Committee polyhedral separability: complexity and polynomial approximation
We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the f...
Saved in:
Published in | Machine learning Vol. 101; no. 1-3; pp. 231 - 251 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-015-5505-0 |
Cover
Abstract | We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik–Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is
NP
-hard and remains intractable in spaces of any fixed dimension
n
>
1
even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Data Analysis and Intelligent Optimization with Applications; Guest Editors: Vadim Strijov * Gerhard-Wilhelm Weber * Richard Weber * Süreyya Ozogur Akyüz We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik-Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP-hard and remains intractable in spaces of any fixed dimension ... even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers. We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik–Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP -hard and remains intractable in spaces of any fixed dimension n > 1 even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the class of linear weak classifiers combined by the rule of simple majority. Actually, the MASC problem is a mathematical formalization of the famous Vapnik-Chervonenkis principle of structural risk minimization in the mentioned class of classifiers. According to this principle, it is required to construct a best performance ensemble classifier belonging to a family of the least possible VC-dimension. It is known that the MASC problem is NP-hard and remains intractable in spaces of any fixed dimension ... even under an additional constraint on the separated sets to be in general position. This special case of the MASC problem called MASC-GP(n) is the main subject of interest of the present paper. To design polynomial-time approximation algorithms for a class of combinatorial optimization problems containing the MASC problem, we propose a new framework, adjusting the well-known Multiple Weights Update method. Following this approach, we construct polynomial-time approximation algorithms with state-of-the-art approximation guarantee for the MASC-GP(n) problem. The results obtained provide a theoretical framework for learning a high-performance ensembles of affine classifiers. |
Author | Khachay, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Khachay fullname: Khachay, Michael email: mkhachay@imm.uran.ru organization: Krasovsky Institute of Mathematics and Mechanics UB RAS, Ural Federal University, Omsk State Technical University |
BookMark | eNp9kMtKAzEUhoNUsFYfwF3BjZtoLpNMxp0UrxTc6DpkMhlNySRjMoX27U07LqSgqxzC953LfwomPngDwAVG1xih8iZhVFUFRJhBxhCD6AhMMSspRIyzCZgiIRjkmLATcJrSCiFEuOBT8LIIXWeHwZh5H9z20zRRuXkyvYqqts4O29u5Dl3vzCbXc-WbPedDZzOn-j6Gje3UYIM_A8etcsmc_7wz8P5w_7Z4gsvXx-fF3RLqgpMBmkoVhGleVKrlFJcVL4WmnNaoaSijXBFjGi4EaVVd6PzbCsOrmhHBdU0yMwNXY988-2tt0iA7m7RxTnkT1kniklGGBedVRi8P0FVYR5-3yxSmJRElFZnCI6VjSCmaVvYx3xS3EiO5S1eO6cqcrtylK1F2ygNH22EfwxCVdf-aZDRTnuI_TPy105_SNz1kkTw |
CitedBy_id | crossref_primary_10_3390_v12091019 crossref_primary_10_1134_S1054661823040314 |
Cites_doi | 10.1134/S0005117907050165 10.1006/game.1999.0738 10.4086/toc.2012.v008a006 10.1145/273865.273901 10.1214/aoms/1177730030 10.1016/S0893-6080(05)80010-3 10.1007/BF02187916 10.1134/S1064562406010376 10.1016/0167-6377(82)90039-6 10.1007/s00453-003-1072-z 10.1006/inco.1994.1009 10.1006/inco.1995.1136 10.1134/S1054661808020089 10.1023/A:1017934522171 10.1134/S0005117912020130 10.1109/TIT.1965.1053785 10.1007/s10852-006-9056-z 10.1214/009053607000000677 10.1023/B:AURC.0000014716.77510.61 10.1145/285055.285059 10.15388/Informatica.2009.247 10.7551/mitpress/8291.001.0001 10.1109/SFCS.2002.1181880 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 |
Copyright_xml | – notice: The Author(s) 2015 |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-015-5505-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 251 |
ExternalDocumentID | 3811467221 10_1007_s10994_015_5505_0 |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c462t-e9a425c649af63179678c363b0dd3536a2eed6882fab4cb0df8e69b5286cb2dd3 |
IEDL.DBID | 8FG |
ISSN | 0885-6125 |
IngestDate | Thu Sep 04 19:32:38 EDT 2025 Mon Jul 14 07:20:04 EDT 2025 Tue Jul 01 00:46:04 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Fri Feb 21 02:28:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-3 |
Keywords | Polyhedral separability Affine committees Approximability Computational complexity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-e9a425c649af63179678c363b0dd3536a2eed6882fab4cb0df8e69b5286cb2dd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-015-5505-0.pdf |
PQID | 1713728738 |
PQPubID | 54194 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1753518669 proquest_journals_1713728738 crossref_primary_10_1007_s10994_015_5505_0 crossref_citationtrail_10_1007_s10994_015_5505_0 springer_journals_10_1007_s10994_015_5505_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Khachay, Poberii (CR25) 2009; 20 Wald (CR40) 1949; 20 Mazurov, Khachai (CR31) 2004; 65 Megiddo, Tamir (CR34) 1982; 5 Freund (CR15) 1995; 121 Gale (CR17) 1956; 38 Guruswami (CR18) 2004; 38 CR39 Arora, Hazan, Kale (CR2) 2012; 8 CR14 Khachai, Mazurov, Rybin (CR22) 2002; 1 CR12 CR11 CR10 Khachai, Rybin (CR23) 1998; 8 Blum, Rivest (CR4) 1992; 5 Boyd, Vandenberghe (CR5) 2009 Mazurov, Khachai (CR32) 2007; 68 Freund, Schapire (CR16) 1999; 29 Cortes, Vapnik (CR9) 1995; 20 Ablow, Kaylor (CR1) 1965; 11 Mazurov (CR30) 1990 Khachai (CR20) 2006; 73 Schapire, Freund (CR37) 2012 Nilsson (CR35) 1965 Schölkopf, Smola (CR38) 2002 Breiman (CR7) 2001; 45 CR8 Khachay (CR24) 2007; 6 Mazurov (CR29) 1971; 3 Hofmann, Schölkopf, Smola (CR19) 2008; 36 Khachai (CR21) 2008; 18 Arora, Safra (CR3) 1998; 45 Lin, Vitter (CR27) 1991; 6 Breiman (CR6) 1996; 24 Schapire (CR36) 1990; 5 Eremin, Mazurov, Astafiev (CR13) 1983 Littlestone, Warmuth (CR28) 1994; 108 Megiddo (CR33) 1988; 3 Kobylkin (CR26) 2012; 73 Y Freund (5505_CR16) 1999; 29 V Mazurov (5505_CR32) 2007; 68 N Nilsson (5505_CR35) 1965 V Mazurov (5505_CR30) 1990 5505_CR8 M Khachai (5505_CR21) 2008; 18 S Boyd (5505_CR5) 2009 S Arora (5505_CR3) 1998; 45 Y Freund (5505_CR15) 1995; 121 V Mazurov (5505_CR31) 2004; 65 K Kobylkin (5505_CR26) 2012; 73 N Littlestone (5505_CR28) 1994; 108 5505_CR39 D Gale (5505_CR17) 1956; 38 T Hofmann (5505_CR19) 2008; 36 5505_CR14 M Khachai (5505_CR22) 2002; 1 M Khachai (5505_CR23) 1998; 8 L Breiman (5505_CR6) 1996; 24 5505_CR12 R Schapire (5505_CR37) 2012 C Ablow (5505_CR1) 1965; 11 5505_CR11 A Blum (5505_CR4) 1992; 5 5505_CR10 I Eremin (5505_CR13) 1983 N Megiddo (5505_CR33) 1988; 3 R Schapire (5505_CR36) 1990; 5 M Khachay (5505_CR25) 2009; 20 V Mazurov (5505_CR29) 1971; 3 C Cortes (5505_CR9) 1995; 20 M Khachay (5505_CR24) 2007; 6 N Megiddo (5505_CR34) 1982; 5 A Wald (5505_CR40) 1949; 20 S Arora (5505_CR2) 2012; 8 L Breiman (5505_CR7) 2001; 45 V Guruswami (5505_CR18) 2004; 38 M Khachai (5505_CR20) 2006; 73 B Schölkopf (5505_CR38) 2002 J Lin (5505_CR27) 1991; 6 |
References_xml | – volume: 8 start-page: 491 year: 1998 end-page: 496 ident: CR23 article-title: A new estimate of the number of members in a minimum committee of a system of linear inequalities publication-title: Pattern Recgnition and Image Analysis – volume: 68 start-page: 912 year: 2007 end-page: 921 ident: CR32 article-title: Parallel computations and committee constructions publication-title: Automation and Remote Control doi: 10.1134/S0005117907050165 – year: 1990 ident: CR30 publication-title: Committee method in problems of optimization and classification – ident: CR14 – ident: CR39 – volume: 38 start-page: 255 year: 1956 end-page: 263 ident: CR17 article-title: Neighboring vertices on a convex polyhedron publication-title: Linear inequalities and related system – ident: CR12 – volume: 29 start-page: 79 issue: 12 year: 1999 end-page: 103 ident: CR16 article-title: Adaptive game playing using multiplicative weights publication-title: Games and Economic Behavior doi: 10.1006/game.1999.0738 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR9 article-title: Support-vector networks publication-title: Machine Learning – volume: 8 start-page: 121 issue: 1 year: 2012 end-page: 164 ident: CR2 article-title: The multiplicative weights update method: A meta-algorithm and applications publication-title: Theory of Computing doi: 10.4086/toc.2012.v008a006 – volume: 6 start-page: 211 year: 1991 end-page: 230 ident: CR27 article-title: Complexity results on learning by neural nets publication-title: Machine Learning – volume: 45 start-page: 70 year: 1998 end-page: 122 ident: CR3 article-title: Probabilistic checking of proofs: A new characterization of NP publication-title: Journal of the ACM doi: 10.1145/273865.273901 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 ident: CR6 article-title: Bagging predictors publication-title: Machine Learning – ident: CR10 – volume: 20 start-page: 165 issue: 2 year: 1949 end-page: 205 ident: CR40 article-title: Statistical decision functions publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177730030 – volume: 5 start-page: 117 year: 1992 end-page: 127 ident: CR4 article-title: Training a 3-node neural network is NP-complete publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80010-3 – volume: 3 start-page: 325 year: 1988 end-page: 337 ident: CR33 article-title: On the complexity of polyhedral separability publication-title: Discrete and Computational Geometry doi: 10.1007/BF02187916 – ident: CR8 – year: 1983 ident: CR13 publication-title: Improper linear and convex programming problems – volume: 5 start-page: 197 issue: 2 year: 1990 end-page: 227 ident: CR36 article-title: The strength of weak learnability publication-title: Machine Learning – volume: 73 start-page: 138 year: 2006 end-page: 141 ident: CR20 article-title: Computational complexity of the minimum committee problem and related problems publication-title: Doklady Mathematics doi: 10.1134/S1064562406010376 – volume: 5 start-page: 194 year: 1982 end-page: 197 ident: CR34 article-title: On the complexity of locating linear facilities in the plane publication-title: Operations Research Letters doi: 10.1016/0167-6377(82)90039-6 – volume: 38 start-page: 451 year: 2004 end-page: 469 ident: CR18 article-title: Inapproximability results for set splitting and satisfiability problems with no mixed clauses publication-title: Algorithmica doi: 10.1007/s00453-003-1072-z – year: 2002 ident: CR38 publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond – year: 2009 ident: CR5 publication-title: Convex optimization – volume: 108 start-page: 212 year: 1994 end-page: 261 ident: CR28 article-title: The weighted majority algorithm publication-title: Information and Computation doi: 10.1006/inco.1994.1009 – ident: CR11 – volume: 121 start-page: 256 year: 1995 end-page: 285 ident: CR15 article-title: Boosting a weak learning algorithm by majority publication-title: Information and Computation doi: 10.1006/inco.1995.1136 – volume: 1 start-page: S67 year: 2002 end-page: S101 ident: CR22 article-title: Committee constructions for solving problems of selection, diagnostics, and prediction publication-title: Proceedings of the Steklov Institute of Mathematics – volume: 18 start-page: 236 issue: 2 year: 2008 end-page: 242 ident: CR21 article-title: Computational and approximational complexity of combinatorial problems related to the committee polyhedral separability of finite sets publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661808020089 – year: 1965 ident: CR35 publication-title: Learning machines: Foundations of trainable pattern classifying systems – volume: 3 start-page: 140 year: 1971 end-page: 146 ident: CR29 article-title: Committees of inequalities systems and the pattern recognition problem publication-title: Kibernetika – volume: 20 start-page: 217 issue: 2 year: 2009 end-page: 234 ident: CR25 article-title: Complexity and approximability of committee polyhedral separability of sets in general position publication-title: Informatica – volume: 45 start-page: 261 year: 2001 end-page: 277 ident: CR7 article-title: Using iterated bagging to debias regressions publication-title: Machine Learning doi: 10.1023/A:1017934522171 – volume: 73 start-page: 355 year: 2012 end-page: 368 ident: CR26 article-title: Constraint elimination method for the committee problem publication-title: Automation and Remote Control doi: 10.1134/S0005117912020130 – volume: 11 start-page: 453 year: 1965 end-page: 455 ident: CR1 article-title: A committee solution of the pattern recognition problem (corresp.) publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1965.1053785 – volume: 6 start-page: 547 issue: 4 year: 2007 end-page: 561 ident: CR24 article-title: On the computational complexity of the minimum committee problem publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-006-9056-z – volume: 36 start-page: 1171 issue: 3 year: 2008 end-page: 1220 ident: CR19 article-title: Kernel methods in machine learning publication-title: The Annals of Statistics doi: 10.1214/009053607000000677 – volume: 65 start-page: 193 year: 2004 end-page: 203 ident: CR31 article-title: Committees of systems of linear inequalities publication-title: Automation and Remote Control doi: 10.1023/B:AURC.0000014716.77510.61 – year: 2012 ident: CR37 publication-title: Boosting: Foundations and algorithms – volume-title: Convex optimization year: 2009 ident: 5505_CR5 – volume: 6 start-page: 547 issue: 4 year: 2007 ident: 5505_CR24 publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-006-9056-z – volume: 6 start-page: 211 year: 1991 ident: 5505_CR27 publication-title: Machine Learning – volume: 65 start-page: 193 year: 2004 ident: 5505_CR31 publication-title: Automation and Remote Control doi: 10.1023/B:AURC.0000014716.77510.61 – volume: 5 start-page: 117 year: 1992 ident: 5505_CR4 publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80010-3 – volume: 8 start-page: 491 year: 1998 ident: 5505_CR23 publication-title: Pattern Recgnition and Image Analysis – volume-title: Improper linear and convex programming problems year: 1983 ident: 5505_CR13 – volume: 73 start-page: 355 year: 2012 ident: 5505_CR26 publication-title: Automation and Remote Control doi: 10.1134/S0005117912020130 – volume: 3 start-page: 140 year: 1971 ident: 5505_CR29 publication-title: Kibernetika – volume: 3 start-page: 325 year: 1988 ident: 5505_CR33 publication-title: Discrete and Computational Geometry doi: 10.1007/BF02187916 – volume: 38 start-page: 451 year: 2004 ident: 5505_CR18 publication-title: Algorithmica doi: 10.1007/s00453-003-1072-z – ident: 5505_CR14 doi: 10.1145/285055.285059 – volume: 29 start-page: 79 issue: 12 year: 1999 ident: 5505_CR16 publication-title: Games and Economic Behavior doi: 10.1006/game.1999.0738 – ident: 5505_CR8 – volume: 121 start-page: 256 year: 1995 ident: 5505_CR15 publication-title: Information and Computation doi: 10.1006/inco.1995.1136 – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 5505_CR36 publication-title: Machine Learning – ident: 5505_CR12 – volume: 11 start-page: 453 year: 1965 ident: 5505_CR1 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1965.1053785 – volume: 20 start-page: 217 issue: 2 year: 2009 ident: 5505_CR25 publication-title: Informatica doi: 10.15388/Informatica.2009.247 – volume: 8 start-page: 121 issue: 1 year: 2012 ident: 5505_CR2 publication-title: Theory of Computing doi: 10.4086/toc.2012.v008a006 – volume: 45 start-page: 70 year: 1998 ident: 5505_CR3 publication-title: Journal of the ACM doi: 10.1145/273865.273901 – volume-title: Learning machines: Foundations of trainable pattern classifying systems year: 1965 ident: 5505_CR35 – volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond year: 2002 ident: 5505_CR38 – ident: 5505_CR39 – volume: 18 start-page: 236 issue: 2 year: 2008 ident: 5505_CR21 publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661808020089 – volume: 5 start-page: 194 year: 1982 ident: 5505_CR34 publication-title: Operations Research Letters doi: 10.1016/0167-6377(82)90039-6 – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 5505_CR19 publication-title: The Annals of Statistics doi: 10.1214/009053607000000677 – volume: 73 start-page: 138 year: 2006 ident: 5505_CR20 publication-title: Doklady Mathematics doi: 10.1134/S1064562406010376 – volume: 108 start-page: 212 year: 1994 ident: 5505_CR28 publication-title: Information and Computation doi: 10.1006/inco.1994.1009 – volume: 38 start-page: 255 year: 1956 ident: 5505_CR17 publication-title: Linear inequalities and related system – volume-title: Boosting: Foundations and algorithms year: 2012 ident: 5505_CR37 doi: 10.7551/mitpress/8291.001.0001 – volume: 45 start-page: 261 year: 2001 ident: 5505_CR7 publication-title: Machine Learning doi: 10.1023/A:1017934522171 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 5505_CR6 publication-title: Machine Learning – ident: 5505_CR11 – volume: 68 start-page: 912 year: 2007 ident: 5505_CR32 publication-title: Automation and Remote Control doi: 10.1134/S0005117907050165 – volume: 20 start-page: 273 year: 1995 ident: 5505_CR9 publication-title: Machine Learning – volume-title: Committee method in problems of optimization and classification year: 1990 ident: 5505_CR30 – volume: 20 start-page: 165 issue: 2 year: 1949 ident: 5505_CR40 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177730030 – volume: 1 start-page: S67 year: 2002 ident: 5505_CR22 publication-title: Proceedings of the Steklov Institute of Mathematics – ident: 5505_CR10 doi: 10.1109/SFCS.2002.1181880 |
SSID | ssj0002686 |
Score | 2.168239 |
Snippet | We consider the minimum affine separating committee (MASC) combinatorial optimization problem, which is related to ensemble machine learning techniques on the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Special Issue: Data Analysis and Intelligent Optimization with... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We consider the minimum affine separating committee (MASC) combinatorial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 231 |
SubjectTerms | Algorithms Approximation Artificial Intelligence Classification Classifiers Combinatorial analysis Computer Science Construction Control Machine learning Mathematical analysis Mechatronics Natural Language Processing (NLP) Optimization Polyhedra Polynomials Robotics Simulation and Modeling |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yX3zxW5xOqeCTEmjTJGt8G-IYA31ysLeSpCkORje2Drb_3rus3aao4FtpL2m55HK_630Rcm8yHpkk0lSDfqDcJIYaYxVl0mqwxdo6dPhD__VN9ga8PxTDKo97Xke71y5Jf1LvJLv5MraRoIiqKdjp-wJMd5TGAetsjl8mfXtHkB5BUX3XrsyfpviqjLYI85tT1Oua7jE5rEBi0Fmv6gnZc8UpOaobMASVPJ6RPqZ3jMrSuWA6Ga8-XDaDYXOH9bx90OvqKfAx424J14EuMk-HmchA58uJL0fr3MVzMui-vD_3aNUcgVouWUmd0iBuVnKlcwkgQIHWsbGMTZhlsYilZqD9JODnXBtu4W6eOKmMYIm0hgHNBWkUk8JdkiCTABpypYTRCTcYlqxyC4ZMGOVtACSqScKaS6mtKodjA4txuq15jIxNgbEpMjYNm-RhM2S6LpvxF3GrZn1aSdA8jcB6boM5FydNcrd5DHsfHRq6cJMF0ohYYMU--MTHesl2pvjthVf_or4mBwy3jI_ga5FGOVu4G0Aipbn1O-8TSNPVDQ priority: 102 providerName: Springer Nature |
Title | Committee polyhedral separability: complexity and polynomial approximation |
URI | https://link.springer.com/article/10.1007/s10994-015-5505-0 https://www.proquest.com/docview/1713728738 https://www.proquest.com/docview/1753518669 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfjitzg_RgWflGA_s8YX2WRTJg4RB_OpJGmKg9HOrYPtv_cuazcV9CmluTTlksv9krvcEXIpY9-RoSOoAP1AfRlKKqXi1GVKwF6sIWyNB_rPPfbY97uDYFAcuE0Lt8pyTTQLdZwpPCO_cWA31QB474V340-KWaPQulqk0NgkVQc0Dc7zsPOwWoldZjI9giAFFDV5adVcXp0zQXGdgCJGp_ZPvbQGm7_so0btdHbJdoEXreZygPfIhk73yU6Zi8EqRPOAdPGmxzDPtbbG2WjxoeMJNJtqDO1t_F8Xt5ZxH9dzeLZEGhs6vJQMdCay-Hy4vMZ4SPqd9tv9Iy3yJFDlMzenmguQPMV8LhIGeICDAlIe86Qdx17gMeGCImQApRMhfQVvk1AzLgM3ZEq6QHNEKmmW6mNixQzwQ8J5IEXoS_RQ5omCPY3tJA3gL68Ru-RSpIog4pjLYhStwx8jYyNgbISMjewauVo1GS8jaPxHfFayPiqEaRqth75GLlbVIAZo2xCpzmZIE3gBBu-DX7wuh-zbJ_7q8OT_Dk_JlotzxHjvnZFKPpnpc0AhuaybqVYn1Wan1eph-fD-1Iay1e69vEJt321-AaEB3iU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcATLoVx4tKAujzZI7aXIInESb4yEUCmg5bWqKpC4pbbjCCSUXdgg2J_iG5lxkl1aCW7comRsR-PxPDwvgG86iwKdBIoplA8s0olmWhvJuDAKbbGO8i1d6J_1RPciOr6ML6fgqcmFobDKhic6Rp31Dd2RbwVoTXVQvQ-T3cEto65R5F1tWmhUZHFiRw9osg13jvZxf79zfnhw_qvL6q4CzESCl8xKhXRqRCRVLlB6SmTXJhSh9rMsjEOhOIoNgYpnrnRk8G2eWCF1zBNhNEcYnHcaZiLKaG3BzN5B7_efMe_nwvWWxKMbM9IdGj9qlaznyvAGMSOrgPn_SsKJevufR9YJusMFmKs1VO9nRVKLMGWLjzDfdH_wambwCY4pt-S6LK31Bv2b0ZXN7nDY0FIxcRdxO9r2XMC6fcRnTxWZg6M0aIRztcwfr6vEySW4eBccLkOr6Bf2M3iZQI0llzLWKok0xUTL3KAV5Qd5B7Uh2Qa_wVJq6rLl1D3jJp0UXCbEpojYlBCb-m34MR4yqGp2vAW81qA-rY_vMJ0QWxs2xp_x4JE3RRW2f08wcRhTuUD8xc1my15M8dqCK28v-BU-dM_PTtPTo97JKsxyohcXO7gGrfLu3q6jDlTqLzXhefD3vWn9GRL3F54 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcERBqnrhjbo8gwSXIovESZy4EkIIuuVV1EORuAXbcVQklF3YINhf69cx4yS7UAlu3KJkbEfj8Tw8L4AtnUeBTgPFFMoHFulUM62NZFwYhbZYonxLF_q_LsTxZXR6FV9NwL82F4bCKlue6Bh13jN0R74boDWVoHofprtFExbx-6i7379j1EGKPK1tO42aRM7s8BHNt8HeyRHu9Tbn3R9_Do9Z02GAmUjwilmpkGaNiKQqBEpSiazbhCLUfp6HcSgURxEiUAktlI4Mvi1SK6SOeSqM5giD836CqSRMJBl-affnSApw4bpM4iGOGWkRrUe1TttzBXmDmJF9wPzXMnGs6P7nm3UirzsL042u6h3UxDUHE7ach5m2D4TXsIUFOKUsk5uqstbr926Hf21-j8MGlsqKu9jb4XfPha7bJ3z2VJk7OEqIRjhX1fzppk6hXITLD8HgEkyWvdJ-BS8XqLsUUsZapZGm6GhZGLSn_KBIUC-SHfBbLGWmKWBOfTRus3HpZUJshojNCLGZ34FvoyH9unrHe8CrLeqz5iAPsjHZdWBz9BmPIPlVVGl7DwQThzEVDsRf3Gm37MUUby24_P6CG_AZKTw7P7k4W4EvnMjFBRGuwmR1_2DXUBmq9LqjOg-uP5rMnwEwQBpu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Committee+polyhedral+separability%3A+complexity+and+polynomial+approximation&rft.jtitle=Machine+learning&rft.au=Khachay%2C+Michael&rft.date=2015-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=101&rft.issue=1-3&rft.spage=231&rft_id=info:doi/10.1007%2Fs10994-015-5505-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3811467221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |