The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay: A 30-yr modeling study

A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate...

Full description

Saved in:
Bibliographic Details
Published inLimnology and oceanography Vol. 61; no. 6; pp. 2243 - 2260
Main Author Scully, Malcolm E.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.11.2016
John Wiley and Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L−1) for the month of July and 58% of the observed variability for the month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June–August) wind speed is the single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.
AbstractList A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984-2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L super(-1)) for the month of July and 58% of the observed variability for the month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January-June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June-August) wind speed is the single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.
A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30‐yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter‐annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L−1) for the month of July and 58% of the observed variability for the month of August, over the 30‐yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June–August) wind speed is the single‐most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter‐annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.
Author Scully, Malcolm E.
Author_xml – sequence: 1
  givenname: Malcolm E.
  surname: Scully
  fullname: Scully, Malcolm E.
  email: mscully@whoi.edu, mscully@whoi.edu
  organization: Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Massachusetts, Woods Hole
BookMark eNp1kM1u1DAURi1UJKYDCx4AyUtYhPonjmN2ZUQHpFFbRBESG8uJbxi3GTvYSWneHg-B7rgbX-mc70r-TtGJDx4QeknJW0oIO-t9yAuX7AlaUcVVIYQiJ2iVWVnwvD9DpyndEkKUEGKF7m_2gNvgx-iaaXTB49DhYT8n15oeDzG0kBIkPAbs_AixMN5Pmdyb6MzRT8fAfh7CgzNZwZs9JDOAuQP83szv8DnmpJgjPgQLvfM_cBonOz9HTzvTJ3jx912jrxcfbjYfi93V9tPmfFe0ZcVZ0QhZ0q6uoGyMYVRYZQWVtrFSyUqUlpG2MU0NrGRCMQWsZp0VDVSWCqM6y9fo9XI3_-TnBGnUB5da6HvjIUxJ01oQKRnPs0ZvFrWNIaUInR6iO5g4a0r0sVudu9V_us3u2eL-cj3M_xf17vLqX-LVkrhNY4iPCVZVrBaCZl4s3KURHh65iXe6klwK_e1yqz9f8-2X64vvmvDfIcWW5Q
CitedBy_id crossref_primary_10_1007_s12237_022_01049_x
crossref_primary_10_1146_annurev_marine_010318_095138
crossref_primary_10_1007_s12237_020_00763_8
crossref_primary_10_1029_2020EA001179
crossref_primary_10_1016_j_ocemod_2021_101751
crossref_primary_10_1002_lno_11025
crossref_primary_10_1029_2018JC014178
crossref_primary_10_1029_2020WR027676
crossref_primary_10_1029_2021JC017185
crossref_primary_10_1029_2020JC016279
crossref_primary_10_1029_2018JC013950
crossref_primary_10_3390_w11102080
crossref_primary_10_1016_j_envsoft_2023_105884
crossref_primary_10_1007_s12237_022_01099_1
crossref_primary_10_1029_2023JC020338
crossref_primary_10_3389_fmars_2022_898992
crossref_primary_10_1016_j_scitotenv_2022_160650
crossref_primary_10_5194_bg_16_3183_2019
crossref_primary_10_1016_j_scitotenv_2020_139717
crossref_primary_10_1007_s12237_023_01240_8
crossref_primary_10_1016_j_pocean_2024_103207
crossref_primary_10_1016_j_jhydrol_2020_125881
crossref_primary_10_1016_j_scitotenv_2018_05_025
crossref_primary_10_1016_j_ecss_2019_03_007
crossref_primary_10_1029_2019JC015274
crossref_primary_10_1016_j_scitotenv_2021_146756
crossref_primary_10_1016_j_pocean_2023_103167
crossref_primary_10_1029_2020WR027227
crossref_primary_10_1242_jeb_217125
crossref_primary_10_1093_biosci_bix048
crossref_primary_10_1029_2018JC014179
crossref_primary_10_2208_jscejj_22_00171
crossref_primary_10_3389_fmars_2021_803439
crossref_primary_10_1016_j_scitotenv_2018_02_265
crossref_primary_10_5194_bg_19_3523_2022
crossref_primary_10_1016_j_ocemod_2020_101748
crossref_primary_10_1007_s12237_020_00761_w
crossref_primary_10_1007_s12237_018_0432_5
Cites_doi 10.1007/s12237-011-9413-7
10.1007/BF02804904
10.3354/meps303001
10.1007/s12237-009-9251-z
10.1126/science.223.4631.22
10.5194/bg-13-2011-2016
10.1890/090037
10.1073/pnas.0803833105
10.1126/science.88.2273.80
10.5194/bg-6-2985-2009
10.1007/BF02693915
10.1002/jgrc.20331
10.1007/s12237-010-9319-9
10.1007/s12237-011-9423-5
10.1007/BF02907650
10.1890/0012-9615(1997)067[0489:VEOLDO]2.0.CO;2
10.3354/meps032149
10.1126/science.254.5034.992
10.1002/jgrc.20138
10.1007/s12237-014-9928-9
10.3354/meps116217
10.1007/s12237-013-9592-5
10.1175/2010JPO4321.1
ContentType Journal Article
Copyright 2016 Association for the Sciences of Limnology and Oceanography
Copyright_xml – notice: 2016 Association for the Sciences of Limnology and Oceanography
DBID BSCLL
AAYXX
CITATION
7QH
7TV
7UA
C1K
F1W
H95
L.G
DOI 10.1002/lno.10372
DatabaseName Istex
CrossRef
Aqualine
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 1939-5590
EndPage 2260
ExternalDocumentID 10_1002_lno_10372
LNO10372
26628551
ark_67375_WNG_QP3GSPFZ_0
Genre article
GeographicLocations ANW, USA, Chesapeake Bay
USA, Maryland, Susquehanna R
GeographicLocations_xml – name: USA, Maryland, Susquehanna R
– name: ANW, USA, Chesapeake Bay
GrantInformation_xml – fundername: National Oceanic and Atmospheric Association NOAA via the IOOS Office Award
  funderid: NA10NOS0120063; NA11NOS01201441
– fundername: National Science Foundation
  funderid: OCE‐1338518
GroupedDBID -~X
..I
0R~
0ZS
1OB
1OC
24P
2AX
2WC
33P
42X
5GY
85S
8WZ
A6W
AAESR
AAFWJ
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAZKR
ABBHK
ABCUV
ABEFU
ABHUG
ABPPZ
ABPTK
ABTAH
ACAHQ
ACCFJ
ACCZN
ACGFS
ACKIV
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AETEA
AEUPB
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AGJLS
AGUYK
AHBTC
AHHXC
AHJTV
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AUFTA
AZFZN
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
C1A
CWIXF
D0L
DCZOG
DEVKO
DPXWK
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
F5P
G8K
GENNL
GODZA
HGD
H~9
JAAYA
JAV
JBMMH
JBS
JEB
JENOY
JFNAL
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
NHB
O66
O9-
OK1
P2P
P2W
RLO
RNS
ROL
SA0
SAMSI
SUPJJ
TN5
UAO
UPT
VOH
VQA
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XOL
YQT
YR2
YV5
YXE
ZCA
ZCG
ZY4
ZZTAW
~02
ABXSQ
AQVQM
AAHBH
ADACV
AITYG
H13
HGLYW
IPSME
AAYXX
CITATION
7QH
7TV
7UA
C1K
F1W
H95
L.G
ID FETCH-LOGICAL-c4632-b5741f86e4baa215d9d517dbd797654d20cbab8e2425929e282fd5be6d15a9fd3
IEDL.DBID JFNAL
ISSN 0024-3590
IngestDate Fri Aug 16 10:55:05 EDT 2024
Thu Sep 26 16:01:48 EDT 2024
Sat Aug 24 00:52:30 EDT 2024
Fri Feb 02 08:04:26 EST 2024
Wed Jan 17 04:59:08 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4632-b5741f86e4baa215d9d517dbd797654d20cbab8e2425929e282fd5be6d15a9fd3
Notes National Oceanic and Atmospheric Association NOAA via the IOOS Office Award - No. NA10NOS0120063; No. NA11NOS01201441
ArticleID:LNO10372
National Science Foundation - No. OCE-1338518
ark:/67375/WNG-QP3GSPFZ-0
istex:AB1D11BA20A06679FD2C125A4D1B8C9D1D5F729A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/lno.10372
PQID 1850772333
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_1850772333
crossref_primary_10_1002_lno_10372
wiley_primary_10_1002_lno_10372_LNO10372
jstor_primary_26628551
istex_primary_ark_67375_WNG_QP3GSPFZ_0
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle Limnology and oceanography
PublicationTitleAlternate Limnol. Oceanogr
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley and Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons, Inc
References Testa, J. M., and others. 2014. Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic-biogeochemical model. J. Mar. Syst., 139: 139-158. doi:10.3354/meps116217
Vaquer-Sunyer, R., and C. M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA, 105: 15452-15457. doi:10.1016/j.jmarsys.2014. 05.018
Lee, Y. J., W. R. Boynton, M. Li, and Y. Li. 2013. Role of late winter-spring wind influencing summer hypoxia in Chesapeake Bay. Estuaries Coasts, 36: 683-696. doi:10.5194/bg-6-2985-2009
Smith, E. M., and W. M. Kemp. 1995. Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar. Ecol. Prog. Ser., 116: 217-231. doi:10.1002/jgrc.20138
Xu, J., W. Long, J. D. Wiggert, L. W. J. Lanerolle, C. W. Brown, R. Murtugudde, and R. R. Hood. 2012. Climate forcing and salinity variability in Chesapeake Bay, USA. Estuaries Coasts, 35: 237-261. doi:10.1073/pnas.080383 3105
Kemp, W. M., J. M. Testa, D. J. Conley, D. Gilbert, and J. D. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6: 2985-3008. doi:10.3354/meps303001
Cooper, S. R., and G. S. Brush. 1991. Long-term history of Chesapeake Bay anoxia. Science, 254: 992-996. doi:10.1890/0012-9615(1997)067[0489:VEOLDO]2.0.CO;2
Liu, Y., and D. Scavia. 2010. Analysis of the Chesapeake Bay hypoxia regime shift: insights from two simple mechanistic models. Estuaries Coasts, 33: 629-639. doi:10.1007/s12237-014-9928-9
Li, Y., M. Li, and W. M. Kemp. 2015. A budget analysis of bottom-water dissolved oxygen in Chesapeake Bay. Estuaries Coasts, 38: 2132-2148. doi:10.1007/s12237-013-9592-5
Scully, M. E., C. T. Friedrichs, and J. M. Brubaker. 2005. Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries, 28: 321-326. doi:10.1126/science.223.4631.22
Scully, M. E. 2010b. Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries Coasts, 33: 1164-1175. doi:10.1175/2010JPO4321.1
Irby, I. D., and others. 2016. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: A multiple model comparison. Biogeosciences, 13: 2011-2028. doi:10.1007/BF02907650
Kemp, W. M., and others. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser., 303: 1-29. doi:10.1890/090037
Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, and R. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser., 32: 149-160. doi:10.1007/s12237-009-9251-z
Hagy, J. D., W. R. Boyton, C. W. Keefe, and K. V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950-2001: Long-term changes in relation to nutrient loading and river flow. Estuaries, 27: 634-658. doi:10.1126/science.254.5034.992
Bever, A. J., M. A. Friedrichs, C. T. Friedrichs, M. E. Scully, and L. W. Lanerolle. 2013. Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA. J. Geophys. Res. Oceans, 118: 4924-4944.
Kaushal, S. S., and others. 2010. Rising stream and river temperatures in the United States, Front. Ecol. Environ., 8: 461-466. doi:10.5194/bg-13-2011-2016
Officer, C. B., R. B. Biggs, J. L. Taft, E. Cronin, M. A. Tyler, and W. R. Boynton. 1984. Chesapeake Bay anoxia: Development and significance. Science, 223: 22-27. doi:10.1126/science.88.2273.80
Breitburg, D. L., T. Loher, C. A. Pacey, and A. Gerstein. 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr., 67: 489-507. doi:10.1007/BF02804904
Scully, M. E. 2013. Physical controls on hypoxia in Chesapeake Bay: A numerical modeling study. J. Geophys. Res. Oceans, 118: 1239-1256. doi:10.1007/s12237-010-9319-9
Zhou, Y., D. Scavia, and A. M. Michalak. 2014. Nutrient loading and meteorological conditions explain interannual variability of hypoxia in Chesapeake Bay. Limnol. Oceanogr., 59: 373-384. doi:10.1007/s12237-011-9423-5
Murphy, R. R., W. M. Kemp, and W. P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification and nutrient loading. Estuaries Coasts, 34: 1293-1309. doi:10.3354/meps032149
Newcombe, C. L., and W. A. Horne. 1938. Oxygen-poor waters of the Chesapeake Bay. Science, 88: 80-81. doi:10.1007/s12237-011-9413-7
Boesch, D. F., R. B. Brinsfield, and R. E. Magnien. 2001. Chesapeake Bay Eutrophication. J. Environ. Qual., 30: 303-320. doi:10.1002/jgrc.20331
Breitburg, D. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries, 25: 767-781. doi:10.2134/jeq2001. 302303x
Scully, M. E. 2010a. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. J. Phys. Oceanogr., 40: 1435-1440. doi:10.1007/BF02693915
2010; 33
2014; 139
2015; 38
1938; 88
1991; 254
1984; 223
2004; 27
1986; 32
1997; 67
1995; 116
2008; 105
2011; 34
2012; 35
2005; 28
2010b; 33
2016; 13
2002; 25
2013; 36
2010a; 40
2013; 118
2005; 303
2014; 59
2009; 6
2001; 30
2010; 8
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 6
  start-page: 2985
  year: 2009
  end-page: 3008
  article-title: Temporal responses of coastal hypoxia to nutrient loading and physical controls
  publication-title: Biogeosciences
– volume: 303
  start-page: 1
  year: 2005
  end-page: 29
  article-title: Eutrophication of Chesapeake Bay: Historical trends and ecological interactions
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 33
  start-page: 1164
  year: 2010b
  end-page: 1175
  article-title: Wind modulation of dissolved oxygen in Chesapeake Bay
  publication-title: Estuaries Coasts
– volume: 223
  start-page: 22
  year: 1984
  end-page: 27
  article-title: Chesapeake Bay anoxia: Development and significance
  publication-title: Science
– volume: 116
  start-page: 217
  year: 1995
  end-page: 231
  article-title: Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 40
  start-page: 1435
  year: 2010a
  end-page: 1440
  article-title: The importance of climate variability to wind‐driven modulation of hypoxia in Chesapeake Bay
  publication-title: J. Phys. Oceanogr.
– volume: 139
  start-page: 139
  year: 2014
  end-page: 158
  article-title: Quantifying the effects of nutrient loading on dissolved O cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model
  publication-title: J. Mar. Syst.
– volume: 105
  start-page: 15452
  year: 2008
  end-page: 15457
  article-title: Thresholds of hypoxia for marine biodiversity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 149
  year: 1986
  end-page: 160
  article-title: Lateral variation in the production and fate of phytoplankton in a partially stratified estuary
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 254
  start-page: 992
  year: 1991
  end-page: 996
  article-title: Long‐term history of Chesapeake Bay anoxia
  publication-title: Science
– volume: 27
  start-page: 634
  year: 2004
  end-page: 658
  article-title: Hypoxia in Chesapeake Bay, 1950‐2001: Long‐term changes in relation to nutrient loading and river flow
  publication-title: Estuaries
– volume: 36
  start-page: 683
  year: 2013
  end-page: 696
  article-title: Role of late winter–spring wind influencing summer hypoxia in Chesapeake Bay
  publication-title: Estuaries Coasts
– volume: 8
  start-page: 461
  year: 2010
  end-page: 466
  article-title: Rising stream and river temperatures in the United States
  publication-title: Front. Ecol. Environ.
– volume: 59
  start-page: 373
  year: 2014
  end-page: 384
  article-title: Nutrient loading and meteorological conditions explain interannual variability of hypoxia in Chesapeake Bay
  publication-title: Limnol. Oceanogr.
– volume: 118
  start-page: 1239
  year: 2013
  end-page: 1256
  article-title: Physical controls on hypoxia in Chesapeake Bay: A numerical modeling study
  publication-title: J. Geophys. Res. Oceans
– volume: 13
  start-page: 2011
  year: 2016
  end-page: 2028
  article-title: Challenges associated with modeling low‐oxygen waters in Chesapeake Bay: A multiple model comparison
  publication-title: Biogeosciences
– volume: 28
  start-page: 321
  year: 2005
  end-page: 326
  article-title: Control of estuarine stratification and mixing by wind‐induced straining of the estuarine density field
  publication-title: Estuaries
– volume: 67
  start-page: 489
  year: 1997
  end-page: 507
  article-title: Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web
  publication-title: Ecol. Monogr.
– volume: 33
  start-page: 629
  year: 2010
  end-page: 639
  article-title: Analysis of the Chesapeake Bay hypoxia regime shift: insights from two simple mechanistic models
  publication-title: Estuaries Coasts
– volume: 35
  start-page: 237
  year: 2012
  end-page: 261
  article-title: Climate forcing and salinity variability in Chesapeake Bay, USA
  publication-title: Estuaries Coasts
– volume: 34
  start-page: 1293
  year: 2011
  end-page: 1309
  article-title: Long‐term trends in Chesapeake Bay seasonal hypoxia, stratification and nutrient loading
  publication-title: Estuaries Coasts
– volume: 38
  start-page: 2132
  year: 2015
  end-page: 2148
  article-title: A budget analysis of bottom‐water dissolved oxygen in Chesapeake Bay
  publication-title: Estuaries Coasts
– volume: 118
  start-page: 4924
  year: 2013
  end-page: 4944
  article-title: Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA
  publication-title: J. Geophys. Res. Oceans
– volume: 30
  start-page: 303
  year: 2001
  end-page: 320
  article-title: Chesapeake Bay Eutrophication
  publication-title: J. Environ. Qual.
– volume: 88
  start-page: 80
  year: 1938
  end-page: 81
  article-title: Oxygen‐poor waters of the Chesapeake Bay
  publication-title: Science
– volume: 25
  start-page: 767
  year: 2002
  end-page: 781
  article-title: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries
  publication-title: Estuaries
– ident: e_1_2_6_17_1
  doi: 10.1007/s12237-011-9413-7
– ident: e_1_2_6_5_1
  doi: 10.1007/BF02804904
– ident: e_1_2_6_11_1
  doi: 10.3354/meps303001
– ident: e_1_2_6_15_1
  doi: 10.1007/s12237-009-9251-z
– ident: e_1_2_6_19_1
  doi: 10.1126/science.223.4631.22
– ident: e_1_2_6_9_1
  doi: 10.5194/bg-13-2011-2016
– ident: e_1_2_6_10_1
  doi: 10.1890/090037
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.0803833105
– ident: e_1_2_6_18_1
  doi: 10.1126/science.88.2273.80
– ident: e_1_2_6_12_1
  doi: 10.5194/bg-6-2985-2009
– ident: e_1_2_6_20_1
  doi: 10.1007/BF02693915
– ident: e_1_2_6_2_1
  doi: 10.1002/jgrc.20331
– ident: e_1_2_6_4_1
  doi: 10.1007/BF02804904
– ident: e_1_2_6_22_1
  doi: 10.1007/s12237-010-9319-9
– ident: e_1_2_6_27_1
  doi: 10.1007/s12237-011-9423-5
– ident: e_1_2_6_8_1
  doi: 10.1007/BF02907650
– ident: e_1_2_6_6_1
  doi: 10.1890/0012-9615(1997)067[0489:VEOLDO]2.0.CO;2
– ident: e_1_2_6_16_1
  doi: 10.3354/meps032149
– ident: e_1_2_6_7_1
  doi: 10.1126/science.254.5034.992
– ident: e_1_2_6_23_1
  doi: 10.1002/jgrc.20138
– ident: e_1_2_6_14_1
  doi: 10.1007/s12237-014-9928-9
– ident: e_1_2_6_24_1
  doi: 10.3354/meps116217
– ident: e_1_2_6_26_1
  doi: 10.1007/s12237-011-9423-5
– ident: e_1_2_6_13_1
  doi: 10.1007/s12237-013-9592-5
– ident: e_1_2_6_21_1
  doi: 10.1175/2010JPO4321.1
– ident: e_1_2_6_3_1
  doi: 10.1002/jgrc.20331
SSID ssj0009555
Score 2.4349685
Snippet A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period...
A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30‐yr period...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Publisher
StartPage 2243
Title The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay: A 30-yr modeling study
URI https://api.istex.fr/ark:/67375/WNG-QP3GSPFZ-0/fulltext.pdf
https://www.jstor.org/stable/26628551
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flno.10372
https://search.proquest.com/docview/1850772333
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT9wwELWq3UuFVPULNf1AblVVXCwSfyU5UsSCEF1AgEA91LLjiahASbS7VPDvO3YSBAduOThK9MbWvLHfPBPyvc6QBGc8Y9qnFZM2k6xUZcEqEAJybXMJYb_j11zvn8uDS3U5iGiWg6wy6gLjKT4SJHcDW5hEeKFCo_SU4wKVEzI9mM23Dx-566r-qgIumVBlOloIpXzrpmljYzl_knimAcO7UYP4hF0-5qgxycxek1cDO6TbfTjfkBfQvCVrRxXYZrCWfkf-YGRpVJgPV1XRtqbdADfteuE_LOmqpcELYsF621H6D6vifnsuvHB137V3fy0OoTtXsLQd2GugP-39e3I-2z3b2WfDLQmsklpw5hSSgrrQIJ21mMB96VWWe-dzZBpKep5WzroCQm2BXAiwxqq9cqB9pmxZe7FOJk3bwAdCVV14ZNw2DVWGldwpSB0SEl9WutYlT8i3EULT9WYYprc95gZxNhHnhPyI4D6MsIvroB7LlbmY75mTY7F3ejz7bdKErEf0HwaOYU7I1zEcBid7OMGwDbS3S4PkIsVyQAiRkM0Yp-f_wxzOj-LDx-e-84m8RPqj-87Cz2SyWtzCF6QYK7cxTLD_LIrM4A
link.rule.ids 315,786,790,25384,27955,27956,54873,54879
linkProvider JSTOR
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3fT9UwFMcbw33AmBhFifMX1RjjS8PWrt32iITLFS8DI0Tig027ngUD2ZZ7Lwb-e0-7jcADb3vosuWcJudz2m-_JeRTnSAEJzxhysUVS02SskIWOatACMiUyVLw6x2HpZqdpgdn8mwQ0SwHWWXQBYZdfAQkewnbWER4Lv1B6YkHbJy8k4NpuTO_464r-6sKeMqELOLRQijm25dNGw6W83uFZ-JjeD1qEO_R5V1GDUVm-ow8HeiQ7vTpfE4eQbNBnhxVYJrBWvoF-YOZpUFhPlxVRduadkO4adcL_2FJVy31XhAL1tuO0n_YFffLc_6F85uuvf5rcAjdPYel6cBcAP1qbl6S0-neye6MDbcksCpVgjMrEQrqXEFqjcEC7gonk8xZlyFpyNTxuLLG5uB7C2QhwB6rdtKCcok0Re3EJllr2gZeESrr3CFxm9h3GSblVkJsEUhcUalaFTwiH8cQ6q43w9C97THXGGcd4hyRzyG4tyPM4sKrxzKpf5X7-sex2P95PP2t44hshujfDhzTHJEPYzo0Tna_g2EaaK-WGuEixnZACBGRLyFPD_-HnpdH4eH1Q9_ZIuuzk8O5nn8rv78hjxGFVH_K8C1ZWy2u4B3ixsq-HybbfwLOz9U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3fa9UwFMeD7IKIIPPHsLppFBFfwm3zq-3j3NbNee2u6HD4sJA0KZONttx7N7b_3pO0HdvD3vqQ0vI9gfM5yck3CH2qE4DghCZE2rgiXCec5CLPSOUYc6nUKXd-veNHKQ-O-eGJOBnMopdDW2XoCwy7-ABI5sJNO1tPIZHQTPjD0hMP2TClJ4dFuT2747Ar-usKKCdM5PFoIxTT6UXThsPl9F7ymXgdr8c-xHuEeZdTQ6Ip1tGzgRDxdh_S5-iRa16gp0eV081gL_0SnUJ0cegyH66rwm2Nu0Fy3PXN_26JVy32fhAL0luP4iuojPslOv_C2U3XXv_TMATvnLml7pw-d_irvnmFjou93zsHZLgpgVRcMkqMADCoM-m40RqSuM2tSFJrbAq0IbilcWW0yZyvL4CHHNRZtRXGSZsIndeWbaC1pm3ca4RFnVmgbh37SkNzaoSLDUCJzStZy5xG6OMooep6QwzVWx9TBTqroHOEPgdxb0foxbnvIEuF-lPuq59ztv9rXvxVcYQ2gvq3A8cwR-jDGA4FE97vYujGtZdLBYARQ0nAGIvQlxCnh_9Dzcqj8PDmoe-8R4_nu4WafSu_v0VPgIZkf9BwE62tFpduC4hjZd4Nc-0_FUXQ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+contribution+of+physical+processes+to+inter-annual+variations+of+hypoxia+in+Chesapeake+Bay%3A+A+30-yr+modeling+study&rft.jtitle=Limnology+and+oceanography&rft.au=Scully%2C+Malcolm+E&rft.date=2016-11-01&rft.issn=0024-3590&rft.eissn=1939-5590&rft.volume=61&rft.issue=6&rft.spage=2243&rft.epage=2260&rft_id=info:doi/10.1002%2Flno.10372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3590&client=summon