A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications

•The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational proble...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 142; pp. 147 - 156
Main Authors Naranjo, Lizbeth, Pérez, Carlos J., Martín, Jacinto, Campos-Roca, Yolanda
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational problems.•The approach shows a moderate predictive capacity with the considered database. In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson’s disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings. A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm. The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature. To the best of the authors’ knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.
AbstractList Highlights • The motivating problem is the discrimination of people with PD from healthy subjects • A two-stage variable selection and classification approach is developed • The approach considers intra-subject variability in a proper way • A Gibbs sampling-based method is derived to solve the computational problems • The approach shows a moderate predictive capacity with the considered database
•The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational problems.•The approach shows a moderate predictive capacity with the considered database. In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson’s disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings. A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm. The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature. To the best of the authors’ knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.
In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings. A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm. The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature. To the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.
In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings.BACKGROUND AND OBJECTIVEIn the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings.A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm.METHODSA two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm.The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature.RESULTSThe proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature.To the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.CONCLUSIONSTo the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.
Author Martín, Jacinto
Campos-Roca, Yolanda
Naranjo, Lizbeth
Pérez, Carlos J.
Author_xml – sequence: 1
  givenname: Lizbeth
  surname: Naranjo
  fullname: Naranjo, Lizbeth
  email: lizbethna@ciencias.unam.mx
  organization: Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F., Mexico
– sequence: 2
  givenname: Carlos J.
  surname: Pérez
  fullname: Pérez, Carlos J.
  email: carper@unex.es
  organization: Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain
– sequence: 3
  givenname: Jacinto
  surname: Martín
  fullname: Martín, Jacinto
  email: jrmartin@unex.es
  organization: Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain
– sequence: 4
  givenname: Yolanda
  surname: Campos-Roca
  fullname: Campos-Roca, Yolanda
  email: ycampos@unex.es
  organization: Departamento de Tecnologías de los Computadores y las Comunicaciones, Universidad de Extremadura, Cáceres, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28325442$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFF2CBvGSTYDs_ThBCqir-pEogAWvLsW-Kpxk7-CZTzY4FL9HX65PgMAOLSpSVZet8x7rn3BNy5IMHQp5ylnPG6xfr3GzGLheMy5yJnPH2AVnxRopMVnV1RFZJ1GaiZvKYnCCuGWOiqupH5Fg0hajKUqzIzzM6XYcMJ30JdKuj090AFGEAM7ngqfaWmkEjut4ZvX8axxi0-Ub7EOknHa-cx-Bvf9wgtQ5BI1AL04HvdnRG5y_pNjgDNIIJ0S73CONwcMTH5GGvB4Qnh_OUfH375sv5--zi47sP52cXmSlrMWW97UTTloZLVhhbd4aLvhRFAUUj2762hrfWas6hAdZyq8tKQFtA2XVMSgtFcUqe733TAN9nwEltHBoYBu0hzKh40zAmWyl4kj47SOduA1aN0W103Kk_ySWB2AtMDIgR-r8SztRSj1qrpR611KOYUKmeBDV3IOOm3xlMUbvhfvTVHoUU0NZBVGgceAPWpVAnZYO7H399BzeD86mA4Qp2gOswR5-iV1xhAtTnZXWWzeF1wYRgdTJ4-W-D__3-C5ua1vs
CitedBy_id crossref_primary_10_1007_s00521_022_07046_2
crossref_primary_10_1016_j_simpa_2023_100504
crossref_primary_10_1007_s11042_025_20599_3
crossref_primary_10_1016_j_mehy_2020_109678
crossref_primary_10_3390_app11020581
crossref_primary_10_3390_app13063571
crossref_primary_10_3390_s20092649
crossref_primary_10_1007_s12652_022_03719_x
crossref_primary_10_2478_ijssis_2024_0008
crossref_primary_10_1109_JSAC_2020_3021571
crossref_primary_10_32604_cmc_2022_023124
crossref_primary_10_4018_IJSI_315655
crossref_primary_10_1136_bmj_l161
crossref_primary_10_1155_2021_6490118
crossref_primary_10_1007_s44174_023_00068_x
crossref_primary_10_3390_data10010004
crossref_primary_10_1109_JTEHM_2019_2940900
crossref_primary_10_3390_a13080192
crossref_primary_10_3390_electronics12040783
crossref_primary_10_1016_j_bbe_2022_06_007
crossref_primary_10_1007_s00521_021_06626_y
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_1016_j_cmpb_2022_107133
crossref_primary_10_3390_bios12070502
crossref_primary_10_1111_coin_70036
crossref_primary_10_1016_j_bspc_2021_103006
crossref_primary_10_1109_ACCESS_2020_2974008
crossref_primary_10_46647_ijetms_2023_v07i02_069
crossref_primary_10_1080_03772063_2018_1531730
crossref_primary_10_1007_s00521_021_06462_0
crossref_primary_10_1007_s11831_022_09710_1
crossref_primary_10_1016_j_mehy_2019_109483
crossref_primary_10_1016_j_gene_2019_04_060
crossref_primary_10_1155_2021_8822069
crossref_primary_10_12677_sa_2024_132025
crossref_primary_10_1093_biostatistics_kxz004
crossref_primary_10_1109_ACCESS_2019_2932037
crossref_primary_10_1186_s12911_020_01250_7
crossref_primary_10_4028_p_h0cef4
crossref_primary_10_1016_j_eswa_2019_06_052
crossref_primary_10_1016_j_health_2023_100181
crossref_primary_10_1109_ACCESS_2020_2992641
crossref_primary_10_1109_ACCESS_2020_2998749
crossref_primary_10_30773_pi_2023_0417
crossref_primary_10_1016_j_artmed_2021_102162
crossref_primary_10_3390_app132011523
crossref_primary_10_1007_s40860_021_00141_6
crossref_primary_10_1111_exsy_12674
crossref_primary_10_3390_app11157149
crossref_primary_10_3389_fninf_2021_578369
crossref_primary_10_1016_j_cmpb_2022_107030
crossref_primary_10_1109_ACCESS_2019_2906350
crossref_primary_10_3390_app8101927
crossref_primary_10_3233_JIFS_200075
crossref_primary_10_2478_msr_2023_0001
crossref_primary_10_1145_3397161
crossref_primary_10_1155_2019_5176705
Cites_doi 10.1093/bioinformatics/bth419
10.1214/09-BA403
10.1109/TBME.2012.2183367
10.1214/aos/1176344136
10.1016/j.cmpb.2016.07.029
10.1111/j.2517-6161.1996.tb02080.x
10.4310/SII.2014.v7.n4.a12
10.1080/02664763.2016.1181726
10.1080/15598608.2011.10483741
10.1109/JBHI.2013.2245674
10.1093/bioinformatics/btp638
10.1080/01621459.1993.10476321
10.1023/A:1008929526011
10.1214/10-BA607
10.1080/09720502.2010.10700699
10.1198/004017007000000245
10.1007/s11222-012-9316-x
10.1111/j.0006-341X.2004.00233.x
10.1016/j.neucom.2015.02.085
10.1080/02664763.2015.1126239
10.1007/978-1-4614-4574-6
10.1016/j.cmpb.2014.01.004
10.1198/016214508000000337
10.1007/s10772-016-9367-z
10.1007/s10463-013-0429-6
10.1016/j.eswa.2015.10.034
10.18637/jss.v021.i11
10.1002/sim.4439
10.1287/opre.31.6.1109
10.1109/TASLP.2014.2329734
10.1007/s10772-016-9338-4
10.1109/TBME.2008.2005954
10.1111/1467-9868.00179
10.1016/j.jneuroling.2004.06.001
10.1121/1.3514381
10.1121/1.4939739
10.1136/jnnp.73.5.529
10.1016/j.jbi.2004.07.009
10.1198/016214504000000269
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2017.02.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 156
ExternalDocumentID 28325442
10_1016_j_cmpb_2017_02_019
S0169260716302206
1_s2_0_S0169260716302206
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AFCTW
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c462t-fdb2894c1703cd6bc12f4233e3879f6dc19dda11e8e091da452e93e4bb077de33
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Tue Aug 05 08:47:24 EDT 2025
Thu Apr 03 06:58:06 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
Tue Jul 01 02:40:48 EDT 2025
Fri Feb 23 02:25:55 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Aug 26 16:33:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Voice features
Replicated measurements
Gibbs sampling
Bayesian binary regression
Parkinson’s disease
Variable selection
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-fdb2894c1703cd6bc12f4233e3879f6dc19dda11e8e091da452e93e4bb077de33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28325442
PQID 1880079721
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1880079721
pubmed_primary_28325442
crossref_primary_10_1016_j_cmpb_2017_02_019
crossref_citationtrail_10_1016_j_cmpb_2017_02_019
elsevier_sciencedirect_doi_10_1016_j_cmpb_2017_02_019
elsevier_clinicalkeyesjournals_1_s2_0_S0169260716302206
elsevier_clinicalkey_doi_10_1016_j_cmpb_2017_02_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Casella (bib0030) 2008; 103
Midi, Sarkar, Rana (bib0014) 2010; 13
Kyung, Gill, Ghosh, Casella (bib0023) 2010; 5
Chandrasekhar, Bagyalakshmi, Srinivasan, Gallo (bib0044) 2016; 43
Gilks, Richardson, Spiegelhalter (bib0035) 1996
Schwarz (bib0040) 1978; 6
Duffy (bib0001) 2005
Bae, Mallick (bib0019) 2004; 20
Curtis, Ghosh (bib0013) 2011; 5
Genkin, Lewis, Madigan (bib0020) 2007; 49
Little, McSharry, Roberts, Costello, Moroz (bib0051) 2007; 6
Sha, Vannucci, Tadesse, Brown, Dragoni, Davies, Roberts, Contestabile, Salmon, Buckley, Falciani (bib0018) 2004; 60
Benba, Jilbab, Hammouch (bib0050) 2016; 19
Benba, Jilbab, Hammouch (bib0049) 2016; 19
Asgari, Shafran (bib0048) 2010
Novotny, Rusz, Cmejla, Ruzicka (bib0008) 2014; 22
Leng, Tran, Nott (bib0033) 2014; 66
Rockova, Lesaffre, Luime, Löwenberg (bib0022) 2012; 31
Harel, Cannizzaro, Cohen, Reilly, Snyder (bib0002) 2004; 17
Ai-Jun, Xin-Yuan (bib0021) 2010; 26
Zhou, Liu, Wong (bib0017) 2004; 37
Pérez, Naranjo, Martín, Campos-Roca (bib0009) 2014
Buonaccorsi (bib0025) 2010
Huang, Jou, Cho (bib0045) 2016; 43
Heidelberger, Welch (bib0039) 1983; 31
Orozco-Arroyave, Hönig, Arias-Londoño, Vargas-Bonilla, Daqrouq, Skodda, Rusz, Nöth (bib0055) 2016; 139
Schrag, Ben-Shlomo, Quinn (bib0012) 2002; 73
Tibshirani (bib0029) 1996; 58
Theodoros, Ramig (bib0047) 2011
Mekyska, Janousova, Gomez-Vilda, Smekal, Rektorova, Eliasova, Kostalova, Mrackova, Alonso-Hernandez, Faundez-Zanuy (bib0052) 2015; 167
Naranjo, Pérez, Campos-Roca, Martín (bib0010) 2016; 46
Damien, Wakefield, Walker (bib0046) 1999; 61
Shrivastava, Shukla, Vepakomma, Bhansali (bib0054) 2017; 139
Lunn, Thomas, Best, Spiegelhalter (bib0036) 2000; 10
Raftery, Lewis (bib0038) 1992
Balakrishnan, Madigan (bib0031) 2010
Tsanas, Little, McSharry, Spielman, Ramig (bib0005) 2012; 59
Carroll, Ruppert, Stefanski, Crainiceanu (bib0026) 2006
Roy, Chakraborty (bib0043) 2016
Silva, Dutra (bib0056) 2011; I
Lykou, Ntzoufras (bib0032) 2013; 23
Albert, Chib (bib0034) 1993; 88
Smith (bib0037) 2007; 21
Hariharan, Polat, Sindhu (bib0007) 2014; 113
Rusz, Cmejla, Ruzickova, Ruzicka (bib0011) 2011; 129
Little, McSharry, Hunter, Spielman, Ramig (bib0004) 2009; 56
Lesaffre, Lawson (bib0024) 2012
Zhu, Li, Li (bib0027) 2007
O’Hara, Sillanpää (bib0016) 2009; 4
Kadane, Lazar (bib0015) 2004; 99
Sakar, Isenkul, Sakar, Sertbas, Gurgen, Delil, Apaydin, Kursun (bib0006) 2013; 17
Mallick, Yi (bib0042) 2014; 7
Baghai-Ravary, Beet (bib0003) 2013
D. Zhu, Y. Li, Correp: Multivariate correlation estimator and statistical inference procedures, 2007, (R package version 1.36.0).
Akaike (bib0041) 1973
Zhang, Yang, Liu, Wang, Yin, Li, Qiu, Zhu, Yan (bib0053) 2016; 15
Chandrasekhar (10.1016/j.cmpb.2017.02.019_bib0044) 2016; 43
Hariharan (10.1016/j.cmpb.2017.02.019_bib0007) 2014; 113
Zhang (10.1016/j.cmpb.2017.02.019_bib0053) 2016; 15
O’Hara (10.1016/j.cmpb.2017.02.019_bib0016) 2009; 4
Benba (10.1016/j.cmpb.2017.02.019_bib0049) 2016; 19
Lykou (10.1016/j.cmpb.2017.02.019_bib0032) 2013; 23
Smith (10.1016/j.cmpb.2017.02.019_bib0037) 2007; 21
Benba (10.1016/j.cmpb.2017.02.019_bib0050) 2016; 19
Albert (10.1016/j.cmpb.2017.02.019_bib0034) 1993; 88
Harel (10.1016/j.cmpb.2017.02.019_bib0002) 2004; 17
Shrivastava (10.1016/j.cmpb.2017.02.019_bib0054) 2017; 139
Buonaccorsi (10.1016/j.cmpb.2017.02.019_bib0025) 2010
Carroll (10.1016/j.cmpb.2017.02.019_bib0026) 2006
Huang (10.1016/j.cmpb.2017.02.019_bib0045) 2016; 43
Theodoros (10.1016/j.cmpb.2017.02.019_bib0047) 2011
Duffy (10.1016/j.cmpb.2017.02.019_bib0001) 2005
Orozco-Arroyave (10.1016/j.cmpb.2017.02.019_bib0055) 2016; 139
Heidelberger (10.1016/j.cmpb.2017.02.019_bib0039) 1983; 31
Akaike (10.1016/j.cmpb.2017.02.019_bib0041) 1973
Gilks (10.1016/j.cmpb.2017.02.019_bib0035) 1996
Raftery (10.1016/j.cmpb.2017.02.019_bib0038) 1992
Little (10.1016/j.cmpb.2017.02.019_bib0004) 2009; 56
Balakrishnan (10.1016/j.cmpb.2017.02.019_bib0031) 2010
Bae (10.1016/j.cmpb.2017.02.019_bib0019) 2004; 20
10.1016/j.cmpb.2017.02.019_bib0028
Asgari (10.1016/j.cmpb.2017.02.019_bib0048) 2010
Schrag (10.1016/j.cmpb.2017.02.019_bib0012) 2002; 73
Tsanas (10.1016/j.cmpb.2017.02.019_bib0005) 2012; 59
Mekyska (10.1016/j.cmpb.2017.02.019_bib0052) 2015; 167
Genkin (10.1016/j.cmpb.2017.02.019_bib0020) 2007; 49
Pérez (10.1016/j.cmpb.2017.02.019_bib0009) 2014
Zhou (10.1016/j.cmpb.2017.02.019_bib0017) 2004; 37
Curtis (10.1016/j.cmpb.2017.02.019_bib0013) 2011; 5
Schwarz (10.1016/j.cmpb.2017.02.019_bib0040) 1978; 6
Naranjo (10.1016/j.cmpb.2017.02.019_bib0010) 2016; 46
Roy (10.1016/j.cmpb.2017.02.019_sbref0042) 2016
Damien (10.1016/j.cmpb.2017.02.019_bib0046) 1999; 61
Rusz (10.1016/j.cmpb.2017.02.019_bib0011) 2011; 129
Baghai-Ravary (10.1016/j.cmpb.2017.02.019_bib0003) 2013
Ai-Jun (10.1016/j.cmpb.2017.02.019_bib0021) 2010; 26
Little (10.1016/j.cmpb.2017.02.019_bib0051) 2007; 6
Lesaffre (10.1016/j.cmpb.2017.02.019_bib0024) 2012
Novotny (10.1016/j.cmpb.2017.02.019_bib0008) 2014; 22
Sakar (10.1016/j.cmpb.2017.02.019_bib0006) 2013; 17
Kyung (10.1016/j.cmpb.2017.02.019_bib0023) 2010; 5
Midi (10.1016/j.cmpb.2017.02.019_bib0014) 2010; 13
Park (10.1016/j.cmpb.2017.02.019_bib0030) 2008; 103
Tibshirani (10.1016/j.cmpb.2017.02.019_bib0029) 1996; 58
Silva (10.1016/j.cmpb.2017.02.019_bib0056) 2011; I
Rockova (10.1016/j.cmpb.2017.02.019_bib0022) 2012; 31
Sha (10.1016/j.cmpb.2017.02.019_bib0018) 2004; 60
Leng (10.1016/j.cmpb.2017.02.019_bib0033) 2014; 66
Lunn (10.1016/j.cmpb.2017.02.019_bib0036) 2000; 10
Kadane (10.1016/j.cmpb.2017.02.019_bib0015) 2004; 99
Mallick (10.1016/j.cmpb.2017.02.019_bib0042) 2014; 7
Zhu (10.1016/j.cmpb.2017.02.019_bib0027) 2007
References_xml – year: 2006
  ident: bib0026
  article-title: Measurement Error in Nonlinear Models: A Modern Perspective
– volume: 37
  start-page: 249
  year: 2004
  end-page: 259
  ident: bib0017
  article-title: Cancer classification and prediction using logistic regression with Bayesian gene selection
  publication-title: J. Biomed. Inf.
– volume: 43
  start-page: 2019
  year: 2016
  end-page: 2043
  ident: bib0045
  article-title: A new multicollinearity diagnostic for generalized linear models
  publication-title: J. Appl. Stat.
– volume: 43
  start-page: 2462
  year: 2016
  end-page: 2473
  ident: bib0044
  article-title: Partial ridge regression under multicollinearity
  publication-title: J. Appl. Stat.
– volume: 4
  start-page: 85
  year: 2009
  end-page: 118
  ident: bib0016
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal.
– volume: 167
  start-page: 94
  year: 2015
  end-page: 111
  ident: bib0052
  article-title: Robust and complex approach of pathological speech signal analysis
  publication-title: Neurocomputing
– volume: 88
  start-page: 669
  year: 1993
  end-page: 679
  ident: bib0034
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: J. Am. Stat. Assoc.
– volume: I
  start-page: 118
  year: 2011
  end-page: 131
  ident: bib0056
  article-title: T-SPPA trended statistical preprocessing algorithm
  publication-title: The International Conference on Digital Information Processing and Communications
– year: 2005
  ident: bib0001
  article-title: Motor Speech Disorders: Substrates, Differential Diagnosis, and Management
– volume: 10
  start-page: 325
  year: 2000
  end-page: 337
  ident: bib0036
  article-title: Winbugs – a bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat. Comput.
– volume: 113
  start-page: 904
  year: 2014
  end-page: 913
  ident: bib0007
  article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 6
  start-page: 1
  year: 2007
  end-page: 19
  ident: bib0051
  article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
  publication-title: Biomed. Eng. Online
– volume: 20
  start-page: 3423
  year: 2004
  end-page: 3430
  ident: bib0019
  article-title: Gene selection using a two-level hierarchical Bayesian model
  publication-title: Bioinformatics
– volume: 31
  start-page: 1221
  year: 2012
  end-page: 1237
  ident: bib0022
  article-title: Hierarchical Bayesian formulations for selecting variables in regression models
  publication-title: Stat. Med.
– volume: 49
  start-page: 291
  year: 2007
  end-page: 304
  ident: bib0020
  article-title: Large-scale Bayesian logistic regression for text categorization
  publication-title: Technometrics
– volume: 23
  start-page: 361
  year: 2013
  end-page: 390
  ident: bib0032
  article-title: On Bayesian LASSO variable selection and the specification of the shrinkage parameter
  publication-title: Stat. Comput.
– year: 2011
  ident: bib0047
  article-title: Communication and swallowing in Parkinson disease
– year: 2010
  ident: bib0025
  article-title: Measurement Error: Models, Methods and Applications
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0029
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. R. Stat. Soc. Series B
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: bib0030
  article-title: The Bayesian LASSO
  publication-title: J. Am. Stat. Assoc.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0027
  article-title: Multivariate correlation estimator for inferring functional relationships from replicated genome-wide data
  publication-title: Bioinf. Adv. Access
– volume: 22
  start-page: 1366
  year: 2014
  end-page: 1378
  ident: bib0008
  article-title: Automatic evaluation of articulatory disorders in Parkinson’s disease
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
– volume: 59
  start-page: 1264
  year: 2012
  end-page: 1271
  ident: bib0005
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 439
  year: 2004
  end-page: 453
  ident: bib0002
  article-title: Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment
  publication-title: J. Neurolinguistics
– year: 2013
  ident: bib0003
  article-title: Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders
  publication-title: Springer Briefs in Electrical and Computer Engineering - Speech Tecnology
– volume: 21
  start-page: 1
  year: 2007
  end-page: 37
  ident: bib0037
  article-title: BOA: an R package for MCMC output convergence assessment and posterior inference
  publication-title: J. Stat. Softw.
– volume: 139
  start-page: 171
  year: 2017
  end-page: 179
  ident: bib0054
  article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 60
  start-page: 812
  year: 2004
  end-page: 819
  ident: bib0018
  article-title: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
  publication-title: Biometrics
– volume: 19
  start-page: 743
  year: 2016
  end-page: 754
  ident: bib0050
  article-title: Voice assessments for detecting patients with Parkinsons diseases using pca and npca
  publication-title: Int. J. Speech Technol.
– volume: 46
  start-page: 286
  year: 2016
  end-page: 292
  ident: bib0010
  article-title: Addressing voice recording replications for Parkinson’s disease detection
  publication-title: Expert Syst. Appl.
– reference: D. Zhu, Y. Li, Correp: Multivariate correlation estimator and statistical inference procedures, 2007, (R package version 1.36.0).
– volume: 15
  start-page: 1
  year: 2016
  end-page: 22
  ident: bib0053
  article-title: Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
  publication-title: Biomed. Eng. Online
– volume: 13
  start-page: 253
  year: 2010
  end-page: 267
  ident: bib0014
  article-title: Collinearity diagnostics of binary logistic regression model
  publication-title: J.Interdiscip. Math.
– volume: 17
  start-page: 828
  year: 2013
  end-page: 834
  ident: bib0006
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 7
  start-page: 571
  year: 2014
  end-page: 582
  ident: bib0042
  article-title: A new Bayesian Lasso
  publication-title: Stat. Interface
– volume: 73
  start-page: 529
  year: 2002
  end-page: 534
  ident: bib0012
  article-title: How valid is the clinical diagnosis of Parkinson’s disease in the community?
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 56
  start-page: 1015
  year: 2009
  end-page: 1022
  ident: bib0004
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 763
  year: 1992
  end-page: 773
  ident: bib0038
  article-title: How many iterations in the Gibbs sampler?
  publication-title: Bayesian Statistics 4
– start-page: 462
  year: 2010
  end-page: 467
  ident: bib0048
  article-title: Extracting cues from speech for predicting severity of Parkinson’s disease
  publication-title: IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
– volume: 129
  start-page: 350
  year: 2011
  end-page: 367
  ident: bib0011
  article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease
  publication-title: J. Acoust. Soc. Am.
– volume: 19
  start-page: 449
  year: 2016
  end-page: 456
  ident: bib0049
  article-title: Analysis of multiple types of voice recordings in cepstral domain using mfcc for discriminating between patients with Parkinson’s disease and healthy people
  publication-title: Int. J. Speech Technol.
– year: 2012
  ident: bib0024
  article-title: Bayesian Biostatistics
– volume: 26
  start-page: 215
  year: 2010
  end-page: 222
  ident: bib0021
  article-title: Bayesian variable selection for disease classification using gene expression data
  publication-title: Bioinformatics
– year: 1996
  ident: bib0035
  article-title: Markov Chain Monte Carlo in Practice
– start-page: 1
  year: 2016
  end-page: 25
  ident: bib0043
  article-title: Selection of tuning parameters, solution paths and standard errors for Bayesian Lassos
  publication-title: Bayesian Anal.
– volume: 61
  start-page: 331
  year: 1999
  end-page: 344
  ident: bib0046
  article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
  publication-title: J. R. Stat. Soc. Series B
– start-page: 267
  year: 1973
  end-page: 281
  ident: bib0041
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Proceedings of 2nd International Symposium on Information Theory
– volume: 139
  start-page: 481
  year: 2016
  end-page: 500
  ident: bib0055
  article-title: Automatic detection of Parkinson’s disease in running speech spoken in three different languages
  publication-title: J. Acoust. Soc. Am.
– volume: 99
  start-page: 279
  year: 2004
  end-page: 290
  ident: bib0015
  article-title: Methods and criteria for model selection
  publication-title: J. Am. Stat. Assoc.
– start-page: 346
  year: 2010
  end-page: 359
  ident: bib0031
  article-title: Priors on the variance in sparse Bayesian learning: the demi-Bayesian LASSO
  publication-title: Frontiers of Statistical Decision Making and Bayesian Analysis: In Honor of James O. Berger
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib0040
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– start-page: 1447
  year: 2014
  end-page: 1451
  ident: bib0009
  article-title: A latent variable-based Bayesian regression to address recording replication in Parkinson’s disease
  publication-title: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO-2014)
– volume: 5
  start-page: 715
  year: 2011
  end-page: 735
  ident: bib0013
  article-title: A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression
  publication-title: J. Stat. Theory Pract.
– volume: 5
  start-page: 369
  year: 2010
  end-page: 412
  ident: bib0023
  article-title: Penalized regression, standard errors, and Bayesian LASSOS
  publication-title: Bayesian Anal.
– volume: 66
  start-page: 221
  year: 2014
  end-page: 244
  ident: bib0033
  article-title: Bayesian adaptive LASSO
  publication-title: Ann. Inst. Stat. Math.
– volume: 31
  start-page: 1109
  year: 1983
  end-page: 1144
  ident: bib0039
  article-title: Simulation run length control in the presence of an initial transient
  publication-title: Oper. Res.
– year: 2012
  ident: 10.1016/j.cmpb.2017.02.019_bib0024
– volume: 20
  start-page: 3423
  issue: 18
  year: 2004
  ident: 10.1016/j.cmpb.2017.02.019_bib0019
  article-title: Gene selection using a two-level hierarchical Bayesian model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth419
– start-page: 267
  year: 1973
  ident: 10.1016/j.cmpb.2017.02.019_bib0041
  article-title: Information theory and an extension of the maximum likelihood principle
– start-page: 1
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_sbref0042
  article-title: Selection of tuning parameters, solution paths and standard errors for Bayesian Lassos
  publication-title: Bayesian Anal.
– volume: 4
  start-page: 85
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2017.02.019_bib0016
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal.
  doi: 10.1214/09-BA403
– volume: 6
  start-page: 1
  issue: 23
  year: 2007
  ident: 10.1016/j.cmpb.2017.02.019_bib0051
  article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
  publication-title: Biomed. Eng. Online
– volume: 59
  start-page: 1264
  issue: 5
  year: 2012
  ident: 10.1016/j.cmpb.2017.02.019_bib0005
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2183367
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.cmpb.2017.02.019_bib0040
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 139
  start-page: 171
  year: 2017
  ident: 10.1016/j.cmpb.2017.02.019_bib0054
  article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.07.029
– year: 2005
  ident: 10.1016/j.cmpb.2017.02.019_bib0001
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.cmpb.2017.02.019_bib0029
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. R. Stat. Soc. Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 7
  start-page: 571
  issue: 4
  year: 2014
  ident: 10.1016/j.cmpb.2017.02.019_bib0042
  article-title: A new Bayesian Lasso
  publication-title: Stat. Interface
  doi: 10.4310/SII.2014.v7.n4.a12
– volume: 43
  start-page: 2462
  issue: 13
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0044
  article-title: Partial ridge regression under multicollinearity
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2016.1181726
– volume: 5
  start-page: 715
  issue: 4
  year: 2011
  ident: 10.1016/j.cmpb.2017.02.019_bib0013
  article-title: A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression
  publication-title: J. Stat. Theory Pract.
  doi: 10.1080/15598608.2011.10483741
– volume: 17
  start-page: 828
  issue: 4
  year: 2013
  ident: 10.1016/j.cmpb.2017.02.019_bib0006
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2013.2245674
– ident: 10.1016/j.cmpb.2017.02.019_bib0028
– volume: 26
  start-page: 215
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0021
  article-title: Bayesian variable selection for disease classification using gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp638
– volume: 88
  start-page: 669
  issue: 422
  year: 1993
  ident: 10.1016/j.cmpb.2017.02.019_bib0034
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476321
– volume: 10
  start-page: 325
  year: 2000
  ident: 10.1016/j.cmpb.2017.02.019_bib0036
  article-title: Winbugs – a bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat. Comput.
  doi: 10.1023/A:1008929526011
– volume: 5
  start-page: 369
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0023
  article-title: Penalized regression, standard errors, and Bayesian LASSOS
  publication-title: Bayesian Anal.
  doi: 10.1214/10-BA607
– volume: 13
  start-page: 253
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0014
  article-title: Collinearity diagnostics of binary logistic regression model
  publication-title: J.Interdiscip. Math.
  doi: 10.1080/09720502.2010.10700699
– year: 1996
  ident: 10.1016/j.cmpb.2017.02.019_bib0035
– volume: 49
  start-page: 291
  issue: 3
  year: 2007
  ident: 10.1016/j.cmpb.2017.02.019_bib0020
  article-title: Large-scale Bayesian logistic regression for text categorization
  publication-title: Technometrics
  doi: 10.1198/004017007000000245
– volume: 23
  start-page: 361
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2017.02.019_bib0032
  article-title: On Bayesian LASSO variable selection and the specification of the shrinkage parameter
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9316-x
– start-page: 462
  year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0048
  article-title: Extracting cues from speech for predicting severity of Parkinson’s disease
– volume: 60
  start-page: 812
  year: 2004
  ident: 10.1016/j.cmpb.2017.02.019_bib0018
  article-title: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00233.x
– volume: 167
  start-page: 94
  year: 2015
  ident: 10.1016/j.cmpb.2017.02.019_bib0052
  article-title: Robust and complex approach of pathological speech signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.085
– volume: 43
  start-page: 2019
  issue: 11
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0045
  article-title: A new multicollinearity diagnostic for generalized linear models
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2015.1126239
– year: 2013
  ident: 10.1016/j.cmpb.2017.02.019_bib0003
  article-title: Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders
  doi: 10.1007/978-1-4614-4574-6
– volume: 113
  start-page: 904
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2017.02.019_bib0007
  article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.01.004
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  ident: 10.1016/j.cmpb.2017.02.019_bib0030
  article-title: The Bayesian LASSO
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– year: 2011
  ident: 10.1016/j.cmpb.2017.02.019_bib0047
– volume: 19
  start-page: 743
  issue: 4
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0050
  article-title: Voice assessments for detecting patients with Parkinsons diseases using pca and npca
  publication-title: Int. J. Speech Technol.
  doi: 10.1007/s10772-016-9367-z
– volume: 66
  start-page: 221
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2017.02.019_bib0033
  article-title: Bayesian adaptive LASSO
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/s10463-013-0429-6
– volume: 46
  start-page: 286
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0010
  article-title: Addressing voice recording replications for Parkinson’s disease detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.034
– volume: 21
  start-page: 1
  issue: 11
  year: 2007
  ident: 10.1016/j.cmpb.2017.02.019_bib0037
  article-title: BOA: an R package for MCMC output convergence assessment and posterior inference
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v021.i11
– volume: 31
  start-page: 1221
  year: 2012
  ident: 10.1016/j.cmpb.2017.02.019_bib0022
  article-title: Hierarchical Bayesian formulations for selecting variables in regression models
  publication-title: Stat. Med.
  doi: 10.1002/sim.4439
– volume: 15
  start-page: 1
  issue: 122
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0053
  article-title: Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
  publication-title: Biomed. Eng. Online
– start-page: 763
  year: 1992
  ident: 10.1016/j.cmpb.2017.02.019_bib0038
  article-title: How many iterations in the Gibbs sampler?
– volume: I
  start-page: 118
  year: 2011
  ident: 10.1016/j.cmpb.2017.02.019_bib0056
  article-title: T-SPPA trended statistical preprocessing algorithm
– start-page: 346
  year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0031
  article-title: Priors on the variance in sparse Bayesian learning: the demi-Bayesian LASSO
– volume: 31
  start-page: 1109
  year: 1983
  ident: 10.1016/j.cmpb.2017.02.019_bib0039
  article-title: Simulation run length control in the presence of an initial transient
  publication-title: Oper. Res.
  doi: 10.1287/opre.31.6.1109
– year: 2006
  ident: 10.1016/j.cmpb.2017.02.019_bib0026
– volume: 22
  start-page: 1366
  issue: 9
  year: 2014
  ident: 10.1016/j.cmpb.2017.02.019_bib0008
  article-title: Automatic evaluation of articulatory disorders in Parkinson’s disease
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
  doi: 10.1109/TASLP.2014.2329734
– year: 2010
  ident: 10.1016/j.cmpb.2017.02.019_bib0025
– volume: 19
  start-page: 449
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0049
  article-title: Analysis of multiple types of voice recordings in cepstral domain using mfcc for discriminating between patients with Parkinson’s disease and healthy people
  publication-title: Int. J. Speech Technol.
  doi: 10.1007/s10772-016-9338-4
– volume: 56
  start-page: 1015
  issue: 4
  year: 2009
  ident: 10.1016/j.cmpb.2017.02.019_bib0004
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2005954
– volume: 61
  start-page: 331
  issue: 2
  year: 1999
  ident: 10.1016/j.cmpb.2017.02.019_bib0046
  article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
  publication-title: J. R. Stat. Soc. Series B
  doi: 10.1111/1467-9868.00179
– volume: 17
  start-page: 439
  issue: 6
  year: 2004
  ident: 10.1016/j.cmpb.2017.02.019_bib0002
  article-title: Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment
  publication-title: J. Neurolinguistics
  doi: 10.1016/j.jneuroling.2004.06.001
– volume: 129
  start-page: 350
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2017.02.019_bib0011
  article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3514381
– volume: 139
  start-page: 481
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpb.2017.02.019_bib0055
  article-title: Automatic detection of Parkinson’s disease in running speech spoken in three different languages
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4939739
– volume: 73
  start-page: 529
  issue: 5
  year: 2002
  ident: 10.1016/j.cmpb.2017.02.019_bib0012
  article-title: How valid is the clinical diagnosis of Parkinson’s disease in the community?
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.73.5.529
– start-page: 1
  year: 2007
  ident: 10.1016/j.cmpb.2017.02.019_bib0027
  article-title: Multivariate correlation estimator for inferring functional relationships from replicated genome-wide data
  publication-title: Bioinf. Adv. Access
– start-page: 1447
  year: 2014
  ident: 10.1016/j.cmpb.2017.02.019_bib0009
  article-title: A latent variable-based Bayesian regression to address recording replication in Parkinson’s disease
– volume: 37
  start-page: 249
  year: 2004
  ident: 10.1016/j.cmpb.2017.02.019_bib0017
  article-title: Cancer classification and prediction using logistic regression with Bayesian gene selection
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2004.07.009
– volume: 99
  start-page: 279
  issue: 465
  year: 2004
  ident: 10.1016/j.cmpb.2017.02.019_bib0015
  article-title: Methods and criteria for model selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000000269
SSID ssj0002556
Score 2.4587762
Snippet •The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is...
Highlights • The motivating problem is the discrimination of people with PD from healthy subjects • A two-stage variable selection and classification approach...
In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Algorithms
Artificial Intelligence
Bayes Theorem
Bayesian binary regression
Databases, Factual
Diagnosis, Computer-Assisted
Gibbs sampling
Humans
Internal Medicine
Models, Statistical
Other
Parkinson Disease - diagnosis
Parkinson’s disease
Regression Analysis
Replicated measurements
Reproducibility of Results
Sample Size
Sensitivity and Specificity
Software
Speech Acoustics
Variable selection
Voice
Voice features
Title A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716302206
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716302206
https://dx.doi.org/10.1016/j.cmpb.2017.02.019
https://www.ncbi.nlm.nih.gov/pubmed/28325442
https://www.proquest.com/docview/1880079721
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJcEG-WR2Ukbshs_MjruKqoFlB7gUq9WXbsVEWQXTVpERfEgT_B3-OXMBM7WyFKkTjG8siJZzz-nJn5DPDcaSWtrCzPpM-5rr3grvKWVwXuxpV2VRgjuvsHxfJQvznKj7Zgd6qFobTK5PujTx-9dWqZp9mcr09O5u-IR0QSPVqhqFyUaLe1LsnKX369SPMgiq3I711z6p0KZ2KOV_Np7Si9qxx5O4lt5_LN6W_gc9yE9m7BzYQe2SK-4G3YCt0duL6f4uN34fuCDZ9XHBHfcWDneAymwijWj3fdoAKY7TxrCC9TgpCNTYlUnCF6ZVQDPZaD_fz2o2cpeMN8GJK8-8IoUf6Yna_QwbD4h4eeT8NFHPweHO69er-75OmeBd7oQg689Q6PXboRuPobX7hGyBZRlgqqKuu28I2ovbdCBFRcLbzVuQy1Ctq5rCx9UOo-bHerLjwEhmgqK1srKl_h0QuPvwi3ghWtqhFJ5M7OQEwTbJpEQk53YXw0U7bZB0NKMaQUk0mDSpnBi43MOlJwXNlbTXozU3EpukODO8SVUuVlUqFPK7o3wvTY0_xhdTPIN5K_Ge4_R3w2GZXBFU1hGtuF1RmOhC41K4lVaQYPorVtvpsulsq1lo_-c9THcIOeYurRE9geTs_CU0RVg9sZl80OXFu8frs8-AXTNCIu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcKt4sTyNxQ9bGifM6riqqLe3uhVbqzbJjp2oF2VWTFnHjwJ_o3-sv6UzsLEKUInGM45GTjD3-JjPzGeC9kUms40LzKLYpl6UV3BRW8yLD3biQpnB9RHe-yGaH8tNRerQB20MtDKVVBtvvbXpvrUPLJHzNyerkZPKZeERiokfLEioXze7AJrFTpSPYnO7uzRZrg0wsW57iu-QkEGpnfJpX9XVlKMMr76k7iXDn5v3pb_iz34d2HsBWAJBs6p_xIWy45hHcnYcQ-WP4OWXdtyVH0Hfs2AV6wlQbxdr-uBvUAdONZRVBZsoR0r4p8IozBLCMyqD7irCrH5ctC_EbZl0X5M13Rrnyx-xiiTaG-Z88dH3mfoXCn8DhzseD7RkPRy3wSmZxx2tr0POSlUADUNnMVCKuEWglLinyss5sJUprtRAOdVcKq2UauzJx0pgoz61LkqcwapaNew4MAVWU11oUtkDvCz1gRFxOizopEUykRo9BDB9YVYGHnI7D-KKGhLNTRUpRpBQVxQqVMoYPa5mVZ-G4tXcy6E0N9aVoERVuErdK5TdJuTYs6lYJ1WJP9cfEG0O6lvxt7v5zxHfDpFK4qClSoxu3PMeR0KpGORErjeGZn23r96azpVIp4xf_OepbuDc7mO-r_d3F3ku4T3d8JtIrGHVn5-41gqzOvAmL6BqsxyTf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+variable+selection+and+classification+approach+for+Parkinson%E2%80%99s+disease+detection+by+using+voice+recording+replications&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Naranjo%2C+Lizbeth&rft.au=P%C3%A9rez%2C+Carlos+J&rft.au=Mart%C3%ADn%2C+Jacinto&rft.au=Campos-Roca%2C+Yolanda&rft.date=2017-04-01&rft.issn=0169-2607&rft_id=info:doi/10.1016%2Fj.cmpb.2017.02.019&rft.externalDBID=ECK1-s2.0-S0169260716302206&rft.externalDocID=1_s2_0_S0169260716302206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon