A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications
•The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational proble...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 142; pp. 147 - 156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational problems.•The approach shows a moderate predictive capacity with the considered database.
In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson’s disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings.
A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm.
The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature.
To the best of the authors’ knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs. |
---|---|
AbstractList | Highlights • The motivating problem is the discrimination of people with PD from healthy subjects • A two-stage variable selection and classification approach is developed • The approach considers intra-subject variability in a proper way • A Gibbs sampling-based method is derived to solve the computational problems • The approach shows a moderate predictive capacity with the considered database •The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is developed.•The approach considers intra-subject variability in a proper way.•A Gibbs sampling-based method is derived to solve the computational problems.•The approach shows a moderate predictive capacity with the considered database. In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson’s disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings. A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm. The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature. To the best of the authors’ knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs. In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings. A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm. The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature. To the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs. In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings.BACKGROUND AND OBJECTIVEIn the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work consists in the discrimination of people suffering Parkinson's disease from healthy subjects based on acoustic features automatically extracted from replicated voice recordings.A two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm.METHODSA two-stage variable selection and classification approach has been developed to properly match the replication-based experimental design. The way the statistical approach has been specified allows that the computational problems are solved by using an easy-to-implement Gibbs sampling algorithm.The proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature.RESULTSThe proposed approach produces an acceptable predictive capacity for PD discrimination with the considered database, despite the fact that the sample size is relatively small. Specifically, the accuracy rate, sensitivity and specificity are 86.2%, 82.5%, and 90.0%, respectively. However, the most important fact is that there is an improvement in the interpretability of the results at the same time that it is shown a better chain mixing and a lower computation time with respect to the only-classification approaches presented in the scientific literature.To the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs.CONCLUSIONSTo the best of the authors' knowledge, this is the first approach developed to properly consider intra-subject variability for variable selection and classification. Although the proposed approach has been applied for PD discrimination, it can be applied in other contexts with similar replication-based experimental designs. |
Author | Martín, Jacinto Campos-Roca, Yolanda Naranjo, Lizbeth Pérez, Carlos J. |
Author_xml | – sequence: 1 givenname: Lizbeth surname: Naranjo fullname: Naranjo, Lizbeth email: lizbethna@ciencias.unam.mx organization: Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F., Mexico – sequence: 2 givenname: Carlos J. surname: Pérez fullname: Pérez, Carlos J. email: carper@unex.es organization: Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain – sequence: 3 givenname: Jacinto surname: Martín fullname: Martín, Jacinto email: jrmartin@unex.es organization: Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain – sequence: 4 givenname: Yolanda surname: Campos-Roca fullname: Campos-Roca, Yolanda email: ycampos@unex.es organization: Departamento de Tecnologías de los Computadores y las Comunicaciones, Universidad de Extremadura, Cáceres, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28325442$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFF2CBvGSTYDs_ThBCqir-pEogAWvLsW-Kpxk7-CZTzY4FL9HX65PgMAOLSpSVZet8x7rn3BNy5IMHQp5ylnPG6xfr3GzGLheMy5yJnPH2AVnxRopMVnV1RFZJ1GaiZvKYnCCuGWOiqupH5Fg0hajKUqzIzzM6XYcMJ30JdKuj090AFGEAM7ngqfaWmkEjut4ZvX8axxi0-Ub7EOknHa-cx-Bvf9wgtQ5BI1AL04HvdnRG5y_pNjgDNIIJ0S73CONwcMTH5GGvB4Qnh_OUfH375sv5--zi47sP52cXmSlrMWW97UTTloZLVhhbd4aLvhRFAUUj2762hrfWas6hAdZyq8tKQFtA2XVMSgtFcUqe733TAN9nwEltHBoYBu0hzKh40zAmWyl4kj47SOduA1aN0W103Kk_ySWB2AtMDIgR-r8SztRSj1qrpR611KOYUKmeBDV3IOOm3xlMUbvhfvTVHoUU0NZBVGgceAPWpVAnZYO7H399BzeD86mA4Qp2gOswR5-iV1xhAtTnZXWWzeF1wYRgdTJ4-W-D__3-C5ua1vs |
CitedBy_id | crossref_primary_10_1007_s00521_022_07046_2 crossref_primary_10_1016_j_simpa_2023_100504 crossref_primary_10_1007_s11042_025_20599_3 crossref_primary_10_1016_j_mehy_2020_109678 crossref_primary_10_3390_app11020581 crossref_primary_10_3390_app13063571 crossref_primary_10_3390_s20092649 crossref_primary_10_1007_s12652_022_03719_x crossref_primary_10_2478_ijssis_2024_0008 crossref_primary_10_1109_JSAC_2020_3021571 crossref_primary_10_32604_cmc_2022_023124 crossref_primary_10_4018_IJSI_315655 crossref_primary_10_1136_bmj_l161 crossref_primary_10_1155_2021_6490118 crossref_primary_10_1007_s44174_023_00068_x crossref_primary_10_3390_data10010004 crossref_primary_10_1109_JTEHM_2019_2940900 crossref_primary_10_3390_a13080192 crossref_primary_10_3390_electronics12040783 crossref_primary_10_1016_j_bbe_2022_06_007 crossref_primary_10_1007_s00521_021_06626_y crossref_primary_10_1007_s11042_024_18186_z crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_1016_j_cmpb_2022_107133 crossref_primary_10_3390_bios12070502 crossref_primary_10_1111_coin_70036 crossref_primary_10_1016_j_bspc_2021_103006 crossref_primary_10_1109_ACCESS_2020_2974008 crossref_primary_10_46647_ijetms_2023_v07i02_069 crossref_primary_10_1080_03772063_2018_1531730 crossref_primary_10_1007_s00521_021_06462_0 crossref_primary_10_1007_s11831_022_09710_1 crossref_primary_10_1016_j_mehy_2019_109483 crossref_primary_10_1016_j_gene_2019_04_060 crossref_primary_10_1155_2021_8822069 crossref_primary_10_12677_sa_2024_132025 crossref_primary_10_1093_biostatistics_kxz004 crossref_primary_10_1109_ACCESS_2019_2932037 crossref_primary_10_1186_s12911_020_01250_7 crossref_primary_10_4028_p_h0cef4 crossref_primary_10_1016_j_eswa_2019_06_052 crossref_primary_10_1016_j_health_2023_100181 crossref_primary_10_1109_ACCESS_2020_2992641 crossref_primary_10_1109_ACCESS_2020_2998749 crossref_primary_10_30773_pi_2023_0417 crossref_primary_10_1016_j_artmed_2021_102162 crossref_primary_10_3390_app132011523 crossref_primary_10_1007_s40860_021_00141_6 crossref_primary_10_1111_exsy_12674 crossref_primary_10_3390_app11157149 crossref_primary_10_3389_fninf_2021_578369 crossref_primary_10_1016_j_cmpb_2022_107030 crossref_primary_10_1109_ACCESS_2019_2906350 crossref_primary_10_3390_app8101927 crossref_primary_10_3233_JIFS_200075 crossref_primary_10_2478_msr_2023_0001 crossref_primary_10_1145_3397161 crossref_primary_10_1155_2019_5176705 |
Cites_doi | 10.1093/bioinformatics/bth419 10.1214/09-BA403 10.1109/TBME.2012.2183367 10.1214/aos/1176344136 10.1016/j.cmpb.2016.07.029 10.1111/j.2517-6161.1996.tb02080.x 10.4310/SII.2014.v7.n4.a12 10.1080/02664763.2016.1181726 10.1080/15598608.2011.10483741 10.1109/JBHI.2013.2245674 10.1093/bioinformatics/btp638 10.1080/01621459.1993.10476321 10.1023/A:1008929526011 10.1214/10-BA607 10.1080/09720502.2010.10700699 10.1198/004017007000000245 10.1007/s11222-012-9316-x 10.1111/j.0006-341X.2004.00233.x 10.1016/j.neucom.2015.02.085 10.1080/02664763.2015.1126239 10.1007/978-1-4614-4574-6 10.1016/j.cmpb.2014.01.004 10.1198/016214508000000337 10.1007/s10772-016-9367-z 10.1007/s10463-013-0429-6 10.1016/j.eswa.2015.10.034 10.18637/jss.v021.i11 10.1002/sim.4439 10.1287/opre.31.6.1109 10.1109/TASLP.2014.2329734 10.1007/s10772-016-9338-4 10.1109/TBME.2008.2005954 10.1111/1467-9868.00179 10.1016/j.jneuroling.2004.06.001 10.1121/1.3514381 10.1121/1.4939739 10.1136/jnnp.73.5.529 10.1016/j.jbi.2004.07.009 10.1198/016214504000000269 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2017.02.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 156 |
ExternalDocumentID | 28325442 10_1016_j_cmpb_2017_02_019 S0169260716302206 1_s2_0_S0169260716302206 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AFCTW AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c462t-fdb2894c1703cd6bc12f4233e3879f6dc19dda11e8e091da452e93e4bb077de33 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Tue Aug 05 08:47:24 EDT 2025 Thu Apr 03 06:58:06 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 Tue Jul 01 02:40:48 EDT 2025 Fri Feb 23 02:25:55 EST 2024 Fri May 16 01:02:24 EDT 2025 Tue Aug 26 16:33:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Voice features Replicated measurements Gibbs sampling Bayesian binary regression Parkinson’s disease Variable selection |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-fdb2894c1703cd6bc12f4233e3879f6dc19dda11e8e091da452e93e4bb077de33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28325442 |
PQID | 1880079721 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1880079721 pubmed_primary_28325442 crossref_primary_10_1016_j_cmpb_2017_02_019 crossref_citationtrail_10_1016_j_cmpb_2017_02_019 elsevier_sciencedirect_doi_10_1016_j_cmpb_2017_02_019 elsevier_clinicalkeyesjournals_1_s2_0_S0169260716302206 elsevier_clinicalkey_doi_10_1016_j_cmpb_2017_02_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Casella (bib0030) 2008; 103 Midi, Sarkar, Rana (bib0014) 2010; 13 Kyung, Gill, Ghosh, Casella (bib0023) 2010; 5 Chandrasekhar, Bagyalakshmi, Srinivasan, Gallo (bib0044) 2016; 43 Gilks, Richardson, Spiegelhalter (bib0035) 1996 Schwarz (bib0040) 1978; 6 Duffy (bib0001) 2005 Bae, Mallick (bib0019) 2004; 20 Curtis, Ghosh (bib0013) 2011; 5 Genkin, Lewis, Madigan (bib0020) 2007; 49 Little, McSharry, Roberts, Costello, Moroz (bib0051) 2007; 6 Sha, Vannucci, Tadesse, Brown, Dragoni, Davies, Roberts, Contestabile, Salmon, Buckley, Falciani (bib0018) 2004; 60 Benba, Jilbab, Hammouch (bib0050) 2016; 19 Benba, Jilbab, Hammouch (bib0049) 2016; 19 Asgari, Shafran (bib0048) 2010 Novotny, Rusz, Cmejla, Ruzicka (bib0008) 2014; 22 Leng, Tran, Nott (bib0033) 2014; 66 Rockova, Lesaffre, Luime, Löwenberg (bib0022) 2012; 31 Harel, Cannizzaro, Cohen, Reilly, Snyder (bib0002) 2004; 17 Ai-Jun, Xin-Yuan (bib0021) 2010; 26 Zhou, Liu, Wong (bib0017) 2004; 37 Pérez, Naranjo, Martín, Campos-Roca (bib0009) 2014 Buonaccorsi (bib0025) 2010 Huang, Jou, Cho (bib0045) 2016; 43 Heidelberger, Welch (bib0039) 1983; 31 Orozco-Arroyave, Hönig, Arias-Londoño, Vargas-Bonilla, Daqrouq, Skodda, Rusz, Nöth (bib0055) 2016; 139 Schrag, Ben-Shlomo, Quinn (bib0012) 2002; 73 Tibshirani (bib0029) 1996; 58 Theodoros, Ramig (bib0047) 2011 Mekyska, Janousova, Gomez-Vilda, Smekal, Rektorova, Eliasova, Kostalova, Mrackova, Alonso-Hernandez, Faundez-Zanuy (bib0052) 2015; 167 Naranjo, Pérez, Campos-Roca, Martín (bib0010) 2016; 46 Damien, Wakefield, Walker (bib0046) 1999; 61 Shrivastava, Shukla, Vepakomma, Bhansali (bib0054) 2017; 139 Lunn, Thomas, Best, Spiegelhalter (bib0036) 2000; 10 Raftery, Lewis (bib0038) 1992 Balakrishnan, Madigan (bib0031) 2010 Tsanas, Little, McSharry, Spielman, Ramig (bib0005) 2012; 59 Carroll, Ruppert, Stefanski, Crainiceanu (bib0026) 2006 Roy, Chakraborty (bib0043) 2016 Silva, Dutra (bib0056) 2011; I Lykou, Ntzoufras (bib0032) 2013; 23 Albert, Chib (bib0034) 1993; 88 Smith (bib0037) 2007; 21 Hariharan, Polat, Sindhu (bib0007) 2014; 113 Rusz, Cmejla, Ruzickova, Ruzicka (bib0011) 2011; 129 Little, McSharry, Hunter, Spielman, Ramig (bib0004) 2009; 56 Lesaffre, Lawson (bib0024) 2012 Zhu, Li, Li (bib0027) 2007 O’Hara, Sillanpää (bib0016) 2009; 4 Kadane, Lazar (bib0015) 2004; 99 Sakar, Isenkul, Sakar, Sertbas, Gurgen, Delil, Apaydin, Kursun (bib0006) 2013; 17 Mallick, Yi (bib0042) 2014; 7 Baghai-Ravary, Beet (bib0003) 2013 D. Zhu, Y. Li, Correp: Multivariate correlation estimator and statistical inference procedures, 2007, (R package version 1.36.0). Akaike (bib0041) 1973 Zhang, Yang, Liu, Wang, Yin, Li, Qiu, Zhu, Yan (bib0053) 2016; 15 Chandrasekhar (10.1016/j.cmpb.2017.02.019_bib0044) 2016; 43 Hariharan (10.1016/j.cmpb.2017.02.019_bib0007) 2014; 113 Zhang (10.1016/j.cmpb.2017.02.019_bib0053) 2016; 15 O’Hara (10.1016/j.cmpb.2017.02.019_bib0016) 2009; 4 Benba (10.1016/j.cmpb.2017.02.019_bib0049) 2016; 19 Lykou (10.1016/j.cmpb.2017.02.019_bib0032) 2013; 23 Smith (10.1016/j.cmpb.2017.02.019_bib0037) 2007; 21 Benba (10.1016/j.cmpb.2017.02.019_bib0050) 2016; 19 Albert (10.1016/j.cmpb.2017.02.019_bib0034) 1993; 88 Harel (10.1016/j.cmpb.2017.02.019_bib0002) 2004; 17 Shrivastava (10.1016/j.cmpb.2017.02.019_bib0054) 2017; 139 Buonaccorsi (10.1016/j.cmpb.2017.02.019_bib0025) 2010 Carroll (10.1016/j.cmpb.2017.02.019_bib0026) 2006 Huang (10.1016/j.cmpb.2017.02.019_bib0045) 2016; 43 Theodoros (10.1016/j.cmpb.2017.02.019_bib0047) 2011 Duffy (10.1016/j.cmpb.2017.02.019_bib0001) 2005 Orozco-Arroyave (10.1016/j.cmpb.2017.02.019_bib0055) 2016; 139 Heidelberger (10.1016/j.cmpb.2017.02.019_bib0039) 1983; 31 Akaike (10.1016/j.cmpb.2017.02.019_bib0041) 1973 Gilks (10.1016/j.cmpb.2017.02.019_bib0035) 1996 Raftery (10.1016/j.cmpb.2017.02.019_bib0038) 1992 Little (10.1016/j.cmpb.2017.02.019_bib0004) 2009; 56 Balakrishnan (10.1016/j.cmpb.2017.02.019_bib0031) 2010 Bae (10.1016/j.cmpb.2017.02.019_bib0019) 2004; 20 10.1016/j.cmpb.2017.02.019_bib0028 Asgari (10.1016/j.cmpb.2017.02.019_bib0048) 2010 Schrag (10.1016/j.cmpb.2017.02.019_bib0012) 2002; 73 Tsanas (10.1016/j.cmpb.2017.02.019_bib0005) 2012; 59 Mekyska (10.1016/j.cmpb.2017.02.019_bib0052) 2015; 167 Genkin (10.1016/j.cmpb.2017.02.019_bib0020) 2007; 49 Pérez (10.1016/j.cmpb.2017.02.019_bib0009) 2014 Zhou (10.1016/j.cmpb.2017.02.019_bib0017) 2004; 37 Curtis (10.1016/j.cmpb.2017.02.019_bib0013) 2011; 5 Schwarz (10.1016/j.cmpb.2017.02.019_bib0040) 1978; 6 Naranjo (10.1016/j.cmpb.2017.02.019_bib0010) 2016; 46 Roy (10.1016/j.cmpb.2017.02.019_sbref0042) 2016 Damien (10.1016/j.cmpb.2017.02.019_bib0046) 1999; 61 Rusz (10.1016/j.cmpb.2017.02.019_bib0011) 2011; 129 Baghai-Ravary (10.1016/j.cmpb.2017.02.019_bib0003) 2013 Ai-Jun (10.1016/j.cmpb.2017.02.019_bib0021) 2010; 26 Little (10.1016/j.cmpb.2017.02.019_bib0051) 2007; 6 Lesaffre (10.1016/j.cmpb.2017.02.019_bib0024) 2012 Novotny (10.1016/j.cmpb.2017.02.019_bib0008) 2014; 22 Sakar (10.1016/j.cmpb.2017.02.019_bib0006) 2013; 17 Kyung (10.1016/j.cmpb.2017.02.019_bib0023) 2010; 5 Midi (10.1016/j.cmpb.2017.02.019_bib0014) 2010; 13 Park (10.1016/j.cmpb.2017.02.019_bib0030) 2008; 103 Tibshirani (10.1016/j.cmpb.2017.02.019_bib0029) 1996; 58 Silva (10.1016/j.cmpb.2017.02.019_bib0056) 2011; I Rockova (10.1016/j.cmpb.2017.02.019_bib0022) 2012; 31 Sha (10.1016/j.cmpb.2017.02.019_bib0018) 2004; 60 Leng (10.1016/j.cmpb.2017.02.019_bib0033) 2014; 66 Lunn (10.1016/j.cmpb.2017.02.019_bib0036) 2000; 10 Kadane (10.1016/j.cmpb.2017.02.019_bib0015) 2004; 99 Mallick (10.1016/j.cmpb.2017.02.019_bib0042) 2014; 7 Zhu (10.1016/j.cmpb.2017.02.019_bib0027) 2007 |
References_xml | – year: 2006 ident: bib0026 article-title: Measurement Error in Nonlinear Models: A Modern Perspective – volume: 37 start-page: 249 year: 2004 end-page: 259 ident: bib0017 article-title: Cancer classification and prediction using logistic regression with Bayesian gene selection publication-title: J. Biomed. Inf. – volume: 43 start-page: 2019 year: 2016 end-page: 2043 ident: bib0045 article-title: A new multicollinearity diagnostic for generalized linear models publication-title: J. Appl. Stat. – volume: 43 start-page: 2462 year: 2016 end-page: 2473 ident: bib0044 article-title: Partial ridge regression under multicollinearity publication-title: J. Appl. Stat. – volume: 4 start-page: 85 year: 2009 end-page: 118 ident: bib0016 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Anal. – volume: 167 start-page: 94 year: 2015 end-page: 111 ident: bib0052 article-title: Robust and complex approach of pathological speech signal analysis publication-title: Neurocomputing – volume: 88 start-page: 669 year: 1993 end-page: 679 ident: bib0034 article-title: Bayesian analysis of binary and polychotomous response data publication-title: J. Am. Stat. Assoc. – volume: I start-page: 118 year: 2011 end-page: 131 ident: bib0056 article-title: T-SPPA trended statistical preprocessing algorithm publication-title: The International Conference on Digital Information Processing and Communications – year: 2005 ident: bib0001 article-title: Motor Speech Disorders: Substrates, Differential Diagnosis, and Management – volume: 10 start-page: 325 year: 2000 end-page: 337 ident: bib0036 article-title: Winbugs – a bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat. Comput. – volume: 113 start-page: 904 year: 2014 end-page: 913 ident: bib0007 article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease publication-title: Comput. Methods Programs Biomed. – volume: 6 start-page: 1 year: 2007 end-page: 19 ident: bib0051 article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection publication-title: Biomed. Eng. Online – volume: 20 start-page: 3423 year: 2004 end-page: 3430 ident: bib0019 article-title: Gene selection using a two-level hierarchical Bayesian model publication-title: Bioinformatics – volume: 31 start-page: 1221 year: 2012 end-page: 1237 ident: bib0022 article-title: Hierarchical Bayesian formulations for selecting variables in regression models publication-title: Stat. Med. – volume: 49 start-page: 291 year: 2007 end-page: 304 ident: bib0020 article-title: Large-scale Bayesian logistic regression for text categorization publication-title: Technometrics – volume: 23 start-page: 361 year: 2013 end-page: 390 ident: bib0032 article-title: On Bayesian LASSO variable selection and the specification of the shrinkage parameter publication-title: Stat. Comput. – year: 2011 ident: bib0047 article-title: Communication and swallowing in Parkinson disease – year: 2010 ident: bib0025 article-title: Measurement Error: Models, Methods and Applications – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0029 article-title: Regression shrinkage and selection via the LASSO publication-title: J. R. Stat. Soc. Series B – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: bib0030 article-title: The Bayesian LASSO publication-title: J. Am. Stat. Assoc. – start-page: 1 year: 2007 end-page: 8 ident: bib0027 article-title: Multivariate correlation estimator for inferring functional relationships from replicated genome-wide data publication-title: Bioinf. Adv. Access – volume: 22 start-page: 1366 year: 2014 end-page: 1378 ident: bib0008 article-title: Automatic evaluation of articulatory disorders in Parkinson’s disease publication-title: IEEE/ACM Trans. Audio Speech Lang. Process – volume: 59 start-page: 1264 year: 2012 end-page: 1271 ident: bib0005 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 439 year: 2004 end-page: 453 ident: bib0002 article-title: Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment publication-title: J. Neurolinguistics – year: 2013 ident: bib0003 article-title: Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders publication-title: Springer Briefs in Electrical and Computer Engineering - Speech Tecnology – volume: 21 start-page: 1 year: 2007 end-page: 37 ident: bib0037 article-title: BOA: an R package for MCMC output convergence assessment and posterior inference publication-title: J. Stat. Softw. – volume: 139 start-page: 171 year: 2017 end-page: 179 ident: bib0054 article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease publication-title: Comput. Methods Programs Biomed. – volume: 60 start-page: 812 year: 2004 end-page: 819 ident: bib0018 article-title: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage publication-title: Biometrics – volume: 19 start-page: 743 year: 2016 end-page: 754 ident: bib0050 article-title: Voice assessments for detecting patients with Parkinsons diseases using pca and npca publication-title: Int. J. Speech Technol. – volume: 46 start-page: 286 year: 2016 end-page: 292 ident: bib0010 article-title: Addressing voice recording replications for Parkinson’s disease detection publication-title: Expert Syst. Appl. – reference: D. Zhu, Y. Li, Correp: Multivariate correlation estimator and statistical inference procedures, 2007, (R package version 1.36.0). – volume: 15 start-page: 1 year: 2016 end-page: 22 ident: bib0053 article-title: Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples publication-title: Biomed. Eng. Online – volume: 13 start-page: 253 year: 2010 end-page: 267 ident: bib0014 article-title: Collinearity diagnostics of binary logistic regression model publication-title: J.Interdiscip. Math. – volume: 17 start-page: 828 year: 2013 end-page: 834 ident: bib0006 article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings publication-title: IEEE J. Biomed. Health Inf. – volume: 7 start-page: 571 year: 2014 end-page: 582 ident: bib0042 article-title: A new Bayesian Lasso publication-title: Stat. Interface – volume: 73 start-page: 529 year: 2002 end-page: 534 ident: bib0012 article-title: How valid is the clinical diagnosis of Parkinson’s disease in the community? publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 56 start-page: 1015 year: 2009 end-page: 1022 ident: bib0004 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. – start-page: 763 year: 1992 end-page: 773 ident: bib0038 article-title: How many iterations in the Gibbs sampler? publication-title: Bayesian Statistics 4 – start-page: 462 year: 2010 end-page: 467 ident: bib0048 article-title: Extracting cues from speech for predicting severity of Parkinson’s disease publication-title: IEEE International Workshop on Machine Learning for Signal Processing (MLSP) – volume: 129 start-page: 350 year: 2011 end-page: 367 ident: bib0011 article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease publication-title: J. Acoust. Soc. Am. – volume: 19 start-page: 449 year: 2016 end-page: 456 ident: bib0049 article-title: Analysis of multiple types of voice recordings in cepstral domain using mfcc for discriminating between patients with Parkinson’s disease and healthy people publication-title: Int. J. Speech Technol. – year: 2012 ident: bib0024 article-title: Bayesian Biostatistics – volume: 26 start-page: 215 year: 2010 end-page: 222 ident: bib0021 article-title: Bayesian variable selection for disease classification using gene expression data publication-title: Bioinformatics – year: 1996 ident: bib0035 article-title: Markov Chain Monte Carlo in Practice – start-page: 1 year: 2016 end-page: 25 ident: bib0043 article-title: Selection of tuning parameters, solution paths and standard errors for Bayesian Lassos publication-title: Bayesian Anal. – volume: 61 start-page: 331 year: 1999 end-page: 344 ident: bib0046 article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables publication-title: J. R. Stat. Soc. Series B – start-page: 267 year: 1973 end-page: 281 ident: bib0041 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Proceedings of 2nd International Symposium on Information Theory – volume: 139 start-page: 481 year: 2016 end-page: 500 ident: bib0055 article-title: Automatic detection of Parkinson’s disease in running speech spoken in three different languages publication-title: J. Acoust. Soc. Am. – volume: 99 start-page: 279 year: 2004 end-page: 290 ident: bib0015 article-title: Methods and criteria for model selection publication-title: J. Am. Stat. Assoc. – start-page: 346 year: 2010 end-page: 359 ident: bib0031 article-title: Priors on the variance in sparse Bayesian learning: the demi-Bayesian LASSO publication-title: Frontiers of Statistical Decision Making and Bayesian Analysis: In Honor of James O. Berger – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib0040 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – start-page: 1447 year: 2014 end-page: 1451 ident: bib0009 article-title: A latent variable-based Bayesian regression to address recording replication in Parkinson’s disease publication-title: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO-2014) – volume: 5 start-page: 715 year: 2011 end-page: 735 ident: bib0013 article-title: A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression publication-title: J. Stat. Theory Pract. – volume: 5 start-page: 369 year: 2010 end-page: 412 ident: bib0023 article-title: Penalized regression, standard errors, and Bayesian LASSOS publication-title: Bayesian Anal. – volume: 66 start-page: 221 year: 2014 end-page: 244 ident: bib0033 article-title: Bayesian adaptive LASSO publication-title: Ann. Inst. Stat. Math. – volume: 31 start-page: 1109 year: 1983 end-page: 1144 ident: bib0039 article-title: Simulation run length control in the presence of an initial transient publication-title: Oper. Res. – year: 2012 ident: 10.1016/j.cmpb.2017.02.019_bib0024 – volume: 20 start-page: 3423 issue: 18 year: 2004 ident: 10.1016/j.cmpb.2017.02.019_bib0019 article-title: Gene selection using a two-level hierarchical Bayesian model publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth419 – start-page: 267 year: 1973 ident: 10.1016/j.cmpb.2017.02.019_bib0041 article-title: Information theory and an extension of the maximum likelihood principle – start-page: 1 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_sbref0042 article-title: Selection of tuning parameters, solution paths and standard errors for Bayesian Lassos publication-title: Bayesian Anal. – volume: 4 start-page: 85 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2017.02.019_bib0016 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Anal. doi: 10.1214/09-BA403 – volume: 6 start-page: 1 issue: 23 year: 2007 ident: 10.1016/j.cmpb.2017.02.019_bib0051 article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection publication-title: Biomed. Eng. Online – volume: 59 start-page: 1264 issue: 5 year: 2012 ident: 10.1016/j.cmpb.2017.02.019_bib0005 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2183367 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.cmpb.2017.02.019_bib0040 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 139 start-page: 171 year: 2017 ident: 10.1016/j.cmpb.2017.02.019_bib0054 article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.07.029 – year: 2005 ident: 10.1016/j.cmpb.2017.02.019_bib0001 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.cmpb.2017.02.019_bib0029 article-title: Regression shrinkage and selection via the LASSO publication-title: J. R. Stat. Soc. Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 7 start-page: 571 issue: 4 year: 2014 ident: 10.1016/j.cmpb.2017.02.019_bib0042 article-title: A new Bayesian Lasso publication-title: Stat. Interface doi: 10.4310/SII.2014.v7.n4.a12 – volume: 43 start-page: 2462 issue: 13 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0044 article-title: Partial ridge regression under multicollinearity publication-title: J. Appl. Stat. doi: 10.1080/02664763.2016.1181726 – volume: 5 start-page: 715 issue: 4 year: 2011 ident: 10.1016/j.cmpb.2017.02.019_bib0013 article-title: A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression publication-title: J. Stat. Theory Pract. doi: 10.1080/15598608.2011.10483741 – volume: 17 start-page: 828 issue: 4 year: 2013 ident: 10.1016/j.cmpb.2017.02.019_bib0006 article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2013.2245674 – ident: 10.1016/j.cmpb.2017.02.019_bib0028 – volume: 26 start-page: 215 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0021 article-title: Bayesian variable selection for disease classification using gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp638 – volume: 88 start-page: 669 issue: 422 year: 1993 ident: 10.1016/j.cmpb.2017.02.019_bib0034 article-title: Bayesian analysis of binary and polychotomous response data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476321 – volume: 10 start-page: 325 year: 2000 ident: 10.1016/j.cmpb.2017.02.019_bib0036 article-title: Winbugs – a bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat. Comput. doi: 10.1023/A:1008929526011 – volume: 5 start-page: 369 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0023 article-title: Penalized regression, standard errors, and Bayesian LASSOS publication-title: Bayesian Anal. doi: 10.1214/10-BA607 – volume: 13 start-page: 253 issue: 3 year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0014 article-title: Collinearity diagnostics of binary logistic regression model publication-title: J.Interdiscip. Math. doi: 10.1080/09720502.2010.10700699 – year: 1996 ident: 10.1016/j.cmpb.2017.02.019_bib0035 – volume: 49 start-page: 291 issue: 3 year: 2007 ident: 10.1016/j.cmpb.2017.02.019_bib0020 article-title: Large-scale Bayesian logistic regression for text categorization publication-title: Technometrics doi: 10.1198/004017007000000245 – volume: 23 start-page: 361 issue: 3 year: 2013 ident: 10.1016/j.cmpb.2017.02.019_bib0032 article-title: On Bayesian LASSO variable selection and the specification of the shrinkage parameter publication-title: Stat. Comput. doi: 10.1007/s11222-012-9316-x – start-page: 462 year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0048 article-title: Extracting cues from speech for predicting severity of Parkinson’s disease – volume: 60 start-page: 812 year: 2004 ident: 10.1016/j.cmpb.2017.02.019_bib0018 article-title: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00233.x – volume: 167 start-page: 94 year: 2015 ident: 10.1016/j.cmpb.2017.02.019_bib0052 article-title: Robust and complex approach of pathological speech signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.085 – volume: 43 start-page: 2019 issue: 11 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0045 article-title: A new multicollinearity diagnostic for generalized linear models publication-title: J. Appl. Stat. doi: 10.1080/02664763.2015.1126239 – year: 2013 ident: 10.1016/j.cmpb.2017.02.019_bib0003 article-title: Automatic Speech Signal Analysis for Clinical Diagnosis and Assessment of Speech Disorders doi: 10.1007/978-1-4614-4574-6 – volume: 113 start-page: 904 issue: 3 year: 2014 ident: 10.1016/j.cmpb.2017.02.019_bib0007 article-title: A new hybrid intelligent system for accurate detection of Parkinson’s disease publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.01.004 – volume: 103 start-page: 681 issue: 482 year: 2008 ident: 10.1016/j.cmpb.2017.02.019_bib0030 article-title: The Bayesian LASSO publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – year: 2011 ident: 10.1016/j.cmpb.2017.02.019_bib0047 – volume: 19 start-page: 743 issue: 4 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0050 article-title: Voice assessments for detecting patients with Parkinsons diseases using pca and npca publication-title: Int. J. Speech Technol. doi: 10.1007/s10772-016-9367-z – volume: 66 start-page: 221 issue: 2 year: 2014 ident: 10.1016/j.cmpb.2017.02.019_bib0033 article-title: Bayesian adaptive LASSO publication-title: Ann. Inst. Stat. Math. doi: 10.1007/s10463-013-0429-6 – volume: 46 start-page: 286 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0010 article-title: Addressing voice recording replications for Parkinson’s disease detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.034 – volume: 21 start-page: 1 issue: 11 year: 2007 ident: 10.1016/j.cmpb.2017.02.019_bib0037 article-title: BOA: an R package for MCMC output convergence assessment and posterior inference publication-title: J. Stat. Softw. doi: 10.18637/jss.v021.i11 – volume: 31 start-page: 1221 year: 2012 ident: 10.1016/j.cmpb.2017.02.019_bib0022 article-title: Hierarchical Bayesian formulations for selecting variables in regression models publication-title: Stat. Med. doi: 10.1002/sim.4439 – volume: 15 start-page: 1 issue: 122 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0053 article-title: Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples publication-title: Biomed. Eng. Online – start-page: 763 year: 1992 ident: 10.1016/j.cmpb.2017.02.019_bib0038 article-title: How many iterations in the Gibbs sampler? – volume: I start-page: 118 year: 2011 ident: 10.1016/j.cmpb.2017.02.019_bib0056 article-title: T-SPPA trended statistical preprocessing algorithm – start-page: 346 year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0031 article-title: Priors on the variance in sparse Bayesian learning: the demi-Bayesian LASSO – volume: 31 start-page: 1109 year: 1983 ident: 10.1016/j.cmpb.2017.02.019_bib0039 article-title: Simulation run length control in the presence of an initial transient publication-title: Oper. Res. doi: 10.1287/opre.31.6.1109 – year: 2006 ident: 10.1016/j.cmpb.2017.02.019_bib0026 – volume: 22 start-page: 1366 issue: 9 year: 2014 ident: 10.1016/j.cmpb.2017.02.019_bib0008 article-title: Automatic evaluation of articulatory disorders in Parkinson’s disease publication-title: IEEE/ACM Trans. Audio Speech Lang. Process doi: 10.1109/TASLP.2014.2329734 – year: 2010 ident: 10.1016/j.cmpb.2017.02.019_bib0025 – volume: 19 start-page: 449 issue: 3 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0049 article-title: Analysis of multiple types of voice recordings in cepstral domain using mfcc for discriminating between patients with Parkinson’s disease and healthy people publication-title: Int. J. Speech Technol. doi: 10.1007/s10772-016-9338-4 – volume: 56 start-page: 1015 issue: 4 year: 2009 ident: 10.1016/j.cmpb.2017.02.019_bib0004 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2005954 – volume: 61 start-page: 331 issue: 2 year: 1999 ident: 10.1016/j.cmpb.2017.02.019_bib0046 article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables publication-title: J. R. Stat. Soc. Series B doi: 10.1111/1467-9868.00179 – volume: 17 start-page: 439 issue: 6 year: 2004 ident: 10.1016/j.cmpb.2017.02.019_bib0002 article-title: Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment publication-title: J. Neurolinguistics doi: 10.1016/j.jneuroling.2004.06.001 – volume: 129 start-page: 350 issue: 1 year: 2011 ident: 10.1016/j.cmpb.2017.02.019_bib0011 article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3514381 – volume: 139 start-page: 481 issue: 1 year: 2016 ident: 10.1016/j.cmpb.2017.02.019_bib0055 article-title: Automatic detection of Parkinson’s disease in running speech spoken in three different languages publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4939739 – volume: 73 start-page: 529 issue: 5 year: 2002 ident: 10.1016/j.cmpb.2017.02.019_bib0012 article-title: How valid is the clinical diagnosis of Parkinson’s disease in the community? publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.73.5.529 – start-page: 1 year: 2007 ident: 10.1016/j.cmpb.2017.02.019_bib0027 article-title: Multivariate correlation estimator for inferring functional relationships from replicated genome-wide data publication-title: Bioinf. Adv. Access – start-page: 1447 year: 2014 ident: 10.1016/j.cmpb.2017.02.019_bib0009 article-title: A latent variable-based Bayesian regression to address recording replication in Parkinson’s disease – volume: 37 start-page: 249 year: 2004 ident: 10.1016/j.cmpb.2017.02.019_bib0017 article-title: Cancer classification and prediction using logistic regression with Bayesian gene selection publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2004.07.009 – volume: 99 start-page: 279 issue: 465 year: 2004 ident: 10.1016/j.cmpb.2017.02.019_bib0015 article-title: Methods and criteria for model selection publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214504000000269 |
SSID | ssj0002556 |
Score | 2.4587762 |
Snippet | •The motivating problem is the discrimination of people with PD from healthy subjects.•A two-stage variable selection and classification approach is... Highlights • The motivating problem is the discrimination of people with PD from healthy subjects • A two-stage variable selection and classification approach... In the scientific literature, there is a lack of variable selection and classification methods considering replicated data. The problem motivating this work... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Algorithms Artificial Intelligence Bayes Theorem Bayesian binary regression Databases, Factual Diagnosis, Computer-Assisted Gibbs sampling Humans Internal Medicine Models, Statistical Other Parkinson Disease - diagnosis Parkinson’s disease Regression Analysis Replicated measurements Reproducibility of Results Sample Size Sensitivity and Specificity Software Speech Acoustics Variable selection Voice Voice features |
Title | A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716302206 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716302206 https://dx.doi.org/10.1016/j.cmpb.2017.02.019 https://www.ncbi.nlm.nih.gov/pubmed/28325442 https://www.proquest.com/docview/1880079721 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJcEG-WR2Ukbshs_MjruKqoFlB7gUq9WXbsVEWQXTVpERfEgT_B3-OXMBM7WyFKkTjG8siJZzz-nJn5DPDcaSWtrCzPpM-5rr3grvKWVwXuxpV2VRgjuvsHxfJQvznKj7Zgd6qFobTK5PujTx-9dWqZp9mcr09O5u-IR0QSPVqhqFyUaLe1LsnKX369SPMgiq3I711z6p0KZ2KOV_Np7Si9qxx5O4lt5_LN6W_gc9yE9m7BzYQe2SK-4G3YCt0duL6f4uN34fuCDZ9XHBHfcWDneAymwijWj3fdoAKY7TxrCC9TgpCNTYlUnCF6ZVQDPZaD_fz2o2cpeMN8GJK8-8IoUf6Yna_QwbD4h4eeT8NFHPweHO69er-75OmeBd7oQg689Q6PXboRuPobX7hGyBZRlgqqKuu28I2ovbdCBFRcLbzVuQy1Ctq5rCx9UOo-bHerLjwEhmgqK1srKl_h0QuPvwi3ghWtqhFJ5M7OQEwTbJpEQk53YXw0U7bZB0NKMaQUk0mDSpnBi43MOlJwXNlbTXozU3EpukODO8SVUuVlUqFPK7o3wvTY0_xhdTPIN5K_Ge4_R3w2GZXBFU1hGtuF1RmOhC41K4lVaQYPorVtvpsulsq1lo_-c9THcIOeYurRE9geTs_CU0RVg9sZl80OXFu8frs8-AXTNCIu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcKt4sTyNxQ9bGifM6riqqLe3uhVbqzbJjp2oF2VWTFnHjwJ_o3-sv6UzsLEKUInGM45GTjD3-JjPzGeC9kUms40LzKLYpl6UV3BRW8yLD3biQpnB9RHe-yGaH8tNRerQB20MtDKVVBtvvbXpvrUPLJHzNyerkZPKZeERiokfLEioXze7AJrFTpSPYnO7uzRZrg0wsW57iu-QkEGpnfJpX9XVlKMMr76k7iXDn5v3pb_iz34d2HsBWAJBs6p_xIWy45hHcnYcQ-WP4OWXdtyVH0Hfs2AV6wlQbxdr-uBvUAdONZRVBZsoR0r4p8IozBLCMyqD7irCrH5ctC_EbZl0X5M13Rrnyx-xiiTaG-Z88dH3mfoXCn8DhzseD7RkPRy3wSmZxx2tr0POSlUADUNnMVCKuEWglLinyss5sJUprtRAOdVcKq2UauzJx0pgoz61LkqcwapaNew4MAVWU11oUtkDvCz1gRFxOizopEUykRo9BDB9YVYGHnI7D-KKGhLNTRUpRpBQVxQqVMoYPa5mVZ-G4tXcy6E0N9aVoERVuErdK5TdJuTYs6lYJ1WJP9cfEG0O6lvxt7v5zxHfDpFK4qClSoxu3PMeR0KpGORErjeGZn23r96azpVIp4xf_OepbuDc7mO-r_d3F3ku4T3d8JtIrGHVn5-41gqzOvAmL6BqsxyTf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+variable+selection+and+classification+approach+for+Parkinson%E2%80%99s+disease+detection+by+using+voice+recording+replications&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Naranjo%2C+Lizbeth&rft.au=P%C3%A9rez%2C+Carlos+J&rft.au=Mart%C3%ADn%2C+Jacinto&rft.au=Campos-Roca%2C+Yolanda&rft.date=2017-04-01&rft.issn=0169-2607&rft_id=info:doi/10.1016%2Fj.cmpb.2017.02.019&rft.externalDBID=ECK1-s2.0-S0169260716302206&rft.externalDocID=1_s2_0_S0169260716302206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |