end-page: 223 article-title: Tailoring the mechanical property and cell‐biological response of β‐tricalcium phosphate composite bioceramics by SrO‐P O ‐Na O based additive publication-title: J Mech Behav Biomed – volume: 84 start-page: 1 year: 2015 end-page: 29 article-title: Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies publication-title: Adv Drug Deliv Rev – volume: 33 start-page: 5076 year: 2012 end-page: 5084 article-title: The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long‐term estrogen deficient goats publication-title: Biomaterials – volume: 103 start-page: 209 year: 2013 end-page: 216 article-title: Improvement of cell response of the poly (lactic‐co‐glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment publication-title: Colloids Surf B Biointerfaces – volume: 34 start-page: 10028 year: 2013 end-page: 10042 article-title: Enhanced osteoporotic bone regeneration by strontium‐substituted calcium silicate bioactive ceramics publication-title: Biomaterials – volume: 30 start-page: 1 year: 2003 end-page: 4 article-title: Gallium nitrate revisited publication-title: Semin Oncol – volume: 5 start-page: 6175 year: 2017 end-page: 6192 article-title: Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone publication-title: J Mater Chem B – volume: 30 start-page: 5 year: 2003 end-page: 12 article-title: The effects of gallium nitrate on bone resorption publication-title: Semin Oncol – volume: 6 year: 2011 article-title: BMP‐2 and ALP gene expression induced by a BMP‐2 gene‐fibronectin‐apatite composite layer publication-title: Biomed Mater – volume: 25 start-page: 59 year: 1994 end-page: 69 article-title: The effects of gallium nitrate on osteopenia induced by ovariectomy and a low‐calcium diet in rats publication-title: Bone Miner – volume: 26 start-page: 4847 year: 2005 end-page: 4855 article-title: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture publication-title: Biomaterials – volume: 3 start-page: 4626 year: 2015 end-page: 4640 article-title: Strontium modified calcium phosphate cements − Approaches towards targeted stimulation of bone turnover publication-title: J Mater Chem B – volume: 27 start-page: 359 year: 2000 end-page: 366 article-title: Inorganic phosphate induces apoptosis of osteoblast‐like cells in culture publication-title: Bone – volume: 5 start-page: 2647 year: 2009 end-page: 2656 article-title: Ascorbate‐apatite composite and ascorbate‐FGF‐2‐apatite composite layers formed on external fixation rods and their effects on cell activity in vitro publication-title: Acta Biomater – volume: 92 start-page: 1181 year: 2010 end-page: 1189 article-title: Silicate‐apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast publication-title: J Biomed Mater Res A – volume: 167 start-page: 318 year: 2018 end-page: 327 article-title: β‐Tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities publication-title: Colloids Surf B Biointerfaces – volume: 28 start-page: 539 year: 2008 end-page: 545 article-title: Spark plasma sintering of macroporous calcium phosphate scaffolds from nano crystalline powders publication-title: J Eur Ceram Soc – volume: 30 start-page: 207 year: 2002 end-page: 216 article-title: Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius publication-title: Bone – volume: 9 year: 2017 article-title: Fabrication of β‐tricalcium phosphate composite ceramic sphere‐based scaffolds with hierarchical pore structure for bone regeneration publication-title: Biofabrication – volume: 118 start-page: 15386 year: 2014 end-page: 15403 article-title: Intermediate role of gallium in oxidic glasses: Solid state NMR structural studies of the Ga O − NaPO system publication-title: J Phys Chem C – volume: 131 start-page: 1298 year: 2018 end-page: 1303 article-title: Paget's disease of bone: Diagnosis and treatment publication-title: Am J Med – volume: 33 start-page: 979 year: 2007 end-page: 985 article-title: Properties of β‐Ca (PO ) bioceramics prepared using nano‐size powders publication-title: Ceram Int – volume: 57 start-page: 709 year: 2002 end-page: 715 article-title: The structure of gallium phosphate glasses by high energy X‐ray diffraction publication-title: Z Naturforsch A – volume: 44 start-page: 11622 year: 2018 end-page: 11627 article-title: Improvements in phase stability and densification of β‐tricalcium phosphate bioceramics by strontium‐containing phosphate‐based glass additive publication-title: Ceram Int – volume: 32 start-page: 2757 year: 2011 end-page: 2774 article-title: A review of the biological response to ionic dissolution products from bioactive glasses and glass‐ceramics publication-title: Biomaterials – ident: e_1_2_6_15_1 doi: 10.1039/C5TB00654F – ident: e_1_2_6_51_1 doi: 10.1016/j.jnoncrysol.2016.10.022 – ident: e_1_2_6_2_1 doi: 10.1039/C7TB00741H – ident: e_1_2_6_47_1 doi: 10.1023/B:JMSM.0000004006.90399.b4 – ident: e_1_2_6_48_1 doi: 10.1021/jp504023k – ident: e_1_2_6_58_1 doi: 10.1006/bbrc.2000.4108 – ident: e_1_2_6_21_1 doi: 10.1016/j.jtemb.2015.06.005 – ident: e_1_2_6_42_1 doi: 10.1002/adfm.201602631 – ident: e_1_2_6_18_1 doi: 10.1016/j.jmbbm.2018.06.036 – ident: e_1_2_6_20_1 doi: 10.1016/j.drudis.2012.06.007 – ident: e_1_2_6_8_1 doi: 10.1088/1748-6041/6/4/045004 – ident: e_1_2_6_32_1 doi: 10.1016/j.actbio.2012.11.029 – ident: e_1_2_6_53_1 doi: 10.1039/C5TB02062J – ident: e_1_2_6_12_1 doi: 10.1016/j.tibtech.2013.06.005 – ident: e_1_2_6_6_1 doi: 10.1016/S8756-3282(01)00621-4 – ident: e_1_2_6_4_1 doi: 10.1126/science.289.5484.1504 – ident: e_1_2_6_26_1 doi: 10.1016/S0169-6009(08)80208-5 – ident: e_1_2_6_46_1 doi: 10.1016/S0142-9612(03)00546-5 – ident: e_1_2_6_43_1 doi: 10.1016/j.colsurfb.2012.10.018 – ident: e_1_2_6_22_1 doi: 10.1016/S0093-7754(03)00170-2 – volume: 33 start-page: 2757 year: 2013 ident: e_1_2_6_61_1 article-title: Combinatorial effect of Si4+, Ca2+, and Mg2+ released from bioactive glasses on osteoblast osteocalcin expression and biomineralization publication-title: Korean J Couns Psychother – ident: e_1_2_6_9_1 doi: 10.1016/j.actbio.2009.03.020 – ident: e_1_2_6_5_1 doi: 10.1016/j.jbspin.2010.11.015 – ident: e_1_2_6_44_1 doi: 10.1002/jbm.a.34265 – ident: e_1_2_6_41_1 doi: 10.1002/jbm.a.34966 – ident: e_1_2_6_38_1 doi: 10.1088/1758-5090/aa6a62 – ident: e_1_2_6_10_1 doi: 10.1016/j.msec.2008.06.012 – ident: e_1_2_6_16_1 doi: 10.1016/j.biomaterials.2013.09.056 – ident: e_1_2_6_33_1 doi: 10.1016/j.ceramint.2006.02.011 – ident: e_1_2_6_14_1 doi: 10.1016/j.pharmthera.2012.07.009 – ident: e_1_2_6_27_1 doi: 10.2217/fmb.14.3 – ident: e_1_2_6_29_1 doi: 10.1016/j.actbio.2018.06.036 – ident: e_1_2_6_40_1 doi: 10.1088/1748-6041/1/2/002 – ident: e_1_2_6_24_1 doi: 10.1016/0169-6009(90)90106-P – ident: e_1_2_6_25_1 doi: 10.1002/jbmr.5650061014 – ident: e_1_2_6_39_1 doi: 10.1002/term.24 – ident: e_1_2_6_57_1 doi: 10.1002/jcb.240520309 – ident: e_1_2_6_52_1 doi: 10.1016/S8756-3282(00)00346-X – ident: e_1_2_6_55_1 doi: 10.1111/j.1476-5381.2010.00665.x – ident: e_1_2_6_49_1 doi: 10.1515/zna-2002-0811 – ident: e_1_2_6_62_1 doi: 10.1016/0169-6009(91)90030-4 – ident: e_1_2_6_60_1 doi: 10.1002/jbm.a.32915 – ident: e_1_2_6_13_1 doi: 10.1016/j.biomaterials.2011.01.004 – ident: e_1_2_6_36_1 doi: 10.1016/j.ceramint.2018.03.236 – ident: e_1_2_6_34_1 doi: 10.1016/j.jeurceramsoc.2007.07.012 – ident: e_1_2_6_19_1 doi: 10.1016/j.colsurfb.2018.04.028 – ident: e_1_2_6_28_1 doi: 10.1016/j.biomaterials.2012.03.069 – volume: 92 start-page: 1181 year: 2010 ident: e_1_2_6_11_1 article-title: Silicate‐apatite composite layers on external fixation rods and in vitro evaluation using fibroblast and osteoblast publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.32436 – ident: e_1_2_6_54_1 doi: 10.1007/s10856-016-5777-3 – ident: e_1_2_6_17_1 doi: 10.1039/C4TB00837E – ident: e_1_2_6_50_1 doi: 10.1016/S0022-3093(01)00361-1 – ident: e_1_2_6_59_1 doi: 10.1563/0-742.1 – ident: e_1_2_6_3_1 doi: 10.1016/j.addr.2014.09.005 – ident: e_1_2_6_23_1 doi: 10.1016/S0093-7754(03)00169-6 – ident: e_1_2_6_31_1 doi: 10.1016/j.biomaterials.2009.11.050 – ident: e_1_2_6_7_1 doi: 10.1016/j.amjmed.2018.04.028 – ident: e_1_2_6_63_1 doi: 10.1002/jcb.240480409 – ident: e_1_2_6_35_1 doi: 10.1023/A:1018538212328 – ident: e_1_2_6_45_1 doi: 10.1016/j.ceramint.2017.02.094 – ident: e_1_2_6_30_1 doi: 10.1002/term.2396 – ident: e_1_2_6_37_1 doi: 10.1111/jace.15819 – ident: e_1_2_6_56_1 doi: 10.1016/j.biomaterials.2005.01.006 |
SSID | ssj0026052 |
Score | 2.3674178 |
Snippet | Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1314 |
SubjectTerms | Bioceramics Biocompatibility Biomaterials Biomedical materials Bone biomaterials Bone growth Bone resorption calcium phosphate Calcium phosphates Cell proliferation Compressive strength Densification Extrusion Gallium Ions Maintenance Mesenchyme Monocytes Osteoclastogenesis osteogenesis Porosity Regeneration Regeneration (physiology) Scaffolds Sintering (powder metallurgy) Stem cell transplantation Stem cells Tricalcium phosphate |
Title | Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36644 https://www.ncbi.nlm.nih.gov/pubmed/30707498 https://www.proquest.com/docview/2218928599 https://www.proquest.com/docview/2179507030 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQJzjQ8ihNC8iVOFFlycZOSI6AQAhpOSCQuEUzsQ0UuqmSXantr2fGyYankNpbJI_tJM7MfBPPfBZiO0siayxCaCIDoYYIQyQvHhKUSDExOhtGXO88OktPLvXpVXLV5eZwLUzLD9H_cGPN8PaaFRyw2X0kDf2BPwcwUCk5dLLAnK3FkOi8J49ioO73OikCClWcp111HrXsPun73B-9ApnPMat3Oscf2pNVG89VyLkmd4PpBAfl3xdMjv_9PB_FUgdH5X77_SyLOTteEYtPSApXxXRUGc4n8ksoKydvqrH9Q6OjxFvyfjWfaC-bEpyr7k0jCQVLJBFZ22vPae37ca1aLQltSgrAze1sLPubyxTI4s66NFXtjdiauDw-ujg8CbvDGsJSp0qHFLdQJGUJsIDNDNkKwh0mVwYhUxQUuWECBvaQnB8COlC8falKF5VOpQoipT6J-THN9FlIjc6hid1QA2jCp3nsVASKxHWaxiYKxM5syYqyYzLnAzXui5aDOS7oXRZQ-HcZiO1e-FdL4PG22MZs7YtOi5siJvyTM8NfHohvfTPpH2-qwNhWU5Ihi5Z4uxmI9fab6edhe7qn8ywQ3_3Kv3cDxenBaN9fffkn6a9igTBc3mavbYj5ST21m4STJrjl1eEBb78PVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Vemg5QFtaSKHUlTiBsmRjJyRHqIoWynKoQOJmjWOb8tqg7K4E_fWMnUehrZDKLZLHeXgyM9_Yns8A61kSGW0UhjrSGAqMVKgoiocEJVKVaJH1I1fvPDxKByfi4DQ5bSbcXC1MzQ_RTbg5y_D-2hm4m5De-s0aeqGue9jjKUX0GXjpzvT2KdWPjj7KQXW_2kk5UMjjPG3q86hl60HnxxHpL5j5GLX6sLO3ALJ94Xq3yWVvOlG94tcfXI7P_6I3MN8gUrZT_0Jv4YUZvYO5BzyFizAdltptKfJaZKVlP8uRuaPbK6bOKQBW7lB7Ni7Q2vJKjxkBYaZIhFXmzNNa-36uXK1iBDgZ5eD6vL2XuXWVCuR02y7jsvJ-7D2c7H07_joIm_MawkKkXISUulAyZQizoMk0uQuCHjrnWmHGKS-y_QQ1biuKfwqVRe5WMHlho8LylGPE-QeYHdGTloEJZa3Sse0LREEQNY8tj5CTuEjTWEcBbLQ6k0VDZu7O1LiSNQ1zLGksJUo_lgGsd8I3NYfHv8VWW-XLxpDHMiYIlDuSvzyAL10zmaBbV8GRKackQ04t8a4zgKX6p-me41zqtsizADa96p96AXmwO9zxVx__S_ozvBocDw_l4f7R9xV4TZAurzezrcLspJqaTwSbJmrN28Y9TxcTcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAcWr4KoQWM1BMoW2_suMmxUFalsBVCVOrNGsc2FMqmSnalwq9n7GRDCwgJbpE8thPbM_Mm9jwDbBU5d9YZTC23mErkJjXkxVOCEsrkVhZjHvKdp4dq_0geHOfH_dmckAvT8UMMP9yCZkR7HRT8zPrtn6Shn83XEY6EIod-Fa5JxYuwqPfeD-xRAanHzU4KgVKRlapPz6OS7QuVLzuk31DmZdAavc5krbtatY1kheGwyZfRYm5G1fdfqBz_-4NuwWqPR9lut4BuwxU3uwM3L7AU3oXFtLbhQFGcQ1Z79qmeuW_UumHmhNxfE660Z22F3tentmUEg5khEda4j5HUOtYLyWoNI7jJKAK3J8u23HnIUyCTu6zS1k20YvfgaPLqw8v9tL-tIa2kEjKlwIVCKUeIBV1hyVgQ8LClsAYLQVGRH-docceQ9zNoPIqwfykqzysvlEAuxDqszKinB8Ck8d7YzI8loiSAWmZecBQkLpXKLE_g2XLKdNVTmYcbNU51R8KcaRpLjTqOZQJbg_BZx-DxZ7HN5dzrXo1bnREAKgPFX5nA06GYFDDsquDM1QuSIZOWR8OZwP1uzQz9BIO6I8sigedx5v_2AvrgxXQ3Pj38J-kncP3d3kS_fX34ZgNuEJ4ru5Nsm7AybxbuEWGmuXkcNeMHKWkSKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+honeycomb+bioceramic+scaffolds+for+bone+regeneration+under+the+condition+of+excessive+bone+resorption&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=He%2C+Fupo&rft.au=Lu%2C+Teliang&rft.au=Fang%2C+Xibo&rft.au=Tian%2C+Ye&rft.date=2019-06-01&rft.eissn=1552-4965&rft.volume=107&rft.issue=6&rft.spage=1314&rft_id=info:doi/10.1002%2Fjbm.a.36644&rft_id=info%3Apmid%2F30707498&rft.externalDocID=30707498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |