Committee polyhedral separability: complexity and polynomial approximation

We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the f...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 101; no. 1-3; pp. 231 - 251
Main Author Khachay, Michael
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-015-5505-0

Cover

Abstract We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik–Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP -hard and remains intractable in spaces of any fixed dimension n > 1 even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Data Analysis and Intelligent Optimization with Applications; Guest Editors: Vadim Strijov * Gerhard-Wilhelm Weber * Richard Weber * Süreyya Ozogur Akyüz We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik-Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP-hard and remains intractable in spaces of any fixed dimension ... even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers.
We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik–Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP -hard and remains intractable in spaces of any fixed dimension n > 1 even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik-Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP-hard and remains intractable in spaces of any fixed dimension ... even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers.
Author Khachay, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Khachay
  fullname: Khachay, Michael
  email: mkhachay@imm.uran.ru
  organization: Krasovsky Institute of Mathematics and Mechanics UB RAS, Ural Federal University, Omsk State Technical University
BookMark eNp9kMtKAzEUhoNUsFYfwF3BjZtoLpNMxp0UrxTc6DpkMhlNySRjMoX27U07LqSgqxzC953LfwomPngDwAVG1xih8iZhVFUFRJhBxhCD6AhMMSspRIyzCZgiIRjkmLATcJrSCiFEuOBT8LIIXWeHwZh5H9z20zRRuXkyvYqqts4O29u5Dl3vzCbXc-WbPedDZzOn-j6Gje3UYIM_A8etcsmc_7wz8P5w_7Z4gsvXx-fF3RLqgpMBmkoVhGleVKrlFJcVL4WmnNaoaSijXBFjGi4EaVVd6PzbCsOrmhHBdU0yMwNXY988-2tt0iA7m7RxTnkT1kniklGGBedVRi8P0FVYR5-3yxSmJRElFZnCI6VjSCmaVvYx3xS3EiO5S1eO6cqcrtylK1F2ygNH22EfwxCVdf-aZDRTnuI_TPy105_SNz1kkTw
CitedBy_id crossref_primary_10_3390_v12091019
crossref_primary_10_1134_S1054661823040314
Cites_doi 10.1134/S0005117907050165
10.1006/game.1999.0738
10.4086/toc.2012.v008a006
10.1145/273865.273901
10.1214/aoms/1177730030
10.1016/S0893-6080(05)80010-3
10.1007/BF02187916
10.1134/S1064562406010376
10.1016/0167-6377(82)90039-6
10.1007/s00453-003-1072-z
10.1006/inco.1994.1009
10.1006/inco.1995.1136
10.1134/S1054661808020089
10.1023/A:1017934522171
10.1134/S0005117912020130
10.1109/TIT.1965.1053785
10.1007/s10852-006-9056-z
10.1214/009053607000000677
10.1023/B:AURC.0000014716.77510.61
10.1145/285055.285059
10.15388/Informatica.2009.247
10.7551/mitpress/8291.001.0001
10.1109/SFCS.2002.1181880
ContentType Journal Article
Copyright The Author(s) 2015
Copyright_xml – notice: The Author(s) 2015
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-015-5505-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 251
ExternalDocumentID 3811467221
10_1007_s10994_015_5505_0
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c462t-e9a425c649af63179678c363b0dd3536a2eed6882fab4cb0df8e69b5286cb2dd3
IEDL.DBID 8FG
ISSN 0885-6125
IngestDate Thu Sep 04 19:32:38 EDT 2025
Mon Jul 14 07:20:04 EDT 2025
Tue Jul 01 00:46:04 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Fri Feb 21 02:28:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Polyhedral separability
Affine committees
Approximability
Computational complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-e9a425c649af63179678c363b0dd3536a2eed6882fab4cb0df8e69b5286cb2dd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-015-5505-0.pdf
PQID 1713728738
PQPubID 54194
PageCount 21
ParticipantIDs proquest_miscellaneous_1753518669
proquest_journals_1713728738
crossref_primary_10_1007_s10994_015_5505_0
crossref_citationtrail_10_1007_s10994_015_5505_0
springer_journals_10_1007_s10994_015_5505_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Khachay, Poberii (CR25) 2009; 20
Wald (CR40) 1949; 20
Mazurov, Khachai (CR31) 2004; 65
Megiddo, Tamir (CR34) 1982; 5
Freund (CR15) 1995; 121
Gale (CR17) 1956; 38
Guruswami (CR18) 2004; 38
CR39
Arora, Hazan, Kale (CR2) 2012; 8
CR14
Khachai, Mazurov, Rybin (CR22) 2002; 1
CR12
CR11
CR10
Khachai, Rybin (CR23) 1998; 8
Blum, Rivest (CR4) 1992; 5
Boyd, Vandenberghe (CR5) 2009
Mazurov, Khachai (CR32) 2007; 68
Freund, Schapire (CR16) 1999; 29
Cortes, Vapnik (CR9) 1995; 20
Ablow, Kaylor (CR1) 1965; 11
Mazurov (CR30) 1990
Khachai (CR20) 2006; 73
Schapire, Freund (CR37) 2012
Nilsson (CR35) 1965
Schölkopf, Smola (CR38) 2002
Breiman (CR7) 2001; 45
CR8
Khachay (CR24) 2007; 6
Mazurov (CR29) 1971; 3
Hofmann, Schölkopf, Smola (CR19) 2008; 36
Khachai (CR21) 2008; 18
Arora, Safra (CR3) 1998; 45
Lin, Vitter (CR27) 1991; 6
Breiman (CR6) 1996; 24
Schapire (CR36) 1990; 5
Eremin, Mazurov, Astafiev (CR13) 1983
Littlestone, Warmuth (CR28) 1994; 108
Megiddo (CR33) 1988; 3
Kobylkin (CR26) 2012; 73
Y Freund (5505_CR16) 1999; 29
V Mazurov (5505_CR32) 2007; 68
N Nilsson (5505_CR35) 1965
V Mazurov (5505_CR30) 1990
5505_CR8
M Khachai (5505_CR21) 2008; 18
S Boyd (5505_CR5) 2009
S Arora (5505_CR3) 1998; 45
Y Freund (5505_CR15) 1995; 121
V Mazurov (5505_CR31) 2004; 65
K Kobylkin (5505_CR26) 2012; 73
N Littlestone (5505_CR28) 1994; 108
5505_CR39
D Gale (5505_CR17) 1956; 38
T Hofmann (5505_CR19) 2008; 36
5505_CR14
M Khachai (5505_CR22) 2002; 1
M Khachai (5505_CR23) 1998; 8
L Breiman (5505_CR6) 1996; 24
5505_CR12
R Schapire (5505_CR37) 2012
C Ablow (5505_CR1) 1965; 11
5505_CR11
A Blum (5505_CR4) 1992; 5
5505_CR10
I Eremin (5505_CR13) 1983
N Megiddo (5505_CR33) 1988; 3
R Schapire (5505_CR36) 1990; 5
M Khachay (5505_CR25) 2009; 20
V Mazurov (5505_CR29) 1971; 3
C Cortes (5505_CR9) 1995; 20
M Khachay (5505_CR24) 2007; 6
N Megiddo (5505_CR34) 1982; 5
A Wald (5505_CR40) 1949; 20
S Arora (5505_CR2) 2012; 8
L Breiman (5505_CR7) 2001; 45
V Guruswami (5505_CR18) 2004; 38
M Khachai (5505_CR20) 2006; 73
B Schölkopf (5505_CR38) 2002
J Lin (5505_CR27) 1991; 6
References_xml – volume: 8
  start-page: 491
  year: 1998
  end-page: 496
  ident: CR23
  article-title: A new estimate of the number of members in a minimum committee of a system of linear inequalities
  publication-title: Pattern Recgnition and Image Analysis
– volume: 68
  start-page: 912
  year: 2007
  end-page: 921
  ident: CR32
  article-title: Parallel computations and committee constructions
  publication-title: Automation and Remote Control
  doi: 10.1134/S0005117907050165
– year: 1990
  ident: CR30
  publication-title: Committee method in problems of optimization and classification
– ident: CR14
– ident: CR39
– volume: 38
  start-page: 255
  year: 1956
  end-page: 263
  ident: CR17
  article-title: Neighboring vertices on a convex polyhedron
  publication-title: Linear inequalities and related system
– ident: CR12
– volume: 29
  start-page: 79
  issue: 12
  year: 1999
  end-page: 103
  ident: CR16
  article-title: Adaptive game playing using multiplicative weights
  publication-title: Games and Economic Behavior
  doi: 10.1006/game.1999.0738
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR9
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 8
  start-page: 121
  issue: 1
  year: 2012
  end-page: 164
  ident: CR2
  article-title: The multiplicative weights update method: A meta-algorithm and applications
  publication-title: Theory of Computing
  doi: 10.4086/toc.2012.v008a006
– volume: 6
  start-page: 211
  year: 1991
  end-page: 230
  ident: CR27
  article-title: Complexity results on learning by neural nets
  publication-title: Machine Learning
– volume: 45
  start-page: 70
  year: 1998
  end-page: 122
  ident: CR3
  article-title: Probabilistic checking of proofs: A new characterization of NP
  publication-title: Journal of the ACM
  doi: 10.1145/273865.273901
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR6
  article-title: Bagging predictors
  publication-title: Machine Learning
– ident: CR10
– volume: 20
  start-page: 165
  issue: 2
  year: 1949
  end-page: 205
  ident: CR40
  article-title: Statistical decision functions
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177730030
– volume: 5
  start-page: 117
  year: 1992
  end-page: 127
  ident: CR4
  article-title: Training a 3-node neural network is NP-complete
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80010-3
– volume: 3
  start-page: 325
  year: 1988
  end-page: 337
  ident: CR33
  article-title: On the complexity of polyhedral separability
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/BF02187916
– ident: CR8
– year: 1983
  ident: CR13
  publication-title: Improper linear and convex programming problems
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  end-page: 227
  ident: CR36
  article-title: The strength of weak learnability
  publication-title: Machine Learning
– volume: 73
  start-page: 138
  year: 2006
  end-page: 141
  ident: CR20
  article-title: Computational complexity of the minimum committee problem and related problems
  publication-title: Doklady Mathematics
  doi: 10.1134/S1064562406010376
– volume: 5
  start-page: 194
  year: 1982
  end-page: 197
  ident: CR34
  article-title: On the complexity of locating linear facilities in the plane
  publication-title: Operations Research Letters
  doi: 10.1016/0167-6377(82)90039-6
– volume: 38
  start-page: 451
  year: 2004
  end-page: 469
  ident: CR18
  article-title: Inapproximability results for set splitting and satisfiability problems with no mixed clauses
  publication-title: Algorithmica
  doi: 10.1007/s00453-003-1072-z
– year: 2002
  ident: CR38
  publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond
– year: 2009
  ident: CR5
  publication-title: Convex optimization
– volume: 108
  start-page: 212
  year: 1994
  end-page: 261
  ident: CR28
  article-title: The weighted majority algorithm
  publication-title: Information and Computation
  doi: 10.1006/inco.1994.1009
– ident: CR11
– volume: 121
  start-page: 256
  year: 1995
  end-page: 285
  ident: CR15
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Information and Computation
  doi: 10.1006/inco.1995.1136
– volume: 1
  start-page: S67
  year: 2002
  end-page: S101
  ident: CR22
  article-title: Committee constructions for solving problems of selection, diagnostics, and prediction
  publication-title: Proceedings of the Steklov Institute of Mathematics
– volume: 18
  start-page: 236
  issue: 2
  year: 2008
  end-page: 242
  ident: CR21
  article-title: Computational and approximational complexity of combinatorial problems related to the committee polyhedral separability of finite sets
  publication-title: Pattern Recognition and Image Analysis
  doi: 10.1134/S1054661808020089
– year: 1965
  ident: CR35
  publication-title: Learning machines: Foundations of trainable pattern classifying systems
– volume: 3
  start-page: 140
  year: 1971
  end-page: 146
  ident: CR29
  article-title: Committees of inequalities systems and the pattern recognition problem
  publication-title: Kibernetika
– volume: 20
  start-page: 217
  issue: 2
  year: 2009
  end-page: 234
  ident: CR25
  article-title: Complexity and approximability of committee polyhedral separability of sets in general position
  publication-title: Informatica
– volume: 45
  start-page: 261
  year: 2001
  end-page: 277
  ident: CR7
  article-title: Using iterated bagging to debias regressions
  publication-title: Machine Learning
  doi: 10.1023/A:1017934522171
– volume: 73
  start-page: 355
  year: 2012
  end-page: 368
  ident: CR26
  article-title: Constraint elimination method for the committee problem
  publication-title: Automation and Remote Control
  doi: 10.1134/S0005117912020130
– volume: 11
  start-page: 453
  year: 1965
  end-page: 455
  ident: CR1
  article-title: A committee solution of the pattern recognition problem (corresp.)
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1965.1053785
– volume: 6
  start-page: 547
  issue: 4
  year: 2007
  end-page: 561
  ident: CR24
  article-title: On the computational complexity of the minimum committee problem
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-006-9056-z
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  end-page: 1220
  ident: CR19
  article-title: Kernel methods in machine learning
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000677
– volume: 65
  start-page: 193
  year: 2004
  end-page: 203
  ident: CR31
  article-title: Committees of systems of linear inequalities
  publication-title: Automation and Remote Control
  doi: 10.1023/B:AURC.0000014716.77510.61
– year: 2012
  ident: CR37
  publication-title: Boosting: Foundations and algorithms
– volume-title: Convex optimization
  year: 2009
  ident: 5505_CR5
– volume: 6
  start-page: 547
  issue: 4
  year: 2007
  ident: 5505_CR24
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-006-9056-z
– volume: 6
  start-page: 211
  year: 1991
  ident: 5505_CR27
  publication-title: Machine Learning
– volume: 65
  start-page: 193
  year: 2004
  ident: 5505_CR31
  publication-title: Automation and Remote Control
  doi: 10.1023/B:AURC.0000014716.77510.61
– volume: 5
  start-page: 117
  year: 1992
  ident: 5505_CR4
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80010-3
– volume: 8
  start-page: 491
  year: 1998
  ident: 5505_CR23
  publication-title: Pattern Recgnition and Image Analysis
– volume-title: Improper linear and convex programming problems
  year: 1983
  ident: 5505_CR13
– volume: 73
  start-page: 355
  year: 2012
  ident: 5505_CR26
  publication-title: Automation and Remote Control
  doi: 10.1134/S0005117912020130
– volume: 3
  start-page: 140
  year: 1971
  ident: 5505_CR29
  publication-title: Kibernetika
– volume: 3
  start-page: 325
  year: 1988
  ident: 5505_CR33
  publication-title: Discrete and Computational Geometry
  doi: 10.1007/BF02187916
– volume: 38
  start-page: 451
  year: 2004
  ident: 5505_CR18
  publication-title: Algorithmica
  doi: 10.1007/s00453-003-1072-z
– ident: 5505_CR14
  doi: 10.1145/285055.285059
– volume: 29
  start-page: 79
  issue: 12
  year: 1999
  ident: 5505_CR16
  publication-title: Games and Economic Behavior
  doi: 10.1006/game.1999.0738
– ident: 5505_CR8
– volume: 121
  start-page: 256
  year: 1995
  ident: 5505_CR15
  publication-title: Information and Computation
  doi: 10.1006/inco.1995.1136
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 5505_CR36
  publication-title: Machine Learning
– ident: 5505_CR12
– volume: 11
  start-page: 453
  year: 1965
  ident: 5505_CR1
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1965.1053785
– volume: 20
  start-page: 217
  issue: 2
  year: 2009
  ident: 5505_CR25
  publication-title: Informatica
  doi: 10.15388/Informatica.2009.247
– volume: 8
  start-page: 121
  issue: 1
  year: 2012
  ident: 5505_CR2
  publication-title: Theory of Computing
  doi: 10.4086/toc.2012.v008a006
– volume: 45
  start-page: 70
  year: 1998
  ident: 5505_CR3
  publication-title: Journal of the ACM
  doi: 10.1145/273865.273901
– volume-title: Learning machines: Foundations of trainable pattern classifying systems
  year: 1965
  ident: 5505_CR35
– volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond
  year: 2002
  ident: 5505_CR38
– ident: 5505_CR39
– volume: 18
  start-page: 236
  issue: 2
  year: 2008
  ident: 5505_CR21
  publication-title: Pattern Recognition and Image Analysis
  doi: 10.1134/S1054661808020089
– volume: 5
  start-page: 194
  year: 1982
  ident: 5505_CR34
  publication-title: Operations Research Letters
  doi: 10.1016/0167-6377(82)90039-6
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 5505_CR19
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000677
– volume: 73
  start-page: 138
  year: 2006
  ident: 5505_CR20
  publication-title: Doklady Mathematics
  doi: 10.1134/S1064562406010376
– volume: 108
  start-page: 212
  year: 1994
  ident: 5505_CR28
  publication-title: Information and Computation
  doi: 10.1006/inco.1994.1009
– volume: 38
  start-page: 255
  year: 1956
  ident: 5505_CR17
  publication-title: Linear inequalities and related system
– volume-title: Boosting: Foundations and algorithms
  year: 2012
  ident: 5505_CR37
  doi: 10.7551/mitpress/8291.001.0001
– volume: 45
  start-page: 261
  year: 2001
  ident: 5505_CR7
  publication-title: Machine Learning
  doi: 10.1023/A:1017934522171
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 5505_CR6
  publication-title: Machine Learning
– ident: 5505_CR11
– volume: 68
  start-page: 912
  year: 2007
  ident: 5505_CR32
  publication-title: Automation and Remote Control
  doi: 10.1134/S0005117907050165
– volume: 20
  start-page: 273
  year: 1995
  ident: 5505_CR9
  publication-title: Machine Learning
– volume-title: Committee method in problems of optimization and classification
  year: 1990
  ident: 5505_CR30
– volume: 20
  start-page: 165
  issue: 2
  year: 1949
  ident: 5505_CR40
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177730030
– volume: 1
  start-page: S67
  year: 2002
  ident: 5505_CR22
  publication-title: Proceedings of the Steklov Institute of Mathematics
– ident: 5505_CR10
  doi: 10.1109/SFCS.2002.1181880
SSID ssj0002686
Score 2.168239
Snippet We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Data Analysis and Intelligent Optimization with...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the minimum affine separating committee (MASC) combinatorial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Classification
Classifiers
Combinatorial analysis
Computer Science
Construction
Control
Machine learning
Mathematical analysis
Mechatronics
Natural Language Processing (NLP)
Optimization
Polyhedra
Polynomials
Robotics
Simulation and Modeling
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yX3zxW5xOqeCTEmjTJGt8G-IYA31ysLeSpCkORje2Drb_3rus3aao4FtpL2m55HK_630Rcm8yHpkk0lSDfqDcJIYaYxVl0mqwxdo6dPhD__VN9ga8PxTDKo97Xke71y5Jf1LvJLv5MraRoIiqKdjp-wJMd5TGAetsjl8mfXtHkB5BUX3XrsyfpviqjLYI85tT1Oua7jE5rEBi0Fmv6gnZc8UpOaobMASVPJ6RPqZ3jMrSuWA6Ga8-XDaDYXOH9bx90OvqKfAx424J14EuMk-HmchA58uJL0fr3MVzMui-vD_3aNUcgVouWUmd0iBuVnKlcwkgQIHWsbGMTZhlsYilZqD9JODnXBtu4W6eOKmMYIm0hgHNBWkUk8JdkiCTABpypYTRCTcYlqxyC4ZMGOVtACSqScKaS6mtKodjA4txuq15jIxNgbEpMjYNm-RhM2S6LpvxF3GrZn1aSdA8jcB6boM5FydNcrd5DHsfHRq6cJMF0ohYYMU--MTHesl2pvjthVf_or4mBwy3jI_ga5FGOVu4G0Aipbn1O-8TSNPVDQ
  priority: 102
  providerName: Springer Nature
Title Committee polyhedral separability: complexity and polynomial approximation
URI https://link.springer.com/article/10.1007/s10994-015-5505-0
https://www.proquest.com/docview/1713728738
https://www.proquest.com/docview/1753518669
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzg_RgWflGA_s8YX2WRTJg4RB_OpJGmKg9HOrYPtv_cuazcV9CmluTTlksv9krvcEXIpY9-RoSOoAP1AfRlKKqXi1GVKwF6sIWyNB_rPPfbY97uDYFAcuE0Lt8pyTTQLdZwpPCO_cWA31QB474V340-KWaPQulqk0NgkVQc0Dc7zsPOwWoldZjI9giAFFDV5adVcXp0zQXGdgCJGp_ZPvbQGm7_so0btdHbJdoEXreZygPfIhk73yU6Zi8EqRPOAdPGmxzDPtbbG2WjxoeMJNJtqDO1t_F8Xt5ZxH9dzeLZEGhs6vJQMdCay-Hy4vMZ4SPqd9tv9Iy3yJFDlMzenmguQPMV8LhIGeICDAlIe86Qdx17gMeGCImQApRMhfQVvk1AzLgM3ZEq6QHNEKmmW6mNixQzwQ8J5IEXoS_RQ5omCPY3tJA3gL68Ru-RSpIog4pjLYhStwx8jYyNgbISMjewauVo1GS8jaPxHfFayPiqEaRqth75GLlbVIAZo2xCpzmZIE3gBBu-DX7wuh-zbJ_7q8OT_Dk_JlotzxHjvnZFKPpnpc0AhuaybqVYn1Wan1eph-fD-1Iay1e69vEJt321-AaEB3iU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcATLoVx4tKAujzZI7aXIInESb4yEUCmg5bWqKpC4pbbjCCSUXdgg2J_iG5lxkl1aCW7comRsR-PxPDwvgG86iwKdBIoplA8s0olmWhvJuDAKbbGO8i1d6J_1RPciOr6ML6fgqcmFobDKhic6Rp31Dd2RbwVoTXVQvQ-T3cEto65R5F1tWmhUZHFiRw9osg13jvZxf79zfnhw_qvL6q4CzESCl8xKhXRqRCRVLlB6SmTXJhSh9rMsjEOhOIoNgYpnrnRk8G2eWCF1zBNhNEcYnHcaZiLKaG3BzN5B7_efMe_nwvWWxKMbM9IdGj9qlaznyvAGMSOrgPn_SsKJevufR9YJusMFmKs1VO9nRVKLMGWLjzDfdH_wambwCY4pt-S6LK31Bv2b0ZXN7nDY0FIxcRdxO9r2XMC6fcRnTxWZg6M0aIRztcwfr6vEySW4eBccLkOr6Bf2M3iZQI0llzLWKok0xUTL3KAV5Qd5B7Uh2Qa_wVJq6rLl1D3jJp0UXCbEpojYlBCb-m34MR4yqGp2vAW81qA-rY_vMJ0QWxs2xp_x4JE3RRW2f08wcRhTuUD8xc1my15M8dqCK28v-BU-dM_PTtPTo97JKsxyohcXO7gGrfLu3q6jDlTqLzXhefD3vWn9GRL3F54
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBqnrhjbo8gwSXIovESZy4EkIIuuVV1EORuAXbcVQklF3YINhf69cx4yS7UAlu3KJkbEfj8Tw8L4AtnUeBTgPFFMoHFulUM62NZFwYhbZYonxLF_q_LsTxZXR6FV9NwL82F4bCKlue6Bh13jN0R74boDWVoHofprtFExbx-6i7379j1EGKPK1tO42aRM7s8BHNt8HeyRHu9Tbn3R9_Do9Z02GAmUjwilmpkGaNiKQqBEpSiazbhCLUfp6HcSgURxEiUAktlI4Mvi1SK6SOeSqM5giD836CqSRMJBl-affnSApw4bpM4iGOGWkRrUe1TttzBXmDmJF9wPzXMnGs6P7nm3UirzsL042u6h3UxDUHE7ach5m2D4TXsIUFOKUsk5uqstbr926Hf21-j8MGlsqKu9jb4XfPha7bJ3z2VJk7OEqIRjhX1fzppk6hXITLD8HgEkyWvdJ-BS8XqLsUUsZapZGm6GhZGLSn_KBIUC-SHfBbLGWmKWBOfTRus3HpZUJshojNCLGZ34FvoyH9unrHe8CrLeqz5iAPsjHZdWBz9BmPIPlVVGl7DwQThzEVDsRf3Gm37MUUby24_P6CG_AZKTw7P7k4W4EvnMjFBRGuwmR1_2DXUBmq9LqjOg-uP5rMnwEwQBpu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Committee+polyhedral+separability%3A+complexity+and+polynomial+approximation&rft.jtitle=Machine+learning&rft.au=Khachay%2C+Michael&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=101&rft.issue=1-3&rft.spage=231&rft_id=info:doi/10.1007%2Fs10994-015-5505-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3811467221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon