Divergence in red light responses associated with thermal reversion of phytochrome B between high‐ and low‐latitude species

Summary Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 231; no. 1; pp. 75 - 84
Main Authors Ikeda, Hajime, Suzuki, Tomomi, Oka, Yoshito, Gustafsson, A. Lovisa S., Brochmann, Christian, Mochizuki, Nobuyoshi, Nagatani, Akira
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light‐limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB‐deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
AbstractList Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light-limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light-limited and warm conditions in the phyB-deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome-related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Summary Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species ( Cardamine bellidifolia ; Cb ) responded more strongly to light‐limited conditions compared with its lower latitude sister ( C. nipponica ; Cn ). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB ‐deficient mutant of Arabidopsis thaliana than CnPHYB : that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature.We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes.The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light‐limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB‐deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB.Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Summary Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light‐limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB‐deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
Author Ikeda, Hajime
Nagatani, Akira
Suzuki, Tomomi
Mochizuki, Nobuyoshi
Gustafsson, A. Lovisa S.
Oka, Yoshito
Brochmann, Christian
Author_xml – sequence: 1
  givenname: Hajime
  orcidid: 0000-0002-3014-3585
  surname: Ikeda
  fullname: Ikeda, Hajime
  email: ike@okayama-u.ac.jp
  organization: Okayama University
– sequence: 2
  givenname: Tomomi
  orcidid: 0000-0003-0935-5505
  surname: Suzuki
  fullname: Suzuki, Tomomi
  organization: Kyoto University
– sequence: 3
  givenname: Yoshito
  orcidid: 0000-0002-6703-9853
  surname: Oka
  fullname: Oka, Yoshito
  organization: Kyoto University
– sequence: 4
  givenname: A. Lovisa S.
  orcidid: 0000-0001-8819-7562
  surname: Gustafsson
  fullname: Gustafsson, A. Lovisa S.
  organization: University of Oslo
– sequence: 5
  givenname: Christian
  orcidid: 0000-0002-8906-7273
  surname: Brochmann
  fullname: Brochmann, Christian
  organization: University of Oslo
– sequence: 6
  givenname: Nobuyoshi
  orcidid: 0000-0002-6238-7584
  surname: Mochizuki
  fullname: Mochizuki, Nobuyoshi
  organization: Kyoto University
– sequence: 7
  givenname: Akira
  surname: Nagatani
  fullname: Nagatani, Akira
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33817798$$D View this record in MEDLINE/PubMed
BookMark eNp10UFO3DAUBmCrApUBuugFKkvdlEXAjjOJvWyhBSRUWIDELnKcF2KU2KntMJpVOULP2JP0wUAXleqNn-TPv2z9u2TLeQeEvOfskOM6clN_yCsh-Ruy4EWpMslFtUUWjOUyK4vydofsxnjPGFPLMn9LdgTaqlJyQX6e2AcId-AMUOtogJYO9q5POMXJuwiR6hi9sTrh0cqmnqYewqgHFHgzWu-o7-jUr5M3ffAj0C-0gbQCcLTHqN-Pv6h2GOtXOA462TS3QOMExkLcJ9udHiK8e9n3yM23r9fHZ9nF5en58eeLzBSl4Jlum4pXRkEu8kI0Uudd3grWgS7bVnYMmJBiqYqiYcvcCA2maRvDJef4YSGU2COfNrlT8D9miKkebTQwDNqBn2OdL5mUUolKIv34D733c3D4OlSiUKoUJUd1sFEm-BgDdPUU7KjDuuasfmqlxlbq51bQfnhJnJsR2r_ytQYERxuwsgOs_59Uf78620T-AbQ8m8Q
CitedBy_id crossref_primary_10_1007_s10265_022_01377_w
crossref_primary_10_1093_jxb_erad119
crossref_primary_10_1146_annurev_arplant_071921_100530
Cites_doi 10.1046/j.1365-313x.2000.00715.x
10.1038/ng777
10.1046/j.1365-313x.1998.00343.x
10.1126/science.aaf6005
10.1111/j.1365-313X.2006.02667.x
10.1186/1471-2105-5-113
10.1105/tpc.104.022350
10.1534/genetics.107.082354
10.1093/bioinformatics/btr088
10.1093/jxb/erp304
10.1105/tpc.114.126391
10.1126/science.1065022
10.1038/nrg2049
10.1111/nph.14890
10.1073/pnas.0712174105
10.1038/ng1818
10.1105/tpc.105.032342
10.1104/pp.114.236661
10.1007/s10265-010-0361-2
10.1111/j.0908-8857.2004.03297.x
10.1101/gad.3.11.1745
10.1093/sysbio/syq010
10.1126/science.aaf5656
10.1086/379378
10.1083/jcb.145.3.437
10.1038/s41598-017-14037-0
10.1038/nmeth.2109
10.1007/BF00043870
10.1104/pp.112.208892
10.1105/tpc.109.072280
10.1111/j.1365-294X.2010.04700.x
10.1073/pnas.1935989100
10.1371/journal.pgen.1000158
10.1111/tpj.13467
10.18637/jss.v067.i01
10.1534/genetics.109.102152
10.1111/j.1365-294X.2008.03821.x
10.1007/PL00006320
10.1093/molbev/msm088
10.1104/pp.102.015487
10.1534/genetics.105.047522
10.1111/j.1469-8137.2012.04061.x
10.1073/pnas.1818217116
10.1111/mec.12682
10.1038/s41467-017-02311-8
ContentType Journal Article
Copyright 2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.17381
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 84
ExternalDocumentID 10_1111_nph_17381
33817798
NPH17381
Genre rapidPublication
Journal Article
GrantInformation_xml – fundername: Inamori Foundation
– fundername: Wesco Foundation
– fundername: JSPS
  funderid: 23657015; 20K06798
– fundername: Yakumo Foundation
– fundername: JSPS
  grantid: 23657015
– fundername: JSPS
  grantid: 20K06798
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AGUYK
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4631-adb717c9e23243b8a2f2d30fea6dd8f0e03835944b052c3aecbdbc18115623393
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Sat Aug 17 04:00:21 EDT 2024
Thu Oct 10 19:21:59 EDT 2024
Fri Aug 23 04:11:49 EDT 2024
Sat Sep 28 08:25:41 EDT 2024
Sat Aug 24 01:01:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords phytochrome
thermal reversion
Cardamine
alpine plants
Brassicaceae
Language English
License 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4631-adb717c9e23243b8a2f2d30fea6dd8f0e03835944b052c3aecbdbc18115623393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6703-9853
0000-0002-8906-7273
0000-0002-3014-3585
0000-0001-8819-7562
0000-0003-0935-5505
0000-0002-6238-7584
OpenAccessLink https://ousar.lib.okayama-u.ac.jp/61940
PMID 33817798
PQID 2534996361
PQPubID 2026848
PageCount 10
ParticipantIDs proquest_miscellaneous_2508889378
proquest_journals_2534996361
crossref_primary_10_1111_nph_17381
pubmed_primary_33817798
wiley_primary_10_1111_nph_17381_NPH17381
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 3
2017; 7
2017; 8
2010; 59
2019; 31
2010; 19
2009; 182
2006; 38
2000; 22
2008; 17
2014; 26
1994; 25
2004; 5
2008; 105
2006; 172
2003; 19
2001; 29
2008; 4
1999; 145
2003; 73
2013; 161
2014; 23
2003; 131
2010; 61
1993; 5
1998; 46
1998; 16
2012; 194
2015; 67
2010; 22
2011; 124
2001; 294
2017; 90
2006; 45
2004; 16
2018; 217
2007; 8
2019; 116
2016; 354
2008; 178
2014; 165
2011; 27
2005; 17
2003; 100
2007; 24
2012; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
Reed JW (e_1_2_7_38_1) 1993; 5
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
Molina‐Contreras MJ (e_1_2_7_35_1) 2019; 31
References_xml – volume: 31
  start-page: 2649
  year: 2019
  end-page: 2663
  article-title: Photoreceptor activity contributes to contrasting responses to shade in Cardamine and Arabidopsis seedlings
  publication-title: Plant Cell
– volume: 17
  start-page: 1941
  year: 2005
  end-page: 1952
  article-title: Phytochrome B in the mesophyll delays flowering by suppressing expression in Arabidopsis vascular bundles
  publication-title: Plant Cell
– volume: 22
  start-page: 177
  year: 2000
  end-page: 186
  article-title: A new type of mutation in the plant photoreceptor phytochrome B causes loss of photoreversibility and an extremely enhanced light sensitivity
  publication-title: The Plant Journal
– volume: 145
  start-page: 437
  year: 1999
  end-page: 445
  article-title: Light‐dependent translocation of a phytochrome B‐GFP fusion protein to the nucleus in transgenic
  publication-title: Journal of Cell Biology
– volume: 5
  start-page: 113
  year: 2004
  article-title: MUSCLE: a multiple sequence alignment method with reduced time and space complexity
  publication-title: BMC Bioinformatics
– volume: 61
  start-page: 11
  year: 2010
  end-page: 24
  article-title: Phytochrome functions in development
  publication-title: Journal of Experimental Botany
– volume: 19
  start-page: 2779
  year: 2010
  end-page: 2791
  article-title: Natural selection on by latitude in the Japanese archipelago: insight from locus specific phylogeographic structure in (Ericaceae)
  publication-title: Molecular Ecology
– volume: 165
  start-page: 595
  year: 2014
  end-page: 607
  article-title: Photobody localization of phytochrome B Is tightly correlated with prolonged and light‐dependent inhibition of hypocotyl elongation in the dark
  publication-title: Plant Physiology
– volume: 194
  start-page: 583
  year: 2012
  end-page: 594
  article-title: Pleistocene climatic oscillations and the speciation history of an alpine endemic and a widespread arctic‐alpine plant
  publication-title: New Phytologist
– volume: 182
  start-page: 603
  year: 2009
  end-page: 614
  article-title: Molecular evolution of phytochromes in (Brassicaceae) suggests the involvement of in local adaptation
  publication-title: Genetics
– volume: 27
  start-page: 1164
  year: 2011
  end-page: 1165
  article-title: ProtTest 3: fast selection of best‐fit models of protein evolution
  publication-title: Bioinformatics
– volume: 23
  start-page: 1040
  year: 2014
  end-page: 1052
  article-title: A recent local sweep at the locus in the Northern European Spiterstulen population of
  publication-title: Molecular Ecology
– volume: 25
  start-page: 413
  year: 1994
  end-page: 427
  article-title: The phytochrome apoprotein family in is encoded by five genes: the sequences and expression of and
  publication-title: Plant Molecular Biology
– volume: 354
  start-page: 897
  year: 2016
  end-page: 900
  article-title: Phytochrome B integrates light and temperature signals in
  publication-title: Science
– volume: 131
  start-page: 1340
  year: 2003
  end-page: 1346
  article-title: Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis
  publication-title: Plant Physiology
– volume: 29
  start-page: 441
  year: 2001
  end-page: 446
  article-title: Natural variation in light sensitivity of
  publication-title: Nature Genetics
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– volume: 3
  start-page: 1745
  year: 1989
  end-page: 1757
  article-title: Novel phytochrome sequences in : structure, evolution, and differential expression of a plant regulatory photoreceptor family
  publication-title: Genes & Development
– volume: 5
  start-page: 147
  year: 1993
  end-page: 157
  article-title: Mutations in the gene for the red/far‐red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development
  publication-title: Plant Cell
– volume: 9
  start-page: 772
  year: 2012
  article-title: jModelTest 2: more models, new heuristics and parallel computing
  publication-title: Nature Methods
– volume: 124
  start-page: 85
  year: 2011
  end-page: 92
  article-title: Molecular evolution of cryptochrome genes and the evolutionary manner of photoreceptor genes in (Brassicaceae)
  publication-title: Journal of Plant Research
– volume: 38
  start-page: 711
  year: 2006
  end-page: 715
  article-title: The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of
  publication-title: Nature Genetics
– volume: 22
  start-page: 4
  year: 2010
  end-page: 16
  article-title: Evolutionary studies illuminate the structural‐functional model of plant phytochromes
  publication-title: Plant Cell
– volume: 46
  start-page: 409
  year: 1998
  end-page: 418
  article-title: Synonymous and nonsynonymous rate variation in nuclear genes of mammals
  publication-title: Journal of Molecular Evolution
– volume: 90
  start-page: 683
  year: 2017
  end-page: 697
  article-title: Perception and signalling of light and temperature cues in plants
  publication-title: The Plant Journal
– volume: 161
  start-page: 1445
  year: 2013
  end-page: 1457
  article-title: Structure‐guided engineering of plant phytochrome B with altered photochemistry and light signaling
  publication-title: Plant Physiology
– volume: 172
  start-page: 1845
  year: 2006
  end-page: 1853
  article-title: Clinal variation in , a candidate gene for day‐length‐induced growth cessation and bud set, across a latitudinal gradient in European aspen ( )
  publication-title: Genetics
– volume: 354
  start-page: 886
  year: 2016
  end-page: 889
  article-title: Phytochromes function as thermosensors in
  publication-title: Science
– volume: 8
  start-page: 217
  year: 2007
  end-page: 230
  article-title: Light‐regulated transcriptional networks in higher plants
  publication-title: Nature Reviews Genetics
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: The Plant Journal
– volume: 17
  start-page: 3178
  year: 2008
  end-page: 3188
  article-title: Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Franch. et Savat. (Brassicaceae)
  publication-title: Molecular Ecology
– volume: 294
  start-page: 1108
  year: 2001
  end-page: 1111
  article-title: Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling
  publication-title: Science
– volume: 26
  start-page: 2777
  year: 2014
  end-page: 2791
  article-title: Polyploid evolution of the Brassicaceae during the Cenozoic era
  publication-title: Plant Cell
– volume: 73
  start-page: 1162
  year: 2003
  end-page: 1169
  article-title: A comparison of bayesian methods for haplotype reconstruction from population genotype data
  publication-title: American Journal of Human Genetics
– volume: 116
  start-page: 8603
  year: 2019
  end-page: 8608
  article-title: PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B‐photobodies in
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 19
  start-page: 1572
  year: 2003
  end-page: 1574
  article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
– volume: 16
  start-page: 2104
  year: 2004
  end-page: 2116
  article-title: Functional analysis of a 450‐amino acid N‐terminal fragment of phytochrome B in Arabidopsis
  publication-title: Plant Cell
– volume: 59
  start-page: 307
  year: 2010
  end-page: 321
  article-title: New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of PhyML 3.0
  publication-title: Systematic Biology
– volume: 100
  start-page: 14493
  year: 2003
  end-page: 14498
  article-title: Characterization of the requirements for localization of phytochrome B to nuclear bodies
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 105
  start-page: 3157
  year: 2008
  end-page: 3162
  article-title: Amino acid polymorphisms in phytochrome B cause differential responses to light
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 13648
  year: 2017
  article-title: Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor
  publication-title: Scientific Reports
– volume: 45
  start-page: 994
  year: 2006
  end-page: 1005
  article-title: Blue light‐induced association of phototropin 2 with the Golgi apparatus
  publication-title: The Plant Journal
– volume: 217
  start-page: 1029
  year: 2018
  end-page: 1034
  article-title: Light and temperature cues: multitasking receptors and transcriptional integrators
  publication-title: New Phytologist
– volume: 8
  start-page: 2221
  year: 2017
  article-title: PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion
  publication-title: Nature Communications
– volume: 178
  start-page: 2217
  year: 2008
  end-page: 2226
  article-title: Nucleotide polymorphism and phenotypic associations within and around the Locus in European aspen ( , Salicaceae)
  publication-title: Genetics
– volume: 24
  start-page: 1586
  year: 2007
  end-page: 1591
  article-title: PAML 4: phylogenetic analysis by maximum likelihood
  publication-title: Molecular Biology and Evolution
– volume: 4
  year: 2008
  article-title: Mutant screen distinguishes between residues necessary for light‐signal perception and signal transfer by phytochrome B
  publication-title: PLoS Genetics
– ident: e_1_2_7_30_1
  doi: 10.1046/j.1365-313x.2000.00715.x
– ident: e_1_2_7_33_1
  doi: 10.1038/ng777
– ident: e_1_2_7_8_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_7_27_1
  doi: 10.1126/science.aaf6005
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-313X.2006.02667.x
– ident: e_1_2_7_11_1
  doi: 10.1186/1471-2105-5-113
– ident: e_1_2_7_36_1
  doi: 10.1105/tpc.104.022350
– ident: e_1_2_7_25_1
  doi: 10.1534/genetics.107.082354
– ident: e_1_2_7_9_1
  doi: 10.1093/bioinformatics/btr088
– ident: e_1_2_7_16_1
  doi: 10.1093/jxb/erp304
– ident: e_1_2_7_28_1
  doi: 10.1105/tpc.114.126391
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1065022
– ident: e_1_2_7_26_1
  doi: 10.1038/nrg2049
– ident: e_1_2_7_5_1
  doi: 10.1111/nph.14890
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.0712174105
– ident: e_1_2_7_2_1
  doi: 10.1038/ng1818
– ident: e_1_2_7_13_1
  doi: 10.1105/tpc.105.032342
– ident: e_1_2_7_44_1
  doi: 10.1104/pp.114.236661
– ident: e_1_2_7_21_1
  doi: 10.1007/s10265-010-0361-2
– ident: e_1_2_7_39_1
  doi: 10.1111/j.0908-8857.2004.03297.x
– volume: 31
  start-page: 2649
  year: 2019
  ident: e_1_2_7_35_1
  article-title: Photoreceptor activity contributes to contrasting responses to shade in Cardamine and Arabidopsis seedlings
  publication-title: Plant Cell
  contributor:
    fullname: Molina‐Contreras MJ
– volume: 5
  start-page: 147
  year: 1993
  ident: e_1_2_7_38_1
  article-title: Mutations in the gene for the red/far‐red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development
  publication-title: Plant Cell
  contributor:
    fullname: Reed JW
– ident: e_1_2_7_40_1
  doi: 10.1101/gad.3.11.1745
– ident: e_1_2_7_17_1
  doi: 10.1093/sysbio/syq010
– ident: e_1_2_7_31_1
  doi: 10.1126/science.aaf5656
– ident: e_1_2_7_41_1
  doi: 10.1086/379378
– ident: e_1_2_7_45_1
  doi: 10.1083/jcb.145.3.437
– ident: e_1_2_7_4_1
  doi: 10.1038/s41598-017-14037-0
– ident: e_1_2_7_10_1
  doi: 10.1038/nmeth.2109
– ident: e_1_2_7_7_1
  doi: 10.1007/BF00043870
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.112.208892
– ident: e_1_2_7_34_1
  doi: 10.1105/tpc.109.072280
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-294X.2010.04700.x
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1935989100
– ident: e_1_2_7_37_1
  doi: 10.1371/journal.pgen.1000158
– ident: e_1_2_7_32_1
  doi: 10.1111/tpj.13467
– ident: e_1_2_7_3_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_7_20_1
  doi: 10.1534/genetics.109.102152
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-294X.2008.03821.x
– ident: e_1_2_7_47_1
  doi: 10.1007/PL00006320
– ident: e_1_2_7_46_1
  doi: 10.1093/molbev/msm088
– ident: e_1_2_7_15_1
  doi: 10.1104/pp.102.015487
– ident: e_1_2_7_24_1
  doi: 10.1534/genetics.105.047522
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-8137.2012.04061.x
– ident: e_1_2_7_18_1
  doi: 10.1073/pnas.1818217116
– ident: e_1_2_7_43_1
  doi: 10.1111/mec.12682
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-017-02311-8
SSID ssj0009562
Score 2.4323387
Snippet Summary Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive...
Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 75
SubjectTerms alpine plants
Brassicaceae
Cardamine
Deficient mutant
Divergence
Latitude
Life cycles
Light
Molecular modelling
Physiological responses
Physiology
phytochrome
Phytochrome B
Phytochromes
Sibling species
Species
thermal reversion
Thermal stability
Title Divergence in red light responses associated with thermal reversion of phytochrome B between high‐ and low‐latitude species
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17381
https://www.ncbi.nlm.nih.gov/pubmed/33817798
https://www.proquest.com/docview/2534996361
https://search.proquest.com/docview/2508889378
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG6GwcNedtfdVWdXl17x4CVDpjvpSfDkk0FYEdmBOQihHxVG1EScGRa96E_wN_pLrOokgw8WZG8NlXQnXV3dX1WqvjC2EYV5CmAhELFBByUxYaBNEgb9KFU50Ys4S_GO30dqMIwOR_GoxbaaWpiKH2IecCPL8Ps1Gbg2k2dGXlyNu72-9GXXRKRHgOhEPCPcVaJhYFaRGtWsQpTFM7_z5Vn0BmC-xKv-wDn4xE6bR63yTM67s6np2ttXLI7_-S6f2ccaiPLtauUsshYUX9jCTolg8eYru9ujfA1P1MnPCn4Njl-QG48tn1MLE65rxaKIgrmckOQl9kicUD4Gx8ucoxKnpR0TJwLf4XVSGCeO5Mf7B64L7Lb8i01fUDNzwKnyE533b2x4sP9ndxDU_2oIbKRkL9DOoGNoUyCEJk2iRS6cDHPQyrkkDyFEVzhOo8iEsbBSgzXOWIQXPQJgMpVLrF2UBawwHhlpYydcbK3Co1PqNEHUlEvoayEghA5bb7SWXVWUHFnjyuBEZn4iO2y10WdWW-UkE7FEB09JheJfczHaE30k0QWUM7oG910CcUmHLVfrYD6KJDrDfoqSTa_Nfw-fHR0PfOP7-y_9wT4ISpjxucCrrD29nsEaIp6p-emX9hNw1v9q
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VbSW4AOVRlj4wiAOXrLJ24k0kLpS2WqBdIdRKe0GRHxMV0SZVu6uqvZSfwG_klzDjJKsWhIS4WZrETjwe-5vJzBeAV0lc5ogOI5laclAyG0fGZnE0THJdMr2Idxzv2B_r0WHyYZJOFuBNVwvT8EPMA25sGWG_ZgPngPQNK69Oj_qDoeK66yUy9zQ4VJ_lDcpdLTsOZp3oScsrxHk881tvn0Z_QMzbiDUcObv34Uv3sE2mybf-bGr77uo3Hsf_fZsHcK_FouJts3hWYAGrh7C8VRNevHwE19ucshG4OsXXSpyhF8fsyVMrpNXiuTCtbknE8VzBYPKEemRaqBCGE3UpSI_T2h0xLYLYEm1emGCa5J_ffwhTUbf1BTVDTc3Mo-DiT_LfH8Ph7s7Bu1HU_q4hcolWg8h4S76hy5FBmrKZkaX0Ki7RaO-zMsaYvOE0TxIbp9Ipg8566whhDBiDqVw9gcWqrvApiMQql3rpU-c0nZ7K5BkBp1Lh0EiJMfbgZae24rRh5Sg6b4YmsggT2YP1TqFFa5jnhUwV-XhaaRK_mIvJpPg7iamwnvE1tPUyjst6sNoshPkoihkNhzlJXgd1_n34YvxpFBrP_v3S53BndLC_V-y9H39cg7uS82dCavA6LE7PZrhBAGhqN8M6_wVmdAOb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBSEu5Q0LLRjUA5essnbiTcSJdllteawqRKU9IEV-TFRESVbtrhBc2p_Ab-SXMOMkq7YICfVmyYmdeGbsbyYzXwC2k7jMER1GMrXkoGQ2jozN4miY5LpkehHvON7xYaonB8nbWTpbg1ddLUzDD7EKuLFlhP2aDXzuy3NGXs0P-4Oh4rLra4lWklV69FGeY9zVsqNg1ometbRCnMazuvXiYfQXwrwIWMOJM74Fn7tnbRJNvvaXC9t3Py_ROF7xZW7DRotExetGde7AGlZ34fpOTWjxxz04HXHCRmDqFF8qcYxeHLEfT62QVIsnwrSSpS6O5gqGkt9oRCaFCkE4UZeCpLio3SGTIogd0WaFCSZJ_n32S5iKhq2_UzNU1Cw9Ci79JO_9PhyM33zanUTtzxoiR6s_iIy35Bm6HBmiKZsZWUqv4hKN9j4rY4zJF07zJLFxKp0y6Ky3jvDFgBGYytUDWK_qCh-BSKxyqZc-dU7T2alMnhFsKhUOjZQYYw9edFIr5g0nR9H5MrSQRVjIHmx28ixaszwpZKrIw9NKU_fzVTcZFH8lMRXWS76GNl5GcVkPHjZ6sJpFMZ_hMKeel0Ga_56-mO5PQuPx_1_6DG7sj8bF-73puydwU3LyTMgL3oT1xfEStwj9LOzToOV_AGeIAko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divergence+in+red+light+responses+associated+with+thermal+reversion+of+phytochrome+B+between+high%E2%80%90+and+low%E2%80%90latitude+species&rft.jtitle=The+New+phytologist&rft.au=Ikeda%2C+Hajime&rft.au=Suzuki%2C+Tomomi&rft.au=Oka%2C+Yoshito&rft.au=Gustafsson%2C+A.+Lovisa+S.&rft.date=2021-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=231&rft.issue=1&rft.spage=75&rft.epage=84&rft_id=info:doi/10.1111%2Fnph.17381&rft.externalDBID=10.1111%252Fnph.17381&rft.externalDocID=NPH17381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon