Regulation of the tolerogenic function of steady‐state DCs

Dendritic cells (DCs) are master regulators of T‐cell responses. After sensing pathogen‐derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4+ and CD8+ T cells through a process that is termed DC maturation. By contr...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of immunology Vol. 44; no. 4; pp. 927 - 933
Main Authors Probst, Hans Christian, Muth, Sabine, Schild, Hansjörg
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dendritic cells (DCs) are master regulators of T‐cell responses. After sensing pathogen‐derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4+ and CD8+ T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T‐cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC‐activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self‐tolerance yet allow for adequate T‐cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady‐state DCs.
AbstractList Dendritic cells (DCs) are master regulators of T‐cell responses. After sensing pathogen‐derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4+ and CD8+ T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T‐cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC‐activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self‐tolerance yet allow for adequate T‐cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady‐state DCs.
Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naive CD4 super(+) and CD8 super(+) T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T-cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC-activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self-tolerance yet allow for adequate T-cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady-state DCs.
Dendritic cells (DCs) are master regulators of T‐cell responses. After sensing pathogen‐derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4 + and CD8 + T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T‐cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC‐activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self‐tolerance yet allow for adequate T‐cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady‐state DCs.
Author Schild, Hansjörg
Probst, Hans Christian
Muth, Sabine
Author_xml – sequence: 1
  givenname: Hans Christian
  surname: Probst
  fullname: Probst, Hans Christian
  organization: Johannes Gutenberg University Mainz
– sequence: 2
  givenname: Sabine
  surname: Muth
  fullname: Muth, Sabine
  organization: Johannes Gutenberg University Mainz
– sequence: 3
  givenname: Hansjörg
  surname: Schild
  fullname: Schild, Hansjörg
  organization: Johannes Gutenberg University Mainz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24652744$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9Kw0AQBvBFKrZVj14l4MVL6v6ZbBLwIrVqpSCInpfNZlJT0qxmE6Q3H8Fn9Enc0taDB_G0h_nNB7PfkPRqWyMhJ4yOGKX8AhfliFMmQCSS75EBizgLgQHrkQGlDEKeJrRPhs4tKKWpjNID0ucgIx4DDMjlI867SrelrQNbBO0LBq2tsLFzrEsTFF1tdjPXos5XXx-frtUtBtdjd0T2C105PN6-h-T5ZvI0vgtnD7fT8dUsNCAFhAISwAhjmetMZ1KzJMmNAB5zGuccQQiTJ6IQCDorIj9OZaohhkzGFKjR4pCcb3JfG_vWoWvVsnQGq0rXaDun_M1USM7S9B-URRLiiAtPz37Rhe2a2h-yVsBlIhj3Ktwo01jnGizUa1MudbNSjKp1A8o3oH4a8P50m9plS8x_9O7LPeAb8F5WuPo7TU3upzz1S98H-ZB1
CODEN EJIMAF
CitedBy_id crossref_primary_10_3389_fimmu_2016_00015
crossref_primary_10_1038_mi_2015_14
crossref_primary_10_1002_ctm2_140
crossref_primary_10_2217_nnm_2020_0102
crossref_primary_10_1016_j_jaut_2014_06_001
crossref_primary_10_1111_bph_14483
crossref_primary_10_1016_j_bioactmat_2022_10_009
crossref_primary_10_1016_j_jcyt_2022_11_005
crossref_primary_10_1016_j_jaci_2016_09_003
crossref_primary_10_1016_j_jcmgh_2016_02_004
crossref_primary_10_1038_cti_2016_6
crossref_primary_10_1073_pnas_1516617112
crossref_primary_10_1016_j_cytogfr_2015_06_002
crossref_primary_10_1111_imm_13397
crossref_primary_10_3390_biom11091289
crossref_primary_10_3390_nu13072198
crossref_primary_10_4049_jimmunol_1601629
crossref_primary_10_3389_fbioe_2020_00627
crossref_primary_10_1016_j_semcdb_2018_02_020
crossref_primary_10_1016_j_cell_2020_04_022
crossref_primary_10_1097_MOT_0000000000000488
crossref_primary_10_1007_s00109_021_02116_9
crossref_primary_10_1007_s00262_018_2187_z
crossref_primary_10_1038_cmi_2015_110
crossref_primary_10_1186_s13045_024_01541_w
crossref_primary_10_3389_fimmu_2020_00674
crossref_primary_10_1016_j_pharmthera_2016_06_009
crossref_primary_10_1016_j_intimp_2016_01_018
crossref_primary_10_1016_j_clim_2015_02_003
crossref_primary_10_1111_cea_12451
crossref_primary_10_1126_sciimmunol_abd3774
crossref_primary_10_1016_j_imbio_2020_152031
crossref_primary_10_1039_D0NA00478B
crossref_primary_10_3389_fimmu_2018_02240
crossref_primary_10_1016_j_healun_2015_10_041
Cites_doi 10.4049/jimmunol.0902420
10.1084/jem.20110308
10.1016/j.cell.2008.07.025
10.1002/eji.201040453
10.1084/jem.194.6.769
10.1016/j.immuni.2009.11.015
10.1038/ni.2135
10.1084/jem.20062129
10.1016/j.it.2013.03.005
10.1016/j.immuni.2007.03.014
10.1126/science.1202947
10.4049/jimmunol.1003920
10.1084/jem.137.5.1142
10.1038/nri1457
10.1084/jem.20090746
10.1126/science.1170540
10.1084/jem.20021598
10.1038/ni1165
10.1038/nature01991
10.1084/jem.172.2.631
10.1038/nm.1925
10.1002/eji.201242796
10.1146/annurev.immunol.25.022106.141623
10.1016/j.immuni.2011.03.005
10.1038/ni1003
10.4049/jimmunol.1103210
10.1016/j.immuni.2008.10.009
10.1016/j.immuni.2012.07.018
10.1016/j.cell.2010.01.022
10.1182/blood-2009-09-245274
10.1038/ni.2499
10.1038/ni1265
10.1002/eji.201041169
10.1038/ni.2554
10.1189/jlb.70.6.903
10.1038/15200
10.1016/j.cytogfr.2010.05.002
10.1084/jem.20101158
10.4049/jimmunol.1001675
10.1002/eji.201343738
10.1016/j.immuni.2008.10.012
10.1146/annurev.immunol.18.1.767
10.1182/blood-2011-09-379776
10.1126/science.1160062
10.1038/ni1428
10.1002/eji.200838842
10.1016/j.immuni.2004.07.009
10.1084/jem.20062512
10.1016/j.immuni.2011.05.013
10.1002/eji.201243163
10.1084/jem.20101235
10.1182/blood-2008-08-175489
10.1038/nature07750
10.1073/pnas.0711106105
10.1073/pnas.1110620109
10.1084/jem.20070590
10.1038/nri3479
10.4049/jimmunol.177.1.130
10.1111/imm.12053
10.4049/jimmunol.180.9.5916
10.1073/pnas.0910620107
10.1084/jem.194.5.629
10.1016/S1074-7613(03)00120-1
10.4049/jimmunol.181.10.6923
10.1002/eji.201141578
10.1038/ni.2077
10.4049/jimmunol.1201029
10.1073/pnas.0805058105
10.1016/j.cellimm.2010.07.007
10.4049/jimmunol.163.3.1253
10.1084/jem.20031591
10.1084/jem.184.2.747
10.1038/nature10772
10.4049/jimmunol.169.10.5538
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/eji.201343862
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1521-4141
EndPage 933
ExternalDocumentID 3271021841
10_1002_eji_201343862
24652744
EJI2944
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: MAIFOR program of the University Medical Center Mainz
– fundername: Deutsche Forschungsgemeinschaft
  funderid: PR1184/2‐1
– fundername: Immunology Research Center (FZI)
GroupedDBID ---
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UPT
V2E
VH1
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
XPP
XV2
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
ACXME
CGR
CUY
CVF
ECM
EIF
NPM
ZA5
AAYXX
CITATION
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4634-3484e5e76dabab6a188dc3427207d2e433cd83f3e4abf5a18969a474b67040ca3
IEDL.DBID DR2
ISSN 0014-2980
IngestDate Fri Aug 16 08:15:30 EDT 2024
Sat Aug 17 03:30:59 EDT 2024
Fri Sep 13 07:53:11 EDT 2024
Fri Aug 23 00:22:24 EDT 2024
Thu May 23 23:20:58 EDT 2024
Sat Aug 24 00:55:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Peripheral T-cell tolerance
Dendritic cells
Steady-state DCs
DC maturation
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4634-3484e5e76dabab6a188dc3427207d2e433cd83f3e4abf5a18969a474b67040ca3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
PMID 24652744
PQID 1514268312
PQPubID 986365
PageCount 7
ParticipantIDs proquest_miscellaneous_1520362199
proquest_miscellaneous_1515647523
proquest_journals_1514268312
crossref_primary_10_1002_eji_201343862
pubmed_primary_24652744
wiley_primary_10_1002_eji_201343862_EJI2944
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle European journal of immunology
PublicationTitleAlternate Eur J Immunol
PublicationYear 2014
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 21
2012; 120
2010; 107
2002; 196
1996; 184
2004; 4
2013; 123
2010; 265
1999; 163
2009; 113
2008; 105
2010; 140
2003; 18
2011; 12
2010; 184
2012; 14
2006; 177
2010; 21
2000; 18
2011; 208
2013; 14
2013; 13
2008; 29
2010; 115
2007; 8
2003; 4
2009; 206
2011; 482
2009; 15
2009; 324
1990; 172
2007; 26
2001; 70
2010; 32
2012; 188
2007; 204
2012; 189
2013; 43
2010; 207
2011; 35
2011; 34
2008; 322
2012; 37
1999; 5
2011; 332
2010; 40
2014; 44
2012; 109
2012; 30
2009; 458
2008; 181
2004; 199
2008; 180
1973; 137
2001; 194
2003; 425
2013; 34
2013; 138
2002; 169
2011; 41
2005; 6
2008; 134
2012; 42
2011; 186
2009; 39
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
Idoyaga J. (e_1_2_10_33_1) 2013; 123
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
Di Rosa F. (e_1_2_10_12_1) 1999; 163
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 188
  start-page: 1125
  year: 2012
  end-page: 1135
  article-title: Organ‐specific cellular requirements for in vivo dendritic cell generation
  publication-title: J. Immunol.
– volume: 207
  start-page: 2323
  year: 2010
  end-page: 2330
  article-title: A critical role for regulatory T cell‐mediated control of inflammation in the absence of commensal microbiota
  publication-title: J. Exp. Med.
– volume: 13
  start-page: 551
  year: 2013
  end-page: 565
  article-title: Newly described pattern recognition receptors team up against intracellular pathogens
  publication-title: Nat. Rev. Immunol.
– volume: 324
  start-page: 392
  year: 2009
  end-page: 397
  article-title: In vivo analysis of dendritic cell development and homeostasis
  publication-title: Science
– volume: 194
  start-page: 769
  year: 2001
  end-page: 779
  article-title: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo
  publication-title: J. Exp. Med.
– volume: 105
  start-page: 10113
  year: 2008
  end-page: 10118
  article-title: Foxp3 natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 113
  start-page: 5891
  year: 2009
  end-page: 5895
  article-title: Naturally occurring short splice variant of CYLD positively regulates dendritic cell function
  publication-title: Blood
– volume: 172
  start-page: 631
  year: 1990
  end-page: 640
  article-title: Dendritic cells pulsed with protein antigens in vitro can prime antigen‐specific, MHC‐restricted T cells in situ
  publication-title: J. Exp. Med.
– volume: 43
  start-page: 1651
  year: 2013
  end-page: 1658
  article-title: Dendritic cell homeostasis is maintained by nonhematopoietic and T‐cell‐produced Flt3‐ligand in steady state and during immune responses
  publication-title: Eur. J. Immunol.
– volume: 39
  start-page: 1765
  year: 2009
  end-page: 1773
  article-title: DC‐induced CD8(+) T‐cell response is inhibited by MHC class II‐dependent DX5(+)CD4(+) Treg
  publication-title: Eur. J. Immunol.
– volume: 12
  start-page: 870
  year: 2011
  end-page: 878
  article-title: Indoleamine 2,3‐dioxygenase is a signaling protein in long‐term tolerance by dendritic cells
  publication-title: Nat. Immunol.
– volume: 105
  start-page: 10865
  year: 2008
  end-page: 10870
  article-title: TGF‐beta signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 204
  start-page: 1303
  year: 2007
  end-page: 1310
  article-title: Cyclic adenosine monophosphate is a key component of regulatory T cell‐mediated suppression
  publication-title: J. Exp. Med.
– volume: 18
  start-page: 713
  year: 2003
  end-page: 720
  article-title: Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8 T cell tolerance
  publication-title: Immunity
– volume: 29
  start-page: 934
  year: 2008
  end-page: 946
  article-title: Expression of costimulatory ligand CD70 on steady‐state dendritic cells breaks CD8 T cell tolerance and permits effective immunity
  publication-title: Immunity
– volume: 120
  start-page: 1237
  year: 2012
  end-page: 1245
  article-title: Migratory, and not lymphoid‐resident, dendritic cells maintain peripheral self‐tolerance and prevent autoimmunity via induction of iTreg cells
  publication-title: Blood
– volume: 189
  start-page: 3878
  year: 2012
  end-page: 3893
  article-title: Dendritic cell‐specific disruption of TGF‐beta receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity
  publication-title: J. Immunol.
– volume: 6
  start-page: 280
  year: 2005
  end-page: 286
  article-title: Resting dendritic cells induce peripheral CD8 T cell tolerance through PD‐1 and CTLA‐4
  publication-title: Nat. Immunol.
– volume: 35
  start-page: 82
  year: 2011
  end-page: 96
  article-title: The ubiquitin‐editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity
  publication-title: Immunity
– volume: 70
  start-page: 903
  year: 2001
  end-page: 910
  article-title: cAMP‐elevating agents suppress dendritic cell function
  publication-title: J. Leukoc. Biol.
– volume: 44
  start-page: 1099
  year: 2014
  end-page: 1107
  article-title: A CD40/CD40L feedback loop drives the breakdown of CD8 T‐cell tolerance following depletion of suppressive CD4 T cells
  publication-title: Eur. J. Immunol.
– volume: 30
  start-page: 531
  year: 2012
  end-page: 564
  article-title: Regulatory T cells: mechanisms of differentiation and function
  publication-title: Annu. Rev. Immunol.
– volume: 42
  start-page: 1375
  year: 2012
  end-page: 1384
  article-title: Cyclic AMP underpins suppression by regulatory T cells
  publication-title: Eur. J. Immunol.
– volume: 5
  start-page: 1249
  year: 1999
  end-page: 1255
  article-title: Natural adjuvants: endogenous activators of dendritic cells
  publication-title: Nat. Med.
– volume: 6
  start-page: 1219
  year: 2005
  end-page: 1227
  article-title: Inducing and expanding regulatory T cell populations by foreign antigen
  publication-title: Nat. Immunol.
– volume: 137
  start-page: 1142
  year: 1973
  end-page: 1162
  article-title: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution
  publication-title: J. Exp. Med.
– volume: 18
  start-page: 767
  year: 2000
  end-page: 811
  article-title: Immunobiology of dendritic cells
  publication-title: Annu. Rev. Immunol.
– volume: 194
  start-page: 629
  year: 2001
  end-page: 644
  article-title: Cell contact‐dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface‐bound transforming growth factor beta
  publication-title: J. Exp. Med.
– volume: 265
  start-page: 91
  year: 2010
  end-page: 96
  article-title: Cyclic adenosine monophosphate and IL‐10 coordinately contribute to nTreg cell‐mediated suppression of dendritic cell activation
  publication-title: Cell. Immunol.
– volume: 4
  start-page: 1206
  year: 2003
  end-page: 1212
  article-title: Modulation of tryptophan catabolism by regulatory T cells
  publication-title: Nat. Immunol.
– volume: 43
  start-page: 439
  year: 2013
  end-page: 446
  article-title: DX5 CD4 T cells modulate CD4 T‐cell response via inhibition of IL‐12 production by DCs
  publication-title: Eur. J. Immunol.
– volume: 332
  start-page: 600
  year: 2011
  end-page: 603
  article-title: Trans‐endocytosis of CD80 and CD86: a molecular basis for the cell‐extrinsic function of CTLA‐4
  publication-title: Science
– volume: 458
  start-page: 899
  year: 2009
  end-page: 903
  article-title: Identification of a dendritic cell receptor that couples sensing of necrosis to immunity
  publication-title: Nature
– volume: 184
  start-page: 1810
  year: 2010
  end-page: 1820
  article-title: Dendritic cells support homeostatic expansion of Foxp3 regulatory T cells in Foxp3.LuciDTR mice
  publication-title: J. Immunol.
– volume: 134
  start-page: 392
  year: 2008
  end-page: 404
  article-title: TGF‐beta: a master of all T cell trades
  publication-title: Cell
– volume: 123
  start-page: 844
  year: 2013
  end-page: 854
  article-title: Specialized role of migratory dendritic cells in peripheral tolerance induction
  publication-title: J. Clin. Invest.
– volume: 188
  start-page: 5397
  year: 2012
  end-page: 5407
  article-title: Dendritic cell‐specific ablation of the protein tyrosine phosphatase Shp1 promotes Th1 cell differentiation and induces autoimmunity
  publication-title: J. Immunol.
– volume: 180
  start-page: 5916
  year: 2008
  end-page: 5926
  article-title: Regulatory T cells inhibit dendritic cells by lymphocyte activation gene‐3 engagement of MHC class II
  publication-title: J. Immunol.
– volume: 21
  start-page: 227
  year: 2010
  end-page: 236
  article-title: Regulation of immune cell homeostasis by type I interferons
  publication-title: Cytokine Growth Factor Rev.
– volume: 109
  start-page: 9059
  year: 2012
  end-page: 9064
  article-title: Release of dendritic cells from cognate CD4 T‐cell recognition results in impaired peripheral tolerance and fatal cytotoxic T‐cell mediated autoimmunity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 322
  start-page: 271
  year: 2008
  end-page: 275
  article-title: CTLA‐4 control over Foxp3 regulatory T cell function
  publication-title: Science
– volume: 208
  start-page: 1989
  year: 2011
  end-page: 2003
  article-title: Type I interferon is selectively required by dendritic cells for immune rejection of tumors
  publication-title: J. Exp. Med.
– volume: 184
  start-page: 747
  year: 1996
  end-page: 752
  article-title: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin‐12 and enhances T cell stimulatory capacity: T‐T help via APC activation
  publication-title: J. Exp. Med.
– volume: 14
  start-page: 162
  year: 2012
  end-page: 171
  article-title: Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF‐beta1 signaling and induction of Foxp3(+) regulatory T cells
  publication-title: Nat. Immunol.
– volume: 21
  start-page: 267
  year: 2004
  end-page: 277
  article-title: Recognition of the peripheral self by naturally arising CD25 CD4 T cell receptors
  publication-title: Immunity
– volume: 204
  start-page: 1757
  year: 2007
  end-page: 1764
  article-title: A functionally specialized population of mucosal CD103 DCs induces Foxp3 regulatory T cells via a TGF‐beta and retinoic acid‐dependent mechanism
  publication-title: J. Exp. Med.
– volume: 107
  start-page: 199
  year: 2010
  end-page: 203
  article-title: FoxP3 regulatory T cells essentially contribute to peripheral CD8 T‐cell tolerance induced by steady‐state dendritic cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 396
  year: 2011
  end-page: 408
  article-title: Autocrine transforming growth factor‐beta1 promotes in vivo Th17 cell differentiation
  publication-title: Immunity
– volume: 204
  start-page: 1257
  year: 2007
  end-page: 1265
  article-title: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression
  publication-title: J. Exp. Med.
– volume: 26
  start-page: 579
  year: 2007
  end-page: 591
  article-title: T cell‐produced transforming growth factor‐beta1 controls T cell tolerance and regulates Th1‐ and Th17‐cell differentiation
  publication-title: Immunity
– volume: 169
  start-page: 5538
  year: 2002
  end-page: 5545
  article-title: Expression of programmed death 1 ligands by murine T cells and APC
  publication-title: J. Immunol.
– volume: 163
  start-page: 1253
  year: 1999
  end-page: 1257
  article-title: On the lifespan of virgin T lymphocytes
  publication-title: J. Immunol.
– volume: 37
  start-page: 867
  year: 2012
  end-page: 879
  article-title: Nucleic acid‐sensing Toll‐like receptors are essential for the control of endogenous retrovirus viremia and ERV‐induced tumors
  publication-title: Immunity
– volume: 181
  start-page: 6923
  year: 2008
  end-page: 6933
  article-title: CD8 CD205 splenic dendritic cells are specialized to induce Foxp3 regulatory T cells
  publication-title: J. Immunol.
– volume: 8
  start-page: 191
  year: 2007
  end-page: 197
  article-title: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice
  publication-title: Nat. Immunol.
– volume: 177
  start-page: 130
  year: 2006
  end-page: 137
  article-title: Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO
  publication-title: J. Immunol.
– volume: 29
  start-page: 986
  year: 2008
  end-page: 997
  article-title: Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome
  publication-title: Immunity
– volume: 425
  start-page: 516
  year: 2003
  end-page: 521
  article-title: Molecular identification of a danger signal that alerts the immune system to dying cells
  publication-title: Nature
– volume: 196
  start-page: 1627
  year: 2002
  end-page: 1638
  article-title: Efficient targeting of protein antigen to the dendritic cell receptor DEC‐205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 T cell tolerance
  publication-title: J. Exp. Med.
– volume: 115
  start-page: 1958
  year: 2010
  end-page: 1968
  article-title: Skin‐draining lymph nodes contain dermis‐derived CD103(‐) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells
  publication-title: Blood
– volume: 4
  start-page: 762
  year: 2004
  end-page: 774
  article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism
  publication-title: Nat. Rev. Immunol.
– volume: 14
  start-page: 307
  year: 2013
  end-page: 308
  article-title: Regulatory T cells: recommendations to simplify the nomenclature
  publication-title: Nat. Immunol.
– volume: 12
  start-page: 1184
  year: 2011
  end-page: 1193
  article-title: Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis
  publication-title: Nat. Immunol.
– volume: 206
  start-page: 1853
  year: 2009
  end-page: 1862
  article-title: Feedback control of regulatory T cell homeostasis by dendritic cells in vivo
  publication-title: J. Exp. Med.
– volume: 41
  start-page: 291
  year: 2011
  end-page: 298
  article-title: Dendritic cell‐restricted CD80/86 deficiency results in peripheral regulatory T‐cell reduction but is not associated with lymphocyte hyperactivation
  publication-title: Eur. J. Immunol.
– volume: 40
  start-page: 2769
  year: 2010
  end-page: 2777
  article-title: Concomitant type I IFN receptor‐triggering of T cells and of DC is required to promote maximal modified vaccinia virus Ankara‐induced T‐cell expansion
  publication-title: Eur. J. Immunol.
– volume: 186
  start-page: 3934
  year: 2011
  end-page: 3945
  article-title: The phosphatase SRC homology region 2 domain‐containing phosphatase‐1 is an intrinsic central regulator of dendritic cell function
  publication-title: J. Immunol.
– volume: 138
  start-page: 402
  year: 2013
  end-page: 410
  article-title: Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8(+) T‐cell priming capacity
  publication-title: Immunology
– volume: 208
  start-page: 1279
  year: 2011
  end-page: 1289
  article-title: T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse
  publication-title: J. Exp. Med.
– volume: 15
  start-page: 401
  year: 2009
  end-page: 409
  article-title: Toll‐like receptor 2‐dependent induction of vitamin A‐metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity
  publication-title: Nat. Med.
– volume: 34
  start-page: 329
  year: 2013
  end-page: 335
  article-title: Adaptive immunity after cell death
  publication-title: Trends Immunol.
– volume: 482
  start-page: 395
  year: 2011
  end-page: 399
  article-title: Extrathymically generated regulatory T cells control mucosal TH2 inflammation
  publication-title: Nature
– volume: 32
  start-page: 266
  year: 2010
  end-page: 278
  article-title: Foxp3 T cells induce perforin‐dependent dendritic cell death in tumor‐draining lymph nodes
  publication-title: Immunity
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
– volume: 199
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Combined TLR and CD40 triggering induces potent CD8 T cell expansion with variable dependence on type I IFN
  publication-title: J. Exp. Med.
– ident: e_1_2_10_26_1
  doi: 10.4049/jimmunol.0902420
– ident: e_1_2_10_50_1
  doi: 10.1084/jem.20110308
– ident: e_1_2_10_58_1
  doi: 10.1016/j.cell.2008.07.025
– ident: e_1_2_10_9_1
  doi: 10.1002/eji.201040453
– ident: e_1_2_10_15_1
  doi: 10.1084/jem.194.6.769
– ident: e_1_2_10_56_1
  doi: 10.1016/j.immuni.2009.11.015
– ident: e_1_2_10_37_1
  doi: 10.1038/ni.2135
– ident: e_1_2_10_67_1
  doi: 10.1084/jem.20062129
– ident: e_1_2_10_5_1
  doi: 10.1016/j.it.2013.03.005
– ident: e_1_2_10_61_1
  doi: 10.1016/j.immuni.2007.03.014
– ident: e_1_2_10_53_1
  doi: 10.1126/science.1202947
– ident: e_1_2_10_44_1
  doi: 10.4049/jimmunol.1003920
– ident: e_1_2_10_2_1
  doi: 10.1084/jem.137.5.1142
– ident: e_1_2_10_20_1
  doi: 10.1038/nri1457
– ident: e_1_2_10_24_1
  doi: 10.1084/jem.20090746
– ident: e_1_2_10_43_1
  doi: 10.1126/science.1170540
– ident: e_1_2_10_16_1
  doi: 10.1084/jem.20021598
– ident: e_1_2_10_18_1
  doi: 10.1038/ni1165
– ident: e_1_2_10_75_1
  doi: 10.1038/nature01991
– ident: e_1_2_10_13_1
  doi: 10.1084/jem.172.2.631
– ident: e_1_2_10_36_1
  doi: 10.1038/nm.1925
– ident: e_1_2_10_47_1
  doi: 10.1002/eji.201242796
– ident: e_1_2_10_51_1
  doi: 10.1146/annurev.immunol.25.022106.141623
– ident: e_1_2_10_63_1
  doi: 10.1016/j.immuni.2011.03.005
– ident: e_1_2_10_54_1
  doi: 10.1038/ni1003
– ident: e_1_2_10_39_1
  doi: 10.4049/jimmunol.1103210
– ident: e_1_2_10_70_1
  doi: 10.1016/j.immuni.2008.10.009
– ident: e_1_2_10_74_1
  doi: 10.1016/j.immuni.2012.07.018
– ident: e_1_2_10_3_1
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_2_10_32_1
  doi: 10.1182/blood-2009-09-245274
– ident: e_1_2_10_31_1
  doi: 10.1038/ni.2499
– ident: e_1_2_10_29_1
  doi: 10.1038/ni1265
– ident: e_1_2_10_25_1
  doi: 10.1002/eji.201041169
– ident: e_1_2_10_27_1
  doi: 10.1038/ni.2554
– ident: e_1_2_10_64_1
  doi: 10.1189/jlb.70.6.903
– ident: e_1_2_10_14_1
  doi: 10.1038/15200
– ident: e_1_2_10_7_1
  doi: 10.1016/j.cytogfr.2010.05.002
– ident: e_1_2_10_10_1
  doi: 10.1084/jem.20101158
– ident: e_1_2_10_40_1
  doi: 10.4049/jimmunol.1001675
– ident: e_1_2_10_71_1
  doi: 10.1002/eji.201343738
– ident: e_1_2_10_23_1
  doi: 10.1016/j.immuni.2008.10.012
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev.immunol.18.1.767
– ident: e_1_2_10_34_1
  doi: 10.1182/blood-2011-09-379776
– ident: e_1_2_10_52_1
  doi: 10.1126/science.1160062
– ident: e_1_2_10_41_1
  doi: 10.1038/ni1428
– ident: e_1_2_10_48_1
  doi: 10.1002/eji.200838842
– ident: e_1_2_10_49_1
  doi: 10.1016/j.immuni.2004.07.009
– ident: e_1_2_10_65_1
  doi: 10.1084/jem.20062512
– ident: e_1_2_10_72_1
  doi: 10.1016/j.immuni.2011.05.013
– ident: e_1_2_10_46_1
  doi: 10.1002/eji.201243163
– ident: e_1_2_10_73_1
  doi: 10.1084/jem.20101235
– ident: e_1_2_10_38_1
  doi: 10.1182/blood-2008-08-175489
– ident: e_1_2_10_76_1
  doi: 10.1038/nature07750
– ident: e_1_2_10_57_1
  doi: 10.1073/pnas.0711106105
– ident: e_1_2_10_45_1
  doi: 10.1073/pnas.1110620109
– volume: 123
  start-page: 844
  year: 2013
  ident: e_1_2_10_33_1
  article-title: Specialized role of migratory dendritic cells in peripheral tolerance induction
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Idoyaga J.
– ident: e_1_2_10_30_1
  doi: 10.1084/jem.20070590
– ident: e_1_2_10_4_1
  doi: 10.1038/nri3479
– ident: e_1_2_10_21_1
  doi: 10.4049/jimmunol.177.1.130
– ident: e_1_2_10_66_1
  doi: 10.1111/imm.12053
– ident: e_1_2_10_55_1
  doi: 10.4049/jimmunol.180.9.5916
– ident: e_1_2_10_42_1
  doi: 10.1073/pnas.0910620107
– ident: e_1_2_10_62_1
  doi: 10.1084/jem.194.5.629
– ident: e_1_2_10_17_1
  doi: 10.1016/S1074-7613(03)00120-1
– ident: e_1_2_10_35_1
  doi: 10.4049/jimmunol.181.10.6923
– ident: e_1_2_10_69_1
  doi: 10.1002/eji.201141578
– ident: e_1_2_10_22_1
  doi: 10.1038/ni.2077
– ident: e_1_2_10_59_1
  doi: 10.4049/jimmunol.1201029
– ident: e_1_2_10_60_1
  doi: 10.1073/pnas.0805058105
– ident: e_1_2_10_68_1
  doi: 10.1016/j.cellimm.2010.07.007
– volume: 163
  start-page: 1253
  year: 1999
  ident: e_1_2_10_12_1
  article-title: On the lifespan of virgin T lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.3.1253
  contributor:
    fullname: Di Rosa F.
– ident: e_1_2_10_8_1
  doi: 10.1084/jem.20031591
– ident: e_1_2_10_11_1
  doi: 10.1084/jem.184.2.747
– ident: e_1_2_10_28_1
  doi: 10.1038/nature10772
– ident: e_1_2_10_19_1
  doi: 10.4049/jimmunol.169.10.5538
SSID ssj0009659
Score 2.3594303
SecondaryResourceType review_article
Snippet Dendritic cells (DCs) are master regulators of T‐cell responses. After sensing pathogen‐derived molecular patterns (PAMPs), or signals of inflammation and...
Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 927
SubjectTerms Antigen Presentation - immunology
CD4-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - immunology
Cell Differentiation - immunology
DC maturation
Dendritic cells
Dendritic Cells - immunology
Humans
Immune Tolerance - immunology
Models, Immunological
Peripheral T‐cell tolerance
Signal Transduction - immunology
Steady‐state DCs
T-Lymphocytes, Regulatory - immunology
Title Regulation of the tolerogenic function of steady‐state DCs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201343862
https://www.ncbi.nlm.nih.gov/pubmed/24652744
https://www.proquest.com/docview/1514268312/abstract/
https://search.proquest.com/docview/1515647523
https://search.proquest.com/docview/1520362199
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC5EWPGi63tclRbEi7Q6nep0AntZfKCCHkTBW5vupGFUpsWZOejJn7C_cX_JViU9I6MgiOckTTr1-pJKvgLYsm1HYaPCWCtrYxSqjPlkMC6dtSo1RqqKXyOfX8iTazy7SW-aOqf8FibwQ4wO3NgyvL9mAzdFb--NNNTddfhmlqDvex_MZHoMii7f6KOYLC94YowTrfYbjk0avzc2ejwmfQCa47jVB57jWbgdTjncN7nfHfSL3fLlHZvjN_7pJ8w0oDT6E7RoDiZcdx5-hDKVz_Mwdd4k4Bfg92WoXU_SjOoqIvQY9esH91STHnbKiKPksM2rz_O_17_-zVJ0eNBbhOvjo6uDk7gpwBCXKAXGAhW61GXSmsIU0rSVsqVATt1mNnEoRGmVqIRDU1QpNWupDWZYyIx8Q2nEEkx2665bgahKlXQMPmk7yByFptJOKFVoofdtmmELtociyB8Dz0YeGJWTnFYlH61KC9aGAsobc-vlBFsIaSjRpubNUTMZCmc_TNfVA98nlZjRxvuzPpyXJSeuW7AchD-aTYIyZTrFFux4EX4-zfzo7DTRiKtf6v0LphNWVn8zaA0m-08Dt06gp19seM3-DzPw-BU
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKiiXFmiBpdAGCfVSZWHjsWNLXBAPLY_lgEDiFjmxI0GrDWJ3D9tTfwK_kV_C2M4uLEhIFedxEsfz-uyxPwNsmpaltFFirKQxMTJZxG5lMC6sMZJrLWTpTiN3zkT7Eo-v-NWzU_yBH2K84OY8w8dr5-BuQXrriTXU3ly7rVmMPuCC8Adyee4nVedPBFKOLi_EYowTJbdrlk16wdbE45NZ6RXUnESuPvUcfgY96nTYcfK7OejnzeLvCz7H9_zVPHyqcWm0GwxpAaZsdxFmwk2Vw0WY7dQ1-C-wcx6uryeFRlUZEYCM-tUfe1eRKV4XkUuUI5m3oOHDv3t_bCna3-t9hcvDg4u9dlzfwRAXKBjGDCVablNhdK5zoVtSmoKhq96mJrHIWGEkK5lFnZecxEoojSnmIqXwUGi2BNPdqmtXICq5FNbhT5oROppCXSrLpMwVU9uGp9iAnyMdZLeBaiMLpMpJRqOSjUelAWsjDWW1x_UyQi4ENiRrkXhjLCZfcQUQ3bXVwLfhAlOae7_VxpVmKY6rBiwH7Y97k6DgjlGxAb-8Dt_uZnZwfJQoxNX_av0DPrYvOqfZ6dHZyTeYS5zl-o1CazDdvxvYdcJA_fy7N_NH1Ob8Nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKhCXttBCl0dJpYoLCsvGE8eWekEsKx4FIQQSt9SJHYkWbRC7e1hO_AR-I7-EmTi7aIuEhDiPYzme12eP_Rngp205ShsFhlpZG6JQecg7g2HurFWxMVIVfBv5-ETuX-DhZXxZv3PKd2E8P8R4w409o4rX7OA3tmg-k4a6v1d8MktQ_xyDP6AUEZt1--yZP4rZ8nwoxjDSarsm2aQOmhOfTyalF0hzErhWmafzCf6MxuwPnPzbGvSzrfzuPzrHd_zUZ_hYo9Jgx5vRPEy57gLM-Hcqhwswe1xX4L_ArzP_eD2pMyiLgOBj0C-v3W1JhniVB5wmR7LKfoaP9w_VpaWgvdv7ChedvfPd_bB-gSHMaToxFKjQxS6R1mQmk6allM0Fcu02sZFDIXKrRCEcmqyISaylNphgJhMKDrkRizDdLbvuGwRFrKRj9EnrQSYpNIV2QqlMC71t4wQbsDFSQXrjiTZST6kcpTQr6XhWGrA6UlBa-1svJdxCUEOJFol_jMXkKVz-MF1XDqo2scSEVt6vteHCLEVx3YAlr_zxaCKUMfMpNmCzUuHrw0z3Dg8ijbj8ptbrMHva7qS_D06OVmAuYrutTgmtwnT_duDWCAD1s--VkT8B20L65g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+tolerogenic+function+of+steady-state+DCs&rft.jtitle=European+journal+of+immunology&rft.au=Probst%2C+Hans+Christian&rft.au=Muth%2C+Sabine&rft.au=Schild%2C+Hansj%C3%B6rg&rft.date=2014-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0014-2980&rft.eissn=1521-4141&rft.volume=44&rft.issue=4&rft.spage=927&rft_id=info:doi/10.1002%2Feji.201343862&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3271021841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon